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An application: the Optimal Power Flow problem (ACOPF)
Input: an undirected graph G.
e [or every vertex ¢, two variables: e; and f;

e For every edge {k, m}, four (specific) quadratics:

Hk]:?m(ek7fk7em7fm)7 H]gm(ekafkaemafm)

Hnﬁ,k(ek’fk‘vem7fm)a Hrg,k(ekafkaemafm) @ @

min ZFk Z H£m<ek7fkaem7fm>
k

{k,m}yed(k)

S.1. Lf < Z H]fm ek,fk,em,fm) < Uk}:) A
{k;m}ed(k)

LY < Y HY (e frem fn) < UZ VEk
{k;m}ed(k)

VE < e, f)ll < VY VE.

Function Fj in the objective: convex quadratic



Complexity
Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.
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min FeW
st. A, oW < b, 1=1,2,...
W >0, W of rank 1.
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Complexity
Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min FeW
st. A, oW < b, 1=1,2,...
W = 0.

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is usually good!!
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But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth < w if it is a subgraph of an inter-
section graph of subtrees of a tree, with < w —+ 1 subtrees overlapping at
any vertex

(Seymour and Robertson, early 1980s)



Tree-width
Let G be an undirected graph with vertices V' (G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:
e 1" is a tree. Not a subtree of G, just a tree

e For cach vertex t of T, Q;is asubset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.

(2) For each edge {u, v} of G, the two subtrees Ty, and T, intersect.
e The width of (7, Q) is maxcr Q] — 1.
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— two subtrees Ty, Ty, may overlap even if {u, v} is not an edge of G
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A tree-decomposition of G is a pair (T, Q) where:
e 1" is a tree. Not a subtree of G, just a tree

e For cach vertex t of T, Q;is asubset of V(G). These subsets satisfy
the two properties:
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But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with ~ 3 x 10° vertices: — 20 minutes runtime



But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem
gives fast SDP implementations:
Real-life grids with ~ 3 x 10° vertices: — 20 minutes runtime

— Perhaps low tree-width yields direct algorithms for ACOPF itselt?

That is to say, not for a relaxation?



Much previous work using structured sparsity
e Bienstock and Ozbay (Sherali-Adams + treewidth)
e Wainwright and Jordan (Sherali-Adams + treewidth)
e Grimm, Netzer, Schweighofer
e Laurent (Sherali-Adams + treewidth)
e Lasserre et al (moment relaxation + treewidth)

e Waki, Kim, Kojima, Muramatsu
older work ...

e Lauritzen (1996): tree-junction theorem
e Bertele and Brioschi (1972): nonserial dynamic programming

e Bounded tree-width in combinatorial optimization (early 1980s) (Arnborg
et al plus too many authors)

e Fulkerson and Gross (1965): matrices with consecutive ones



ACOPF, again
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ACOPF, again

Input: an undirected graph G.

e For every vertex ¢, two variables: e; and f;

e For every edge {k, m}, four (specific) quadratics:

min

S.t.

Hlf,m(ekvfkaemufm)u H]gm(ek)fkyem7fm)

Hrﬁ,k(ekafk’emvfm)a Hﬁ,k(6k7fk>6m7fm) : C

2w
k

Lkp S Z Hk]im(ekafkaem7fm> S UkP
{km}ed(k)

LY < > HY(er frsem fm) < U
{km}ed(k)

Vii < llew, f)ll < VY Vk

VU = Z H£m<€k7fk7€mafm> VEk
{k,m}ed(k)
Wy = Fk(?}]{;>

VEk

VE



A classical problem: fixed-charge network flows
Setting: a directed graph G, and

o At each arc (7, j) a capacity u;;, a fived cost k;; and a variable cost c;;.

o At each vertex 7, a net supply b;. We assume » . b; =0
(so b; < 0 means ¢ has demand).

e By paying k;; the capacity of (¢, 7) becomes u;; — else it is zero.

e The per-unit flow cost on (¢, j) is ¢;;.

Problem: At minimum cost, send flow b; out of each node 1.

Knapsack problem (subset sum) is a special case where G is a caterpillar.



Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

e Fach variable is associated with some vertex.
X, = variables associated with u



Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

e Fach variable is associated with some vertex.
X, = variables associated with u

e Flach constraint is associated with some vertex.
A constraint associated with u € V(G) is of the form

> puXUX,) >0
{u,p}ed(u)

where py,() is a polynomial



Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

e Fach variable is associated with some vertex.
X, = variables associated with u

e Flach constraint is associated with some vertex.
A constraint associated with u € V(G) is of the form

> puXUX,) >0
{u,p}ed(u)

where py,() is a polynomial
o For any z;, {u € V(G) : z; € X, } induces a connected subgraph of G
e All variables in [0, 1], or binary

e Linear objective



Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

e Fach variable is associated with some vertex.
X, = variables associated with u

e Flach constraint is associated with some vertex.
A constraint associated with u € V(G) is of the form

