Solving QCQPs

Daniel Bienstock, Columbia University

Quadratically constrained, quadratic programming:

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, \quad 1 \le i \le m$
 $x \in \mathbb{R}^n$

Here,

$$f_i(x) = x^T M_i x + c_i^T x + d_i$$

is a general quadratic

Each M_i is $n \times n$, wlog symmetric

Folklore result: QCQP is NP-hard

Folklore result: QCQP is NP-hard

Let w_1, w_2, \ldots, w_n be **integers**, and consider:

$$W^* \doteq \min -\sum_i x_i^2$$

s.t.
$$\sum_i w_i x_i = 0,$$

$$-1 \le x_i \le 1, \quad 1 \le i \le n.$$

Folklore result: QCQP is NP-hard

Let w_1, w_2, \ldots, w_n be **integers**, and consider:

$$W^* \doteq \min -\sum_{i} x_i^2$$

s.t.
$$\sum_{i} w_i x_i = 0,$$
$$-1 \le x_i \le 1, \quad 1 \le i \le n.$$

 $W^* = -n$, iff there exists a subset $J \subseteq \{1, \ldots, n\}$ with

$$\sum_{j \in J} w_j = \sum_{j \notin J} w_j$$

min $c^T x$ s.t. Ax = b $x \in \{-1, 1\}^n$.

(and many other similar transformations)

Even more general

Solving systems of polynomial equations:

Problem: given polynomials $p_i : \mathbb{R}^n \to \mathbb{R}$, for $1 \le i \le m$ find $x \in \mathbb{R}^n$ s.t. $p_i(x) = 0, \forall i$

Even more general

Solving systems of polynomial equations:

Problem: given polynomials $p_i : \mathbb{R}^n \to \mathbb{R}$, for $1 \le i \le m$ find $x \in \mathbb{R}^n$ s.t. $p_i(x) = 0, \forall i$

Example: find a root for $3v^6w - v^4 + 7 = 0$.

Even more general

Solving systems of polynomial equations:

Problem: given polynomials $p_i : \mathbb{R}^n \to \mathbb{R}$, for $1 \le i \le m$ find $x \in \mathbb{R}^n$ s.t. $p_i(x) = 0, \forall i$

Example: find a root for $3v^6w - v^4 + 7 = 0$.

Equivalent to the system on variables v, v_2, v_4, v_6, w, y and c:

$$c^{2} = 1$$

$$v^{2} - cv_{2} = 0$$

$$v^{2}_{2} - cv_{4} = 0$$

$$v_{2}v_{4} - cv_{6} = 0$$

$$v_{6}w - cy = 0$$

$$3cy - cv_{4} = -7$$

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- Uniform algorithm?

 ${\bf Q}:$ How do practitioners and other lesser folk solve systems of nonlinear equations?

Q: How do practitioners and other lesser folk solve systems of nonlinear equations?

 \rightarrow If we start near a solution, quadratic convergence

 ${\bf Q}{\bf :}$ How do practitioners and other lesser folk solve systems of nonlinear equations?

A: Newton-Raphson, of course!

 \longrightarrow If we start near a solution, quadratic convergence

"Approximate" solution to a system of polynomials:

a point in the region of quadratic convergence (to a solution)

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- Uniform algorithm?

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

 ${\bf but}$ a "nearby" problem instance could be much easier

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a "nearby" problem instance could be much easier

• View a problem as a vector in an appropriate space

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a "nearby" problem instance could be much easier

- View a problem as a vector in an appropriate space
- Endow that space with an appropriate metric (Bombieri-Weyl Hermitian product)

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a "nearby" problem instance could be much easier

- View a problem as a vector in an appropriate space
- Endow that space with an appropriate metric (Bombieri-Weyl Hermitian product)
- In that space, uniformly sample a ball (of appropriate radius) around a given problem

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a "nearby" problem instance could be much easier

- View a problem as a vector in an appropriate space
- Endow that space with an appropriate metric (Bombieri-Weyl Hermitian product)
- In that space, consider the set of problems given by a ball (of appropriate radius) around a given problem
- We want the algorithm to run in polynomial time, on average, in that ball

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- Uniform algorithm? When is an algorithm non-uniform?

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- **Uniform algorithm?** When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)

First version: A non-uniform algorithm specifies the existence of an algorithm *for each input size*.

As such, we cannot write a "program" that implements the algorithm.

It is more a proof of existence of an algorithm for each input size.

