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Three problems

1. The “SUV" problem
e given full-dimensional polyhedra P!,..., PK in RY,

@ find a point closest to the origin not contained inside any of
the Ph.
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Three problems

1. The “SUV" problem
e given full-dimensional polyhedra P!,..., PK in RY,

@ find a point closest to the origin not contained inside any of
the Ph.

min || x||?
K
st. xeRI - U int(P"),
h=1
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Three problems

1. The “SUV" problem
e given full-dimensional polyhedra P!,..., PK in RY,

@ find a point closest to the origin not contained inside any of
the Ph.

min || x||?
K
st. xeRI - U int(P"),
h=1

(application: X-ray lythography)
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e Typical values for d (dimension): less than 20; usually even
smaller
e Typical values for K (number of polyhedra): possibly

nunad ) )
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Cardinality constrained, convex quadratic programming.

min x" Qx + ¢’ x
st. Ax<b
X 2 05 ”XHO S k

Ix|lo = number of nonzero entries in x.
e R>0
o x € R" for n possibly large
@ k relatively small, e.g. kK = 100 for n = 10000
@ VERY hard problem — just getting good bounds is tough
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2b.

Sparse vector in column space (Spielwan, Wang, Wright '12)

Given a vector y € R" (n large)

min [y — Ax||2
st. AcR™" xeR"
[x[lo < k
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2b.

Sparse vector in column space (Spielwan, Wang, Wright '12)
Given a vector y € R" (n large)
min |y — Ax|}2

st. AcR™" xeR"
[x[lo < k

@ Both A and x are variables
@ Usual “convexification” approach may not work
@ Again, looks VERY hard
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3. AC-OPF problem in rectangular coordinates

Given a power grid, determine voltages at every node so as to
minimize a convex objective

min v’ Av
st. Ly < vIFwv < U, k=1,....K

v €R?", (n = number of nodes)
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3. AC-OPF problem in rectangular coordinates

Given a power grid, determine voltages at every node so as to
minimize a convex objective

min v’ Av
st. Ly < vIFwv < U, k=1,....K

v €R?", (n = number of nodes)

voltages are complex numbers; v is the vector of voltages in
rectangular coordinates (real and imaginary parts)

e A0

@ n could be in the tens of thousands, or more

@ the Fy are very sparse (neighborhood structure for every node)
@ Problem HARD when grid under distress and Ly ~ Uk.
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Why are these problems so hard

Generic problem: min Q(x), s.t. x€F,
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Why are these problems so hard

Generic problem: min Q(x), s.t. x€F,

@ Q(x) (strongly) convex, especially: positive-definite quadratic
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Why are these problems so hard

Generic problem: min Q(x), s.t. x€F,

@ Q(x) (strongly) convex, especially: positive-definite quadratic

@ F nonconvex
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Why are these problems so hard

Generic problem: min Q(x), s.t. x€F,

@ Q(x) (strongly) convex, especially: positive-definite quadratic

@ F nonconvex
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x* solves min {Q(x), ©oX€ IA-_} where F C F and F convex

®
xo
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Lattice-free cuts for linear integer programming

Generic problem: min ¢'x, st. Ax<b, zeZ"
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Lattice-free cuts for linear integer programming

Generic problem: min ¢'x, st. Ax<b, zeZ"
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Lattice-free cuts for linear integer programming

Generic problem: min ¢'x, st. Ax<b, zeZ"
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Lattice-free cuts for linear integer programming

Generic problem: min ¢'x, st. Ax<b, zeZ"
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An old trick

Don't solve

min Q(x), over x € F
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An old trick

Don't solve
min Q(x), over x € F
Do solve

minz, over conv{(x,z):z> Q(x), x € F}
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An old trick

Don't solve
min Q(x), over x € F
Do solve
minz, over conv{(x,z):z> Q(x), x € F}

@ Optimal solution at extreme point (x*,z*) of
conv {(x,z) : z> Q(x), x € F}

@ Sox*eF
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Exclude-and-cut

minz, s.t. z> Q(x), x€ F

N

0. F: a convex relaxation of conv {(x,z) : z> Q(x), x € F}

Bienstock, Michalka Columbia

Convex obj non-convex domain



Exclude-and-cut

minz, s.t. z> Q(x), x€ F

0. F: a convex relaxation of conv {(x,z) : z> Q(x), x € F}

1. Let (x*,z*) = argmin{z : (x,z) € F}
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Exclude-and-cut

minz, s.t. z> Q(x), x€ F

0. F: a convex relaxation of conv {(x,z) : z> Q(x), x € F}
1. Let (x*,z*) = argmin{z : (x,z) € F}

2. Find anopenset Sst. x*€ Sand SN F = 0.
Examples: lattice-free sets, geometry
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Exclude-and-cut

