Solving QCQPs (joint with G. Muñoz)

Daniel Bienstock

March 2015

Quadratically constrained, quadratic programming:

 $x \in \mathbb{R}^n$

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, \quad 1 \le i \le m$

Here,

$$f_i(x) = x^T M_i x + c_i^T x + d_i$$

is a general quadratic

Each M_i is $n \times n$, wlog symmetric

Application: power flows in electrical transmission systems

Setting:

- A "grid," given by a set of "buses" (nodes) and "lines" (arcs).
- Some buses represent generators, some other buses represent "loads".
- What we can control: the behavior of generators (voltage, output).
- What we cannot control: most. System obeys the laws of physics.
- What we can want: to operate the grid in an safe and economic manner.

Variables:

• Complex voltages $e_k + jf_k$, power flows P_{km}, Q_{km} , auxiliary variables

Notation: For a bus k, $\delta(k)$ = set of lines incident with k; V = set of buses

Basic problem

$$\min \quad \sum_{k \in V} C_k$$

s.t.
$$\forall km : P_{km} = \mathbf{g_{km}}(e_k^2 + f_k^2) - \mathbf{g_{km}}(e_k e_m + f_k f_m) + \mathbf{b_{km}}(e_k f_m - f_k e_m)$$
 (1a)

$$\forall km: \quad Q_{km} = -\boldsymbol{b_{km}}(e_k^2 + f_k^2) + \boldsymbol{b_{km}}(e_k e_m + f_k f_m) + \boldsymbol{g_{km}}(e_k f_m - f_k e_m)$$
(1b)

$$\forall km: |P_{km}|^2 + |Q_{km}|^2 \le U_{km} \tag{1c}$$

$$\forall k: \quad \boldsymbol{P_k^{\min}} \quad \leq \quad \sum_{km \in \delta(k)} P_{km} \quad \leq \quad \boldsymbol{P_k^{\max}}$$
 (1d)

$$\forall k: \quad \boldsymbol{Q_k^{\min}} \leq \sum_{km \in \delta(k)} Q_{km} \leq \boldsymbol{Q_k^{\max}}$$
 (1e)

$$\forall k: \quad \boldsymbol{V_k^{\min}} \leq e_k^2 + f_k^2 \leq \boldsymbol{V_k^{\max}}, \tag{1f}$$

$$\forall k: \quad C_k = \mathbf{F_k} \left(\sum_{km \in \delta(k)} P_{km} \right). \tag{1g}$$

Here, $\mathbf{F}_{\mathbf{k}}$ is a quadratic function for each k.

Variables:

• Complex voltages $e_k + jf_k$, power flows P_{km}, Q_{km} , auxiliary variables

Notation: For a bus k, $\delta(k)$ = set of lines incident with k; V = set of buses

Basic problem

$$\min \quad \sum_{k \in V} C_k$$

s.t.
$$\forall km : P_{km} = \mathbf{g_{km}}(e_k^2 + f_k^2) - \mathbf{g_{km}}(e_k e_m + f_k f_m) + \mathbf{b_{km}}(e_k f_m - f_k e_m)$$
 (2a)

$$\forall km: \quad Q_{km} = -\boldsymbol{b_{km}}(e_k^2 + f_k^2) + \boldsymbol{b_{km}}(e_k e_m + f_k f_m) + \boldsymbol{g_{km}}(e_k f_m - f_k e_m)$$
 (2b)

$$\forall km: |P_{km}|^2 + |Q_{km}|^2 \le U_{km} \tag{2c}$$

$$\forall k: \quad \boldsymbol{P_k^{\min}} \leq \sum_{km \in \delta(k)} P_{km} \leq \boldsymbol{P_k^{\max}}$$
 (2d)

$$\forall k: \quad \mathbf{Q}_{k}^{\min} \leq \sum_{km \in \delta(k)} Q_{km} \leq \mathbf{Q}_{k}^{\max}$$
 (2e)

$$\forall k: \quad \boldsymbol{V_k^{\min}} \leq e_k^2 + f_k^2 \leq \boldsymbol{V_k^{\max}}, \tag{2f}$$

$$\forall k: \quad C_k = \mathbf{G_k} \left(\sum_{km \in \delta(k)} Q_{km} \right). \tag{2g}$$

Here, G_k is a quadratic function for each k.

Variables:

• Complex voltages $e_k + jf_k$, power flows P_{km}, Q_{km} , auxiliary variables

Notation: For a bus k, $\delta(k)$ = set of lines incident with k; V = set of buses

Basic problem

$$\min \quad \sum_{k \in V} C_k$$

s.t.
$$\forall km : P_{km} = \mathbf{g_{km}}(e_k^2 + f_k^2) - \mathbf{g_{km}}(e_k e_m + f_k f_m) + \mathbf{b_{km}}(e_k f_m - f_k e_m)$$
 (3a)

$$\forall km: \quad Q_{km} = -\boldsymbol{b_{km}}(e_k^2 + f_k^2) + \boldsymbol{b_{km}}(e_k e_m + f_k f_m) + \boldsymbol{g_{km}}(e_k f_m - f_k e_m)$$
(3b)

$$\forall km: |P_{km}|^2 + |Q_{km}|^2 \le \mathbf{U_{km}} \tag{3c}$$

$$\forall k: \quad \boldsymbol{P_k^{\min}} \leq \sum_{km \in \delta(k)} P_{km} \leq \boldsymbol{P_k^{\max}}$$
(3d)

$$\forall k: \quad \boldsymbol{Q_k^{\min}} \leq \sum_{km \in \delta(k)} Q_{km} \leq \boldsymbol{Q_k^{\max}}$$
 (3e)

$$\forall k: \quad \mathbf{V_k^{\min}} \quad \le \quad e_k^2 + f_k^2 \quad \le \quad \mathbf{V_k^{\max}}, \tag{3f}$$

$$\forall k: \quad C_k = \mathbf{F_k} \left(\sum_{km \in \delta(k)} P_{km} \right) + \mathbf{G_k} \left(\sum_{km \in \delta(k)} Q_{km} \right). \tag{3g}$$

Here, F_k , G_k are quadratic functions for each k.

