
Nonconvex Combinatorial Nonlinear Optimization:
New Methodologies and Critical Applications

Daniel Bienstock (Columbia), Ismael deFarias (Texas Tech)

1. The “SUV” problem

• given full-dimensional polyhedra P 1, . . . , PK in Rd,

• find a point closest to the origin not contained inside any of

the Ph.

min ‖x‖2

s.t. x ∈ Rd −
K⋃
h=1

int(Ph),

(application: X-ray lythography)

• Typical values for d (dimension): less than 20; usually even

smaller

• Typical values for K (number of polyhedra): possibly hun-

dreds, but often less than 50

•Very hard problem

Formulation as mixed-integer quadratic program

(Polyhedron Ph : {x ∈ Rd : aTh,ix ≤ bh,i, 1 ≤ i ≤ mh})

min

d∑
j=1

x2j

yh,i ∈ {0, 1}, 1 ≤ i ≤ mh, 1 ≤ h ≤ K

s.t. aTh,ix ≥ bh,i yh,i, 1 ≤ i ≤ mh, 1 ≤ h ≤ K

mh∑
i=1

yh,i ≥ 1, 1 ≤ h ≤ K

x ∈ Rd, 1 ≤ i ≤ mh, 1 ≤ h ≤ K.

A hard instance: 33 symmetric polyhedra in R8

→ 561 constraints, 536 variables (264 binaries)

A hard instance: 33 symmetric polyhedra in R8

→ 561 constraints, 536 variables (264 binaries)

A hard instance: 33 symmetric polyhedra in R8

→ 561 constraints, 536 variables (264 binaries)
→ Experiments with Cplex 12.6, current 8-core 48 GB machine

A hard instance: 33 symmetric polyhedra in R8

→ 561 constraints, 536 variables (264 binaries)
→ Experiments with Cplex 12.6, current 8-core 48 GB machine

Time (sec.) Lower Bound Upper Bound Nodes

500 0.00 0.2645 6× 106

1000 0.00 0.2257 1.1× 107

1500 0.00 0.2257 1.6× 107

2500 0.00 0.2257 2.7× 107

3000 0.00 0.2257 3.2× 107

3600 0.00 0.2257 3.8× 107

7200 0.00 0.2257 7.9× 107

A hard instance: 33 symmetric polyhedra in R8

→ 561 constraints, 536 variables (264 binaries)
→ Experiments with Cplex 12.6, current 8-core 48 GB machine

Time (sec.) Lower Bound Upper Bound Nodes

500 0.00 0.2645 6× 106

1000 0.00 0.2257 1.1× 107

1500 0.00 0.2257 1.6× 107

2500 0.00 0.2257 2.7× 107

3000 0.00 0.2257 3.2× 107

3600 0.00 0.2257 3.8× 107

7200 0.00 0.2257 7.9× 107

→ (Other techniques:) upper bound 0.0977

2. Optimization with nonstandard constraints

x

f(x)

f(x) b

• Piecewise-linear functions

• Discontinuous variables

• Disjunctions on complex conditions: “either xTy = 0 or
∑
xi ≥ 5”

2. Optimization with nonstandard constraints

x

f(x)

f(x) b

• Piecewise-linear functions

2. Optimization with nonstandard constraints

x

f(x)

f(x) b

• Piecewise-linear functions

• Discontinuous or semi-continous variables, e.g. “x ∈ [0, 1] ∪ [2, 3]”

2. Optimization with nonstandard constraints

x

f(x)

f(x) b

• Piecewise-linear functions

• Discontinuous or semi-continous variables, e.g. “x ∈ [0, 1] ∪ [2, 3]”

• Disjunctions on complex conditions: “either xTy = 0 or
∑
xi ≥ 5”

2. Optimization with nonstandard constraints

x

f(x)

f(x) b

• Piecewise-linear functions

• Discontinuous or semi-continous variables, e.g. “x ∈ [0, 1] ∪ [2, 3]”

• Disjunctions on complex conditions: “either xTy = 0 or
∑
xi ≥ 5”

These arise in:

• Pricing problems

• Applications in physical sciences

• Approximations of nonlinear functions

A hard piecewise-linear optimization instance

→ Experiments with Cplex 12.6, current 8-core 48 GB machine

Time (sec.) Lower Bound Upper Bound Gap Nodes

50 559687.7609 5700

500 560556.7700 613016.6495 8.56 % 22411

1500 561991.0724 608745.6914 7.68 % 56041

3000 566861.1899 608745.6914 6.88 % 150056

5000 567845.8559 607282.2571 6.49 % 279090

22759 571076.4105 606578.6048 5.85 % 1.3× 106

→ Our techniques: optimal value, in 338 seconds

2. Cardinality constrained, convex quadratic programming

min xTQx + cTx

s.t. Ax ≤ b

x ≥ 0, ‖x‖0 ≤ k

‖x‖0 = number of nonzero entries in x.

