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Three problems

1. The “SUV” problem

given full-dimensional polyhedra P1, . . . ,PK in Rd ,

find a point closest to the origin not contained inside any of
the Ph.

min ‖x‖2

s.t. x ∈ Rd −
K⋃

h=1

int(Ph),

(application: X-ray lythography)
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Typical values for d (dimension): less than 20; usually even
smaller
Typical values for K (number of polyhedra): possibly
hundreds, but often less than 50
Very hard problem
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2.

Cardinality constrained, convex quadratic programming.

min xTQx + cT x

s.t. Ax ≤ b

x ≥ 0, ‖x‖0 ≤ k

‖x‖0 = number of nonzero entries in x .

Q � 0

x ∈ Rn for n possibly large

k relatively small, e.g. k = 100 for n = 10000

VERY hard problem – just getting good bounds is tough
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2b.

Sparse vector in column space (Spielwan, Wang, Wright ’12)

Given a vector y ∈ Rn (n large)

min ‖y − Ax‖2

s.t. A ∈ Rn×n, x ∈ Rn

‖x‖0 ≤ k

Both A and x are variables

Usual “convexification” approach may not work

Again, looks VERY hard
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3. AC-OPF problem in rectangular coordinates

Given a power grid, determine voltages at every node so as to
minimize a convex objective

min vTAv

s.t. Lk ≤ vTFkv ≤ Uk , k = 1, . . . ,K

v ∈ R2n, (n = number of nodes)

voltages are complex numbers; v is the vector of voltages in
rectangular coordinates (real and imaginary parts)

A � 0

n could be in the tens of thousands, or more

the Fk are very sparse (neighborhood structure for every node)

Problem HARD when grid under distress and Lk ≈ Uk .
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Why are these problems so hard

Generic problem: min Q(x), s.t. x ∈ F ,

Q(x) (strongly) convex, especially: positive-definite quadratic

F nonconvex

F

F

F

F
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Why are these problems so hard

Generic problem: min Q(x), s.t. x ∈ F ,

Q(x) (strongly) convex, especially: positive-definite quadratic

F nonconvex

F

F

F

F

x*

x∗ solves min
{

Q(x), : x ∈ F̂
}

where F ⊂ F̂ and F̂ convex
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Lattice-free cuts for linear integer programming

Generic problem: min cT x , s.t. Ax ≤ b, z ∈ Zn
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An old trick

Don’t solve

min Q(x), over x ∈ F

Do solve

min z , over conv {(x , z) : z ≥ Q(x), x ∈ F}

Optimal solution at extreme point (x∗, z∗) of
conv {(x , z) : z ≥ Q(x), x ∈ F}

So x∗ ∈ F
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Exclude-and-cut

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.
Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for
{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).
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Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =
Feasible region
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Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =
Feasible region

y in boundary of S

First order inequality:

z ≥ [∇Q(y)]T (x − y) + Q(y)

is valid EVERYWHERE – does not cut-off any points
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Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =
Feasible region

y

v,  unit norm

in boundary of S

Lifted first order inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x − y) + Q(y)| {z }
first-order term≈ Q(x)

+ αvT (x − y)| {z }
lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and x ≈ y .

– want RHS ≤ Q(x) in S̄ (α = 0 always OK)
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Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

S
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Feasible region
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in boundary of S

excluded region: RHS > Q(x)
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Valid linear inequalities for F .
= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Given y ∈ ∂S , let

α∗
.

= sup {α ≥ 0 : Q(x) ≥ [∇Q(y)]T (x−y)+Q(y)+αvT (x−y) }

valid for F . Note: α∗ = α∗(v , y)

Theorem. If Q is convex and differentiable, then conv(F) is given by

Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀y
Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y)

∀v and y ∈ ∂S .

(abridged)
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Separation

Valid linear inequalities for F .
= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Theorem. If Q is convex and differentiable, then conv(F) is given by

(first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀y

(lifted first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α
∗vT (x − y) ∀v and y ∈ ∂S.

Given (x∗, z∗) ∈ Rn × R, how do we separate it from conv(F)?

