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Quadratically constrained, quadratic programming:

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,

fi(x) = xTMix + cTi x + di

is a general quadratic

Each Mi is n× n, wlog symmetric
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Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj
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Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.

→

min cTx − M
∑
j

x2
j

s.t. Ax = b

−1 ≤ xj ≤ 1, 1 ≤ j ≤ n.

(and many other similar transformations)
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Even more general

Solving systems of polynomial equations:

Problem: given polynomials pi : Rn → R, for 1 ≤ i ≤ m
find x ∈ Rn s.t. pi(x) = 0, ∀ i

Example: find a root for 3v6w − v4 + 7 = 0.

Equivalent to the system on variables v, v2, v4, v6, w, y and c:

c2 = 1

v2 − cv2 = 0

v22 − cv4 = 0

v2v4 − cv6 = 0

v6w − cy = 0

3cy − cv4 = −7
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Q: How do practitioners and other lesser folk solve systems of nonlinear
equations?

A: Newton-Raphson, of course!

12

→ If we start near a solution, quadratic convergence

“Approximate” solution to a system of polynomials:

a point in the region of quadratic convergence (to a solution)
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“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

• Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

• In that space, consider the set of problems given by a ball (of appropriate
radius) around a given problem

•We want the algorithm to run in polynomial time, on average, in that ball
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approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Approximately?

• On the average?

•Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)

First version: A non-uniform algorithm specifies the existence of an algo-
rithm for each input size.

As such, we cannot write a “program” that implements the algorithm.

It is more a proof of existence of an algorithm for each input size.
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Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Approximately?

• On the average?

•Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)
Bürgisser, Cucker (2012)

Second version: A uniform algorithm

• allows operations over real numbers

• at unit cost per operation

• with infinite precision

•Not! the usual bit-model of computation
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rithm for computing approximate zeros
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problems), Newton’s method



Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Beltrán and Pardo (2009) – a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

• Bürgisser, Cucker (2012) – a deterministic O(nlog log n) (uniform) algo-
rithm for computing approximate zeros

• Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over Cn, not Rn



Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Beltrán and Pardo (2009) – a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

• Bürgisser, Cucker (2012) – a deterministic O(nlog log n) (uniform) algo-
rithm for computing approximate zeros

• Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over Cn, not Rn

So what can be done over the reals?



Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.
→

min cTx − M
∑
j

x2j

s.t. Ax = b

−1 ≤ xj ≤ 1, 1 ≤ j ≤ n.

• Fixed number of linear constraints?

• Fixed number of quadratic constraints?

• Non-convex quadratic constraints?



The S-Lemma

Let f, g : Rn → R be quadratic polynomials.

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0

if and only if there exists γ ≥ 0 such that

f(x) ≥ γg(x) for all x ∈ Rn.

Yakubovich (1971), also much earlier, related work

Corollary: Can solve

min{f(x) : g(x) ≥ 0}
in polynomial time (using semidefinite programming)

Note: duality may not hold if there is more than one quadratic constraint



Special case: the trust-region subproblem

min{f(x) : g(x) ≤ 0}

can be solved in polynomial time, where f, g quadratics, g strictly convex

Scale, rotate, translate:

min{f(x) : ‖x‖ ≤ 1}

can be solved in poly time → log ε−1

Y. Ye (1992) → log log ε−1

How about extensions of the trust-region subproblem?



Sturm-Zhang (2003)

Where f (x) is a quadratic,

min f (x)

s.t. ‖x‖ ≤ 1

aTx ≤ b (one linear side constraint)

can be solved in polynomial time, as can

min f (x)

s.t. ‖x‖ ≤ 1

‖x− x0‖ ≤ r0 (one additional convex ball constraint)

Ye-Zhang (2003)

min f (x)

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

(aT1 x− b1)(aT2 x− b2) = 0

(two linear side constraints, but at least one binding)



Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min xTQx + cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

provided the two linear constraints are parallel:

two linear constraints

ball constraint
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Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min xTQx + cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

provided the two linear constraints are parallel:

two linear constraints

ball constraint

→min {xTQx + cTx : l ≤ x1 ≤ u, ‖x‖ ≤ 1 }

restate as: min
∑
i,j

qijXij + cTx

s.t. X11 + lu ≤ (l + u)x1
‖X.1 − lx‖ ≤ x1 − l
‖ux−X.1‖ ≤ u− x1∑
j

Xjj ≤ 1 , X � xxT

Lemma: This problem has an optimal solution with X = xxT . Also: Ye-Zhang
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min xTQx + cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi 1 ≤ i ≤ m

if no two linear inequalities are simultaneously binding in the feasible region



Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

min xTQx + cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi 1 ≤ i ≤ m

if no two linear inequalities are simultaneously binding in the feasible region

Lemma: the following problem has an optimal solution with X = xxT .