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- **Uniform algorithm?** When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98) Bürgisser, Cucker (2012)

Second version: A uniform algorithm

- allows operations over real numbers
- \bullet at unit cost per operation
- \bullet with infinite precision

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- **Uniform algorithm?** When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98) Bürgisser, Cucker (2012)

Second version: A uniform algorithm

- allows operations over real numbers
- \bullet at unit cost per operation
- \bullet with infinite precision

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98) Bürgisser, Cucker (2012)

Second version: A uniform algorithm

- allows operations over real numbers
- \bullet at unit cost per operation
- with infinite precision
- \bullet Not! the usual bit-model of computation

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Beltrán and Pardo (2009) a randomized (Las Vegas) uniform algorithm that computes an approximate zero in *expected* polynomial time
- Bürgisser, Cucker (2012) a deterministic $O(n^{\log \log n})$ (uniform) algorithm for computing approximate zeros
- **Techniques:** Homotopy (path-following method solving a sequence of problems), Newton's method

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Beltrán and Pardo (2009) a randomized (Las Vegas) uniform algorithm that computes an approximate zero in *expected* polynomial time
- Bürgisser, Cucker (2012) a deterministic $O(n^{\log \log n})$ (uniform) algorithm for computing approximate zeros
- **Techniques:** Homotopy (path-following method solving a sequence of problems), Newton's method

But we are cheating: All of this is over \mathbb{C}^n , not \mathbb{R}^n

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Beltrán and Pardo (2009) a randomized (Las Vegas) uniform algorithm that computes an approximate zero in *expected* polynomial time
- Bürgisser, Cucker (2012) a deterministic $O(n^{\log \log n})$ (uniform) algorithm for computing approximate zeros
- **Techniques:** Homotopy (path-following method solving a sequence of problems), Newton's method

But we are cheating: All of this is over \mathbb{C}^n , not \mathbb{R}^n

So what can be done over the reals?

min
$$c^T x$$

s.t. $Ax = b$
 $x \in \{-1, 1\}^n$.

min
$$c^T x - M \sum_j x_j^2$$

s.t. $Ax = b$
 $-1 \le x_j \le 1, \ 1 \le j \le n.$

- Fixed number of linear constraints?
- Fixed number of quadratic constraints?
- Non-convex quadratic constraints?

The S-Lemma

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be quadratic polynomials.

Suppose there exists $\bar{x} \in \mathbb{R}^n$ such that $g(\bar{x}) > 0$. Then

 $f(x) \geq 0$ whenever $g(x) \geq 0$

if and only if there exists $\gamma \ge 0$ such that

 $f(x) \geq \gamma g(x)$ for all $x \in \mathbb{R}^n$.

Yakubovich (1971), also much earlier, related work

Corollary: Can solve

 $\min\{f(x)\,:\,g(x)\geq 0\}$

in polynomial time (using semidefinite programming)

Note: duality may not hold if there is more than one quadratic constraint

Special case: the trust-region subproblem

 $\min\{f(x)\,:\,g(x)\leq 0\}$

can be solved in polynomial time, where f, g quadratics, g strictly convex Scale, rotate, translate:

 $\min\{f(x) \, : \, \|x\| \leq 1\}$

can be solved in poly time $\rightarrow \log \epsilon^{-1}$

Y. Ye (1992) $\rightarrow \log \log \epsilon^{-1}$

How about *extensions* of the trust-region subproblem?

Sturm-Zhang (2003)

Where f(x) is a quadratic,

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \|x\| \leq 1 \\ & a^T x \leq b \end{array} \quad (\textbf{one linear side constraint}) \end{array}$$

can be solved in polynomial time, as can

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \|x\| \leq 1 \\ \|x - x^0\| \leq r_0 \end{array} \quad (\text{one additional convex ball constraint}) \end{array}$$

Ye-Zhang (2003)

$$\min f(x)$$

s.t. $||x|| \le 1$
 $a_i^T x \le b_i \quad i = 1, 2$
 $(a_1^T x - b_1)(a_2^T x - b_2) = 0$

(two linear side constraints, but at least one binding)
Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad i = 1, 2 \end{array}$$

provided the two linear constraints are parallel:

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad i = 1, 2 \end{array}$$

provided the two linear constraints are parallel:

 $\rightarrow \min \left\{ x^T Q x + c^T x : l \le x_1 \le u, \|x\| \le 1 \right\}$