• Q � 0

• x ∈ Rn for n possibly large

• k relatively small, e.g. k = 100 for n = 10000

• VERY hard problem – just getting good bounds is tough

3. AC-OPF problem in rectangular coordinates

Given a power grid, determine voltages at every node so as to minimize a
convex objective

min vTAv

s.t. Lk ≤ vTFkv ≤ Uk, k = 1, . . . , K

v ∈ R2n, (n = number of nodes)

• voltages are complex numbers; v is the vector of voltages in rectangular
coordinates (real and imaginary parts)

• A � 0

• n could be in the tens of thousands, or more

• the Fk are very sparse (neighborhood structure for every node)

• Problem HARD when grid under distress and Lk ≈ Uk.

Why are these problems so hard

Generic problem: min Q(x), s.t. x ∈ F,

• Q(x) (strongly) convex, especially: positive-definite quadratic

• F nonconvex

F

F

F

F

x*

x∗ solves min
{
Q(x), : x ∈ F̂

}
where F ⊂ F̂ and F̂ convex

→ straightforward relaxations are weak

Lattice-free cuts for linear integer programming

Generic problem: min cTx, s.t. Ax ≤ b, z ∈ Zn

Lattice-free cuts for linear integer programming

Generic problem: min cTx, s.t. Ax ≤ b, z ∈ Zn

Lattice-free cuts for linear integer programming

Generic problem: min cTx, s.t. Ax ≤ b, z ∈ Zn

Lattice-free cuts for linear integer programming

Generic problem: min cTx, s.t. Ax ≤ b, z ∈ Zn

Special case: standard disjunctions

How to apply in a continuous, nonconvex setting?

Technique 1: Exclude-and-cut

min Q(x)

s.t. x ∈ F

Technique 1: Exclude-and-cut

min z

s.t. z ≥ Q(x),

x ∈ F

Technique 1: Exclude-and-cut

min z

s.t. z ≥ Q(x),

x ∈ F
0. F̂ : a convex relaxation of conv {(x, z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x, z) ∈ F̂}

Technique 1: Exclude-and-cut

min z

s.t. z ≥ Q(x),

x ∈ F
0. F̂ : a convex relaxation of conv {(x, z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x, z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.
Examples: lattice-free sets, geometry

Technique 1: Exclude-and-cut

min z

s.t. z ≥ Q(x),

x ∈ F
0. F̂ : a convex relaxation of conv {(x, z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x, z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.
Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0 valid for

{ (x, z) : x ∈ S, z ≥ Q(x) }
but violated by (x∗, z∗).

Valid linear inequalities for { (x, z) : x ∈ S, z ≥ Q(x) }.

S

S =
Feasible region

Valid linear inequalities for { (x, z) : x ∈ S, z ≥ Q(x) }.

S

S =
Feasible region

y in boundary of S

First order inequality:

z ≥ [∇Q(y)]T (x− y) + Q(y)

is valid EVERYWHERE – does not cut-off any points

Valid linear inequalities for { (x, z) : x ∈ S, z ≥ Q(x) }.

S

S =
Feasible region

y

v, unit norm

in boundary of S

First order inequality:

z ≥ [∇Q(y)]T (x− y) + Q(y)

is valid EVERYWHERE – does not cut-off any points Lifted first order
inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x− y) + Q(y)︸ ︷︷ ︸
first-order term≈Q(x)

+ αvT (x− y)︸ ︷︷ ︸
lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and
x ≈ y.
– want RHS ≤ Q(x) in S̄ (α = 0 always OK)

Valid linear inequalities for { (x, z) : x ∈ S, z ≥ Q(x) }.