min
∑
i,j

qijXij + cTx

s.t. X11 + lu ≤ (l + u)x1
‖bix−Xai‖ ≤ bi − aTi x i ≤ m

bibj − bjaTi x− biaTj x + aTi Xaj ≤ 0 i < j ≤ m∑
j

Xjj ≤ 1 , X � xxT



This talk (B. and Alex Michalka, SODA 2014)

min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,
x ∈ P .

= {x ∈ Rn : Ax ≤ b }
Theorem.
For each fixed |S|, |K| can be solved in polynomial time if either

(1) |S| ≥ 1 and polynomially large number of faces of P intersect⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh},

or

(2) |S| = 0 and the number of rows of A is bounded.
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min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,
x ∈ P .

= {x ∈ Rn : Ax ≤ b }
Theorem.
For each fixed |S|, |K| can be solved in polynomial time if either

(1) |S| ≥ 1 and polynomially large number of faces of P intersecting⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh},

or

(2) |S| = 0 and the number of rows of A is bounded.

Anstreicher-Burer: Case (1) with 3 faces of P meeting the feasible region.

Burer-Yang: Case (1) with m + 1 faces of P meeting the feasible region.



More precise statement for case (1)

min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,
x ∈ P .

= {x ∈ Rn : Ax ≤ b }
Theorem.
For each fixed |S| ≥ 1, |K| there is an algorithm that solves the problem, to
tolerance 0 < ε < 1 in time

(a) Polynomial in the number of bits in the data and log ε−1

(b) Linear in the number of faces of P that intersect⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh}.



Not hard Lemma

Given a collection of balls Bh ⊂ Rn (h ∈ S)

and a polyhedron

P = {x ∈ Rn : Ax ≤ b},

there is an algorithm that lists the faces of P that intersect
⋂
h∈S Bh

In time

(a) polynomial in the number of bits in the data

(b) linear in the number of intersecting faces



Not hard Lemma

Given a collection of balls Bh ⊂ Rn (h ∈ S)

and a polyhedron

P = {x ∈ Rn : Ax ≤ b},

there is an algorithm that lists the faces of P that intersect
⋂
h∈S Bh

In time

(a) polynomial in the number of bits in the data

(b) linear in the number of intersecting faces

Proof sketch. Use e.g. breadth-first search on the faces of P , starting
with P itself.

Basic step:

• Pick a row aTi x ≤ bi of Ax ≤ b.

• Impose aTi x = bi.

• Test for feasibility. If feasible, found a new face.
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aTi x
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min{xTQx+cTx : ‖x−µh‖ ≤ rh, h ∈ S, ‖x−µh‖ ≥ rh, h ∈ K, Ax ≤ b}
Let x∗ be optimal. Trivial: there exist (possibly empty) subsets

S= of S, K= of K, and I= of the rows of Ax ≤ b, such that

‖x∗ − µh‖ =rh ∀h ∈ S= ∪K=, aTi x
∗ =bi ∀ i ∈ I=

‖x∗ − µh‖ <rh ∀h ∈ S − S=, ‖x∗ − µh‖ >rh ∀h ∈ K −K=

aTi x
∗ <bi ∀ i /∈ I=.

(S=, K=, I=): an optimal triple. x∗: tight for (S=, K=, I=)

Algorithm will guess (S=, K=, I=) (actually, compute I=).

For each enumerated triple (Ŝ, K̂, Î), it will (in polynomial time) either

(a) Compute a finite set of vectors tight for (Ŝ, K̂, Î), one of which must be
x∗ if the guess is right, or

(b) Prove that if (Ŝ, K̂, Î) is optimal, there is a different optimal triple
(S̃, K̃, Ĩ) with

S̃ ⊇ Ŝ, K̃ ⊇ K̂, Ĩ ⊇ K̂ and |S̃|+ |K̃|+ |Ĩ| > |Ŝ|+ |K̂|+ |Î|.
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Geometry, 1

Notation. Given a ball B = {x ∈ Rn : ‖x− µ̂i‖ ≤ r̂},
∂B

.
= {x ∈ Rn : ‖x− µ̂i‖ = r̂}

Lemma. Let Bi = {x ∈ Rn : ‖x − µi‖ ≤ ri}, i = 1, 2, be distinct and
intersecting.