Variables:

• Complex voltages $e_k + jf_k$, power flows P_{km}, Q_{km} , auxiliary variables

Notation: For a bus k, $\delta(k)$ = set of lines incident with k; V = set of buses

Basic problem

$$\min \quad \sum_{k \in V} C_k$$

s.t.
$$\forall km : P_{km} = \mathbf{g_{km}}(e_k^2 + f_k^2) - \mathbf{g_{km}}(e_k e_m + f_k f_m) + \mathbf{b_{km}}(e_k f_m - f_k e_m)$$
 (4a)

$$\forall km: \quad Q_{km} = -\boldsymbol{b_{km}}(e_k^2 + f_k^2) + \boldsymbol{b_{km}}(e_k e_m + f_k f_m) + \boldsymbol{g_{km}}(e_k f_m - f_k e_m)$$
(4b)

$$\forall km: |P_{km}|^2 + |Q_{km}|^2 \le \mathbf{U_{km}} \tag{4c}$$

$$\forall k: \quad \boldsymbol{P_k^{\min}} \leq \sum_{km \in \delta(k)} P_{km} \leq \boldsymbol{P_k^{\max}}$$

$$\tag{4d}$$

$$\forall k: \quad \boldsymbol{Q_k^{\min}} \leq \sum_{km \in \delta(k)} Q_{km} \leq \boldsymbol{Q_k^{\max}}$$
 (4e)

$$\forall k: \quad \boldsymbol{V_k^{\min}} \leq e_k^2 + f_k^2 \leq \boldsymbol{V_k^{\max}}, \tag{4f}$$

$$\forall k: \quad C_k = \mathbf{F_k} \left(\sum_{km \in \delta(k)} P_{km} \right) + \mathbf{G_k} \left(\sum_{km \in \delta(k)} Q_{km} \right). \tag{4g}$$

Here, F_k , G_k are quadratic functions for each k. Many possibilities, all structurally similar.

Variables:

• Complex voltages $e_k + jf_k$, power flows P_{km}, Q_{km} , auxiliary variables

Notation: For a bus k, $\delta(k)$ = set of lines incident with k; V = set of buses

Basic problem

$$\min \quad \sum_{k \in V} C_k$$

s.t.
$$\forall km : P_{km} = \mathbf{g_{km}}(e_k^2 + f_k^2) - \mathbf{g_{km}}(e_k e_m + f_k f_m) + \mathbf{b_{km}}(e_k f_m - f_k e_m)$$
 (5a)

$$\forall km: \quad Q_{km} = -\boldsymbol{b_{km}}(e_k^2 + f_k^2) + \boldsymbol{b_{km}}(e_k e_m + f_k f_m) + \boldsymbol{g_{km}}(e_k f_m - f_k e_m)$$
 (5b)

$$\forall km: |P_{km}|^2 + |Q_{km}|^2 \le \mathbf{U_{km}} \tag{5c}$$

$$\forall k: \quad \boldsymbol{P_k^{\min}} \leq \sum_{km \in \delta(k)} P_{km} \leq \boldsymbol{P_k^{\max}}$$
 (5d)

$$\forall k: \quad \boldsymbol{Q_k^{\min}} \leq \sum_{km \in \delta(k)} Q_{km} \leq \boldsymbol{Q_k^{\max}}$$
 (5e)

$$\forall k: \quad \boldsymbol{V_k^{\min}} \leq e_k^2 + f_k^2 \leq \boldsymbol{V_k^{\max}}, \tag{5f}$$

$$\forall k: \quad C_k = \mathbf{F_k} \left(\sum_{km \in \delta(k)} P_{km} \right) + \mathbf{G_k} \left(\sum_{km \in \delta(k)} Q_{km} \right). \tag{5g}$$

Here, F_k , G_k are quadratic functions for each k. Many possibilities, all structurally similar.

These are QCQPs, quadratically constrained quadratic programs, with an underlying graph structure.

• Industry can solve routine problem instances easily.

- Industry can solve routine problem instances easily.
- These are instances where the grid is in an (intimately) familiar state.

- Industry can solve routine problem instances easily.
- These are instances where the grid is in an (intimately) familiar state.
- Unfamiliar and stressed states are difficult (impossible) to handle.

- Industry can solve routine problem instances easily.
- These are instances where the grid is in an (intimately) familiar state.
- Unfamiliar and stressed states are difficult (impossible) to handle.
- As a result, what-if analyses become problematic. **Agnostic** what-if analysis are essentially impossible.

- Industry can solve routine problem instances easily.
- These are instances where the grid is in an (intimately) familiar state.
- Unfamiliar and stressed states are difficult (impossible) to handle.
- As a result, what-if analyses become problematic. **Agnostic** what-if analysis are essentially impossible.
- Problem is **strongly** NP-hard. (A. Verma, 2009).

$$\mathbf{min} \quad x^T M^0 x + 2c_0^T x + d_0 \tag{6a}$$

$$x \in \mathbb{R}^n$$
. (6c)

Each matrix M^i symmetric.