> puXUX,) >0
{u,p}ed(u)

where py,() is a polynomial
o For any z;, {u € V(G) : z; € X, } induces a connected subgraph of G
e All variables in [0, 1], or binary

e Linear objective

Density: max number of variables 4+ constraints at any vertex

ACOPF': density = 4, FCNF': density = 4



Theorem

Given a problem on a graph with
e treewidth w,
e density d,
e max. degree of a polynomial p,,: 7,
e 11 vertices,

and any fixed 0 < € < 1,

there is a linear program of size (rows + columns) O(7w%% % n)
whose feasibility and optimality error is O(€)



Theorem

Given a problem on a graph with
e treewidth w,
e density d,
e max. degree of a polynomial p,,: 7,
e 11 vertices,

and any fixed 0 < € < 1,

there is a linear program of size (rows + columns) O(7w%% % n)
whose feasibility and optimality error is O(€)

e Problem feasible — LP e-feasible
additive error = € times L1 norm of constraint
and objective value changes by e times L; norm of objective

e And viceversa



Simple example: subset-sum problem

Input: positive integers p1, po, ..., Pn.

Problem: find a solution to:

n 1 n
Yre = ;3
j=1 j=1
ZCJ<1 — .CCj) = O, \V/]
(weakly) NP-hard

This is a network polynomial problem on a star — so treewidth 1.

But

{0, 1} solutions with error (1 D i1 pj) € in time polynomial in €~

2

1



More general: (Basic polynomially-constrained mixed-integer LP)

min  cz

st. pi(z) >0 1<i<m
r;€{0,1} Vjel, 0<azx; <1, otherwise

Each p;(x) is a polynomial.
Theorem

For any instance where
e the intersection graph has treewidth w,
e max. degree of any p;(x) is T,
e 1 variables,

and any fixed 0 < € < 1, there is a linear program of size (rows +
columns) O(w¥e~“~1n) whose feasibility and optimality error is O(€)
(abridged).



Intersection graph of a constraint system: (Fulkerson? (19627))
e Has a vertex for every variably x;

o Has an edge {x;, ,} whenever z; and x; appear in the same constraint

Example. Consider the NPO

r]+ a5+ 2x; <1
QZ%—$§—|—ZC4 > 0,
333£U4+ZC§—£IZ6 > 1/2

OSI’jSl, 1§]§5, .T(;E{O,l}.

(b)



Main technique: approximation through pure-binary
problems

Glover, 1975 (abridged)

Let « be a variable, with bounds 0 < & < 1. Let 0 < v < 1. Then we
can approximate

L _
Tr = Zh:12 hyh

where each yy, is a binary variable. In fact, choosing L = [log,~vy '],
we have

z < Y 27"y < x4y

— Given a mixed-integer polynomially constrained LP
apply this technique to each continuous variable x;



Mixed-integer polynomially-constrained LP:

(P) min 'z
st. pi(x) >0 1<i<m
r; €{0,1} Vjel, 0<uz,;<1, otherwise

substitute: V5 ¢ I, x; — Zﬁzl 27y, 5 where each yp, ; € {0,1}

L =~ log,v~!



Mixed-integer polynomially-constrained LP:

(P) min 'z
st. pi(x) >0 1<i<m
r; €{0,1} Vjel, 0<uz,;<1, otherwise

substitute: V5 ¢ I, x; — Zﬁzl 27y, 5, where cach yp, ; € {0,1}

L =~ log, v~ !

) " L o—h N x
p(Z) > 0, |&; — 35127 "Gl < v = p(@) > —lpll(1 - (1 —~)7)
o m = degree of p(x)

e ||p||1 = 1-norm of coefficients of p(x)

e —|lplh(1 — (1 —=7)7) = —lplhmy



Mixed-integer polynomially-constrained LP:
(P) min 'z

st. pi(x) >0 1<i<m
z; €{0,1} Vjel, 0<z;<1,

substitute: V5 ¢ I, x; — Zﬁzl 27y, 5, where cach yp, ; € {0,1}

otherwise

L =~ log, v~ !

Approximation: pure-binary polynomially-constrained LP:

T

(Q) min c'y
st piy) = —lpilli(1 = (1 =~)7)

r;€{0,1} Vjel, 0<z;<1,

1 <1 <m

otherwise



Mixed-integer polynomially-constrained LP:
(P) min 'z

st. pi(x) >0 1<i<m
z; €{0,1} Vjel, 0<z;<1,

substitute: V5 ¢ I, x; — Zﬁzl 27y, 5, where cach yp, ; € {0,1}

otherwise

L =~ log, we™1

Approximation: pure-binary polynomially-constrained LP:

T

(Q) min c'y
st piy) = —lpilli(1 = (1 =~)7)

r;€{0,1} Vjel, 0<z;<1,

1 <1 <m

otherwise

Intersection graph of P has treewidth < w =
Intersection graph of (@) has treewidth < Lw



Pure binary problems

e 1. binary variables and m constraints.

e Constraint 4 is given by k[i] C {1,...,n}and S* C {0, 1}*li,
1. Constraint states: subvector ;) € St
2. 8" given by a membership oracle

e The problem is to minimize a linear function ¢!z, over x € {0,1}", and
subject to all constraint 2z, 1 <12 < m.
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Pure binary problems

e 1. binary variables and m constraints.

e Constraint 4 is given by k[i] C {1,...,n}and S* C {0, 1}*li,
1. Constraint states: subvector ;) € St
2. 8" given by a membership oracle

e The problem is to minimize a linear function ¢!z, over x € {0,1}", and
subject to all constraint 2z, 1 <12 < m.

