
Variability in power systems:
stochastic defense against ideal grid attacks

Daniel Bienstock, Mauro Escobar, Apurv Shukla

Columbia University

Mopta 2018

Bienstock, Escobar, Shukla (Columbia) Variance Analysis Mopta 2018 1 / 40



Variability in power systems

The next frontier: controlling short-term variability (seconds or less)

Goal: safety and controllability as much as economics, or more

Driven by smart loads, DERs, DPVs, solid state devices, batteries, etc
... and PMUs

PMUs = “phasor measurement units,” relatively expensive but the
way of the future

Goal: very tight, near-real-time control of power systems

Must be able to learn real-time structure and stochastics

Joint work: Columbia and LANL
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“Cyber-physical” attacks on power grids

Fact or fiction?

1 An adversary carries out a physical alteration of a grid (example:
disconnecting a power line)

2 This is coordinated with a modification of sensor signals – a hack

3 The goal is to disguise, or keep completely hidden, the nature of the
attack and its likely consequences

4 Power industry: it will never happen
(“we would know what happened”)

5 Really?
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Control centers, RTUs, PMUs, state estimation

= sensor

control

center

tie line
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Control centers, RTUs, PMUs

Control center performs a regulatory and economic role

Sensors report to control center

Control center issues commands to (in particular) smaller generators

Sensors: RTUs (old), PMUs (new – and more expensive)

RTUs report once every four seconds

PMUs report
I 30 to 100 times a second
I PMUs report (AC) voltage and current (plus more ...)

Anecdotal: PMUs overwhelming human operators

But PMUs are the way of the future
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State estimation (very abridged)

A data-driven procedure to estimate relevant grid parameters

Even with PMUs, data can be “complex”

Statistical procedure: “state estimation” (at control center)

DC power flow equations:

Bθ = Pg − Pd

B = susceptance matrix,θ = phase angles,Pg , Pd generation and load vectors

Sensors provide information that fit some of the θ,Pd , (Pg?)
parameters

State estimation: least squares procedure to estimate the rest, plus
more
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Some prior basic research on “cyberphysical” attacks

Intelligent procedures for enriching state estimation so as to detect
and reconstruct attacks

Unavoidable: a model for attacking behavior is essential

Liu Ning Reiter (2009), Kim Poor (2011),

Deka Baldick Vishwanath (2015)

Soltan Yannakakis Zussman (2015 - )

Warning: watch out for those assumptions!

Attacks are static

and defense is passive
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Today: load change, signal hacking – all AC

An attacker causes physical changes in the network:

In particular load changes (no generator changes)

Possibly also line disconnections

Attacker also hacks the signal flow: the output of some sensors is
altered

Goal of the attacker is twofold:

1 Hide the location of the attack and even the fact that an attack
happened

2 Cause line overloads that remain hidden

Attacker expects full PMU deplyoment. Everything is AC based.
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Basic AC model of a power line in steady state

Ykm

k m

Line between buses (nodes) k and m.

Ykm: 2× 2 (complex) admittance matrix (physics of the line)

Vk = voltage at k = |Vk |e jθk , j =
√
−1, similarly with Vm

Current-voltage relationship:(
Ikm
Imk

)
= Ykm

(
Vk
Vm

)
Ikm, Imk = (complex) current injected into line at k (resp. m)

Skm = (complex) power injected into line at k = Vk I∗km
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What happens when there is a generation/load mismatch

conductor

steam
magnetic

field

statorrotor

source
energy

ω

current,  voltage

Frequency response:

mismatch ∆P ⇒ frequency change ∆ω ≈ −c ∆P
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AGC, primary and secondary response (simplified!,
abridged!)

Suppose generation vs loads balance spontaneously changes
(i.e. a net imbalance)?