 $This \ description \ includes \ linear \ inequalities, \ bounds \ on \ individual \ variables, \ quadratic/linear \ equations.$

QCQPs

$$\min \quad x^T M^0 x + 2c_0^T x + d_0 \tag{7a}$$

s.t.
$$\forall km: \quad x^T M^i x + 2c_i^T x + d_i \geq 0, \quad 1 \leq i \leq m,$$
 (7b)

$$x \in \mathbb{R}^n$$
. (7c)

Reformulation

observation:
$$x^T M^i x + 2c_i^T x = (1 \ x^T) \left(egin{array}{cc} 0 & c_i^T \ c_i & M^i \end{array} \right) \left(egin{array}{cc} 1 \ x \end{array} \right) = (1 \ x^T) ilde{M}^i \left(egin{array}{cc} 1 \ x \end{array} \right)$$

definition: for matrices $A, B, A \cdot B \doteq \sum_{i,j} a_{ij} b_{ij}$

so for vector y and matrix A, $y^T A y = A \bullet y y^T$

So **QCQP** can be rewritten as:

$$\mathbf{Q}^* \doteq \min \quad \tilde{M}^0 \bullet X + d_0 \tag{8a}$$

s.t.
$$\forall km: M^i \bullet X + d_i \geq 0, \quad 1 \leq i \leq m,$$
 (8b)

$$X \in \mathbb{R}^{(n+1)\times(n+1)}, \quad X \succeq 0, \quad \text{of rank 1}.$$
 (8c)

The **semidefinite relaxation** of this problem is:

$$\tilde{\mathbf{Q}} \doteq \min \quad \tilde{M}^0 \bullet X + d_0$$
 (9a)

s.t.
$$\forall km: M^i \bullet X + d_i \geq 0, \quad 1 \leq i \leq m,$$
 (9b)

$$X \in \mathbb{R}^{(n+1)\times(n+1)}, \quad X \succeq 0. \tag{9c}$$

 $ilde{Q} \ \le \ Q^*$

- Lavaei and Low, 2011: the SDP relaxation of AC-OPF **not infrequently** is very tight
- This spurred much research
- Jabr, Hiskens and Molzahn, others

- Lavaei and Low, 2011: the SDP relaxation of AC-OPF **not infrequently** is very tight
- This spurred much research
- Jabr, Hiskens and Molzahn, others
- Under constrained conditions, the SDP relaxation can be **weak**

- Lavaei and Low, 2011: the SDP relaxation of AC-OPF **not infrequently** is very tight
- This spurred much research
- Jabr, Hiskens and Molzahn, others
- Under constrained conditions, the SDP relaxation can be **weak**
- The SDP relaxation can prove unsolvable for larger grids

- Lavaei and Low, 2011: the SDP relaxation of AC-OPF **not infrequently** is very tight
- This spurred much research
- Jabr, Hiskens and Molzahn, others
- Under constrained conditions, the SDP relaxation can be **weak**
- The SDP relaxation can prove unsolvable for larger grids
- Factoid: there are polynomial-time algorithms for SDP, but require many assumptions
- There is **no** exact algorithm for SDP

- Lavaei and Low, 2011: the SDP relaxation of AC-OPF **not infrequently** is very tight
- This spurred much research
- Jabr, Hiskens and Molzahn, others
- Under constrained conditions, the SDP relaxation can be **weak**
- The SDP relaxation can prove unsolvable for larger grids
- Factoid: there are polynomial-time algorithms for SDP, but require many assumptions
- There is **no** exact algorithm for SDP
- Lavaei, Low, Hiskens-Molzahn: when the underlying network has **low tree-width**, the SDP relaxation can be solved much faster why: standard SDP solvers can leverage low tree-width
- What exactly is tree-width?

Let G be an undirected graph with vertices V(G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:

 \bullet T is a tree. **Not** a subtree of G, just a tree

Let G be an undirected graph with vertices V(G) and edges E(G).

- \bullet **T** is a tree. **Not** a subtree of G, just a tree
- For each vertex t of T, Q_t is a subset of V(G). These subsets satisfy the two properties:

Let G be an undirected graph with vertices V(G) and edges E(G).

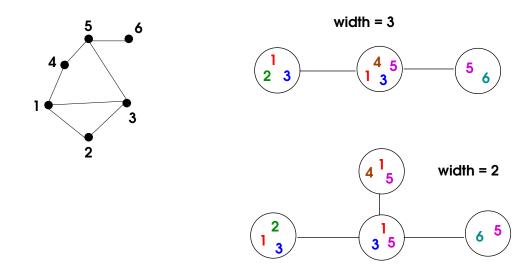
- \bullet **T** is a tree. **Not** a subtree of G, just a tree
- For each vertex t of T, Q_t is a subset of V(G). These subsets satisfy the two properties:
 - (1) For each vertex v of G, the set $\{t \in V(T) : v \in Q_t\}$ is a subtree of T, denoted T_v .

Let G be an undirected graph with vertices V(G) and edges E(G).

- \bullet **T** is a tree. **Not** a subtree of G, just a tree
- For each vertex t of T, Q_t is a subset of V(G). These subsets satisfy the two properties:
 - (1) For each vertex \boldsymbol{v} of \boldsymbol{G} , the set $\{\boldsymbol{t} \in \boldsymbol{V}(\boldsymbol{T}) : \boldsymbol{v} \in \boldsymbol{Q_t}\}$ is a subtree of \boldsymbol{T} , denoted $\boldsymbol{T_v}$.
 - (2) For each edge $\{u, v\}$ of G, the two subtrees T_u and T_v intersect.

Let G be an undirected graph with vertices V(G) and edges E(G).

