Solving QCQPs

Daniel Bienstock, Columbia University



Quadratically constrained, quadratic programming:

min  fo(z)

st file) <0, 1<i<m

r e R"

Here,
filx) = $TMZ'CE — C,LTCC + d;

is a general quadratic

Each M; is n X n, wlog symmetric
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Folklore result: QCQP is NP-hard

Let wy, w9, ..., w, be integers, and consider:

W* = min —Zz%
1
S.t. sz x; =0,

1
1<z, <1, 1<i<n.

W?* = —n, iff there exists a subset J C {1,...,n} with

DW= D,

jeJ je&J
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Take any {—1, 1}-linear program

min CT:U

s.t. Az =b

re{—1,1}"

min ch — MZ:C?
J
s.t. Ax =10

—1<z;<1, 1<j<n.

(and many other similar transformations)
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Even more general

Solving systems of polynomial equations:

Problem: given polynomials p; : R" — R, for 1 <7< m
find x € R" s.t. pj(x) =0, V1

Example: find a root for 3v%w — v* 4+ 7 = 0.

Equivalent to the system on variables v, vo, vy4, vg, w, y and c:

cc =1

V2 — cvy = 0

v —cvy = 0

vovs — cvg = 0
vew —cy = 0

3cy —cvy = —7
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e Approximately”
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e Uniform algorithm?
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“Approximately”
Q: How do practitioners and-ethertessertolk solve systems of nonlinear

equations?’

A: Newton-Raphson, of course!

— If we start near a solution, quadratic convergence
“Approximate” solution to a system of polynomials:

a point in the region of quadratic convergence (to a solution)
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e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

e Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

e In that space, uniformly sample a ball (of appropriate radius) around a
given problem



“On the average” in polynomial time

A QCQP could be quite difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

e Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

e In that space, consider the set of problems given by a ball (of appropriate
radius) around a given problem

e We want the algorithm to run in polynomial time, on average, in that ball
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Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.

on the average in polynomial time,

with a uniform algorithm?

(but we are cheating)

e Approximately?
e On the average?

e Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)

First version: A non-uniform algorithm specifies the existence of an algo-
rithm for each input size.

As such, we cannot write a “program” that implements the algorithm.

[t is more a proof of existence of an algorithm for each input size.
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Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.

on the average in polynomial time,

with a uniform algorithm?

(but we are cheating)

e Approximately?
e On the average?
e Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)
Biirgisser, Cucker (2012)

Second version: A uniform algorithm
e allows operations over real numbers
e at unit cost per operation
e with infinite precision

e Not! the usual bit-model of computation
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rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method
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Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.

on the average in polynomial time,

with a uniform algorithm?

(but we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n!°¢!°¢") (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over C", not R"

So what can be done over the reals?



Take any {—1, 1}-linear program

min ¢z
s.t. Ar =0
re{—1,1}"

min ¢z — Mg ZIZ?
J

st. Ar =b
—1<z; <1, 1<y<n.
e [ixed number of linear constraints?
e [ixed number of quadratic constraints?

e Non-convex quadratic constraints?



The S-Lemma

Let f, g : R™ — R be quadratic polynomials.
Suppose there exists & € R™ such that g(x) > 0. Then
f(x) > 0 whenever g(x) >0
if and only if there exists « > 0 such that
f(x) > ~g(x) foral x & R™
Yakubovich (1971), also much earlier, related work

Corollary: Can solve

min{f(z) : g(z) > 0}

in polynomial time (using semidefinite programming)

Note: duality may not hold if there is more than one quadratic constraint



Special case: the trust-region subproblem

min{f(z) : g(z) < 0}

can be solved in polynomial time, where f, g quadratics, g strictly convex

Scale, rotate, translate:
min{ f(z) : [[z] < 1}

can be solved in poly time — loge™?!

Y. Ye (1992) — logloge™!

How about extensions of the trust-region subproblem?



Sturm-Zhang (2003)
Where f(x) is a quadratic,

min  f(x)
st x| <1
a'x < b  (one linear side constraint)

can be solved in polynomial time, as can

min  f(x)
8.t x| <1
|z —2"|| < ry  (one additional convex ball constraint)

Ye-Zhang (2003)

min  f(x)
st |lzf] <1
alx < b i=1,2
(alx —b))(azz —by) = 0

(two linear side constraints, but at least one binding)



Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form
min 2! Qz+ 'z
st |lz]| <1
ajx < b i=1,2

provided the two linear constraints are parallel:

W/ A 1 two linear constraints

ball constraint
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Anstreicher-Burer (2012)
In polynomial time, one can solve a problem of the form

min ' Qx +clx

st fz|| <1
ajx < b i=1,2

provided the two linear constraints are parallel:

