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Practical Optimization at a Crossroads
Current and past areas of interest: logistics, transportation, supply chain
These areas will remain relevant, but ...
The future: heavy engineering and hard science
Very complex models that embody hard, inflexible rules
Very large scale, high level of modeling detail, myriad details in complex systems
Demanding performance requirements: must get good solutions fast

Are our algorithms up to the task?



The open pit mining production scheduling problem
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Material to be removed in “blocks” — a lot of them.

Each block has known physical properties.

The blocks must be removed following a carefully planned order dictated by structural stability.
Before a block can be extracted, blocks “above it” must have been extracted first.
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Fig. 2 Sequencing rules can be based, for example, on the removal of five blocks above a given
block, block 6 (left) or on the removal of nine blocks above a given block, block 10 (right).

Fig. 3 Sequencing approximation based on the removal of all blocks at a 45-degree angle
above a given block, for three, eight and thirty levels



Direct Optimization
(Math Programming)

Thys Johnson, 1968
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OPTIMUM OPEN-PIT MINE PRODUCTION SCHEDULING

Thys B. Johnson#

Abstract

Traditional mine planning concepts are discussed and suggestions
for improvement through use of the developed model are proposed.
The approach developed in this paper allows optimal planning of
the complete mining-concentrating-refining system over the entire
planning horizon and permits the system to dictate how and when
to process a block of material, i.e., a dynamic cutoff.
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forallbe B,deD,teT e Typical number of periods : 10 — 20.

Typical number of destinations : 2 — 5.

Typical number of side constraints : 20 — 200.

Typical number of scheduling units: 10,000 — 10 million.

Typical number of precedences : 1 million — 4 billion.



Taking a step back ...

max ¢!z subject to

Ar < b——
Dx < d Structured

Precedence, nonnegativity

General/messy, bad



Lagrangian relaxation/column generation?

max ¢! z subject to

Ax <b
Dx <d

|dea used in multicommodity flows (~2002)

Subgradient optimization can tail-off or diverge badly.
Why?

The solution to the Lagrangian is very bad.

What to do?

Force structure of the Lagrangian solution into a “restricted primal”.

Column generation on roids.




(P1) max ¢!z subject to
Az <b
Dx <d (1)
e Assume that {z : Az < b} # ().

e Let L(P1, 1) be the lagrangian relaxation in which constraints (1) are
dualized with penalties .

Algorithm Template:
1. Set u° = 0 and set k = 1.
2. Solve L(P1, u*1) to obtain optimal solution w*.

3. Find some nontrivial constraint H*(z) = h* that is satisfied by w*.
4. Define the restricted problem
(P2(k)) max ¢’z subject to
Az <b (
Dz <d (
H*(z) = h* (

5. Solve P2(k) to get optimal primal z* with value z* and optimal dual p
(corresponding to constraints (2)).

6. Set k=k+1 and GOTO step 2.




(P1) max ¢!z subject to
Az <b
Dz <d (1)
e Assume that {z : Az < b} # ().
e Let L(P1, 1) be the lagrangian relaxation in which constraints (1) are

dualized with penalties .

Algorithm Template:
1. Set u° = 0 and set k = 1.
k

2. Solve L(P1, u*1) to obtain optimal solution w*.
If k> 1 and H*!(w*) = h*~! then STOP.

3. Find some nontrivial constraint H*(z) = h* that is satisfied by w*.

4. Define the restricted problem Theorem:
(P2(k)) max ¢’z subject to

Az < b (

Dz <d (

H*(z) = h* (

At termination we have solved the LP.

5. Solve P2(k) to get optimal primal z* with value z* and optimal dual p
(corresponding to constraints (2)). If u* = p*~! STOP.