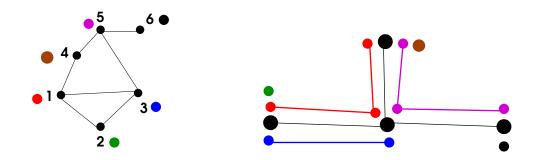
- \bullet **T** is a tree. **Not** a subtree of G, just a tree
- For each vertex t of T, Q_t is a subset of V(G). These subsets satisfy the two properties:
 - (1) For each vertex v of G, the set $\{t \in V(T) : v \in Q_t\}$ is a subtree of T, denoted T_v .
 - (2) For each edge $\{u, v\}$ of G, the two subtrees T_u and T_v intersect.
- The width of (T, Q) is $\max_{t \in T} |Q_t| 1$.



Let G be an undirected graph with vertices V(G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:

- \bullet **T** is a tree. **Not** a subtree of G, just a tree
- For each vertex t of T, Q_t is a subset of V(G). These subsets satisfy the two properties:
 - (1) For each vertex v of G, the set $\{t \in V(T) : v \in Q_t\}$ is a subtree of T, denoted T_v .
 - (2) For each edge $\{u, v\}$ of G, the two subtrees T_u and T_v intersect.
- The width of (T, Q) is $\max_{t \in T} |Q_t| 1$.



 \longrightarrow two subtrees T_u, T_v may overlap even if $\{u, v\}$ is **not** an edge of G

History

Fulkerson and Gross (1965), binary packing integer programs

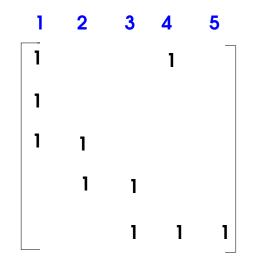
$$IP = \max c^T x \tag{10a}$$

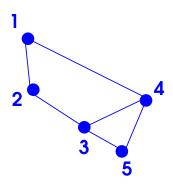
s.t.
$$Ax \leq b$$
, (10b)

$$x \in \{0, 1\}^n \tag{10c}$$

Here, A is has 0, 1-valued entries. Idea: use the structure of A. The intersection graph of A, G_A , has:

- \bullet A vertex for each column of A.
- An edge between two columns j, k if there is a row i with $a_{ij} \neq 0, a_{ik} \neq 0$.





History

Fulkerson and Gross (1965), binary packing integer programs

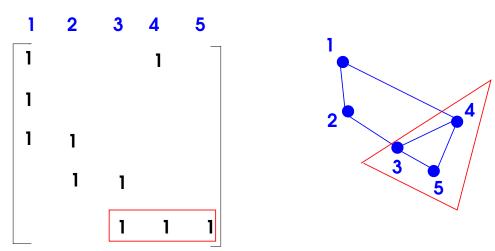
$$IP = \max c^T x \tag{11a}$$

s.t.
$$Ax \leq b$$
, (11b)

$$x \in \{0, 1\}^n \tag{11c}$$

Here, A is has 0, 1-valued entries. Idea: use the structure of A. The intersection graph of A, G_A , has:

- \bullet A vertex for each column of A.
- An edge between two columns j, k if there is a row i with $a_{ij} \neq 0, a_{ik} \neq 0$.



Each row of A induces a clique of G_A .

Fulkerson and Gross (1965), binary packing integer programs

$$IP = \max \quad c^T x \tag{12a}$$

s.t.
$$Ax \leq b$$
, (12b)

$$x \in \{0, 1\}^n \tag{12c}$$

Here, A is has 0, 1-valued entries. Idea: use the structure of A. The intersection graph of A, G_A , has:

- \bullet A vertex for each column of A.
- An edge between two columns j, k if there is a row i with $a_{ij} \neq 0, a_{ik} \neq 0$.

Theorem. If G_A is an interval graph, then

$$IP = LP = \max c^T x (13a)$$

s.t.
$$Ax \leq b$$
, (13b)

$$x \in [0, 1]^n. \tag{13c}$$

(so IP = value of its continuous relaxation).

A graph G = (V, E) is an interval graph, if there is a **path** P, and a family of subpaths P_v (one for each $v \in V$), such that

- For each pair of vertices u and v of G, we have $\{u,v\} \in E$ whenever P_u and P_v intersect.
- The largest clique size of G is $\max_{p \in P} |\{v \in V : p \in P_v\}|$. (The maximum number of subpaths that simultaneously overlap anywere on P)

$$IP = \max \quad c^T x$$
s.t. $Ax \le b$, (14b)
$$x \in \{0, 1\}^n$$
(14c)

The intersection graph of A, G_A , has:

• A vertex for each column of A, an edge between two columns j, k if there is a row i with $a_{ij} \neq 0, a_{ik} \neq 0$.

Definition: (Gavril, 1974) A graph G = (V, E) is **chordal**, if there exists

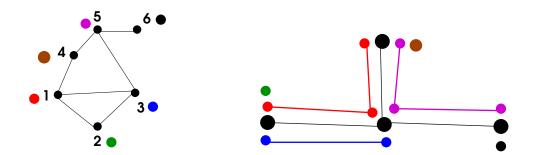
- \bullet A **tree** T, and a family of trees P_v (one for each $v \in V$), such that
- For each pair of vertices u and v of G, we have $\{u,v\} \in E$ whenever T_u and T_v intersect.
- The largest clique size of G is $\max_{t \in T} |\{v \in V : t \in T_v\}|$. (The maximum number of subtrees that simultaneously overlap anywere on T)

(equivalent: a graph is chordal iff every cycle of length > 3 has a chord).

