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Three problems

1. The “SUV” problem

• given full-dimensional polyhedra P 1, . . . , PK in Rd,

• find a point closest to the origin not contained inside any of

the Ph.

min ‖x‖2

s.t. x ∈ Rd −
K⋃
h=1

int(Ph),

(application: X-ray lythography)



• Typical values for d (dimension): less than 20; usually even

smaller

• Typical values for K (number of polyhedra): possibly hun-

dreds, but often less than 50

•Very hard problem



2. Cardinality constrained, convex quadratic programming.

min xTQx + cTx

s.t. Ax ≤ b

x ≥ 0, ‖x‖0 ≤ k

‖x‖0 = number of nonzero entries in x.

•Q � 0

• x ∈ Rn for n possibly large

• k relatively small, e.g. k = 100 for n = 10000

•VERY hard problem – just getting good bounds is tough



3. AC-OPF problem in rectangular coordinates

Given a power grid, determine voltages at every node so as to minimize a
convex objective

min vTAv

s.t. Lk ≤ vTFkv ≤ Uk, k = 1, . . . , K

v ∈ R2n, (n = number of nodes)

• voltages are complex numbers; v is the vector of voltages in rectangular
coordinates (real and imaginary parts)

• A � 0

• n could be in the tens of thousands, or more

• the Fk are very sparse (neighborhood structure for every node)

• Problem HARD when grid under distress and Lk ≈ Uk.



Why are these problems so hard

Generic problem: min Q(x), s.t. x ∈ F,

• Q(x) (strongly) convex, especially: positive-definite quadratic

• F nonconvex

F

F

F

F

x*

x∗ solves min
{
Q(x), : x ∈ F̂

}
where F ⊂ F̂ and F̂ convex

→ straightforward relaxations are weak



Lattice-free cuts for linear integer programming

Generic problem: min cTx, s.t. Ax ≤ b, z ∈ Zn
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Lattice-free cuts for linear integer programming

Generic problem: min cTx, s.t. Ax ≤ b, z ∈ Zn

Special case: standard disjunctions

How to apply in a continuous, nonconvex setting?



Exclude-and-cut

min z

s.t. z ≥ Q(x),

x ∈ F
0. F̂ : a convex relaxation of conv {(x, z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x, z) ∈ F̂}
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3. Add to the formulation an inequality az + αTx ≥ α0 valid for

{ (x, z) : x ∈ S, z ≥ Q(x) }
but violated by (x∗, z∗).
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first-order term≈Q(x)
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NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and
x ≈ y.
– want RHS ≤ Q(x) in S̄ (α = 0 always OK)
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Valid linear inequalities for F .
= { (x, z) ∈ Rn×R : x ∈ S, z ≥ Q(x) }.

Given y ∈ ∂S, let

α∗
.
= sup {α ≥ 0 : Q(x) ≥ [∇Q(y)]T (x− y) +Q(y) +αvT (x− y) }

valid for F . Note: α∗ = α∗(v, y)

Theorem. If Q is convex and differentiable, then conv(F) is given by

Q(x) ≥ [∇Q(y)]T (x− y) + Q(y) ∀y
Q(x) ≥ [∇Q(y)]T (x− y) + Q(y) + α∗vT (x− y)

∀v and y ∈ ∂S.
(abridged)



Quadratics in action

Lifted first-order inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Q(x) � 0

Separation problem. Given (x∗, z∗) ∈ Rn×R, find a lifted-first order
inequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

• S̄ (or S) is a union of polyhedra

• S is an ellipsoid or paraboloid (many cases)
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Separation problem. Given (x∗, z∗) ∈ Rn×R, find a lifted-first order
inequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

• S̄ (or S) is a union of polyhedra

• S is an ellipsoid or paraboloid (many cases)

Key proof technique: S-Lemma

min Q1(x)

s.t. Q2(x) ≤ 0

x ∈ Rn

(Qi(x) arbitrary quadratics) is poly-time solvable



S-Lemma:

min Q1(x)

s.t. Q2(x) ≤ 0

x ∈ Rn

(Qi(x) arbitrary quadratics) is poly-time solvable



Trust-region subproblem:

min Q1(x)

s.t. ‖x‖ ≤ 1

x ∈ Rn



Extension

(TGEN): min xTAx + bTx + c

s.t. ‖x− xk‖2 ≤ fk k = 1, . . . , Lk
‖x− yk‖2 ≥ gk k = 1, . . . ,Mk

‖x− zk‖2 = hk k = 1, . . . , Ek

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.
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Extension

(TGEN): min xTAx + bTx + c

s.t. ‖x− xk‖2 ≤ fk k = 1, . . . , Lk
‖x− yk‖2 ≥ gk k = 1, . . . ,Mk

‖x− zk‖2 = hk k = 1, . . . , Ek

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

• P = {x : aTi x ≤ bi i = 1, . . . ,m}
• F ∗ = the number of faces of P that intersect

⋂
k{x : ‖x−xk‖ ≤ fk}.

Theorem: For every fixed Lk ≥ 1,Mk ≥ 0, Ek ≥ 0, problem TGEN
can be solved in time polynomial in the problem size and F ∗.

(SODA 2014)

Extends results by Ye, Ye-Zhang, Burer-Anstreicher, Burer-Yang



Even more general

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1,

where the Mi are general matrices.



Even more general

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1,

where the Mi are general matrices.

•Non-constructive. Algorithm says “yes” or “no.”

•Computational model?



Theorem.

For each fixed m ≥ 1 there is a polynomial-time algorithm that, given an
optimization problem

min f0(x)
.
= xTQ0x+ cT0x

s.t. xTQix+ cTi x+ di ≤ 0 1 ≤ i ≤ m,
where Q1 � 0, and 0 < ε < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an ε-feasible vector x̂ such that there exists no feasible
x ∈ Rn with f0(x) < f(x̂)− ε.

The complexity of the algorithm is polynomial in the number of bits in the
data and in log ε−1
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