0.
1.
2.

minz, s.t. z> Q(x), x€ F

F: a convex relaxation of conv {(x,z) : z> Q(x), x € F}
Let (x*,z*) = argmin{z : (x,z) € F}

Find an open set Sst. x*€ Sand SNF = 0.

Examples: lattice-free sets, geometry

Add to the formulation an inequality az + a'x > ag
valid for

{(x,2) : x€S, z>Q(x)}
but violated by (x*, z*).
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Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.

/
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\ Feasible region

Bienstock, Michalka Columbia




Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.

i /

— yin bou}qgrv ofs
S

\ Feasible region
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Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.

— yin bou}qgrv ofs
S

\ Feasible region

First order inequality:

z > [V (x—y)+ Qy)

is valid EVERYWHERE
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Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.

— yin bou}qgrv ofs
S

\ Feasible region

First order inequality:

z > [V (x—y)+ Qy)

is valid EVERYWHERE - does not cut-off any points
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Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.
/

4

— in bol&:ly of §
5 y

\ Feasible region

Bienstock, Michalka Columbia




Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.
/

4

— in bol&:ly of §
5 y

\ Feasible region

Lifted first order inequality, for o« > 0:

2 2 [VQWI(x =) + Q) + v (x —y)
—_——— —
first-order term ~ Q(x) lifting
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Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.

— in bol&:ly of §
5 y

\ Feasible region

Lifted first order inequality, for o« > 0:

z 2 (VAW (x = y) + Q) +av’ (x —y)
TR Ry ey Y

first-order term ~ Q(x) lifting

NOT valid EVERYWHERE: RHS > Q(x) for « > 0, v/ (x — y) > O and x = y.
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Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.

— in bol&:ly of §
5 y

\ Feasible region

Lifted first order inequality, for o« > 0:

z 2 (VAW (x = y) + Q) +av’ (x —y)
TR Ry ey Y

first-order term ~ Q(x) lifting

NOT valid EVERYWHERE: RHS > Q(x) for « > 0, v/ (x — y) > O and x = y.
—want RHS < Q(x) in §
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Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.

— in bol&:ly of §
5 y

\ Feasible region

Lifted first order inequality, for o« > 0:

2 2 [VQWI(x =) + Q) + v (x —y)
—_——— —
first-order term ~ Q(x) lifting

NOT valid EVERYWHERE: RHS > Q(x) for « > 0, v/ (x — y) > O and x = y.

—want RHS < Q(x) in § (a =

0 always OK)
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Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.

excluded region: RHS > Q(x)

— in bol&:ly of §
5 y

\ Feasible region

Lifted first order inequality, for a« > 0:

z 2 (VAW (x =) + Q) +av’ (x —y)
TR Ry ey Y

first-order term ~ Q(x) lifting

NOT valid EVERYWHERE: RHS > Q(x) for @ > 0, v/ (x — y) > O and x = y

Want RHS < Q(x) for x € § (a = 0 always OK)
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Valid linear inequalities for { (x,z) : x € S, z > Q(x) }.

¢ i

excluded region: RHS > Q(x)

Vv, unit norm

— in bo%ly of §
5 y

\ Feasible region

o too large

Lifted first order inequality, for a« > 0:

z 2 (VAW (x =) + Q) +av’ (x —y)
TR Ry ey Y

first-order term ~ Q(x) lifting

NOT valid EVERYWHERE: RHS > Q(x) for @ > 0, v/ (x — y) > O and x = y

Want RHS < Q(x) for x € § (a = 0 always OK)
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Valid linear inequalities for 7 = {(x,z) : x € S, z > Q(x) }.

excluded region: RHS > Q(x)

v, unit norm

— yin bol}ligvv ofs
S

\ Feasible region

o just right

Lifted first order inequality, for « > 0:

2 2 VO (x =) + Q) +av’(x—)
———— N ——’
first-order term ~ Q(x) lifting

NOT valid EVERYWHERE: RHS > Q(x) for @ > 0, v (x — y) > O and x ~ y.