Contrast with tree-decompositions

A tree-decomposition of G is a pair (T, Q) where:

- \bullet **T** is a tree. **Not** a subtree of G, just a tree.
- For each vertex t of T, Q_t is a subset of V(G). These subsets satisfy the two properties:
 - (1) For each vertex \boldsymbol{v} of \boldsymbol{G} , the set $\{\boldsymbol{t} \in \boldsymbol{V}(\boldsymbol{T}) : \boldsymbol{v} \in \boldsymbol{Q_t}\}$ is a subtree of \boldsymbol{T} , denoted $\boldsymbol{T_v}$.
 - (2) For each edge $\{u, v\}$ of G, the two subtrees T_u and T_v intersect.
- The width of (T, Q) is $\max_{t \in T} |Q_t| 1$.



ightharpoonup two subtrees T_u, T_v may overlap even if $\{u,v\}$ is $\operatorname{\mathbf{not}}$ an edge of G

So: A graph G has a tree-decomposition of width w iff there is a **chordal** supergraph of G of clique number w + 1.

$$IP = \max c^T x (15a)$$

s.t.
$$Ax \leq b$$
, (15b)

$$x \in \{0, 1\}^n \tag{15c}$$

The intersection graph of A, G_A , has:

• A vertex for each column of A, an edge between two columns j, k if there is a row i with $a_{ij} \neq 0$, $a_{ik} \neq 0$.

Definition: (Gavril, 1974) A graph G = (V, E) is chordal, if there exists

- A tree T, and a family of subtrees P_v (one for each $v \in V$), such that
- For each pair of vertices u and v of G, we have $\{u,v\} \in E$ iff T_u and T_v intersect.
- The largest clique size of G is $\max_{t \in T} |\{v \in V : t \in T_v\}|$. (The maximum number of subtrees that simultaneously overlap anywere on T)

(equivalent: a graph is chordal iff every cycle of length > 3 has a chord).

Theorem. If G_A is chordal, then

$$IP = LP = \max c^T x \tag{16a}$$

s.t.
$$Ax \leq b$$
, (16b)

$$x \in [0, 1]^n. \tag{16c}$$

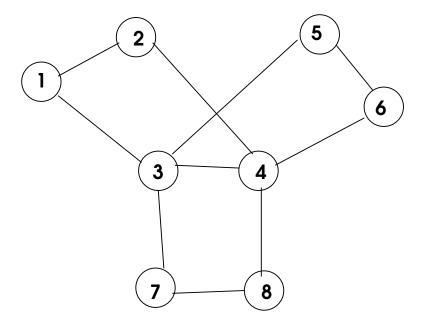
(so IP = value of its continuous relaxation).

Chordal graphs are "nice." In fact, they are **perfect**.

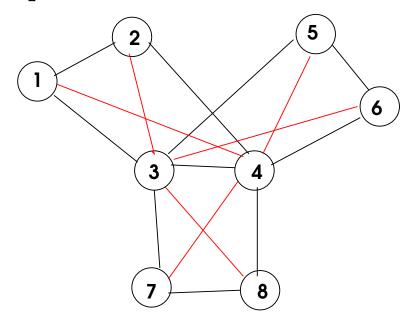
Why small tree-width helps

Cholesky factorization of:

Cholesky factorization of:



Chordal supergraph:



Pivoting order: 1, 2, 5, 6, 7, 8, 3, 4

Graph Minors Project: Robertson and Seymour, 1983 - 2004

→ Tree-width as a measure of the complexity of a graph

CAUTION

CAUTION

sparsity \neq small tree-width

CAUTION

sparsity \neq small tree-width

 \exists graphs of max deg 3 and arbitrarily high tree-width

Graph Minors Project: Robertson and Seymour, 1983 - 2004

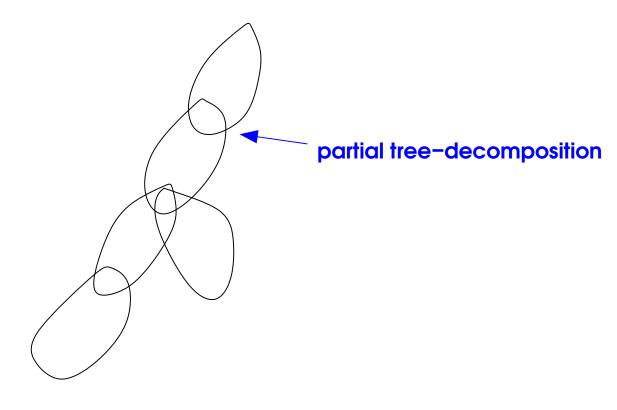
- → Tree-width as a measure of the complexity of a graph
- Algorithms community: small tree-width makes hard problems easy (late 1980s)
- Many NP-hard problems can be solved in polynomial time on graphs with small tree-width:

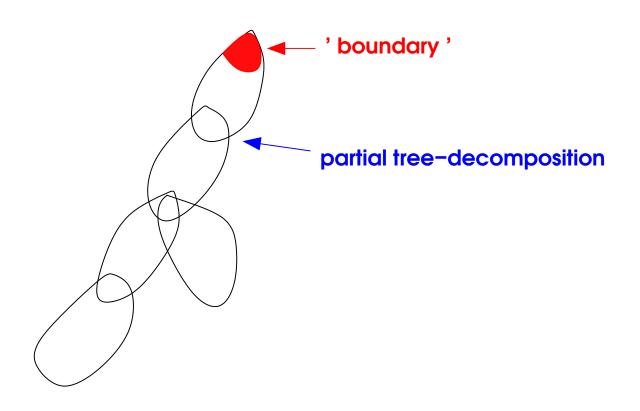
TSP, max. clique, graph coloring, ...