AC frequency changes proportionally (to first order)
near-instantaneously

Primary response. (very quick) Inertia in generators contributes
electrical energy to the system

Secondary response. (seconds) Suppose estimated generation
shortfall = ∆P. Then:

Generator g changes output by αg∆P∑
g αg = 1, α ≥ 0, α > 0 for “participating” generators

Preset participation factors

∆ω sensed by control center, which issues generator commands
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Ideal (“perfect”) static attack: setup

PMUs everywhere: at both ends of each line

Attacker has been in the system long enough to learn the system
(data-wise)

Attacker chooses, in advance, a non-generator, sparse set A of buses
to attack and in particular a line uv to overload

In near real-time, the attacker learns the current loads, up to small
error

In near real-time, the attacker solves computational problem that
diagrams the attack on A
This will specify the load changes and the signal distortion

Post-attack, attacker cannot recompute much and only relies on
adding “noise” to the computed distorted signals
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Undetectable attack: The attacker’s perspective

generator

participating generator

boundary

attacked set
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Undetectable attack: decisions for the attacker (abridged!)

For every bus in A, a “true” and “reported” complex voltage

I
V

I

V
k

m

km

mk

m

k

not attacked

attacked

But:
(
Ikm
Imk

)
= Ykm

(
Vk

Vm

)
so Vk must be truthful
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Undetectable attack: tasks for the attacker (abridged!)

For every bus in A, compute a “true” and “reported” complex voltage
(magnitude and angle) VT

k and VR
k

True and reported voltages must agree on the boundary of A !

Compute true and reported currents for lines within A

Compute voltages and currents on all other lines (true and reported are
identical)

Compute two power flow solutions; each must satisfy AC power equations,
load changes a variable

On responding generators: compute generation change consistent with
secondary response if loads are modified

Restriction to attacker: attacked zone does not include any generators.

Why?

Some additional lying
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Undetectable static attack
(load modification, no line tripping, abridged!)

Max (pT
uv )2 + (qT

uv )2 square norm of flow on uv (1a)

s.t.

∀k ∈ AC ∪ ∂A, VT
k = VR

k (truthful voltages outside attacked zone) (1b)

∀k ∈ A, −(P
d,R
k

+ jQ
d,R
k

) =
∑

km∈δ(k)

(pRkm + jqRkm), (true power flow balance in attacked zone) (1c)

− (P
d,T
k

+ jQ
d,T
k

) =
∑

km∈δ(k)

(pTkm + jqTkm), (reported power flow balance in attacked zone) (1d)

∀k ∈ AC\R : P̂
g
k
− P̂d

k + j(Q̂
g
k
− Q̂

g
k

) =
∑

km∈δ(k)

(pTkm + jqTkm) (LHS is data, not variables) (1e)

∀k ∈ R : P
g
k
− P̂d

k + j(Q
g
k
− Q̂

g
k

) =
∑

km∈δ(k)

(pTkm + jqTkm) (Pg
k ,Q

g
k are variables) (1f)

P
g
k
− P̂

g
k

= αk∆ (AGC response) ∆ is a variable, (1g)

reported data: operational limits on all buses, generators and lines (1h)

all pT
km, q

T
km related to |VT

k |, |VT
m |, θTk , θ

T
m through AC power flow laws (1i)

AC OPF-like problem, local-solvable in seconds

Bienstock, Escobar, Shukla (Columbia) Variance Analysis Mopta 2018 16 / 40



Undetectable static attack
(load modification, no line tripping, abridged!)

Max (pT
uv )2 + (qT

uv )2 square norm of flow on uv (1a)

s.t.

∀k ∈ AC ∪ ∂A, VT
k = VR

k (truthful voltages outside attacked zone) (1b)

∀k ∈ A, −(P
d,R
k

+ jQ
d,R
k

) =
∑

km∈δ(k)

(pRkm + jqRkm), (true power flow balance in attacked zone) (1c)

− (P
d,T
k

+ jQ
d,T
k

) =
∑

km∈δ(k)

(pTkm + jqTkm), (reported power flow balance in attacked zone) (1d)

∀k ∈ AC\R : P̂
g
k
− P̂d

k + j(Q̂
g
k
− Q̂

g
k

) =
∑

km∈δ(k)

(pTkm + jqTkm) (LHS is data, not variables) (1e)

∀k ∈ R : P
g
k
− P̂d

k + j(Q
g
k
− Q̂

g
k

) =
∑

km∈δ(k)