W/ 1 \ two linear constraints

ball constraint

—min{2'Qr+clz 1<z <u, |z <1}

restate as:  min Zqinij + c'x

(l + U)le
r1 — [

B

|
M)
A IA A

u— I
Zijgl , XEZUZUT

Lemma: This problem has an optimal solution with X = 22!, i vezuume



Burer-Yang (2012)
In polynomial time, one can solve a problem of the form
min  z' Qx +clx
st lz]|| <1
a?az < b 1<i:1<m

if no two linear inequalities are simultaneously binding in the feasible region




Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

min  z' Qx +clx

st lz]|| <1
a?az < b 1<i:1<m

if no two linear inequalities are simultaneously binding in the feasible region

Lemma: the following problem has an optimal solution with X = za?.

min ZC]Z’]‘XZ']' + CTZIZ
0,
st Xp+lu < ([ +u)r
1bix — Xail| < bj—alz i<m
bib; —balx —bale+al Xa; <0 i< j<m
J J" ¥l ) J

ZijSl , XEII'T
J



This talk (B. and Alex Michalka, SODA 2014)

min ' Qx +clx

st |l — || <7p, hES,
o — pnl| =70, h €K,
reP ={zeR": Az <}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersect

(M €R" : |z — | < i},
hesS
or

(2) |S| = 0 and the number of rows of A is bounded.



This talk (B. and Alex Michalka, SODA 2014)

min ' Qx +clx

st |l — || <7p, hES,
o — pnl| =70, h €K,
reP ={zeR": Az <}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersecting

(M €R" : |z — | < i},
hesS
or

(2) |S| = 0 and the number of rows of A is bounded.

Anstreicher-Burer: Case (1) with 3 faces of P meeting the feasible region.
Burer-Yang: Case (1) with m + 1 faces of P meeting the feasible region.



More precise statement for case (1)

min ' Qx +clx

st |l — || <7p, hES,
o — pnl| =70, h €K,
reP ={zeR": Az <}

Theorem.

For each fixed |S| > 1, | K| there is an algorithm that solves the problem, to
tolerance 0 < € < 1 in time

(a) Polynomial in the number of bits in the data and log e~

(b) Linear in the number of faces of P that intersect

(xR« Jlw — pull < 7},
hes



Not hard Lemma
Given a collection of balls B, C R" (h € S)
and a polyhedron

P = {zx eR": Ax < b},
there is an algorithm that lists the faces of P that intersect [, B

In time

(a) polynomial in the number of bits in the data

(b) linear in the number of intersecting faces



Not hard Lemma
Given a collection of balls B, C R" (h € S)
and a polyhedron

P = {zx eR": Ax < b},
there is an algorithm that lists the faces of P that intersect [, B

In time

(a) polynomial in the number of bits in the data

(b) linear in the number of intersecting faces

Proof sketch. Use e.g. breadth-first search on the faces of P, starting
with P itself.

Basic step:
e Pick a row a;az < b; of Ax <b.
e Impose a! x = b;.

e Test for feasibility. If feasible, found a new face.
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min{a’ Qr+c'z : ||lz—pp|| <7, hES, |z—pp|| >, h€ K, Az < b}

Let a* be optimal. Trivial: there exist (possibly empty) subsets

S=of §, K= of K,and I~ of therowsof Ax < b, such that

l2* — pp|| =r, YhESTUK™, ala*=b Viel
|z* — pn|| <rp, VheS—=57, |28 —wl| > Vhe K- K~
ajx* <b; ViglI.

(=, K=, I7): an optimal triple.  z*: tight for (5=, K=, I7)

Algorithm will guess (S=, K=, I~) (actually, compute I~).

For each enumerated triple (S, K, I), it will (in polynomial time) either

(a) Compute a finite set of vectors tight for (S, K, I), one of which must be
a* if the guess is right, or



Basic Idea

min{z! Qr+c'z : |o—m|| <ri, h €S, |lo—pn|| >, h€ K, Ax <b}
Let a* be optimal. Trivial: there exist (possibly empty) subsets

S=of §, K= of K,and I~ of therowsof Ax < b, such that

2% — || =r, YhESTUK™, al2*=b Viecl
|z* — pp|| <rp YVheS—=857, |[z5—wl| >rn Vhe K- K~

(S=, K=, I7): an optimal triple.  x*: tight for (S=, K—, I7)

Algorithm will guess (S=, K=, I=) (actually, compute I~).