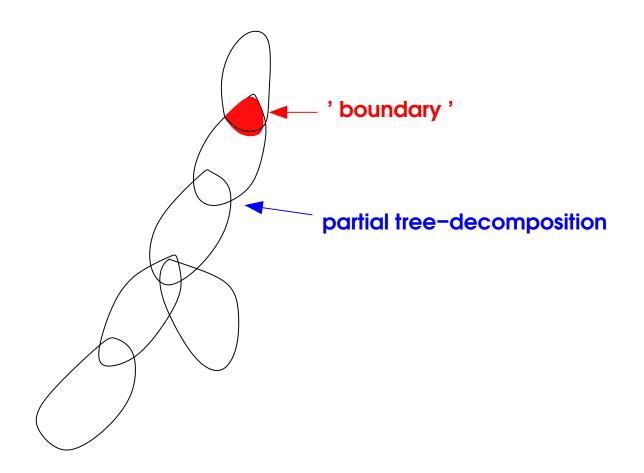
Graph Minors Project: Robertson and Seymour, 1983 - 2004

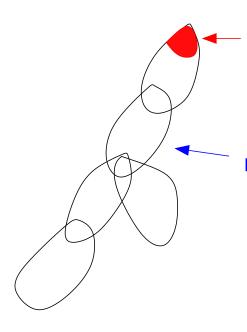
- → Tree-width as a measure of the complexity of a graph
 - Algorithms community: small tree-width makes hard problems easy (late 1980s)
 - Many NP-hard problems can be solved in polynomial time on graphs with small tree-width:

 TSP, max. clique, graph coloring, ...
 - Fellows & Langston; Bienstock & Langston; Arnborg, Corneil & Proskurowski; many other authors
 - Common thread: exploit tree-decomposition to obtain good algorithms
 - So-called "nonserial dynamic programming" (1972)



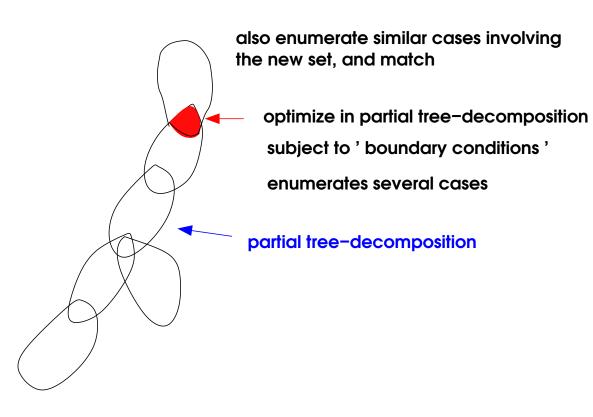






optimize in partial tree-decomposition subject to 'boundary conditions' enumerates several cases

partial tree-decomposition



More recent history

- B. and Özbay. 2003. Tree-width and the Sherali-Adams reformulation operator. Implies that on graphs with tree-width $\leq \omega$, the Sherali-Adams reformutation for vertex packing, at level $\leq \omega$, is exact.
- Wainwright and Jordan, 2004. (Constraint satisfaction community). On an all-binary polynomial optimization problem whose constraint graph has tree-width $\leq \omega$, the Sherali-Adams reformutation for vertex packing, at level $\leq \omega$, is exact.
- Lasserre, Waki, others (2006-). Polynomial-size *relaxations* for *continuous* polynomial optimization problem if the underlying constraint graph has bounded tree-width.

More recent history

- B. and Özbay. 2003. Tree-width and the Sherali-Adams reformulation operator. Implies that on graphs with tree-width $\leq \omega$, the Sherali-Adams reformutation for vertex packing, at level $\leq \omega$, is exact.
- Wainwright and Jordan, 2004. (Constraint satisfaction community). On an all-binary polynomial optimization problem whose constraint graph has tree-width $\leq \omega$, the Sherali-Adams reformutation for vertex packing, at level $\leq \omega$, is exact.
- Lasserre, Waki et al, others (2006-). Polynomial-size *relaxations* for *continuous* polynomial optimization problem if the underlying constraint graph has bounded tree-width.

Question:

Can we use bounded tree-width to obtain good *provably accurate*, *polynomial-size* formulations for polynomial optimization?

Theorem: Given an instance of **AC-OPF** on a graph with a tree-decomposition of width ω , and \boldsymbol{n} nodes, and $\boldsymbol{0} < \epsilon < 1$,

there is a linear program **LP** such that:

- (a) The number of variables and constraints is $O(2^{2\omega} \omega n \epsilon^{-(\omega+1)} \log_2 \epsilon^{-1})$.
- (b) An optimal solution to **LP** solves **AC-OPF**, within tolerance ϵ .

Theorem: Given an instance of **AC-OPF** on a graph with a tree-decomposition of width ω , and \boldsymbol{n} nodes, and $\boldsymbol{0} < \epsilon < 1$,

there is a linear program **LP** such that:

- (a) The number of variables and constraints is $O(2^{2\omega} \omega n \epsilon^{-(\omega+1)} \log_2 \epsilon^{-1})$.
- (b) An optimal solution to **LP** solves **AC-OPF**, within tolerance ϵ .

Theorem: Unless P=NP, above cannot be improved even for $\omega = 2$.

More generic statement for AC-OPF

$$\min \quad \sum_{k \in V} C_k$$

s.t.
$$\forall km : P_{km} = \boldsymbol{g_{km}}(e_k^2 + f_k^2) - \boldsymbol{g_{km}}(e_k e_m + f_k f_m) + \boldsymbol{b_{km}}(e_k f_m - f_k e_m)$$

$$\forall km : Q_{km} = -b_{km}(e_k^2 + f_k^2) + b_{km}(e_k e_m + f_k f_m) + g_{km}(e_k f_m - f_k e_m)$$

$$\forall km: |P_{km}|^2 + |Q_{km}|^2 \leq U_{km}$$

$$\forall k: P_k = \sum_{km \in \delta(k)} P_{km}; \quad P_k^{\min} \leq P_k \leq P_k^{\max}$$

$$\forall k: Q_k = \sum_{km \in \delta(k)} Q_{km}; \qquad Q_k^{\min} \leq Q_k \leq Q_k^{\max}$$

$$\forall k: \quad \left(oldsymbol{V_k^{\min}} \right)^2 \leq e_k^2 + f_k^2 \leq \left(oldsymbol{V_k^{\max}} \right)^2$$

$$\forall k: C_k = \mathbf{F_k}(P_k, Q_k, e_k, f_k) + \sum_{km \in \delta(k)} \mathbf{H_{km}}(P_{km}, Q_{km}, e_k, f_k, e_m, f_m)$$

Here, the F_k and H_{km} are quadratics.