Theorem. If intersection graph has treewidth < W, then:
there is an LP formulation with O(2"n) variables and constraints.

e Not explicitly stated, but can be obtained using methods from Laurent
(2010)

e “Cones of zeta functions” approach of Lovasz and Schrijver.

e Poly-time algorithm: old result.



Pure binary problems

min ¢z

s.b. oz € St 1<i< m,
r € {0,1}"

Theorem. If intersection graph has treewidth < W, then:
there is an LP formulation with O(2"n) variables and constraints.



An alternative approach?

min ¢z

s.t. oz € St1<i< m,
r € {0,1}"



An alternative approach?

min ¢z

st Xy € St 1<i< m,
r € {0,1}"

conv{y € {0, 1} . y € S'} given by A’z > b’



An alternative approach?

min ¢z

st Xy € St 1<i< m,
r € {0,1}"

conv{y € {0, 1} . y € S'} given by A’z > b’

min clx

st. Az > b0 1<i<m,
r € {0,1}"



An alternative approach?

min ¢z

s.t. oz € St 1<i< m,
r € {0,1}"

conv{y € {0, 1} . y € S'} given by A’z > b’

T

min cx
st. Az > b0 1<i<m,
r € {0,1}"

But: Barany, Pér (2001):

for d large enough, there exist 0,1-polyhedra in R? with

g\ A
facets
log d




Corollary: (polynomially-constrained mixed-integer LP)

min  clz

st. pi(z) >0 1<i<m
r;€{0,1} Vjel, 0<ax; <1, otherwise

Each p;(x) is a polynomial.
Theorem

For any instance where
e the iIntersection graph has treewidth w,
e max. degree of any p;(x) is T,
e 1 variables,

and any fixed 0 < € < 1, there is a linear program of size (rows +
columns) O(w¥e~“~1n) whose feasibility and optimality error is O(€)
(abridged).



Application? Mixed-integer Network Polynomial
Optimization problems
Input: an undirected graph G.
e Variables and constraints associated with vertices.
e X, = variables associated with wu.

e A constraint associated with u € V(G) is of the form

> (X UX,) >0
{uv}ed(u)

where py,() is a polynomial
e All variables in [0, 1], or binary.
e Linear objective

e Interesting case: G of bounded treewidth.
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Application? Mixed-integer Network Polynomial
Optimization problems
Input: an undirected graph G.
e Variables and constraints associated with vertices.
e X, = variables associated with wu.

e A constraint associated with u € V(G) is of the form

> (X UX,) >0
{uw}ed(u)

where py,() is a polynomial
e All variables in |0, 1], or binary.
e Linear objective

e Interesting case: G of bounded treewidth.
k
Zaja:j > ap, — k-clique
j=1



Vertex splitting

How do we deal with

D fuwyes(w) Puv(Xu U Xy) > 0 when [§(w)| large?
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Vertex splitting

How do we deal with

D fuwyes(w) Puv(Xu U Xy) > 0 when [§(w)| large?

Z Puos( Xy UX,) + y > 0 assoc. with uy
{uwteA

Z Puu(XuUX,) — y = 0. assoc. with up
{u,w}eB

(y is a new variable associated with either u4 or up)






A better idea




Theorem

Given a graph of treewidth < w, there is a sequence of vertex splittings
such that the resulting graph

e Has treewidth < O(w)

e Has maximum degree < 3.



Theorem

Given a graph of treewidth < w, there is a sequence of vertex splittings
such that the resulting graph

e Has treewidth < O(w)

e Has maximum degree < 3.
Perhaps known to graph minors people?

Corollary (abridged)

Given a network polynomial optimization problem on a graph G, with
treewidth < w there is an equivalent problem on a graph H with

treewidth < O(w) and max degree 3.

Corollary. The intersection graph has treewidth < O(w).



Tree-width
Let G be an undirected graph with vertices V' (G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:
e 1" is a tree. Not a subtree of G, just a tree

e For cach vertex t of T, Q;is asubset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.

(2) For each edge {u, v} of G, the two subtrees Ty, and T, intersect.
e The width of (7, Q) is maxcr Q] — 1.

WA ||

— two subtrees Ty, Ty, may overlap even if {u, v} is not an edge of G



each edge {u,v} € E(G) found in some vertex of Ty,



T, must intersect T, only here

for some edge {u,v}

wlog every edge {u,v} € E(G) found in some leaf of T,
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