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad i = 1, 2 \end{array}$$

provided the two linear constraints are parallel:

$$\rightarrow \min \left\{ x^T Q x + c^T x : l \leq x_1 \leq u, ||x|| \leq 1 \right\}$$
restate as:
$$\min \sum_{i,j} q_{ij} X_{ij} + c^T x$$
s.t.
$$X_{11} + lu \leq (l+u) x_1$$

$$||X_{.1} - lx|| \leq x_1 - l$$

$$||ux - X_{.1}|| \leq u - x_1$$

$$\sum_j X_{jj} \leq 1 , X \succeq x x^T$$

Lemma: This problem has an optimal solution with $X = xx^{T}$. Also: Ye-Zhang

Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad 1 \leq i \leq m \end{array}$$

if no two linear inequalities are simultaneously binding in the feasible region

Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad 1 \leq i \leq m \end{array}$$

if no two linear inequalities are simultaneously binding in the feasible region

Lemma: the following problem has an optimal solution with $X = xx^{T}$.

$$\min \sum_{\substack{i,j \\ i,j}} q_{ij}X_{ij} + c^T x$$

s.t. $X_{11} + lu \leq (l+u)x_1$
 $\|b_i x - Xa_i\| \leq b_i - a_i^T x$ $i \leq m$
 $b_i b_j - b_j a_i^T x - b_i a_j^T x + a_i^T Xa_j \leq 0$ $i < j \leq m$
 $\sum_j X_{jj} \leq 1$, $X \succeq xx^T$

This talk (B. and Alex Michalka, SODA 2014)

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

Theorem.

For each fixed |S|, |K| can be solved in polynomial time if either

(1) $|S| \ge 1$ and polynomially large number of faces of P intersect $\bigcap_{h \in S} \{x \in \mathbb{R}^n : ||x - \mu_h|| \le r_h\},$

or

(2) |S| = 0 and the number of rows of A is bounded.

This talk (B. and Alex Michalka, SODA 2014)

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

Theorem.

For each fixed |S|, |K| can be solved in polynomial time if either

(1) $|S| \ge 1$ and polynomially large number of faces of P intersecting $\bigcap_{h \in S} \{x \in \mathbb{R}^n : ||x - \mu_h|| \le r_h\},$ or

(2) |S| = 0 and the number of rows of A is bounded.

Anstreicher-Burer: Case (1) with 3 faces of P meeting the feasible region. Burer-Yang: Case (1) with m + 1 faces of P meeting the feasible region.

More precise statement for case (1)

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

Theorem.

For each fixed $|S| \ge 1$, |K| there is an algorithm that solves the problem, to tolerance $0 < \epsilon < 1$ in time

(a) Polynomial in the number of bits in the data and $\log \epsilon^{-1}$

(b) Linear in the number of faces of P that intersect

$$\bigcap_{h\in S} \{x \in \mathbb{R}^n : \|x - \mu_h\| \le r_h\}.$$

Not hard **Lemma**

Given a collection of balls $B_h \subset \mathbb{R}^n \ (h \in S)$

and a polyhedron

$$P = \{ x \in \mathbb{R}^n : Ax \le b \},\$$

there is an algorithm that lists the faces of P that intersect $\bigcap_{h \in S} B_h$

In time

(a) polynomial in the number of bits in the data(b) linear in the number of intersecting faces

Not hard **Lemma**

Given a collection of balls $B_h \subset \mathbb{R}^n \ (h \in S)$

and a polyhedron

$$P = \{ x \in \mathbb{R}^n : Ax \le b \},\$$

there is an algorithm that lists the faces of P that intersect $\bigcap_{h \in S} B_h$

In time

(a) polynomial in the number of bits in the data

(b) linear in the number of intersecting faces

Proof sketch. Use e.g. breadth-first search on the faces of P, starting with P itself.

Basic step:

- Pick a row $a_i^T x \leq b_i$ of $Ax \leq b$.
- Impose $a_i^T x = b_i$.
- Test for feasibility. If feasible, found a new face.

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let $\boldsymbol{x^*}$ be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple.

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple. x^{*} : tight for $(S^{=}, K^{=}, I^{=})$

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple. x^{*} : tight for $(S^{=}, K^{=}, I^{=})$

Algorithm will guess $(S^{=}, K^{=}, I^{=})$ (actually, compute $I^{=}$).

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple. x^{*} : tight for $(S^{=}, K^{=}, I^{=})$

Algorithm will guess $(S^{=}, K^{=}, I^{=})$ (actually, compute $I^{=}$).