Want RHS < Q(x) for x € 5 (a = 0 always OK)
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Valid linear inequalities for 7 = {(x,z) ER" xR : x€ S, z> Q(x) }.
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Valid linear inequalities for 7 = {(x,z) ER" xR : x€ S, z> Q(x) }.

Given y € 0S, let
o = sup{a>0 : Q(x) > [VQW)]"(x=y)+Q(y)+av (x—y) }

valid for F.
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Valid linear inequalities for 7 = {(x,z) ER" xR : x€ S, z> Q(x) }.

Given y € 0S, let
o = sup{a>0 : Q(x) > [VQW)]"(x=y)+Q(y)+av (x—y) }

valid for F. Note: a* = a*(v,y)
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Valid linear inequalities for 7 = {(x,z) ER" xR : x€ S, z> Q(x) }.
Given y € 0S, let

o = sup{a>0 : Q(x) > [VQW)]"(x=y)+Q(y)+av (x—y) }

valid for F. Note: a* = a*(v,y)

Theorem. If Q is convex and differentiable, then conv(F) is given by

Q) = VAW (x—y)+Qy) Yy
Q) = [V (x—y)+ Q) +a* v (x—y)
Vv and y € 0S.
(abridged)
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Separation

Valid linear inequalities for 7 = {(x,z) e R" xR : x€ S, z> Q(x) }.

Theorem. If Q is convex and differentiable, then conv(F) is given by

(first-order ineas) Q(x) > [VQW)I (x—y)+Q(y) vy
VO (x =)+ Q) +a™v (x —y)  Vvandy € 8S.

Vv

(lifted first-order ineqs) Q(x)
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Separation

Valid linear inequalities for 7 = {(x,z) e R" x R

Theorem. If Q is convex and differentiable, then conv(F) is given by

(first-order inegs) Q(x)

(lifted first-order ineqs) Q(x)

>
>

VeI (x =) + Q) ¥y
VW (x = ¥) + Q) + a™v' (x — )

Vvandy € 9S.

Given (x*,z*) € R" x R, how do we separate it from conv(F)?

Bienstock,
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Separation

Valid linear inequalities for 7 = {(x,z) e R" xR : x€ S, z> Q(x) }.

Theorem. If Q is convex and differentiable, then conv(F) is given by

VeI (x =) + Q) ¥y
VO (x =)+ Q) +a™v (x —y)  Vvandy € 8S.

(first-order inegs) Q(x) >
(lifted first-order ineqs) Q(x) >

Given (x*,z*) € R" x R, how do we separate it from conv(F)?

@ Convexity = strongest first-order inequality at x* is

Qx) = [VQUT(x = x*) + Q(x")
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Separation

Valid linear inequalities for 7 = {(x,z) e R" xR : x€ S, z> Q(x) }.

Theorem. If Q is convex and differentiable, then conv(F) is given by

VeI (x—y) + Qy) vy
VO (x =)+ Q) +a™v (x —y)  Vvandy € 8S.

(first-order inegs) Q(x) >
(lifted first-order ineqs) Q(x) >

Given (x*,z*) € R" x R, how do we separate it from conv(F)?

@ Convexity = strongest first-order inequality at x* is

Qx) = [VQUT(x = x*) + Q(x")

@ As a result, poly time separation from conv(F) is equivalent to poly
time separation of lifted first-order inequalities.
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Suppose S = {x € R? : —x12 <xp<1l+e M} and Q(x) =xp +e "2 — 1.

X2
s
o~
SO
©,1)]
) X
5

With v = (0,1)7, the lifted first-order inequality at (0,0) is z > a*xy
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Suppose S = {x € R? : —x12 <xp<1l+e M} and Q(x) =xp +e "2 — 1.

X2
s
o~
SO
©,1)]
) X
5

With v = (0,1)7, the lifted first-order inequality at (0,0) is z > a*x; =
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Suppose S = {x €R? : —x? <xp <1+e "}, and Q(x) = xo + e 2 — 1.
1

X2
s
o~
SO
©,1)]
) X
5

With v = (0,1)7, the lifted first-order inequality at (0,0) is z > a*xy = a* =e 1.
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Suppose S = {x € R? : —x12 <xp<1l+e M} and Q(x) =xp +e "2 — 1.

