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Part I: Robust Optimal Power Flow with Uncertain
Renewables

with Michael Chertkov (LANL) and Sean Harnett (Columbia)
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Optimal power flow (economic dispatch, tertiary control)

Used periodically to handle the next time window
(e.g. 15 minutes, one hour)

Choose generator outputs

Minimize cost (quadratic)

Satisfy demands, meet generator and network constraints

Constant load (demand) estimates for the time window
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OPF:

min c(p) (a quadratic)

s.t.

Bθ = p − d (1)

|yij(θi − θj)| ≤ uij for each line ij (2)

Pmin
g ≤ pg ≤ Pmax

g for each bus g (3)

Notation:

p = vector of generations ∈ Rn, d = vector of loads ∈ Rn

B ∈ Rn×n, (bus susceptance matrix)

∀i , j : Bij =


−yij , ij ∈ E (set of lines)∑

k;{k,j}∈E ykj , i = j

0, otherwise
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min c(p) (a quadratic)

s.t.

Bθ = p − d

|yij (θi − θj )| ≤ uij for each line ij

Pmin
g ≤ pg ≤ Pmax

g for each bus g

How does OPF handle short-term fluctuations in demand (d)?
Frequency control:

Automatic control: primary, secondary

The output of special generators varies up or down proportionally
to aggregate change

How does OPF handle short-term fluctuations in renewable output?

Answer: Same mechanism, now used to handle aggregate wind power

change
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CIGRE -International Conference on Large High Voltage
Electric Systems ’09

Large unexpected fluctuations in wind power can cause
additional flows through the transmission system (grid)

Large power deviations in renewables must be balanced by
other sources, which may be far away

Flow reversals may be observed – control difficult

A solution – expand transmission capacity! Difficult
(expensive), takes a long time

Problems already observed when renewable penetration high
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CIGRE -International Conference on Large High Voltage
Electric Systems ’09

“Fluctuations” – 15-minute timespan

Due to turbulence (“storm cut-off”)

Variation of the same order of magnitude as mean

Most problematic when renewable penetration starts to
exceed 20− 30%

Many countries are getting into this regime
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Wind model?

Need to model variation in wind power between dispatches

Wind at farm attached to bus i of the form µi + wi – Weibull
distribution?
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Wind model

From CIGRE report, aggregated over Germany:
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Experiment

Bonneville Power Administration data, Northwest US

data on wind fluctuations at planned farms

with standard OPF, 7 lines exceed limit ≥ 8% of the time

Bienstock Columbia University

Chance-constrained optimization problems in the operation of the power grid



Line limits and line tripping

If power flow in a line exceeds its limit, the line becomes compromised
and may ’trip’. But process is complex and time-averaged:

Thermal limit is most common

Thermal limit may be in terms of terminal equipment, not line itself

Wind strength and wind direction contributes to line temperature

In medium-length lines (∼ 100 miles) the line limit is due to voltage
drop, not thermal reasons

In long lines, it is due to phase angle change (stability), not thermal
reasons

In 2003 U.S. blackout event, many critical lines tripped due to
thermal reasons, but well short of their line limit
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Line trip model

summary: exceeding limit for too long is bad, but complicated

want: ”fraction time a line exceeds its limit is small”

proxy: prob(violation on line i) < ε for each line i
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Control

For each generator i , two parameters:

pi = mean output

αi = response parameter

Real-time output of generator i :

pi = pi − αi

∑
j

∆ωj

where ∆ωj = change in output of renewable j (from mean).∑
i

αi = 1

∼ primary + secondary control
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Set up
control
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Computing line flows

wind power at bus i : µi + wi

DC approximation

Bθ = p − d
+(µ+ w − α

∑
i∈G wi )

θ = B+(p̄ − d + µ) + B+(I − αeT )w

flow is a linear combination of bus power injections:

f ij = yij(θi − θj)
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Computing line flows

f ij = yij

(
(B+

i − B+
j )T (p̄ − d + µ) + (Ai − Aj)