(pTkm + jqTkm) (Pg
k ,Q

g
k are variables) (1f)

P
g
k
− P̂

g
k

= αk∆ (AGC response) ∆ is a variable, (1g)

reported data: operational limits on all buses, generators and lines (1h)

all pT
km, q

T
km related to |VT

k |, |VT
m |, θTk , θ

T
m through AC power flow laws (1i)

AC OPF-like problem, local-solvable in seconds

Bienstock, Escobar, Shukla (Columbia) Variance Analysis Mopta 2018 16 / 40



A large-scale example: case2746wp

(2746 buses, 3514 lines, 520 generators, 25GW total load)

1361 1141

1491

1138

1137 1139

1110

135816511041844 1252 1295162585

1287 1512

attacked zone

Undetectable attack with strong overloads on branches:

(1361, 1141):
‖reported flow‖ = 109, ‖true flow‖ = 229, limit = 114

(1138, 1141):
‖reported flow‖ = 98, ‖true flow‖ = 209, limit = 114

Net load change: 135 MW (< 0.5%) of total load
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Non-static attack: follow-up

A blind spot in prior work?

“Noisy-data”

Following the attack, for any bus ∈ A− ∂A the attacker reports (at
each time t) a complex voltage value

Ṽk(t) = VR
k + νk(t)

Here, νk(t) is random, with

E(νk(t)) = 0,

(consistent with zero expected load change)

and? what else?
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Defense, 0

Defender is likely to know that “something” happened (and quickly).
But sensor data is noisy and “something” may be inconsequential

We want a defensive action that is nearly implementable in terms of
today’s grid operation

Should not lead to false positives

Solution: change the power quantities in a way that the attacker
cannot anticipate, and identify inconsistent signals. How?

A solution: change generator output by a random injection that
yields a valid power flow solution (“AGC-lite” plus redispatch)
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Defense, 0’ (optimization problem)

Following attack, and in suspicion of an attack

Defender only has access to reported data, which is accurate in the
non-attacked zone. But the defender does not know the attacked
zone.

(repeatedly) Defender chooses a random subset of the
AGC-responding generators, and

Defender computes a random power flow solution where the chosen
generators are allowed to change (up or down) their output, within
limits. Other generators can change output by small amounts, within
limits. The power flow solution must satisfy e.g. voltage
constraints.

Defender seeks to make the changes in generation large subject to
above constraints. ACOPF-like problem, solvable in seconds
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Defense, 1

But attacker cannot anticipate this random action, even if the defense is
known.

Therefore:
(under noisy-data attack)

Reported currents, and implied power flows, will have near-constant
values within attacked zone

But outside of attacked zone, with high-probability (?) most lines will
see significant changes in current and power flows

Above example (case2746wp) has over 3500 lines, but in a few iterations
we reduce the number of suspicious lines to < 100.

Good, but not good enough
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Defense, 2:
(
Ikm
Imk

)
= Ykm

(
Vk

Vm

)

within attacked

zone

reported voltage

constant (and false)near

not attacked

must report near−accurate voltage
boundary of attacked zone

On a line going from boundary to interior of attacked zone
reported current will be wrong

because voltage at boundary bus is changing with our defense
but voltage at interior bus is changing by very small amounts

In above example, one iteration identifies all boundary lines with no false
positives
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Experiment 1 Experiment 2∑
j∈G δ

+
j 289.01 964.77∑

j∈G δ
−
j 174.47 256.04

Branch (k = 1137,m = 1139)

1137 inside attack, 1139 on boundary

|VR
1137(0)|∠θR1137(0) 1.0919∠− 6.993◦ 1.0919∠− 6.993◦

|VR
1139(0)|∠θR1139(0) 1.0919∠− 6.991◦ 1.0919∠− 6.991◦

|VR
1139(t)|∠θR1139(t) 1.0105∠− 7.882◦ 1.0187∠− 7.936◦

IR1137,1139(0) −0.0275 + 0.0281j −0.0275 + 0.0281j

Y1137,1139

(
VR

1137(0)

VR
1139(t)

)
20.967− 55.978j 21.435− 49.918j
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Non-static attack: follow-up

“Noisy-data” attack

Following the attack, for any bus ∈ A− ∂A the attacker reports (at
each time t) a complex voltage value

Ṽk(t) = VR
k + νk(t)

Here, νk(t) is random, with

E(νk(t)) = 0,

(consistent with zero expected load change)
and? what else?