Convexity ⇒ strongest first-order inequality at x∗ is

Q(x) ≥ [∇Q(x∗)]T (x − x∗) + Q(x∗)

As a result, poly time separation from conv(F) is equivalent to poly
time separation of lifted first-order inequalities.
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Suppose S = {x ∈ R2 : −x2
1 ≤ x2 ≤ 1 + e−x1}, and Q(x) = x2 + e−x2 − 1.

x 2

S

S

x10

(0,1)

(0,2)

With v = (0, 1)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x2

⇒ α∗ = e−1. Why?

Because when x2 = 1, x2 + e−x2 − 1 = e−1 = e−1x2, but any larger value for α∗ will result with

x2 + e−x2 − 1 < α∗x2 for some x2 > 1
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Because when x2 = 1, x2 + e−x2 − 1 = e−1 = e−1x2, but any larger value for α∗ will result with

x2 + e−x2 − 1 < α∗x2 for some x2 > 1
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Lifted first-order inequality at y ∈ ∂S , in the direction of v : Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y)

S

S =
Feasible region

y

v,  unit norm

in boundary of S

excluded region: RHS > Q(x)

α just right

Theorem. If

Q(x) grows faster than linearly in every direction, and

There is a ball with interior in the infeasible region, but containing y at its boundary

then the quantity α∗ is a “max” and not just a “sup”, i.e. the lifted inequality is tight at some point other than y
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Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic.

Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization: x ∈ S̄ iff

ρ

µ
S

x

for each ball B(µ,
√
ρ) ⊆ S, ‖x − µ‖2 ≥ ρ. So, z ≥ 2µT x + ρ− ‖µ‖2, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.
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Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first order
inequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)
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Special case: complement of an ellipsoid

Lifted first-order inequalities for F = { (x, z) : xT Ax − 2bT x + c ≥ 0, z ≥ ‖x‖2 }. Here, A � 0.

Let λ = largest eigenvalue of A. Then:

Theorem. The strongest lifted first-order inequality at x̄ ∈ Rn is:

z ≥ 2[ (I − λ−1A)x̄ + λ
−1b ]T (x − x̄) + x̄(I − λ−1A)x̄ + 2λ−1bT x̄ − λ−1c

The right-hand side is the first-order (tangent), at x̄ , for the convex quadratic

x(I − λ−1A)x + 2λ−1bT x − λ−1c.

Corollary: conv(F) = {(x, z) : z ≥ x(I − λ−1A)x + 2λ−1bT x − λ−1c, z ≥ ‖x‖2}.

Also obtained by J.P. Vielma (2013)
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But ... Exclude-and-cut, again

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.
Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for
{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).
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A classical problem: the trust-region subproblem

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

x ∈ Rn

A a general quadratic

many applications in nonlinear programming

Polynomial-time solvable! e.g. S-Lemma ∗

Sturm and Zhang (2000): two extensions are polynomially solvable:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

‖x − x0‖2 ≤ r

(one additional ball inequality), and

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

cT x ≤ c0

(one added linear inequality).
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A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

d0 ≤ cT x ≤ c0

→ Adding a system Ax ≤ b makes the problem NP-hard

Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program

Burer and Yang (2013)

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aT
i x ≤ bi i = 1, . . . ,m

can be solved in polynomial time if no two linear constraints intersect within the unit ball

∀i 6= j, {x : aT
i x = bi} ∩ {x : aT

j x = bj} ∩ {x : ‖x‖2 ≤ 1} = ∅

Note: Results leave open the general case with m = 2
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A generalization

(TLIN): min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aT
i x ≤ bi i = 1, . . . ,m

x ∈ Rn
.

P = {x : aT
i x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersect the unit ball

Ye-Zhang (or Anstreicher-Burer) case: F∗ = 3.

Burer-Yang case: F∗ = m + 1

Theorem: Problem TLIN can be solved in time polynomial in the problem size and F∗.
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A stronger generalization

(TGEN): min xT Ax + bT x + c

s.t. ‖x − xk‖2 ≤ fk k = 1, . . . , Lk

‖x − yk‖2 ≥ gk k = 1, . . . ,Mk

‖x − zk‖2 = hk k = 1, . . . , Ek

aT
i x ≤ bi i = 1, . . . ,m

x ∈ Rn
.

P = {x : aT
i x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersect
T

k{x : ‖x − xk‖ ≤ fk}.

Theorem: For every fixed Lk ≥ 1,Mk ≥ 0, Ek ≥ 0, problem TGEN can be solved in time polynomial in the
problem size and F∗.

(SODA 2014)
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