T w
)
,

A = B+(I − αeT )

Given distribution of wind can calculate moments of line flows:

E f ij = yij(B
+
i − B+

j )T (p̄ − d + µ)

var(f ij) := s2
ij ≥ y2

ij

∑
k(Aik − Ajk)2σ2

k

(assuming independence)

and higher moments if necessary
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Chance constraints to deterministic constraints

chance constraint: P(f ij > f max
ij ) < εij and P(f ij < −f max

ij ) < εij

from moments of f ij, can get conservative approximations using e.g.
Chebyshev’s inequality

for Gaussian wind, can do better, since f ij is Gaussian :

|E f ij| + var(f ij)φ
−1 (1− εij) ≤ f max

ij
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Formulation:
Choose mean generator outputs and control to minimize expected cost,
with the probability of line overloads kept small.

min
p,α

E[c(p)]

s.t.
∑
i∈G

αi = 1, α ≥ 0

Bδ = α, δn = 0∑
i∈G

pi +
∑
i∈W

µi =
∑
i∈D

di

f ij = yij(θi − θj),

Bθ = p + µ− d , θn = 0

s2
ij ≥ y2

ij

∑
k∈W

σ2
k(B+

ik − B+
jk − δi + δj)

2

|f ij | + sijφ
−1 (1− εij) ≤ f max

ij
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Data errors?

s2
ij ≥ y2

ij

∑
k∈W

σ2
k(B+

ik − B+
jk − δi + δj)

2

|f ij | + sijφ
−1 (1− εij) ≤ f max

ij

(the f ij implicitly incorporate the µi)

What if the µi or the σk are incorrect? ... What happens to

Prob(f ij > uij)?
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Let the correct parameters be µ̃i , σ̃i for each farm i .

Theorem: Suppose there are parameters M > 0, V > 0 such that

|µ̄i − µi | < Mµi and | σ̄2
i − σi | < Vσi

for all i . Then:

Prob(fij > f max
ij ) < εij + O(V ) + O(M)

Here, the O() “hides” some constants dependent on e.g. reactances

Can we guarantee that Prob(fij > f max
ij ) is small even under data errors?
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Polyhedral data error model:

|σ̃2
i − σ2

i | ≤ γi ∀i ,
∑

i

|σ̃2
i − σ2

i |
γi

≤ Γ.

Ellipsoidal data error model:

(σ̃2 − σ2)TA(σ̃2 − σ2) ≤ b

Here A � 0 and b > 0 are parameters.
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chance constraints

Nominal case:

|E f ij| + var(f ij)φ
−1 (1− εij) ≤ f max

ij

→ a conic constraint

Robust case: maxE
{
|E f ij| + var(f ij)φ

−1 (1− εij)
}
≤ f max

ij

( E : data error model) how to solve?

Theorem. The robust problem is a convex optimization problem and can
be solved in polynomial time in the polyhedral and ellipsoidal data cases.

An “ambiguous chance-constrained problem”
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Toy example

1 What if no line limits?

2 What if tight limit on line connecting generators?
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Answer 1

What if no line limits?
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Answer 2

What if small limit on line connecting generators?
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Experiment

How much wind penetration can we handle?
And how much money does this save?

39-bus New England system from MATPOWER

30% penetration, CC-OPF cost 264,000
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Experiment

’standard’ OPF solution with 10% buffer on line limits
feasible only up to 5% penetration (right)

Cost 1,275,000 – almost 5 times greater than chance-constrained
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Big cases

Polish system - winter 2003-04 evening peak
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Big cases

Polish 2003-2004 winter peak case

2746 buses, 3514 branches, 8 wind sources

5% penetration and σ = .3µ each source

CPLEX: the optimization problem has

36625 variables

38507 constraints, 6242 conic constraints

128538 nonzeros, 87 dense columns
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Big cases

CPLEX:

total time on 16 threads = 3393 seconds

”optimization status 6”

solution is wildly infeasible

Gurobi:

time: 31.1 seconds

”Numerical trouble encountered”