→ stochastics of νk(t) should “make sense”
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PMU fun

We have data from an industrial partner:

240 PMUs

2 years of reported data

28 TB

Soon, 500 PMUs and higher detail
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PMU fun
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More PMU fun: a voltage phase angle
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More PMU fun: 3 voltage angles)
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More PMU fun: difference between two voltage angles
(10 seconds)
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More PMU fun: frequency at two different buses
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Noise is not just noise

From real time series, voltage angle deviation histogram

Kolmogorov-Smirnoff gaussianity test strongly rejected, always
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Noise is not just noise

From real time series, voltage magnitude deviations

Strong and nontrivial correlation structure
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Covariances matrices of PMU data have low rank!!

Example: 50 PMUs, Voltage Angle, one minute

Scaled Eigenvalue

1 1.000

2 0.078

3 0.012

4 0.009

5 0.007

6 0.004

7 0.003

8 0.002

9 0.001

10 0.001
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Covariances matrices of PMU data have low rank!!

Example: 100 PMUs, voltage magnitude, five minutes

Scaled Eigenvalue

1 1.000

2 0.618

3 0.061

4 0.023

5 0.017

6 0.010

7 0.008

8 0.004

9 0.004

10 0.002
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Non-static attack: follow-up

“Noisy-data” attack

Following the attack, for any bus k ∈ A− ∂A the attacker reports (at
each time t) a complex voltage value

ṼR
k (t) = VR

k + νk(t)

Here, νk(t) is random, with

E(νk(t)) = 0,

(consistent with zero expected load change)
and? what else?

→ covariance of ν(t) should be make sense
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Learning variances

Theorem. (Co)variance of time series can be learned

In real time

In streaming fashion

Under evolving stochasticity

Shukla, Yun and a fool from Columbia :
Non-Stationary Streaming PCA, Proc. 2017 NIPS Time Series Workshop.
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Covariance defense

Under whatever assumptions, the attacker will produce a time series
for e.g. phase angles.

Assume covariance of phase angles is learned by the defender

(Assume of low rank)

Defender chooses random generator injections so as to
significantly change covariance of phase angles

Attacker is caught with pants down
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Covariance defense (technical, abridged)

Let Ω = covariance of observed voltage phase angles

Let w1,w2, . . . ,wr = eigenvectors with positive large enough
eigenvalues. r � n (number of buses)

Defender chooses vector v ∈ Rn with:

wT
i v = 0 for 1 ≤ i ≤ r (plus other conditions)

Theorem: there is a random set of power injections (by generators)
that results in covariance of phase angles

≈ Ω + λvvT where λ > 0

On case2746wp, ≈ 10 vectors v cover all buses.
(Dense null space vector computation: LP heuristic)
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Covariance defense (technical, less abridged)
1 Let Ω = covariance of observed voltage phase angles

2 Let w1,w2, . . . ,wr = eigenvectors with positive large enough
eigenvalues.

r � n (number of buses)

3 Defender chooses vector v ∈ Rn with:

wT
i v = 0 for 1 ≤ i ≤ r and [Bv ]i = 0 for all non-generator i

4 Theorem: there is a random set of power injections (by generators)
that results in covariance of phase angles

≈ Ω + λvvT where λ > 0

5 On case2746wp, there is a single vector v that covers all buses.

Theorem: if v1, v2 ∈ subspace S , then ∃∞ many v ∈ S with

support(v) = support(v1) ∪ support(v2)
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Summary

Very high-fidelity grid attacks appear easily computable.

Defensive idea 1: use network resources to change power flow physics
in unpredictable ways

Defensive idea 2: change covariance structure in a way that cannot
be instantaneously learned

Adversarial learning of moments under streaming data is a nice
problem!

Wed.Aug.15.113946.2018@blacknwhite
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