There exists an (n−1)-dim hyperplaneH , a point v ∈ H , and r ≥ 0 such
that

∂B1 ∩ ∂B2 = {x ∈ H : ‖x− v‖ = r}
and

∂Bi ∩H = {x ∈ H : ‖x− v‖ = r}, i = 1, 2
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i∈I

Bi 6= ∅,
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Geometry, 1

Corollary Given balls Bi, i ∈ I , not all equal, with⋂
i∈I

Bi 6= ∅,

there exists an (n − t)-dim hyperplane H ( t ≥ 1), v ∈ H and r ≥ 0
s.t. ⋂

i∈I ∂Bi = {x ∈ H : ‖x− v‖ = r}

Implication: When guessing an optimal triple (S=, K=, I=)
‖x∗ − µh‖ =rh ∀h ∈ S= ∪K=, aTi x

∗ =bi ∀ i ∈ I=

‖x∗ − µh‖ <rh ∀h ∈ S − S=, ‖x∗ − µh‖ >rh ∀h ∈ K −K=

aTi x
∗ <bi ∀ i /∈ I=.

we

(1) Restrict to a lower dimensional space

(2) Obtain a single, binding, ball constraint
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The original problem:

min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,

aTi x ≤ bi, i ∈ I

Given a guess, this becomes (ignoring the non-binding constraints):

min xTQx + cTx

s.t. ‖x− µ̂‖ = r̂,

x ∈ H

Almost correct: first-order condition restricted to H

µ

r

x*

projection of  

2Qx* + c  onto H

Better: Use projected quadratic representation
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then either



Theorem (abridged).
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Theorem (abridged).
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The trust-region subproblem:.

min xTQx + cTx

s.t. ‖x− µ‖ ≤ r

Generalization: CDT (Celis-Dennis-Tapia) problem

min xTQ0x + cT0 x

s.t. xTQ1x + cT1 x + d1 ≤ 0

xTQ2x + cT2 x + d2 ≤ 0

where Q1 � 0, Q2 � 0



Even more general

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

where the Mi are general matrices.



Even more general

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

where the Mi are general matrices.

•Non-constructive. Algorithm says “yes” or “no.”

•Computational model? Uniform algorithm? “Real-RAM”?



A (better?) alternative: ε-feasibility

For each fixed p ≥ 1, given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Prove that the system is infeasible, or

•Output x̂ ∈ Rn with

−ε ≤ xTMi ≤ ε, 1 ≤ i ≤ p,

1− ε ≤ ‖x̂‖ ≤ 1 + ε,

in time polynomial in the data and in log ε−1.



A (better?) alternative: ε-feasibility

For each fixed p ≥ 1, given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Prove that the system is infeasible, or

•Output x̂ ∈ Rn with

−ε ≤ xTMi ≤ ε, 1 ≤ i ≤ p,

1− ε ≤ ‖x̂‖ ≤ 1 + ε,

in time polynomial in the data and in log ε−1.

Two issues: Constructiveness, and ε-feasibility
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Modification to Barvinok’s result

Assume that for each fixed p ≥ 1, there is an algorithm that given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Proves that the system is infeasible, or

• Proves that is ε-feasible,

in time polynomial in the data and in log ε−1.

(so still nonconstructive)

Assuming such an algorithm exists ...



Theorem (2014).

Assume that an algorithm for ε-feasibility as indicated above exists.



Theorem (2014).

Assume that an algorithm for ε-feasibility as indicated above exists.

For each fixed m ≥ 1 there is a polynomial-time algorithm that, given an
optimization problem

min f0(x)
.
= xTQ0x+ cT0x

s.t. xTQix+ cTi x+ di ≤ 0 1 ≤ i ≤ m,
where Q1 � 0, and 0 < ε < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an ε-feasible vector x̂ such that there exists no feasible
x ∈ Rn with f0(x) < f(x̂)− ε.

The complexity of the algorithm is polynomial in the number of bits in the
data and in log ε−1
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