X2
s
o~
SO
©,1)]
) X
5

With v = (0,1)7, the lifted first-order inequality at (0,0) is z > a*x; = a* = e~ !. Why?
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Suppose S = {x € R? : —x12 <xp<1l+e M} and Q(x) =xp +e "2 — 1.

X2
s
o~
SO
©,1)]
) X
5

With v = (0,1)7, the lifted first-order inequality at (0,0) is z > a*x; = a* = e~ !. Why?

Because when x; =1, xp + €72 — 1 = el = eflxz, but any larger value for o™ will result with

xp+e 2 —1 < a™x, for some x; > 1
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Suppose S = {x € R? : —x12 <xp<1l+e M} and Q(x) =xp +e "2 — 1.

With v = (0,1)7, the lifted first-order inequality at (0,0) is z > a*xy = a* = e~ !. Why?

Because when x; =1, xp + €72 — 1 = el = eflxz, but any larger value for o™ will result with

xp+e 2 —1 < a™x, for some x; > 1
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Suppose S = {x €R? : x; > 1}U{x € R? : 0 < x; < land |x| < (2x 7x12)1/2+x1}, and Q(x) = ||x|?

With v = (1,0)7, the lifted first-order inequality at (0,0) is z > a*x; = a* = 2. Why?

Bienstock, Michalka Columbia

ex domain



Suppose S = {x €R? : x; > 1}U{x € R? : 0 < x; < land |x| < (2x 7x12)1/2+x1}, and Q(x) = ||x|?

With v = (1,0)7, the lifted first-order inequality at (0,0) is z > a*x; = a* = 2. Why?

Because for a™ = 2R, Q(x) < a™xq iff |xa| < (2Rxg — x12)1/2
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Suppose S = {x € R? : x; > 1}U{x € R? : 0 < x; < land|x| < (2x —x12)1/2+x1}, and Q(x) = ||x||?

With v = (1,0)7, the lifted first-order inequality at (0,0) is z > a*x; = a* = 2. Why?

Because for a™ = 2R, Q(x) < a™*xy iff |[xo|] < (2Rxy — X12)1/2
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Suppose S = {x € R? : x; > 1}U{x € R? : 0 < x; < land|x| < (2x —x12)1/2+x1}, and Q(x) = ||x||?

With v = (1,0)7, the lifted first-order inequality at (0,0) is z > a*x; = a* = 2. Why?

Because for a™ = 2R, Q(x) < a™*xy iff |[xo|] < (2Rxy — X12)1/2 < (2x1 — x12)1/2 + xq : true for R < 1.
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Suppose S = {x € R? : x; > 1}U{x € R? : 0 < x; < land|x| < (2x —x12)1/2+x1}, and Q(x) = ||x||?

With v = (1,0)7, the lifted first-order inequality at (0,0) is z > a*x; = a* = 2. Why?
Because for a™ = 2R, Q(x) < a™*xy iff |[xo|] < (2Rxy — X12)1/2 < (2x1 — x12)1/2 + xq : true for R < 1.

But fails to hold for R > 1 and x; =~ 0!
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Lifted first-order inequality at y € 85, in the direction of v: Q(x) > [VQ(¥)]T (x — y) + Q(y) + a*vT (x — y)

\ Feasible reglon
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Lifted first-order inequality at y € 85, in the direction of v: Q(x) > [VQ(¥)]T (x — y) + Q(y) + a*vT (x — y)

@ st

Ve

5=
\ Feasible reglon

Theorem. If
@ Q(x) grows faster than linearly in every direction, and

@ There is a ball with interior in the infeasible region, but containing y at its boundary

then the quantity o™ is a “max" and not just a “sup”, i.e. the lifted inequality is tight at some point other than y
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Quadratics

Valid linear inequalities for # = {(x,2z) : x € S, z > Q(x) }.

Special case Q(x) a positive definite quadratic.
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Quadratics

Valid linear inequalities for # = {(x,2z) : x € S, z > Q(x) }.

Special case Q(x) a positive definite quadratic. Change of coordinates — Q(x) = [|x||%.
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Quadratics

Valid linear inequalities for # = {(x,2z) : x € S, z > Q(x) }.
Special case Q(x) a positive definite quadratic. Change of coordinates — Q(x) = [|x||%.