For each enumerated triple (\$\hat{S}, \$\hat{K}, \$\hat{I}\$), it will (in polynomial time) either
(a) Compute a finite set of vectors tight for (\$\hat{S}, \$\hat{K}, \$\hat{I}\$), one of which must be \$\mathcal{x}^*\$ if the guess is right, or

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple. x^{*} : tight for $(S^{=}, K^{=}, I^{=})$

Algorithm will guess $(S^{=}, K^{=}, I^{=})$ (actually, compute $I^{=}$).

For each enumerated triple (\$\hat{S}, \$\hat{K}, \$\hat{I}\$), it will (in polynomial time) either
(a) Compute a finite set of vectors tight for (\$\hat{S}, \$\hat{K}, \$\hat{I}\$), one of which must be \$\mathcal{x}^*\$ if the guess is right, or

(b) Prove that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, there is a different **optimal** triple $(\tilde{S}, \tilde{K}, \tilde{I})$ with

 $ilde{S} \supseteq \hat{S}, \; ilde{K} \supseteq \hat{K}, \; ilde{I} \supseteq \hat{K} \; ext{ and } \; | ilde{S}| + | ilde{K}| + | ilde{I}| > |\hat{S}| + |\hat{K}| + |\hat{I}|.$

Notation. Given a ball $B = \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| \le \hat{r}\},\$ $\partial B \doteq \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| = \hat{r}\}$

Notation. Given a ball $B = \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| \le \hat{r}\},\$ $\partial B \doteq \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| = \hat{r}\}$

Lemma. Let $B_i = \{x \in \mathbb{R}^n : ||x - \mu_i|| \le r_i\}, i = 1, 2$, be **distinct** and **intersecting**.

Notation. Given a ball $B = \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| \le \hat{r}\},\$ $\partial B \doteq \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| = \hat{r}\}$

Lemma. Let $B_i = \{x \in \mathbb{R}^n : ||x - \mu_i|| \le r_i\}, i = 1, 2$, be **distinct** and **intersecting**.

There exists an (n-1)-dim hyperplane H, a point $v \in H$, and $r \ge 0$ such that

$$\partial B_1\cap \partial B_2 ~=~ \{x\in H~:~ \|x-v\|=r\}$$

and

 $\partial B_i \cap H \;=\; \{x \in H \,:\, \|x-v\|=r\}, \ \ i=1,2$

Corollary Given balls B_i , $i \in I$, not all equal, with

$$\bigcap_{i\in I} B_i \neq \emptyset,$$

there exists an (n-t)-dim hyperplane H ($t \ge 1$), $v \in H$ and $r \ge 0$ s.t.

$$igcap_{i\in I}\partial B_i \ = \ \{x\in H \ : \ \|x-v\|=r\}$$

Corollary Given balls B_i , $i \in I$, not all equal, with

$$\bigcap_{i\in I} B_i \neq \emptyset,$$

there exists an (n-t)-dim hyperplane H ($t \ge 1$), $v \in H$ and $r \ge 0$ s.t.

$$igcap_{i\in I}\partial B_i \ = \ \{x\in H \ : \ \|x-v\|=r\}$$

Implication: When guessing an optimal triple $(S^{=}, K^{=}, I^{=})$ $\|x^* - \mu_h\| = r_h \quad \forall h \in S^{=} \cup K^{=}, \quad a_i^T x^* = b_i \quad \forall i \in I^{=}$ $\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^{=}, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^{=}$ $a_i^T x^* < b_i \quad \forall i \notin I^{=}.$

Corollary Given balls B_i , $i \in I$, not all equal, with

$$\bigcap_{i\in I} B_i \neq \emptyset,$$

there exists an (n-t)-dim hyperplane H ($t \ge 1$), $v \in H$ and $r \ge 0$ s.t.

$$igcap_{i\in I}\partial B_i \ = \ \{x\in H \ : \ \|x-v\|=r\}$$

Implication: When guessing an optimal triple $(S^{=}, K^{=}, I^{=})$ $\|x^* - \mu_h\| = r_h \quad \forall h \in S^{=} \cup K^{=}, \quad a_i^T x^* = b_i \quad \forall i \in I^{=}$ $\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^{=}, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^{=}$ $a_i^T x^* < b_i \quad \forall i \notin I^{=}.$

we

(1) Restrict to a lower dimensional space(2) Obtain a single, binding, ball constraint

$$\min \quad x^T Q x + c^T x \\ s.t. \quad \|x - \mu_h\| \leq r_h, \quad h \in S, \\ \|x - \mu_h\| \geq r_h, \quad h \in K, \\ a_i^T x \leq b_i, \quad i \in I$$

$$\min \quad x^T Q x + c^T x \\ s.t. \quad \|x - \mu_h\| \leq r_h, \quad h \in S, \\ \|x - \mu_h\| \geq r_h, \quad h \in K, \\ a_i^T x \leq b_i, \quad i \in I$$

$$\min \quad x^T Q x + c^T x \\ s.t. \quad \|x - \mu_h\| \leq r_h, \quad h \in S, \\ \|x - \mu_h\| \geq r_h, \quad h \in K, \\ a_i^T x \leq b_i, \quad i \in I$$