A generalization: graphical QCQPs (abridged)

Inputs:

- (1) An undirected graph \mathbf{H} .
- (2) For each vertex \boldsymbol{v} of \boldsymbol{H} a set $\boldsymbol{J}(\boldsymbol{v})$, and for $\boldsymbol{j} \in \boldsymbol{J}(\boldsymbol{v})$ there is a real variable $\boldsymbol{x_j}$.

 Write $\boldsymbol{\mathcal{V}} = \cup_{\boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{H})} \boldsymbol{J}(\boldsymbol{v})$.
- (3) For each edge $\{v, u\}$ denote by $x^{v,u}$ the vector of all x_j for $j \in J(v) \cup J(u)$.
- (4) For each vertex \boldsymbol{v} , and each edge $\{\boldsymbol{v},\boldsymbol{u}\}$ a family of quadratics $\boldsymbol{p}_{\boldsymbol{v},\boldsymbol{u}}^{\boldsymbol{k}}(\boldsymbol{x}^{\boldsymbol{v},\boldsymbol{u}})$ for $\boldsymbol{k}=1,\ldots,N(\boldsymbol{v})$.
- (5) A vector $c \in \mathbb{R}^{\mathcal{V}}$.

A generalization: graphical QCQPs (abridged)

Inputs:

- (1) An undirected graph \mathbf{H} .
- (2) For each vertex v of H a set J(v), and for $j \in J(v)$ there is a real variable x_j . Write $\mathcal{V} = \bigcup_{v \in V(H)} J(v)$.
- (3) For each edge $\{v,u\}$ denote by $x^{v,u}$ the vector of all x_j for $j \in J(v) \cup J(u)$.
- (4) For each vertex v, and each edge $\{v, u\}$ a family of quadratics $p_{v,u}^k(x^{v,u})$ for $k = 1, \ldots, N(v)$.
- (5) A vector $c \in \mathbb{R}^{\nu}$.

Problem:

(GQCQP):
$$\min c^T x$$

subject to:
$$\sum_{u \in \delta(v)} p_{v,u,k}(x^{v,u}) \ge 0, \quad v \in V(H), \quad k = 1, \dots, N(v)$$

$$0 \le x_j \le 1, \quad \forall j \in \mathcal{V}.$$

A generalization: mixed-integer graphical QCQPs (abridged)

Inputs:

- (1) An undirected graph \mathbf{H} .
- (2) For each vertex \boldsymbol{v} of \boldsymbol{H} a set $\boldsymbol{J}(\boldsymbol{v})$, and for $\boldsymbol{j} \in \boldsymbol{J}(\boldsymbol{v})$ there is a real variable $\boldsymbol{x_j}$.

 Write $\boldsymbol{\mathcal{V}} = \cup_{\boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{H})} \boldsymbol{J}(\boldsymbol{v})$.
- (3) For each edge $\{v, u\}$ denote by $x^{v,u}$ the vector of all x_j for $j \in J(v) \cup J(u)$.
- (4) For each vertex \boldsymbol{v} , and each edge $\{\boldsymbol{v},\boldsymbol{u}\}$ a family of quadratics $\boldsymbol{p}_{\boldsymbol{v},\boldsymbol{u}}^{\boldsymbol{k}}(\boldsymbol{x}^{\boldsymbol{v},\boldsymbol{u}})$ for $\boldsymbol{k}=1,\ldots,N(\boldsymbol{v})$.
- (5) A vector $c \in \mathbb{R}^{\mathcal{V}}$.
- (6) A partition $\mathcal{V} = V_Z \cup V_R$.

Problem:

(MGP):
$$\min c^T x$$

subject to:
$$\sum_{u \in \delta(v)} p_{v,u,k}(x^{v,u}) \geq 0, \quad v \in V(H), \quad k = 1, \dots, N(v)$$

$$0 \le x_j \le 1 \quad \forall j \in \mathcal{V}_R; \quad x_j = 0 \text{ or } 1 \quad \forall j \in \mathcal{V}_Z.$$

- (1) An undirected graph \mathbf{H} .
- (2) For each vertex v of H a set J(v), and for $j \in J(v)$ there is a real variable x_j . Write $\mathcal{V} = \bigcup_{v \in V(H)} J(v)$.
- (3) For each edge $\{v, u\}$ denote by $x^{v, u}$ the vector of all x_j for $j \in J(v) \cup J(u)$.
- (4) For each vertex v, and each edge $\{v, u\}$ a family of polynomials $p_{v,u}^k(x^{v,u})$ for $k = 1, \ldots, N(v)$.
- (5) A vector $c \in \mathbb{R}^{\nu}$.
- (6) A partition $\mathcal{V} = V_Z \cup V_R$.

(MGP):
$$\min c^T x$$
 (20a)

subject to:
$$\sum_{u \in \delta(v)} p_{v,u,k}(x^{v,u}) \ge 0, \quad v \in V(H), \quad k = 1, \dots, N(v)$$
 (20b)

$$0 \le x_j \le 1 \quad \forall j \in \mathcal{V}_R; \quad x_j = 0 \text{ or } 1 \quad \forall j \in \mathcal{V}_Z. \tag{20c}$$

Theorem: Given an instance of $\overline{\mathbf{MGP}}$ on a graph with a tree-decomposition of width $\boldsymbol{\omega}$, there is an equivalent instance of $\overline{\mathbf{MGP}}$ on a graph

- With tree-width $\leq 2\omega + 1$
- Of maximum degree 3.