S

S =
Feasible region

y

v, unit norm

in boundary of S

α safe

excluded region: RHS > Q(x)

First order inequality:

z ≥ [∇Q(y)]T (x− y) + Q(y)

is valid EVERYWHERE – does not cut-off any points Lifted first order
inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x− y) + Q(y)︸ ︷︷ ︸
first-order term≈Q(x)

+ αvT (x− y)︸ ︷︷ ︸
lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and
x ≈ y.
– want RHS ≤ Q(x) in S̄ (α = 0 always OK)

Valid linear inequalities for { (x, z) : x ∈ S, z ≥ Q(x) }.

S

S =
Feasible region

y

v, unit norm

in boundary of S

excluded region: RHS > Q(x)

α too large

First order inequality:

z ≥ [∇Q(y)]T (x− y) + Q(y)

is valid EVERYWHERE – does not cut-off any points Lifted first order
inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x− y) + Q(y)︸ ︷︷ ︸
first-order term≈Q(x)

+ αvT (x− y)︸ ︷︷ ︸
lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and
x ≈ y.
– want RHS ≤ Q(x) in S̄ (α = 0 always OK)

Valid linear inequalities for { (x, z) : x ∈ S, z ≥ Q(x) }.

S

S =
Feasible region

y

v, unit norm

in boundary of S

excluded region: RHS > Q(x)

α just right

First order inequality:

z ≥ [∇Q(y)]T (x− y) + Q(y)

is valid EVERYWHERE – does not cut-off any points Lifted first order
inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x− y) + Q(y)︸ ︷︷ ︸
first-order term≈Q(x)

+ αvT (x− y)︸ ︷︷ ︸
lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and
x ≈ y.
– want RHS ≤ Q(x) in S̄ (α = 0 always OK)

Valid linear inequalities for F .
= { (x, z) ∈ Rn × R : x ∈ S, z ≥

Q(x) }.

Given y ∈ ∂S, let

α∗
.
= sup {α ≥ 0 : Q(x) ≥ [∇Q(y)]T (x− y) +Q(y) +αvT (x− y) }

valid for F . Note: α∗ = α∗(v, y)

Theorem. If Q is convex and differentiable, then conv(F) is given by

Q(x) ≥ [∇Q(y)]T (x− y) + Q(y) ∀y
Q(x) ≥ [∇Q(y)]T (x− y) + Q(y) + α∗vT (x− y)

∀v and y ∈ ∂S.
(abridged)

Quadratics in action

Lifted first-order inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

(Q(x) � 0)

Separation problem

Given (x∗, z∗) ∈ Rn × R, find a lifted-first order inequality maximally vio-
lated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

• S̄ (or S) is a union of polyhedra

• S is an ellipsoid or paraboloid (many cases)

Quadratics in action

Lifted first-order inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

(Q(x) � 0)

Separation problem

Given (x∗, z∗) ∈ Rn × R, find a lifted-first order inequality maximally vio-
lated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

• S̄ (or S) is a union of polyhedra

• S is an ellipsoid or paraboloid (many cases)

Quadratics in action

Lifted first-order inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

(Q(x) � 0)

Separation problem

Given (x∗, z∗) ∈ Rn × R, find a lifted-first order inequality maximally vio-
lated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

• S̄ (or S) is a union of polyhedra

• S is an ellipsoid or paraboloid (many cases)

Key proof technique: S-Lemma

min Q1(x)

s.t. Q2(x) ≤ 0

x ∈ Rn

(Qi(x) arbitrary quadratics) is poly-time solvable

Ongoing work: S-Lemma

min Q1(x)

s.t. Q2(x) ≤ 0

x ∈ Rn

(Qi(x) arbitrary quadratics) is poly-time solvable

Trust-region subproblem:

min Q1(x)

s.t. ‖x‖ ≤ 1

x ∈ Rn

Extension

(TGEN): min xTAx + bTx + c

s.t. ‖x− xk‖2 ≤ fk k = 1, . . . , Lk
‖x− yk‖2 ≥ gk k = 1, . . . ,Mk

‖x− zk‖2 = hk k = 1, . . . , Ek

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

Extension

(TGEN): min xTAx + bTx + c

s.t. ‖x− xk‖2 ≤ fk k = 1, . . . , Lk
‖x− yk‖2 ≥ gk k = 1, . . . ,Mk

‖x− zk‖2 = hk k = 1, . . . , Ek

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

• P = {x : aTi x ≤ bi i = 1, . . . ,m}
• F ∗ = the number of faces of P that intersect

⋂
k{x : ‖x−xk‖ ≤ fk}.