6. Set k=k+1 and GOTO step 2.




Marvin | MinelB | Mine2 | Mine3 small | Mine3 big
Blocks 9400 29277 96821 675 108264
Parcels 9400 29277 96821 2975 177843
Block arcs 145640 1271207 | 1053105 1748 2762864
Periods 14 14 25 8 8
Destinations 2 2 2 8 8
Variables 199626 571144 3782250 18970 3503095
Variables
Cplex presolved 197666 568890 — 17056 —
Constraints 2048388 | 17826203 | 26424496 9593 19935500
Constraints
Cplex presolved 2047939 | 17822237 — 9353 —
Problem arcs 2229186 | 18338765 | 3001354 24789 23152350
Side
constraints 28 28 50 120 132
Non-knapsack
side constraints 0 0 0 10 13
Binding side const.
at optimum 14 11 23 33 44
Cplex
time (sec) 55141 — — 52 —

Algorithm Performance

Iters. to 10—°
optimality (sec) 8 8 9 14 30
Time to 10—°
optimality (sec) 10 60 344 1 1117
Iters. to
comb. optimality 11 12 16 15 39
Time to comb.
optimality (sec) 15 95 649 1 1592
Lagrangian
time (sec) 13 83 621 0 725
Subproblem
LP time (sec) 1 0 6 1 709




Newmanl SM2 Marvin | ManySC Coall Coal2 W23
Blocks 1059 18388 8516 3165 34174 33773 74260
Periods 6 30 20 6 9 9 20
Destinations 2 2 2 4 15 17 4
Variables 12708 1103280 | 340640 24504 1683393 1705498 3564480
Variables Cpx presol 12552 894090 | 2064496 20710 1677451 1699498 3476640
Constraints 24603 545008 | 1726636 36830 289329 291391 9251776
Constraints Cpx presol 24603 545008 337860 36738 249664 250001 9251776
Problem arcs 35181 1611452 | 2050204 48416 1977327 2001301 12667652
Side constraints 12 60 40 6832 3092 3573 84
Homogen side con 0 0 0 12 936 1278 48
Pos dual side con at opt 3 36 13 124 463 609 15
Gurobi sec 4 589 — 12 3580 3061 —*
Cplex sec 4 681 21 1460 1214

Algorithm Performance

Tuned Gap at term. 1.4E-15 2.5E-14 | 1.3E-14 -7.9E-15 3.6E-7 1.3E-8 4.04E-13
Tuned Lagran,Subprob sec 0,0 8,1 4,0 0, 2 11, 1702 9, 485 71,5
Tuned Iters,Sec to le-5 opt 6,0 10, 12 8,5 16, 12 50, 1367 42, 586 15, 79
Tuned Iters,Sec to opt 7,0 13, 16 9,5 19, 15 54, 1485 47, 597 18, 94
Tuned Iters,Sec to term. 8,0 14, 17 10, 6 20, 16 59, 1835 50, 612 19, 99




Many extensions/developments!

. Underground mining.

Open Pit Operation

. Cutoff grades.

Underground Stoping Operation

Cutoff grade is the minimum ratio of ore to rock in a block to be extracted.
Low cutoff = longer operation for the mine, but more processing
High cutoff = extraction focuses on more valuable blocks, but lifetime of mine may be too short

Heuristics can be used to decompose a mine into a set of separate operations (using different cutoffs)
(Newman et al)

e Commercialization.






Standard ACOPF

We are given a power system, i.e., a network of

e (Generators
e Power lines and transformers
e Buses (nodes)

e Fach bus has a load, i.e., numerical demand for power generators, lines,
transformers and buses (nodes) with power demands

!

Objective: meet demands at minimum cost

|

Note: power flows following laws of physics




NY system:
1814 buses
500+ generators




A formal textbook statement of standard ACOPF
Minimize cost of generation: }_ g Fg(P9)

e Here, G is the set of generators
e P9 is the (active) power generated at g

o F, is generation cost at g — convex, piecewise-linear or quadratic

Example: F,(P) = 3P? + 2P

Constraints:

e PF' (power flow) constraints: choose voltages so that network delivers
power from generators to the loads, following AC power flow laws

¢ Voltage magnitudes are constrained

e Power flow on any line km cannot be too large

e The output of any generator is limited



Minimize } ¢ Fy( P9)

with constraints:

Sk'm, —
(G — 7Brk) |Vel? + (Gkm — 7Brm) | V|| Vin|(cos Orm + 7 sin Oy,y,)

kaeé(k) Skm = ( deG(k) P9 — P/f) + 4( de(;(k) QI — Qg)

