◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Models for managing the impact of an influenza epidemic

A Cecilia Zenteno Daniel Bienstock

Columbia University

February 24th, 2012

Motivation

- Mutations of influenza virus
 → fears of a pandemic
- Research:
 - Mortality and morbidity — public health interventions
 - Workforce shortfall
 - Congestion in hospitals and clinics

Figure: H5N1.

- 日本 - 1 日本 - 日本 - 日本 - 日本

Motivation

- Mutations of influenza virus
 → fears of a pandemic
- Research:
 - Mortality and morbidity
 → public health interventions
 - Workforce shortfall
 - Congestion in hospitals and clinics

Figure: H5N1.

- 日本 - 1 日本 - 日本 - 日本 - 日本

Motivation

- Mutations of influenza virus
 → fears of a pandemic
- Research:
 - Mortality and morbidity
 - \rightarrow public health interventions
 - Workforce shortfall
 - Congestion in hospitals and clinics

Figure: H5N1.

- 日本 - 1 日本 - 日本 - 日本 - 日本

Motivation

- Mutations of influenza virus
 → fears of a pandemic
- Research:
 - Mortality and morbidity \rightarrow public health interventions
 - Workforce shortfall
 - Congestion in hospitals and clinics

Figure: H5N1.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Motivation

- Mutations of influenza virus
 → fears of a pandemic
- Research:
 - Mortality and morbidity \rightarrow public health interventions
 - Workforce shortfall
 - Congestion in hospitals and clinics

Figure: H5N1.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Motivation

- Mutations of influenza virus
 → fears of a pandemic
- Research:
 - Mortality and morbidity \rightarrow public health interventions
 - Workforce shortfall
 - Congestion in hospitals and clinics

Figure: H5N1.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Motivation

- Mutations of influenza virus
 → fears of a pandemic
- Research:
 - Mortality and morbidity \rightarrow public health interventions
 - Workforce shortfall
 - Congestion in hospitals and clinics

Figure: H5N1.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Contingency planning

\bullet Workers getting sick \rightarrow bring in surge staff

• Restrictions:

- Pool is finite
- Available for a fixed period of time
- Lag between request and availability
- Exposed to epidemic too
- Planning horizon Full preplanned strategy
- When and how many to bring in?

Contingency planning

 \bullet Workers getting sick \rightarrow bring in surge staff

• Restrictions:

- Pool is finite
- Available for a fixed period of time
- Lag between request and availability
- Exposed to epidemic too
- Planning horizon Full preplanned strategy
- When and how many to bring in?

Contingency planning

 \bullet Workers getting sick \rightarrow bring in surge staff

• Restrictions:

- Pool is finite
- Available for a fixed period of time
- Lag between request and availability
- Exposed to epidemic too
- Planning horizon Full preplanned strategy
- When and how many to bring in?

- \bullet Workers getting sick \rightarrow bring in surge staff
- Restrictions:
 - Pool is finite
 - Available for a fixed period of time
 - Lag between request and availability
 - Exposed to epidemic too
- Planning horizon Full preplanned strategy
- When and how many to bring in?

- \bullet Workers getting sick \rightarrow bring in surge staff
- Restrictions:
 - Pool is finite
 - Available for a fixed period of time
 - Lag between request and availability
 - Exposed to epidemic too
- Planning horizon Full preplanned strategy
- When and how many to bring in?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへ⊙

- \bullet Workers getting sick \rightarrow bring in surge staff
- Restrictions:
 - Pool is finite
 - Available for a fixed period of time
 - Lag between request and availability
 - Exposed to epidemic too
- Planning horizon Full preplanned strategy
- When and how many to bring in?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへ⊙

- \bullet Workers getting sick \rightarrow bring in surge staff
- Restrictions:
 - Pool is finite
 - Available for a fixed period of time
 - Lag between request and availability
 - Exposed to epidemic too
- Planning horizon Full preplanned strategy
- When and how many to bring in?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

- \bullet Workers getting sick \rightarrow bring in surge staff
- Restrictions:
 - Pool is finite
 - Available for a fixed period of time
 - Lag between request and availability
 - Exposed to epidemic too
- Planning horizon Full preplanned strategy
- When and how many to bring in?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

- \bullet Workers getting sick \rightarrow bring in surge staff
- Restrictions:
 - Pool is finite
 - Available for a fixed period of time
 - Lag between request and availability
 - Exposed to epidemic too
- Planning horizon Full preplanned strategy
- When and how many to bring in?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Building blocks

1. Disease Modeling

2. Hiring Restrictions & Implementation

3. System Utilization Measure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Building blocks

Disease Modeling

- S Susceptible
- E Exposed (Latent)
- I Infectious
- R Recovered

- contact rate;
- $\mathbb{P}\{\text{meet } \mathsf{I}\};$
- $\mathbb{P}\{\text{infection}\};\$
- E incubation rate;

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

RR recovery rate.