Remark. If we start with an instance of AC-OPF, the equivalent problem is no longer an AC-OPF problem.

Approximation (Glover, 1975) (abridged)

Let x be a variable, with bounds $0 \le x \le 1$. Let $0 < \gamma < 1$. Then we can approximate

$$x~pprox~\sum_{i=1}^L 2^{-i}y_i$$

where each y_i is a **binary variable**. In fact, choosing $L = \lceil \log_2 \gamma^{-1} \rceil$, we have

$$x \leq \sum_{i=1}^{L} 2^{-i} y_i \leq x + \gamma$$
.

So: given an instance of MGP, approximate each continuous variable x_j in this manner.

Theorem: Consider an instance \mathcal{I} of problem \mathbf{MGP} , with \boldsymbol{n} variables. Then there is another instance, $\boldsymbol{\mathcal{B}}$ of \mathbf{MGP} , with

- (1) \mathcal{B} is defined on the same graph as \mathcal{I} .
- (2) all variables in \mathcal{B} are binary.
- (3) For each continuous variable x_j of \mathcal{I} , we now have $\log_2 J^* \log \epsilon^{-1}$ binary variables used to approximate x_j .
- (4) Solving \mathcal{B} to exact optimality yields a solution to \mathcal{I} within tolerance ϵ .

 $J^* = \text{size of largest set } J(v). \text{ (AC-OPF } \Rightarrow J^* = 2)$

(1) A mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition of width ω .

(1) A mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition of width ω .

(2) An equivalent mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition of width $O(\omega)$ and degree ≤ 3 .

(1) A mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition of width ω .

(2) An equivalent mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition of width $O(\omega)$ and degree ≤ 3 .

(3) An all-binary, graphical polynomial optimization problem on the same graph which is equivalent to the problem in (2) within tolerance ϵ . The sets J(v) have grown by a factor of $\log_2 J^* \log_2 \epsilon^{-1}$.

Ancient History of this Talk

Fulkerson and Gross (1965), binary packing integer programs

$$IP = \max \quad c^T x \tag{21a}$$

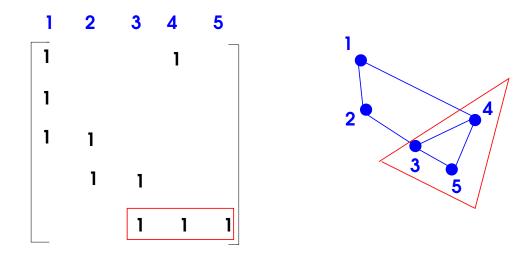
s.t.
$$Ax \leq b$$
, (21b)

$$x \in \{0, 1\}^n \tag{21c}$$

Here, A is has 0, 1-valued entries. Idea: use the structure of A.

The intersection graph of A, G_A , has:

- \bullet A vertex for each column of A.
- An edge between two columns j, k if there is a row i with $a_{ij} \neq 0, a_{ik} \neq 0$.



Each row of A induces a clique of G_A .

(1) A mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition of width ω .

(2) An equivalent mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition of width $O(\omega)$ and degree ≤ 3 .

(3) An all-binary, graphical polynomial optimization problem on the same graph which is equivalent to the problem in (2) within tolerance ϵ . The sets J(v) have grown by a factor of $\log_2 J^* \log_2 \epsilon^{-1}$.

(4) Corollary. The intersection graph of the problem in (3) has a tree-decomposition of width at most

$$O(\omega J^* \log_2 J^* \, \log_2 \epsilon^{-1})$$

Note: There are **two** graphs. The initial graph used to define the problem, and the intersection graph for the constraints in (3).

Pièce de Résistance

Theorem. Given an all-binary problem on n variables and whose intersection graph has a tree-decomposition of width k, then there is an exact linear programming representation using

 $O(2^k n)$

variables and constraints.

Construction similar to Lovász-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg

Pièce de Résistance

Theorem. Given an all-binary problem on n variables and whose intersection graph has a tree-decomposition of width k, then there is an exact linear programming representation using

$$O(2^k n)$$

variables and constraints.

Construction similar to Lovász-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg

(A) A mixed-integer, graphical polynomial optimization problem, with N variables, on a graph with a tree-decomposition of width ω .

 J^* = size of largest set J(v). (AC-OPF $J^* = 2$)

Pièce de Résistance

Theorem. Given an all-binary problem on n variables and whose intersection graph has a tree-decomposition of width k, then there is an exact linear programming representation using

$$O(2^k n)$$

variables and constraints.

Construction similar to Lovász-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg

(A) A mixed-integer, graphical polynomial optimization problem, with N variables, on a graph with a tree-decomposition of width ω .

$$J^*$$
 = size of largest set $J(v)$. (AC-OPF $J^* = 2$)

(B) A linear program that solves the problem in **(A)** within tolerance ϵ , of size

$$O(\,2^{O(\omega J^*)}\,\omega\,J^*\,\epsilon^{-1}\,N)$$

Should we able to do better?

Probably.

But.

- There are trivial AC-OPF problems where there is a unique feasible solution and it is irrational.
 - Under the bit model of computing we cannot produce an "exact" answer.
- AC-OPF is weakly NP-hard on *trees*. Lavaei and Low (2011), a more recent proof by Coffrin and van Hentenryck.
- AC-OPF is strongly NP-hard on general graphs. A. Verma (2009). So no strong approximation algorithms exist unless P = NP.