Power flow limit on line km:
|'S’k'm,|2 - :Re( Skm)2 + Im( Skm)2 < Ukm

Voltage limit on node &:
Vkmin S |Vk| S Vkmax

Generator output limit on node k:
P < Pl < Prex



Sk:m —
(Grk — 3Brk) |Vi|? + (Grm — 7Bim) | V|| Vin|(cos Ok + 7 sin Og,y,)

complex power injected into km at k

: ) Din
V, = |V lﬂJ@k Vn = | Via| &”
k ~ K

kw



§ (k)

kaeé(k) Skm = ( deG(k) P9 — Pg) + ]( deG(k) Q7 — Qi‘i)

/ \

. . . Real power demand at k
LHS = complex power injected into grid at k

Total real power generated at k



Minimize } ¢ Fy( P9)

with constraints:

Sk'm, —
(G — 7Brk) |Vel? + (Gkm — 7Brm) | V|| Vin|(cos Orm + 7 sin Oy,y,)

kaeé(k) Skm = ( deG(k) P9 — P/f) + 4( de(;(k) QI — Qg)

Power flow limit on line km:
|'S’k'm,|2 - :Re( Skm)2 + Im( Skm)2 < Ukm

Voltage limit on node &:
Vkmin S |Vk| S Vkmax

Generator output limit on node k:
P < Pl < Prex



But there is an equivalent formulation as a

QCQP

(Quadratically Constrained Quadratic Program) m

Skm —
(Grk — 3Brk) |Vi|? + (Gim — 3Brm) |Vi||Vin|(cos Orm + 7 sin O,,)

_ o * . C

V, G+ Sk e T
s = Y ()0 .

Admittance matrix for line km

L +— Use rectangular coordinates for voltages



* QCQPs are hard!

Numerically challenging.

It is difficult to certify nearness to feasibility of a nearly feasible solution.
It is difficult to certify infeasibility of a model.

How do we explain infeasibility of a model? 1ISs, anyone?

Real-world cases can be at the boundary of infeasibility.

Nonlinear != linear
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Exploring the Power Flow Solution Space Boundary

Ian A. Hiskens, Senior Member and Robert J. Davy
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Fig. 6. Three bus system.
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A knowledge of the solution boundary of the power flow problem is important for determining the
robustness of operating points, and for evaluating strategies for improving robustness. A method of

exploring that solution boundary has been developed.

Examples have demonstrated some of the possible forms that the solution boundary can exhibit. It
appears that quite complicated behavior is possible. This could have a significant influence on the
formulation of algorithms for optimally improving system robustness. It remains to fully explore

these issues.



* McCormick relaxation - an important workhorse

w = Iy
L U

l'L < IU 1/1‘ <Y < 1/,- where ™ 1 . yL. yU are upper and lower bound values for x and y respectively

Convex hull provided by under/over estimators

The underestimators of the function are represented by:
L ~ '

T

L L L : [ U U .U
w2ry+ry —ry cw2r y+ry — 0y

The overestimators of the function are represented by:

U L U L . U L L
w<ry+ry —r Y cw<arYy +ry—ary

Works well in tandem with spatial branching

[

A Convex Overestimators

Convex Underestimators s

LY v—

(source: Wikipedia)



* |ssues with McCormick relaxation and spatial b&b?

On hard instances, e.g., hard and large ACOPF, bounds can be very weak and we will grow an
iImmense tree

Numerical issues! SOC and rotated cone constraints approximated with many outer envelope
cuts

Numerical issues! Nodes can be very iffy, in particular:
Infeasibility fathoming! Mr. Solver, are you sure that node is infeasible?
And what does infeasibility actually mean, in light of our prior slides?

Upper bounds: Mr. Solver, are you sure that solution is feasible?



Upper bounds: log-barrier methods

A must-have tool!

Knitro, IPOPT, LOQO, others?

Knitro and IPOPT are excellent

Also, very elegant theory!

But, also, excellent implementations!