Disease Modeling

- S Susceptible
- E Exposed (Latent)
- I Infectious
- R Recovered

- contact rate;
- $\mathbb{P}\{\text{meet } \mathsf{I}\};$

 λ

β

р

- $\mathbb{P}\{infection\};\$
- μ_E incubation rate;

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 μ_{RR} recovery rate.

Disease Modeling

λ

в

p

- S Susceptible
- E Exposed (Latent)
- I Infectious
- R Recovered

Account for workforce separately:

- contact rate;
- $\mathbb{P}\{\text{meet } \mathsf{I}\};$
- $\mathbb{P}\{infection\};$
- μ_E incubation rate;

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 μ_{RR} recovery rate.

Disease Modeling

S Susceptible	λ	contact rate;
E Exposed (Latent)	eta	$\mathbb{P}\{\text{meet } I\};$
	p	$\mathbb{P}\{infection\};\$
Infectious	μ_E	incubation rate;
R Recovered	$\mu_{\it RR}$	recovery rate.

Discrete Time Model: for subgroup j at time t + 1:

$$\begin{split} S_{t+1}^{j} &= S_{t}^{j} e^{-\lambda_{j} * \beta_{t} * p} \\ E_{t+1}^{j} &= E_{t}^{j} e^{-\mu_{E_{j}}} + S_{t}^{j} (1 - e^{-\lambda_{j} * \beta_{t} * p}) \\ I_{t+1}^{j} &= I_{t}^{j} e^{-\mu_{RR_{j}}} + E_{t}^{j} (1 - e^{-\mu_{E_{j}}}) \\ R_{t+1}^{j} &= R_{t}^{j} + I_{t}^{j} (1 - e^{-\mu_{RR_{j}}}). \end{split}$$

A drawback

 $\bullet~\mbox{Use}$ of SEIR model $\rightarrow~\mbox{rely}$ on its parameters

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- $\bullet~\mbox{Use}~\mbox{of SEIR}~\mbox{model}\rightarrow~\mbox{rely on its parameters}$
- New epidemic noisy estimations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- $\bullet~\mbox{Use}~\mbox{of SEIR}~\mbox{model}\rightarrow~\mbox{rely on its parameters}$
- New epidemic noisy estimations
- Incubation and recovery rates (μ_E, μ_{RR}) are "easy"

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

- $\bullet~\mbox{Use}$ of SEIR model $\rightarrow~\mbox{rely}$ on its parameters
- New epidemic noisy estimations
- Incubation and recovery rates (μ_E, μ_{RR}) are "easy"
- λβp ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

- $\bullet~$ Use of SEIR model $\rightarrow~$ rely on its parameters
- New epidemic noisy estimations
- Incubation and recovery rates (μ_E, μ_{RR}) are "easy"
- λβp ?
- Embed uncertainty on **p** (prob of contagion)

Hedge against uncertainty

Hedge against uncertainty

Hedge against uncertainty

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

2. Implementing a procurement strategy

• When do we start bringing in volunteers?

- When do we start bringing in volunteers?
- An epidemic is declared when growth rate of infected> threshold

- When do we start bringing in volunteers?
- An epidemic is declared when growth rate of infected> threshold
- We bring in surge staff only after epidemic is declared.

- When do we start bringing in volunteers?
- An epidemic is declared when growth rate of infected> threshold
- We bring in surge staff only after epidemic is declared.

- When do we start bringing in volunteers?
- An epidemic is declared when growth rate of infected> threshold
- We bring in surge staff only after epidemic is declared.

- When do we start bringing in volunteers?
- An epidemic is declared when growth rate of infected> threshold
- We bring in surge staff only after epidemic is declared.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

3. System Utilization Measures

Compute cost per day and add up. Consider 2 scenarios:

Min WF level to operate,
 m - Threshold

3. System Utilization Measures

Compute cost per day and add up. Consider 2 scenarios:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Our problem

• V(h|p): total cost of a deployment strategy h given p

Our problem

• V(h|p): total cost of a deployment strategy h given p

Robust optimization problem

$$V^* = \min_{h \in H} \max_{p \in P} V(h|p)$$

 $H \leftarrow$ set of feasible deployment vectors $P \leftarrow$ uncertainty set

Our problem

• V(h|p): total cost of a deployment strategy h given p

Robust optimization problem

$$V^* = \min_{h \in H} \max_{p \in P} V(h|p)$$

 $H \leftarrow$ set of feasible deployment vectors $P \leftarrow$ uncertainty set

• Generalized Benders' decomposition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

More general uncertainty sets

• Very flexible and fast algorithm - handle more general uncertainty sets

More general uncertainty sets

- Very flexible and fast algorithm handle more general uncertainty sets
- Analyze impact of multiple values of *p* during **one** epidemic.