Given a guess, this becomes (ignoring the non-binding constraints): min $x^TQx + c^Tx$ $s.t. ||x - \hat{\mu}|| = \hat{r},$ $x \in H$

Almost correct: first-order condition restricted to H

$$\min \quad x^T Q x + c^T x \\ s.t. \quad \|x - \mu_h\| \leq r_h, \quad h \in S, \\ \|x - \mu_h\| \geq r_h, \quad h \in K, \\ a_i^T x \leq b_i, \quad i \in I$$

Given a guess, this becomes (ignoring the non-binding constraints): min $x^TQx + c^Tx$ $s.t. ||x - \hat{\mu}|| = \hat{r},$ $x \in H$

Almost correct: first-order condition restricted to H

Better: Use projected quadratic representation

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points $x^{j}, (j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points x^{j} , $(j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

(1) $x^* = x^j$ for some $j \in J$, or

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points x^{j} , $(j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

(1) $x^* = x^j$ for some $j \in J$, or

(2) There exists *infeasible* \boldsymbol{y} and a Jordan curve $\boldsymbol{\Theta}$ joining \boldsymbol{y} and \boldsymbol{x}^* , s.t.

 $z^TQz + c^Tz = x^{*T}Qx^* + c^Tx^* \hspace{1em} orall \hspace{1em} z \in \Theta$

 $old z \hspace{0.1 in} ext{tight for} \hspace{0.1 in} (\hat{S}, \hat{K}, \hat{I}) \hspace{0.1 in} orall \hspace{0.1 in} z \in \Theta$

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points x^{j} , $(j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

(1) $x^* = x^j$ for some $j \in J$, or

(2) There exists *infeasible* \boldsymbol{y} and a Jordan curve $\boldsymbol{\Theta}$ joining \boldsymbol{y} and \boldsymbol{x}^* , s.t.

 $z^TQz + c^Tz = x^{*T}Qx^* + c^Tx^* \hspace{1em} orall \hspace{1em} z \in \Theta$

 $old z \hspace{0.1 in} ext{tight for} \hspace{0.1 in} (\hat{S}, \hat{K}, \hat{I}) \hspace{0.1 in} orall \hspace{0.1 in} z \in \Theta$

Implication: In case (2), there is a different **optimal** triple $(\tilde{S}, \tilde{K}, \tilde{I})$ with

 $\tilde{S} \supseteq \hat{S}, \ \tilde{K} \supseteq \hat{K}, \ \tilde{I} \supseteq \hat{K}$ and $|\tilde{S}| + |\tilde{K}| + |\tilde{I}| > |\hat{S}| + |\hat{K}| + |\hat{I}|.$

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points x^{j} , $(j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

(1) $x^* = x^j$ for some $j \in J$, or

(2) There exists *infeasible* \boldsymbol{y} and a Jordan curve $\boldsymbol{\Theta}$ joining \boldsymbol{y} and \boldsymbol{x}^* , s.t.

 $z^TQz + c^Tz = x^{*T}Qx^* + c^Tx^* \hspace{1em} orall \hspace{1em} z \in \Theta$

 $old z \hspace{0.1 in} ext{tight for} \hspace{0.1 in} (\hat{S}, \hat{K}, \hat{I}) \hspace{0.1 in} orall \hspace{0.1 in} z \in \Theta$

Implication: In case (2), there is a different **optimal** triple $(\tilde{S}, \tilde{K}, \tilde{I})$ with

 $\tilde{S} \supseteq \hat{S}, \ \tilde{K} \supseteq \hat{K}, \ \tilde{I} \supseteq \hat{K}$ and $|\tilde{S}| + |\tilde{K}| + |\tilde{I}| > |\hat{S}| + |\hat{K}| + |\hat{I}|.$