Bienstock Columbia University

Chance-constrained optimization problems in the operation of the power grid



Cutting-plane method

Candidate solution violates conic constraint

-3 -2 -1 1 2 3

-4
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Cutting-plane method

Separate: find a linear constraint also violated

-3 -2 -1 1 2 3
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Cutting-plane method

Solve again with linear constraint
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Cutting-plane method

New solution still violates conic constraint
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Cutting-plane method

Separate again
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Cutting-plane method

We might end up with many linear constraints

-3 -2 -1 1 2 3

-4

-2

2

4

6

8

10

Bienstock Columbia University

Chance-constrained optimization problems in the operation of the power grid



Cutting-plane method

... which approximate the conic constraint
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conic constraint: √
x2

1 + x2
2 + ...+ x2

k = ‖x‖2 ≤ y

candidate solution:
(x∗, y∗)

cutting-plane (linear constraint):

‖x∗‖2 +
x∗T

‖x∗‖2
(x − x∗) =

x∗T x

‖x∗‖2
≤ y
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Polish 2003-2004 case
CPLEX: “opt status 6”
Gurobi: “numerical trouble”

Example run of cutting-plane algorithm:

Iteration Max rel. error Objective

1 1.2e-1 7.0933e6
4 1.3e-3 7.0934e6
7 1.9e-3 7.0934e6

10 1.0e-4 7.0964e6
12 8.9e-7 7.0965e6

Total running time: 32.9 seconds
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Back to motivating example

BPA case

standard OPF: cost 235603, 7 lines unsafe ≥ 8% of the time
CC-OPF: cost 237297, every line safe ≥ 98% of the time
run time = 9.5 seconds (one cutting plane!)

Bienstock Columbia University

Chance-constrained optimization problems in the operation of the power grid



Back to motivating example

BPA case

standard OPF: cost 235603, 7 lines unsafe ≥ 8% of the time
CC-OPF: cost 237297, every line safe ≥ 98% of the time
run time = 9.5 seconds (one cutting plane!)

Bienstock Columbia University

Chance-constrained optimization problems in the operation of the power grid



Part II: Modeling line temperature

with Jose Blanchet and Juan Li (Columbia)
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Background

2003 North American blackout: initiated by several line trips

When a power line overheats it becomes exposed to several
risk factors

If the line overheats enough, it may sag and experience a
contact/arc, which will cause a trip

If overheating is detected, and is deemed risky, the line will
may be preemptively tripped

What is risky? What is a critical temperature?

2003 event: critical temperatures estimates were sometimes
incorrect.
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IEEE Standard 738

A comprehensive method for determining the temperature of
a power line,

as a function of current and pause physical
properties of the conductor .

It attempts to account for: wind, and ambient temperature,
day of the year, latitude and longitude, angle between wind
and conductor, altitude of sun (and time of day), density and
viscosity of air, several other factors.

It also relies on the heat equation for a “static” calculation.

Note: power lines can be more than 100 miles long.

How can we account for data uncertainty, errors,
unavailability?
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How can we account for data uncertainty, errors,
unavailability?
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The heat equation on a 1-dimensional line

Line modeled as one-dimensional object parameterized by x ,
0 ≤ x ≤ L.

Time domain: [0, τ ]

(for example: OPF intervals)

I (t) = current at time t, T (x , t) = temperature at x at time t.

Heat equation:

∂T (x , t)

∂t
= κ

∂2T (x , t)

∂x2
+ αI 2(t)− ν(T (x , t)− T ext(x , t)),

where κ ≥ 0, α ≥ 0 and ν ≥ 0 are (line dependent) constants, and
T ext(x , t) is the ambient temperature at (x , t)
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IEEE 738, other authors:

∂T (x , t)
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∂t
= αI 2 − ν(T (x , t)− G (h(x)).

h(x) = a random variable, at x .
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This paper: stochasticity in the spatial domain (x)

CDC ’13: stochasticity in the time domain (t)

The goal: algorithm- and data-driven estimates for “safe”
current/temperature limits
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Back to the stochastic heat equation

∂T (x , t)

∂t
= αI 2 − ν(T (x , t)− G (h(x)).