Extension

(TGEN): min xTAx + bTx + c

s.t. ‖x− xk‖2 ≤ fk k = 1, . . . , Lk
‖x− yk‖2 ≥ gk k = 1, . . . ,Mk

‖x− zk‖2 = hk k = 1, . . . , Ek

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

• P = {x : aTi x ≤ bi i = 1, . . . ,m}
• F ∗ = the number of faces of P that intersect

⋂
k{x : ‖x−xk‖ ≤ fk}.

Theorem: For every fixed Lk ≥ 1,Mk ≥ 0, Ek ≥ 0, problem TGEN
can be solved in time polynomial in the problem size and F ∗.

(SODA 2014)

Extends results by Ye, Ye-Zhang, Burer-Anstreicher, Burer-Yang

Even more general

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1,

where the Mi are general matrices.

Even more general

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1,

where the Mi are general matrices.

•Non-constructive. Algorithm says “yes” or “no.”

•Computational model?

Theorem.

For each fixed m ≥ 1 there is a polynomial-time algorithm that, given an
optimization problem

min f0(x)
.
= xTQ0x+ cT0x

s.t. xTQix+ cTi x+ di ≤ 0 1 ≤ i ≤ m,
where Q1 � 0, and 0 < ε < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an ε-feasible vector x̂ such that there exists no feasible
x ∈ Rn with f0(x) < f(x̂)− ε.

The complexity of the algorithm is polynomial in the number of bits in the
data and in log ε−1

Technique 2: Methodologies for piecewise-linear optimization

max

n∑
i=1

fi(xi)

s.t. Ax ≤ b

x ∈ Rn
+

where for 1 ≤ i ≤ n,

• fi : R → R
• fi is continuous, piecewise linear.

We assume that some of the fi are nonconcave.

x

f(x)

d d d dd0 1 2 3 4
d
5

Representing piecewise-linear functions

x

f(x)

d d d dd0 1 2 3 4
d
5

x =
∑
k∈K

dkλk

f (x) =
∑
k∈K

f (dk)λk∑
k∈K

λk = 1, λ ≥ 0

Representing piecewise-linear functions

x

f(x)

d d d dd0 1 2 3 4
d
5

x =

T∑
k=1

dkλk

f (x) =

T∑
k=1

f (dk)λk

T∑
k=1

λk = 1, λ ≥ 0

And:

• At most 2 of the λk are nonzero

• if 2 of the λk are nonzero they have consecutive indices

Representing piecewise-linear functions

x

f(x)

d d d dd0 1 2 3 4
d
5

x =

T∑
k=1

dkλk

f (x) =

T∑
k=1

f (dk)λk

T∑
k=1

λk = 1, λ ≥ 0

And:

• At most 2 of the λk are nonzero

• if 2 of the λk are nonzero they have consecutive indices

In other words {λ1, . . . , λT} is a special ordered set of type 2, or SOS2
set.

SOS2

Note that the SOS2 method is more general than might seem. For example,
it can be used to enforce:

• multiple-choices

• semi-continuous variables

• general integer variables

SOS2

Note that the SOS2 method is more general than might seem. For example,
it can be used to enforce:

• multiple-choices

• semi-continuous variables

• general integer variables

Example: enforcing semi-continuity. Suppose we want to model

x ∈ {0} ∪ [1, 2]

SOS2

Note that the SOS2 method is more general than might seem. For example,
it can be used to enforce:

• multiple-choice variables

• semi-continuous variables

• general integer variables

Example: enforcing semi-continuity. Suppose we want to model

x ∈ {0} ∪ [1, 2]

Then:

1. Set-up the SOS2 set {λ0, λ, λ1, λ2} (λ and all λi in [0, 1]).

2. Write x = 0 · λ0 + 1
2
· λ + 1 · λ1 + 2 · λ2.

3. Fix λ = 0.

Back to epresenting piecewise-linear functions

x

f(x)

d d d dd0 1 2 3 4
d
5

f (x) =

T∑
k=1

f (dk)λk

x =

T∑
k=1

dkλk

T∑
k=1

λk = 1, λ ≥ 0

{λ1, . . . , λT} is SOS2.