Theory only guarantees convergence to (?) a critical point for the barrier function
Works extremely well for standard ACOPF

A (minor?) issue: solutions can exhibit small infeasibilities



GO competition: configurable transformers and shunts

e Example: tap ratio and angle in a transformer can be adjusted

» - . I |
| v, VB/N N*I Y=9+jb v, _ mk

kI:‘, “k
’ N:1 I ’2
O, 5

| ( injrazje/r
oy ' Voo able

SNURE

e Function can be quite nonlinear with local optima
e Switched shunts, in blocks (at buses)

e Altogether, a large number of integer variables



And much, much more

Contingencies (security-constrained ACOPF)
Penalties for infeasibilities

Migration from existing solution

Tight timeframe available for computation
MPI required: 4 boxes with 16 cores each



GO competition: data sets

e Combination of industry and realistic synthetic data sets
e Both large and with many contingencies

e Industry example C2T2N34363:
34,000 buses, 41,000 lines, 900 generators, 3000 contingencies
thousands of integer variables

e A single ACOPF run on such networks is nontrivial: Example C2FEN19402:

— 19,402 buses, 968 generators, 13,000 lines
— 267904 variables, 200890 constraints, 6692 contingencies
— KNITRO solves Base case in 51.05 seconds on 11 cores.

e Available time is limited: 5 minutes to one hour






The king of the hill — log barrier methods

Today, two implementations dominate:

e KNITRO (Waltz, Nocedal, 2003): A “merit function” method.

e IPOPT (Wachter and Biegler, 2004): A “filter” method.

KNITRO and IPOPT followed a long line of work due to many authors!

1. Log barrier methods can (very closely) optimize very large ACOPF prob-
lems in minutes

2. Nothing else comes close. Relaxation methods only prove bounds — don’t
provide solutions

3. New kid on the block: Gurobi. Integrated log-barrier, integer program-
ming and relaxations!



Datasets in Final Event: 22 networks
e Buses: 403 - 31,777
e Contingencies: 54 - 1800
PRIZES

For Challenge 2, the ARPA-E Benchmark team is not prize eligible and does not occupy a rank during the consideration

of prize awards.

i (s (s (o

Division 4

Division 2 Division 3
1= 1% place: $150k
2™ place: $120k

Division 1
1* place: $150k
2™ place: $120k

1% place: $150k
2" place: $120k
3" place: $90k 3" place: $90k
4™ 4™ place: $60k

5% place: $30k 5% place: $30k

3 place: $90k
4™ place: $60k
5t place: $30k

4™ place: $60k
5™ place: $30k

Greatest Market Surplus

Total Prizes ($k) to be Awarded, Subject to Eligibiity
Team Trial Event 3 Final Event FE+T3
GravityX 130 600 730
Artelys 170 360 530
GOT-BSI-OPF 0 420 420
Pearl Street Technologies 70 270 340
Electric Stampede 140 0 140
GMI-GO 60 60 120
Monday Momnings 0 60 60
GO-SNIP ] 30 30
Gordian Knot 30 0 30
total 600 1,800 2,400




Joint work with Gonzalo Muhoz (2015)

Arbitrarily close approximations of QCQPs using pure-binary integer programs
=) Approximate continuous variables using binary variables. Why?
Given 0 < r < 1 (quantity to approximate) and 0 <y <1 (the tolerance)

L = L(y) = [logyy '
set

Then there exist 0/1-values zp,, 1 < h < L, with

L L
Y2 < r <y 2y 427 <Y 2ty 4y <L
h=1 h=1 h=1




A generic polynomial-optimization problem
(PO): min c'z
subject to: fz(a:) >0 1<i<m ) fi(z) = Z fiaz® (monomial notation)
z;€[0,1 0<j<n. 2l

A = max{a}, 0 (= 1— (1 _,-Y)A, ¥ = tolerance L =Ly = |'10g2,),—1'|

=1 \h=1
L aj -
Y ful H(zzh%) > ol 1<i<m
acl(i) | =1 \h=1 |

Formulation is both O(+y)-feasible and optimal. And sparsity-preserving.



Is this a crazy approach to QCQP?

We start with a bad, large QCQP and we end up with a much, much larger and
probably badder but linear binary IP

But it is linear ...

Numerics should be less of an issue ...

And it has a lot of structure ...

This is ongoing work with Matias Villagra and Yuri Faenza