Recall: x ∈ [0, L], t ∈ [0, τ ]

Integrate and divide by L, get

1

L

∫ L

0

∂T (x , t)

∂t
dx = αI 2(t)− ν

L

∫ L

0

T (x , t)dx +
ν

L

∫ L

0

G (h(x))dx .

1

L

∫ L

0

∂T (x , t)

∂t
dx =

d

dt

1

L

∫ L

0

T (x , t)dx =
dH(t)

dt
.

H(t) ,
1

L

∫ L

0

T (x , t)dx (average internal line temperature at t)
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Once more

dH(t)
dt

= αI 2(t)− νH(t) + νR.

H(t) ,
1

L

Z L

0
T (x, t)dx, R ,

1

L

Z L

0
G(h(x))dx,

Solution:

H(t) =

∫ t

0

e−ν(t−s)αI 2(s)ds + R(1− e−νt) + Ce−νt ,

where

C = H(0) =
1

L

∫ L

0

T (x , 0)dx .

Control goal: make I (t) “large”, but with P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε

Bienstock Columbia University

Chance-constrained optimization problems in the operation of the power grid



Once more

dH(t)
dt

= αI 2(t)− νH(t) + νR.

H(t) ,
1

L

Z L

0
T (x, t)dx, R ,

1

L

Z L

0
G(h(x))dx,

Solution:

H(t) =

∫ t

0

e−ν(t−s)αI 2(s)ds + R(1− e−νt) + Ce−νt ,

where

C = H(0) =
1

L

∫ L

0

T (x , 0)dx .

Control goal: make I (t) “large”, but with P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε

Bienstock Columbia University

Chance-constrained optimization problems in the operation of the power grid



Once more

dH(t)
dt

= αI 2(t)− νH(t) + νR.

H(t) ,
1

L

Z L

0
T (x, t)dx, R ,

1

L

Z L

0
G(h(x))dx,

Solution:

H(t) =

∫ t

0

e−ν(t−s)αI 2(s)ds + R(1− e−νt) + Ce−νt ,

where

C = H(0) =
1

L

∫ L

0

T (x , 0)dx .

Control goal: make I (t) “large”,

but with P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε

Bienstock Columbia University

Chance-constrained optimization problems in the operation of the power grid



Once more

dH(t)
dt

= αI 2(t)− νH(t) + νR.

H(t) ,
1

L

Z L

0
T (x, t)dx, R ,

1

L

Z L

0
G(h(x))dx,

Solution:

H(t) =

∫ t

0

e−ν(t−s)αI 2(s)ds + R(1− e−νt) + Ce−νt ,

where

C = H(0) =
1

L

∫ L

0

T (x , 0)dx .

Control goal: make I (t) “large”, but with P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε

Bienstock Columbia University

Chance-constrained optimization problems in the operation of the power grid



Constant control: I (t) = Ī , for all t ∈ [0, τ ]

H(t) =

Z t

0
e−ν(t−s)

αĪ 2(s)ds + R(1− e−νt ) + Ce−νt
,

where

C = H(0) =
1

L

Z L

0
T (x, 0)dx.

Constant current ⇒ H(t) = (αν Ī 2 + R)(1− e−νt) + Ce−νt

So, H ′(t) > 0 for Ī large enough, (and of constant sign for any Ī ).

So, P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε equivalent to P(H(τ ) > k) ≤ ε.

Solution:

Ī 2 ≤ ν

α

k − Ce−ντ − ρε(1− e−ντ )

1− e−ντ
= L(τ, k)
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Adaptive control

Simplification:
R is a discrete random variable. P(R = ri ) = pi , i = 1, 2, . . . , n (known).