Putting it all together

max

n∑
i=1

fi(xi)

s.t. Ax ≤ b

x ∈ Rn
+

where each fi is piecewise-linear

Putting it all together

max

n∑
j=1

fj(xj)

s.t. Ax ≤ b

x ∈ Rn
+

where each fj is piecewise-linear, with breakpoints dkj , 1 ≤ k ≤ Tj

Putting it all together

max

n∑
j=1

fj(xj)

s.t. Ax ≤ b

x ∈ Rn
+

where each fj is piecewise-linear, with breakpoints dkj , 1 ≤ k ≤ Tj

→ use the SOS2 construction for each xj, i.e.

fj(xj) =

Tj∑
k=1

fj(dk)λk,

xj =

Tj∑
k=1

dkλ
k
j (1)

Tj∑
k=1

λkj = 1, λ ≥ 0, {λ1, . . . , λTj} is SOS2 (2)

→ Derive cuts from (1)-(2) together with each constraint
∑

j aijxj ≤ bi.

Underlying knapsack set

∑
j∈N

ajxj ≤ b + SOS2 construction for each xj:

Underlying knapsack set

∑
j∈N

ajxj ≤ b + SOS2 construction for each xj:

∑
j∈N+

Tj∑
k=0

akjλ
k
j −

∑
j∈N−

Tj∑
k=0

akjλ
k
j ≤ b (3)

Tj∑
k=1

λkj ≤ 1, ∀j ∈ N (4)

λkj ≥ 0, ∀j ∈ N, 0 ≤ k ≤ Tj (5)

{
λ0j , . . . , λ

T
j

}
is SOS2, ∀j ∈ N (6)

(each akj ≥ 0)

Cuts:

• Lifted convexification constraints

• Cover, lifted cover inequalities

These are generalizations of clasical cut families but specific to our model.

Cuts:

• Lifted convexification constraints

• Cover, lifted cover inequalities

These are generalizations of clasical cut families but specific to our model.

But is this necessary?

After all, commercial solvers already have the generic versions of these cuts.

Cuts:

• Lifted convexification constraints

• Cover, lifted cover inequalities

These are generalizations of clasical cut families but specific to our model.

But is this necessary?

After all, commercial solvers already have the generic versions of these cuts.

Some computational tests:

•Minimum concave-cost transportation and transshipment problems

• Ranging from 25 supply and 50 demand nodes, 7 breakpoints, to 100
supply and 400 demand nodes, 22 breakpoints.

• Integrality gap is small – need a formulation to close it and prove a solution
optimal.

Nodes & part. Time default Time w/ cuts

25× 50 & 5 936 18

25× 100 & 5 971 34

25× 200 & 5 2,578 101

25× 300 & 5 3,600 103

25× 400 & 5 3,600 479

50× 100 & 5 171 37

50× 200 & 5 272 43

50× 300 & 5 617 99

50× 400 & 5 1,754 139

Example: lifted convexity constraint:

x
1

2 2
f (x)

1 1
f (x)

0 0
1 3 4

5 9 x 2
10

2x1 + x2 ≤ 10 →

(0 · λ0
1 + 2 · λ1

1 + 6λ2
1 + 8λ3

1) + (0 · λ0
2 + 5 · λ1

2 + 9λ2
2 + 10λ3

1) ≤ 10

Example: lifted convexity constraint:

x
1

2 2
f (x)

1 1
f (x)

0 0
1 3 4

5 9 x 2
10

2x1 + x2 ≤ 10 →

(0 · λ0
1 + 2 · λ1

1 + 6λ2
1 + 8λ3

1) + (0 · λ0
2 + 5 · λ1

2 + 9λ2
2 + 10λ3

1) ≤ 10

The point λ2
1 = 5/6, λ1

2 = 1, λji = 0 otherwise is an extreme point of
the relaxation, but cut-off by the lifted convexity constraint:

−3λ1
1 + λ2

1 + 3λ3
1 + 5λ1

2 + 5λ2
2 + 5λ3

2 ≤ 5

Theorem.