The trust-region subproblem:

$$\min \quad x^T Q x + c^T x \\ \text{s.t.} \quad \|x - \mu\| \le r$$

The trust-region subproblem:

$$\min \quad x^T Q x + c^T x \\ \text{s.t.} \quad \|x - \mu\| \le r$$

Generalization: CDT (Celis-Dennis-Tapia) problem

$$\min \quad x^T Q_0 x + c_0^T x$$
s.t.
$$x^T Q_1 x + c_1^T x + d_1 \leq 0$$

$$x^T Q_2 x + c_2^T x + d_2 \leq 0$$

where $Q_1 \succ 0$, $Q_2 \succ 0$

Even more general

Barvinok (STOC 1992):

For each fixed $p \geq 1$, there is a polynomial-time algorithm for deciding feasibility of a system

$$\begin{aligned} x^T M_i x &= 0, \quad 1 \le i \le p, \\ \|x\| &= 1, \quad x \in \mathbb{R}^n \end{aligned}$$

where the M_i are general matrices.

Even more general

Barvinok (STOC 1992):

For each fixed $p \geq 1$, there is a polynomial-time algorithm for deciding feasibility of a system

$$x^{T}M_{i}x = 0, \quad 1 \le i \le p,$$
$$\|x\| = 1, \quad x \in \mathbb{R}^{n}$$

where the M_i are general matrices.

- Non-constructive. Algorithm says "yes" or "no."
- Computational model? Uniform algorithm? "Real-RAM"?
A (better?) alternative: ϵ -feasibility

For each fixed $p \ge 1$, given a system $x^T M_i x = 0, \quad 1 \le i \le p,$ $\|x\| = 1, \quad x \in \mathbb{R}^n$

and given $0 < \epsilon < 1$, either

• **Prove** that the system is **infeasible**, or

• Output $\hat{x} \in \mathbb{R}^n$ with

$$-\epsilon \leq x^T M_i \leq \epsilon, \quad 1 \leq i \leq p, \\ 1 - \epsilon \leq ||\hat{x}|| \leq 1 + \epsilon,$$

in time polynomial in the data and in $\log \epsilon^{-1}$.

A (better?) alternative: ϵ -feasibility

For each fixed $p \ge 1$, given a system $x^T M_i x = 0, \quad 1 \le i \le p,$ $\|x\| = 1, \quad x \in \mathbb{R}^n$

and given $0 < \epsilon < 1$, either

- **Prove** that the system is **infeasible**, or
- Output $\hat{x} \in \mathbb{R}^n$ with

$$-\epsilon \leq x^T M_i \leq \epsilon, \quad 1 \leq i \leq p, \\ 1 - \epsilon \leq \|\hat{x}\| \leq 1 + \epsilon,$$

in time polynomial in the data and in $\log \epsilon^{-1}$.

Two issues: Constructiveness, and ϵ -feasibility

Modification to Barvinok's result

Assume that for each fixed $p \geq 1$, there is an algorithm that given a system $x^T M_i x = 0, \quad 1 \leq i \leq p,$ $\|x\| = 1, \quad x \in \mathbb{R}^n$

and given $0 < \epsilon < 1$, either

- **Proves** that the system is **infeasible**, or
- **Proves** that is ϵ -feasible,

in time polynomial in the data and in $\log \epsilon^{-1}$.

(so still nonconstructive)

Modification to Barvinok's result

Assume that for each fixed $p \geq 1$, there is an algorithm that given a system $x^T M_i x = 0, \quad 1 \leq i \leq p,$ $\|x\| = 1, \quad x \in \mathbb{R}^n$

and given $0 < \epsilon < 1$, either

- **Proves** that the system is **infeasible**, or
- **Proves** that is ϵ -feasible,

in time polynomial in the data and in $\log \epsilon^{-1}$.

(so still nonconstructive)

Assuming such an algorithm exists ...

Theorem (2014).

Assume that an algorithm for ϵ -feasibility as indicated above exists.

Theorem (2014).

Assume that an algorithm for ϵ -feasibility as indicated above exists.

For each fixed $m \geq 1$ there is a polynomial-time algorithm that, given an optimization problem

where $Q_1 \succ 0$, and $0 < \epsilon < 1$, either

(1) proves that the problem is infeasible,

or

(2) computes an ϵ -feasible vector \hat{x} such that there exists no feasible $x \in \mathbb{R}^n$ with $f_0(x) < f(\hat{x}) - \epsilon$.

The complexity of the algorithm is polynomial in the number of bits in the data and in $\log \epsilon^{-1}$

Sat.Jul.19.122630.2014 @littleboy