1. At time τ = 0, we compute values I1, and I2,i for i = 1, 2, . . . , n.
These values are used as follows:

2. For all t ∈ [0, τ/2], we set I (t) = I1.

3. At time τ/2, we observe the value of R. Assuming R = ri , then
for all t ∈ [τ/2, τ ], we set I (t) = I2,i .

Goals:

(a) P(H(τ ) > k) < ε. k smaller than critical temperature

(b) I1 ≤ L(τ/2).

(c) What about performance?
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We want to maximize:

“Total” current: τ
2 I1 + τ

2 I2,i ?

“Average” current? Square current?

F(I1, I2) : a monotonely increasing function of I1, I2
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Adaptive control

Simplification:
R is a discrete random variable. P(R = ri ) = pi , i = 1, 2, . . . , n (known).

1. At time τ = 0, we compute values I1, and I2,i for i = 1, 2, . . . , n.
These values are used as follows:

2. For all t ∈ [0, τ/2], we set I (t) = I1.

3. At time τ/2, we observe the value of R. Assuming R = ri , then
for all t ∈ [τ/2, τ ], we set I (t) = I2,i .

Goals:

(a) P(H(τ ) > k) < ε. k smaller than critical temperature

(b) I1 ≤ L(τ/2).

(c) Maximize:
n∑

i=1

F (I1, I2,i )pi
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max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε

H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2,i + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2,i > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.
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I1 ≤ L(τ/2, k)
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Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2,i + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint s of the form:
n∑

i=1

I{v1 I 2
1︸︷︷︸

z1

+ v2 I 2
2,i︸ ︷︷ ︸

z2(i)

> u − ri (1− e−ντ ) − Ce−ντ︸ ︷︷ ︸
wi

}pi ≤ ε.
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max
n∑

i=1

F̃ (z1, z2(i)) pi

s.t.
n∑

i=1

I{z1 + z2(i) > wi}pi ≤ ε

z1 + z2(i) ≤ ui (wi < ui )

z1 ≤ k̄

other constraints.

Lemma: At optimality,

z1 + z2(i) = wi or ui , all i

→ Use binary variable

yi =

{
0 when z1 + z2(i) = wi

1 when z1 + z2(i) = ui
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Continuous knapsack problem

max
n∑

i=1

F̃ (z1,wi − z1)pi (1− yi ) + F̃ (z1, ui − z1)piyi

s.t.
n∑

i=1

uipiyi ≤ ε

0 ≤ z1 ≤ k̄

yi = 0 or 1, all i .
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Continuous knapsack problem

max
z1∈[0,k̄]

M(z1)

M(z1) ,
n∑

i=1

F̃ (z1,wi − z1)pi (1− yi ) + F̃ (z1, ui − z1)piyi

s.t.
n∑

i=1

uipi yi ≤ ε

yi = 0 or 1, all i .

Practicable! Grid over z1 + knapsack for given z1
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A useless result

Theorem. (B. and Mc Closky 2010)
Consider a 0− 1 knapsack problem on N variables

max
N∑

j=1

pjxj , s.t.
n∑

j=1

ajxj ≤ b,

xj = 0 or 1, all j .

For each fixed tolerance 0 < δ < 1 there is a linear program LP with the
following properties

The number of variables and constraints in LP is O(N2).

The xj are among the variables of LP (a “lifted” formulation)

The solution of LP, together with a simple rounding for the xj

variables yields a (binary) solution for the knapsack that is
guaranteed to be within δ of the optimum.
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max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε
H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k), etc.

H(τ ) = v1 I 2
1 + v2 I 2

2,i + ri (1− e−ντ ) + Ce−ντ in state i

v1 =

∫ τ/2

0

e−ν(τ−s)α ds, v2 =

∫ τ

τ/2

e−ν(τ−s)α ds

What if F(I1, I2,i) = v1 I2
1 + v2 I2

2,i?

Lemma: (again) At optimality, v1 I 2
1 + v2(i) I 2

2,i = wi or ui , all i
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A straight knapsack problem

max
n∑

i=1

F̃ (wi )pi (1− yi ) + F̃ (ui )piyi

s.t.
n∑

i=1

uipiyi ≤ ε

yi = 0 or 1, all i .
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