LetN−1 ⊆ N− and b′ = b+
∑

i∈N−
1
ami

i , wheremi ∈ K ∀i ∈ N−1 . Let I =
{
i ∈ N+ − {j} : asj + aTi > b′

}
and ki = min

{
k ∈ K : asj + aki > b′

}
∀i ∈ I. Suppose that I 6= ∅. Then,

1

asj

s−1∑
k=1

akjλ
k
j +

T∑
k=s

λkj +
∑
i∈I

T∑
k=max{1,ki−1}

αk
i λ

k
i −

∑
i∈N−

1

T∑
k=mi+1

βk
i λ

k
i −

∑
i∈N−−N−

1

∑
k∈K

aki
asj
λki ≤ 1

is valid for P , where(
αki−1
i , αki

i

)
∈

{
(0, 0) ,

(
asj + aki−1i − b′

asj
,
asj + akii − b′

asj

)}
∀i ∈ I with ki > 1 and asj + aki−1i < b′,

(
αki−1
i , αki

i

)
=

(
0,
asj + akii − b′

asj

)
∀i ∈ I with ki > 1 and asj + aki−1i = b′,

αki
i = 0 ∀i ∈ I with ki = 1,

αk
i =

asj + aki − b′

asj
∀i ∈ I with k > ki,

and

βk
i =

aki − a
mi

i

asj
.

(One of several such theorems)

Summary of results on cutting planes

• The vast majority of the instances of either transportation or transship-
ment could not be solved by GUROBI in default setting

• Virtually all instances are solved through proven optimality with the cuts

• For the instances GUROBI could solve without our cuts, the average
reduction in computational time was of 92%, and in nodes 98%.

Numerical example – cardinality constrained convex QPs.

min xTQx + cTx

s.t.
∑
j

xj = 1

x ≥ 0, ‖x‖0 ≤ k

Numerical example – cardinality constrained convex QPs.

min xTQx + cTx

s.t.

n∑
j=1

xj = 1

x ≥ 0, ‖x‖0 ≤ k

MIP Formulation

min xTQx + cTx

s.t.

n∑
j=1

xj = 1

xj − yj ≤ 0, ∀ j
n∑
j=1

yj ≤ k

x ≥ 0, y ∈ {0, 1}n

Applying exclude-and-cut.

F .
=
{
x ∈ ∆n−1 : ‖x‖0 ≤ k

}

Applying exclude-and-cut.

F .
=
{
x ∈ ∆n−1 : ‖x‖0 ≤ k

}
Lemma. Let w ∈ ∆n−1. Then min{‖y − ω‖2 : y ∈ F} = ρ(ω),

ρ(ω)
.
=

(1−
∑

j /∈X ωj)
2

K
+
∑
j∈X

ω2
j ,

X ⊆ {1, . . . , n} is the set of indices of the n−K smallest ωj.

Applying exclude-and-cut.

F .
=
{
x ∈ ∆n−1 : ‖x‖0 ≤ k

}
Lemma. Let w ∈ ∆n−1. Then min{‖y − ω‖2 : y ∈ F} = ρ(ω),

ρ(ω)
.
=

(1−
∑

j /∈X ωj)
2

K
+
∑
j∈X

ω2
j ,

X ⊆ {1, . . . , n} is the set of indices of the n−K smallest ωj.

min {z : z ≥ xTQx + cTx, x ∈ F}

Applying exclude-and-cut.

F .
=
{
x ∈ ∆n−1 : ‖x‖0 ≤ k

}
Lemma. Let w ∈ ∆n−1. Then min{‖y − ω‖2 : y ∈ F} = ρ(ω),

ρ(ω)
.
=

(1−
∑

j /∈X ωj)
2

K
+
∑
j∈X

ω2
j ,

X ⊆ {1, . . . , n} is the set of indices of the n−K smallest ωj.

min {z : z ≥ xTQx + cTx, x ∈ F}

→min {z : z ≥ xTQx + cTx, ‖x− ω‖2 ≥ ρ(ω)}

n k LFO-L MIP-L MIP-U LFO-t MIP-t MIP
(sec) (sec) nodes

100 20 0.0411 0.0005 0.0587 0.127 227 1011704

100 50 0.0108 0.0006 0.0314 0.102 222 1004975

100 20 0.0465 0.0009 0.1284 0.120 288 1008679

1000 100 9.1009 0.0010 18.2534 0.883 1012 246063

1000 100 10.0109 0.0048 87.8492 0.848 1004 208633

1000 70 13.5842 0.0011 32.0741 0.879 1000 176152

2000 100 9.5178 0.0003 26.8787 3.014 1086 34699

2000 90 10.6348 0.0003 32.2729 2.563 1019 14298

2000 80 12.0266 0.0003 33.8795 3.186 1015 152638

Tue.Jun.10.213347.2014@littleboy