More general uncertainty sets

- Very flexible and fast algorithm handle more general uncertainty sets
- Analyze impact of multiple values of *p* during **one** epidemic.

• $p \leftarrow (p_1, p_2, d)$

Example - Profile

Demographics

	General Population	High Risk Population
Size	900,000	20,000
Initial infected	5	0
Contact rates (per day)	30	35
Incubation rate (µE)	10/19	10/19
Removal rate (µR)	10/41	10/41
Survival prob (f)	1	1

Uncertainty Set

- $P = [0.01, 0.012] \times [0.0125, 0.0135]$
- *p* can change on day {140, ..., 160}

Procurement Considerations

- Can bring up to 3,000 volunteers
- Stay up to 1 week

• Social Contact Model

- Nonhomogeneous-mixing
- Damp contact rates by 30% when epidemic is declared
- Queueing Cost

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Example - Scenario 1

Worst case: $(p_1, p_2, d) = (0.0109, 0.0135, 140)$ Cost: 4.58

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example - Scenario 1

Worst case: $(p_1, p_2, d) = (0.0109, 0.0135, 140)$ Cost: 4.58

Motivation

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Example - Scenario 1

Worst case: $(p_1, p_2, d) = (0.0109, 0.0135, 140)$ Cost: 4.58

Robust Cost: 0.0495

Motivation

Mode

Results

Example - Scenario 1

Worst case:
$$(p_1, p_2, d) = (0.0109, 0.0135, 140)$$
 Cost: 4.58

Robust Cost: 0.0495 Naive worst-case Cost: 0

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Example - Scenario 2

Given Robust strategy is implemented: Worst case: $(p_1, p_2, d) = (0.01168, 0.0135, 140)$ Cost: 1.43

Motivation

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Example - Scenario 2

Given Robust strategy is implemented: Worst case: $(p_1, p_2, d) = (0.01168, 0.0135, 140)$ Cost: 1.43

Robust Cost: 0.05

Motivation

Model

Results

Example - Scenario 2

Given Robust strategy is implemented: Worst case: $(p_1, p_2, d) = (0.01168, 0.0135, 140)$ Cost: 1.43

Robust Cost: 0.05 Naive worst-case Cost: 0.69

Example - Comparing strategies

		No Intervention	Robust Strategy	Worst-Case Strategy
No intervention:	Cost	4.581	0.050	0.000
worst tuple	Maximum p	1.002	1.048	1.000
(0.01092, 0.0135, 140)	Critical days ($\rho > 1$)	28	8	0
Robust Strategy:	Cost	1.694	0.052	0.686
worst tuple	Maximum p	1.024	1.003	1.017
(0.01168, 0.0135, 140)	Critical days (ρ > 1)	21	7	12
Worst-case Strategy:	Cost	1.430	0.050	0.710
worst tuple	Maximum p	1.021	1.002	1.018
(0.01172, 0.0135, 140)	Critical days ($\rho > 1$)	20	8	13

Example - Comparing strategies

Takeaway: Planning against worst-case scenario may **not** be enough!

		No Intervention	Robust Strategy	Worst-Case Strategy
No intervention:	Cost	4.581	0.050	0.000
worst tuple	Maximum p	1.002	1.048	1.000
(0.01092, 0.0135, 140)	Critical days ($\rho > 1$)	28	8	0
Robust Strategy:	Cost	1.694	0.052	0.686
worst tuple	Maximum p	1.024	1.003	1.017
(0.01168, 0.0135, 140)	Critical days ($\rho > 1$)	21	7	12
Worst-case Strategy:	Cost	1.430	0.050	0.710
worst tuple	Maximum p	1.021	1.002	1.018
(0.01172, 0.0135, 140)	Critical days ($\rho > 1$)	20	8	13

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Final Remarks

• Consider robust models of surge capacity planning in view of a flu pandemic.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

- Consider robust models of surge capacity planning in view of a flu pandemic.
- Focus on critical staff levels.

- Consider robust models of surge capacity planning in view of a flu pandemic.
- Focus on critical staff levels.
- SEIR model + adversarial models (contagion rate).

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Consider robust models of surge capacity planning in view of a flu pandemic.
- Focus on critical staff levels.
- SEIR model + adversarial models (contagion rate).
- Present efficient and accurate algorithms → procurement strategies which optimally hedge against uncertainty.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- Consider robust models of surge capacity planning in view of a flu pandemic.
- Focus on critical staff levels.
- SEIR model + adversarial models (contagion rate).
- Present efficient and accurate algorithms → procurement strategies which optimally hedge against uncertainty.
- Need to prepare for more than just the worst case scenario.

Thank you!

Cecilia Zenteno acz2103@columbia.edu www.columbia.edu/~acz2103