Geometric characterization:
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Quadratics

Valid linear inequalities for # = {(x,2z) : x € S, z > Q(x) }.
Special case Q(x) a positive definite quadratic. Change of coordinates — Q(x) = [|x||%.

Geometric characterization: x € § iff
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Quadratics

Valid linear inequalities for # = {(x,2z) : x € S, z > Q(x) }.
Special case Q(x) a positive definite quadratic. Change of coordinates — Q(x) = [|x||%.

Geometric characterization: x € § iff

for each ball B(u,  /p) C S,

Bienstock, Michalka Columbia

Convex obj n: domain



Quadratics

Valid linear inequalities for # = {(x,2z) : x € S, z > Q(x) }.
Special case Q(x) a positive definite quadratic. Change of coordinates — Q(x) = [|x||%.

Geometric characterization: x € § iff

for each ball B(p, /p) C S, |x—pul> > p.
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Quadratics

Valid linear inequalities for # = {(x,2z) : x € S, z > Q(x) }.
Special case Q(x) a positive definite quadratic. Change of coordinates — Q(x) = [|x||%.

Geometric characterization: x € § iff

foreach ball B(u,v/5) C S, lx—pl® > p. So.z > 2uTx+p— [lull?
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Quadratics

Valid linear inequalities for # = {(x,2z) : x € S, z > Q(x) }.
Special case Q(x) a positive definite quadratic. Change of coordinates — Q(x) = [|x||%.

Geometric characterization: x € § iff

for each ball B(p,/p) C S, |Ix—ul> > p.  So.z > 2u’x+p— |lul?, a ball inequality.
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Quadratics

Valid linear inequalities for # = {(x,2z) : x € S, z > Q(x) }.
Special case Q(x) a positive definite quadratic. Change of coordinates — Q(x) = [|x||%.

Geometric characterization: x € § iff

for each ball B(p,/p) C S, |Ix—ul> > p.  So.z > 2u’x+p— |lul?, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.
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Quadratics in action

Lifted first-order inequalities for F = {(x,z) : x€ S, z > [|x|? }.

Separation problem. Given (x*,z*) € R" x R, find a lifted-first order
inequality maximally violated by (x*, z*) (if any)
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Quadratics in action

Lifted first-order inequalities for F = {(x,z) : x€ S, z > [|x|? }.

Separation problem. Given (x*,z*) € R" x R, find a lifted-first order
inequality maximally violated by (x*, z*) (if any)

Theorem: We can separate in polynomial time when:
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Quadratics in action

Lifted first-order inequalities for F = {(x,z) : x€ S, z > [|x|? }.

Separation problem. Given (x*,z*) € R" x R, find a lifted-first order
inequality maximally violated by (x*, z*) (if any)

Theorem: We can separate in polynomial time when:

@ S (or S) is a union of polyhedra
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Quadratics in action

Lifted first-order inequalities for F = {(x,z) : x€ S, z > [|x|? }.

Separation problem. Given (x*,z*) € R" x R, find a lifted-first order
inequality maximally violated by (x*, z*) (if any)
Theorem: We can separate in polynomial time when:

@ S (or S) is a union of polyhedra

@ S is a convex ellipsoid or paraboloid (many cases)
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Quadratics in action

Lifted first-order inequalities for F = {(x,z) : x€ S, z > [|x|? }.

Separation problem. Given (x*,z*) € R" x R, find a lifted-first order
inequality maximally violated by (x*, z*) (if any)
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Special case: complement of an ellipsoid

Lifted first-order inequalities for 7 = {(x,2) : x' Ax —2bTx+¢ >0, z > ||x||® }. Here, A > 0.
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Let X\ = largest eigenvalue of A. Then:

Theorem. The strongest lifted first-order inequality at X € R" is:
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Special case: complement of an ellipsoid

Lifted first-order inequalities for 7 = {(x,2) : x' Ax —2bTx+¢ >0, z > ||x||® }. Here, A > 0.
Let X\ = largest eigenvalue of A. Then:
Theorem. The strongest lifted first-order inequality at X € R" is:
z > 2f(l=2TtAR + AT T (x— %) + 2= ATTAx+2a T T x — a7k
The right-hand side is the first-order (tangent), at X, for the convex quadratic
x(I = A7 A+ 227 Tx — A7 e