For each enumerated triple (S, K, I), it will (in polynomial time) either
(a) Compute a finite set of vectors tight for (S, K, I), one of which must be
x* if the guess is right, or
(b) Prove that if (S KT ) is optimal, there is a different optimal triple
(S, K, I) with

SOS, KDOK,IDK and |S|+ |K|+|I| > |S|+|K|+ 1]
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Geometry, 1

Notation. Given a ball B ={z € R" : ||z — ;|| < 7},
OB = {z € R" : |z — ;|| = 7}

Lemma. Let B; = {x € R" : ||lv — w;|| < i}, i = 1,2, be distinct and
intersecting.

There exists an (n—1)-dim hyperplane H, a point v € H, and » > 0 such
that

0B1NdB; = {z € H : [z —v|| =7}
and
OBiNH = {x€eH : |lx—v||=7r}, 1=1,2

(9
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Geometry, 1

Corollary Given balls B;, ¢ € I, not all equal, with

el

there exists an (n — t)-dim hyperplane H (t > 1), v € H and r > 0
s.t.

(Nier@Bi = {zx € H : ||z —v| =7}

Implication: When guessing an optimal triple (S=, K=, I7)
|z* — pal| =r, YRESTUK=, ala*=b Vicl™
|l — pp|| <rn YheS—=57, |z5—pupl| >rn Vhe K— K~

ajz* <b; Vi¢I~.
we
(1) Restrict to a lower dimensional space

(2) Obtain a single, binding, ball constraint
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The original problem:

min 2! Qz+ 'z

st. |le—pnl| < rp, h€ES,
|z = pnll = ra, heK,
CL;-TJ? < b, 1€l

Given a guess, this becomes (ignoring the non-binding constraints):

min  z' Qx +clz

st. |lx—p
x € H

:’]"’

Almost correct: first-order condition restricted to H

projection of
Xk 2Qx* + ¢ onto H

Better: Use projected quadratic representation
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The trust-region subproblem:.

min ! Qz + 'z
st. o —pl <r
Generalization: CDT (Celis-Dennis-Tapia) problem

min  x! Qur + Cgaj

st. ! Qux+ clTx + d;

A
-

' Qux+cir+dy <0
where Q1 > 0, Q2 > 0



Even more general

Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding
feasibility of a system

Mz =0 1<i<np,
|z =1, z€eR"

where the M, are general matrices.



Even more general

Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding
feasibility of a system

Mz =0, 1<i<np,
lz]l =1, z€eR"

where the M, are general matrices.

e Non-constructive. Algorithm says “yes” or “no.”

e Computational model? Uniform algorithm? “Real-RAM”?



A (better?) alternative: e-feasibility
For each fixed p > 1, given a system

Mz =0 1<i<p,
||| =1, xeR"

and given 0 < € < 1, either

e Prove that the system is infeasible, or

e Output & € R™ with

—ESCCTMZ'SE, ]-Szgpv
1 —e€ S HZIAZ'H S 1+€7

in time polynomial in the data and in loge™!.



A (better?) alternative: e-feasibility
For each fixed p > 1, given a system

Mz =0 1<i<p,
||| =1, xeR"

and given 0 < € < 1, either

e Prove that the system is infeasible, or

e Output & € R™ with

—e<a'M;<e 1<i<p,
I—e < [z < 1+¢
in time polynomial in the data and in loge™!.

Two issues: Constructiveness, and e-feasibility



Modification to Barvinok’s result
Assume that for each fixed p > 1, there is an algorithm that given a system
Mz =0 1<i<p,
||| =1, xeR"
and given 0 < € < 1, either

e Proves that the system is infeasible, or

e Proves that is e-feasible,

in time polynomial in the data and in loge™!.

(so still nonconstructive)



Modification to Barvinok’s result
Assume that for each fixed p > 1, there is an algorithm that given a system
Mz =0 1<i<p,
||| =1, xeR"
and given 0 < € < 1, either

e Proves that the system is infeasible, or

e Proves that is e-feasible,

in time polynomial in the data and in loge™!.

(so still nonconstructive)

Assuming such an algorithm exists ...



Theorem (2014).

Assume that an algorithm for e-feasibility as indicated above exists.



Theorem (2014).

Assume that an algorithm for e-feasibility as indicated above exists.

For each fixed m > 1 there is a polynomial-time algorithm that, given an
optimization problem

min  fo(x) = ' Qox + cjx
st. 2fQr+cfe+d; < 0 1<i<m,
where (@1 > 0, and 0 < € < 1, either

(1) proves that the problem is infeasible,
or
(2) computes an e-feasible vector & such that there exists no feasible

x € R" with fo(x) < f(2) — €

The complexity of the algorithm is polynomial in the number of bits in the
data and in loge™?!

Sat.Jul.19.122630.2014@littleboy