Corollary: conv(F) = {(x,z) : z > x(I — )\71A)x+ 227 1pTx — Aflc, z > ||><H2}

Also obtained by J.P. Vielma (2013)

Bienstock, Michalka Columbia

Convex obj n: domain



But ... Exclude-and-cut, again

minz, s.t. z> Q(x), x€ F

N

0. F: a convex relaxation of conv {(x,z) : z> Q(x), x € F}
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. Exclude-and-cut, again

minz, s.t. z> Q(x), x€ F

0. F: a convex relaxation of conv {(x,z) : z> Q(x), x € F}
1. Let (x*,z*) = argmin{z : (x,z) € F}

2. Find anopenset Sst. x*€ Sand SN F = 0.
Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + a'x > ag

valid for
{(x,2) : x€S, z>Q(x)}
but violated by (x*, z*).
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A classical problem: the trust-region subproblem

min x  Ax+b x+c
st |Ix|IP <1
x €R"
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A classical problem: the trust-region subproblem

min x  Ax+b x+c
st |Ix|IP <1
x €R"

@ A a general quadratic

@ many applications in nonlinear programming

@ Polynomial-time solvable! e.g. S-Lemma *

Sturm and Zhang (2000): two extensions are polynomially solvable:

min XTAx+bTx+c
st [Ix]12 <1

R
(one additional ball inequality), and

min XTAx+bTx+c
st [Ix]I2 <1

Tx < O

(one added linear inequality).
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A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min XTAx+bTx+c
st IxI?2 < 1
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— Adding a system Ax < b makes the problem NP-hard
Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program

Burer and Yang (2013)

min x' Ax+ b x +c
st x> <1
alx < b i=1,....m
can be solved in polynomial time if no two linear constraints intersect within the unit ball

Vi #j, {x:a;’-x:b,-}ﬁ{x:aij:bj}ﬁ{x:HxHZSI} =0
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A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min XTAx+bTx+c
st IxI?2 < 1

— Adding a system Ax < b makes the problem NP-hard
Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program
Burer and Yang (2013)

min x' Ax+ b x +c

st x> <1

T .
a; x < b i=1,...,m

can be solved in polynomial time if no two linear constraints intersect within the unit ball

Vi #j, {x:a;’-x:b,-}ﬁ{x:aij:bj}ﬁ{x:HxHZSI} =0

Note: Results leave open the general case with m = 2
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A generalization

(TLIN):

@ P={x:alx < b i=1,...

Bienstock, Michalka
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A generalization

(TLIN): min  x! Ax + b7 x +c

st Ix? <1

@ P={x:alx < b i=1,...,m}

i

@ F* = the number of faces of P that intersect the unit ball
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A generalization

Bienstoc

(TLIN): min XTAX + bTX +c
st Ix? <1

P={x:alx < b i=1,...,m}
F* = the number of faces of P that intersect the unit ball

Ye-Zhang (or Anstreicher-Burer) case: F* = 3.

Burer-Yang case: F* = m+1
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A generalization

(TLIN): min XTAX + bTX +c
st Ix? <1

P={x:alx < b i=1,...,m}

i

Ye-Zhang (or Anstreicher-Burer) case: F* = 3.

Burer-Yang case: F* = m+1

F* = the number of faces of P that intersect the unit ball

Theorem: Problem TLIN can be solved in time polynomial in the problem size and F*.

Bienstock, Michalka
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A stronger generalization

xTAx+bTx +c

(TGEN): min
k2
st Ix—x"||° < i k=1,...,L
k2
Ix =y"lII* > &  k=1,..., M
Ix =252 = by k=1,...,E
alx < b i=1,....m
x e R".

Columbia
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A stronger generalization

xTAx+bTx +c

(TGEN): min
k2
st Ix—x"||° < i k=1,...,L
k2
Ix =y"lII* > &  k=1,..., M
Ix =252 = by k=1,...,E
alx < b i=1,....m
x e R".
Ix < b i=1,...,m}

Q@ P={x: 3

@ F* = the number of faces of P that intersect [, {x : |Ix — <K < £}

Theorem: For every fixed L, > 1, M, > 0, E, > 0, problem TGEN can be solved in time polynomial in the

problem size and F*.

(SODA 2014)

Columbia
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