Polynomial-time solvability of extensions of the trust-region subproblem

Daniel Bienstock and Alexander Michalka, Columbia University

Motivation: polynomial relaxations of discrete optimization problems

s.t.
$$\min_{\substack{n \ j=1}} c^T x$$
$$x \in \{0,1\}^n$$

Motivation: polynomial relaxations of discrete optimization problems

s.t.
$$\min_{\substack{n \ j=1}} c^T x$$
$$x \in \{0,1\}^n$$

Sherali-Adams, Lovász-Schrijver:

s.t.
$$\min_{\substack{i \neq k}} c^T x$$
$$\sum_{\substack{j \neq k}} a_{ij} x_j x_k \geq b_i x_k \quad 1 \leq k \leq n, \quad 1 \leq i \leq m$$
$$\sum_{\substack{j \neq k}} a_{ij} x_j - \sum_{\substack{j \neq k}} a_{ij} x_j x_k \geq b_i (1 - x_k) \quad 1 \leq k \leq n, \quad 1 \leq i \leq m$$
$$x \in [0, 1]^n$$

Motivation: polynomial relaxations of discrete optimization problems

s.t.
$$\min_{\substack{n \ j=1}} c^T x$$
$$x \in \{0,1\}^n$$

Sherali-Adams, Lovász-Schrijver:

s.t.
$$\min_{j \neq k} c^T x$$
$$\sum_{j \neq k} a_{ij} x_j x_k \geq b_i x_k \quad 1 \leq k \leq n, \quad 1 \leq i \leq m$$
$$\sum_{j \neq k} a_{ij} x_j - \sum_{j \neq k} a_{ij} x_j x_k \geq b_i (1 - x_k) \quad 1 \leq k \leq n, \quad 1 \leq i \leq m$$
$$x \in [0, 1]^n$$

Semidefinite relaxation:

replace $x_j x_k$ with X_{jk} , $x_j = X_{jj}$ (all j), $X \succeq 0$.

Motivation: continuous problems with combinatorial structure

→ Convex objective, cardinality-constrained optimization problems, e.g. min $x^T M x + c^T x$ s.t. Ax = b, $l_j \le x_j \le u_j$, $1 \le j \le n$ $\|x\|_0 \le K$. $M \succeq 0$, $\|x\|_0$ = number of nonzero entries in x.

(NP-Hard even if the number of rows of A is two.)

Motivation: continuous problems with combinatorial structure

 $\rightarrow \text{Convex objective, cardinality-constrained optimization problems, e.g.}$ $\min \ x^T M x + c^T x$ $\text{s.t.} \quad Ax = b, \quad l_j \le x_j \le u_j, \quad 1 \le j \le n$ $\|x\|_0 \le K.$

 $M \succeq 0$, $\|\boldsymbol{x}\|_{0} =$ number of nonzero entries in x. (NP-Hard even if the number of rows of A is two.)

Relaxation: Let $x^* = \operatorname{argmin} \{ x^T M x + c^T x : Ax = b, \ l_j \le x_j \le u_j \}$

Suppose $\|x^*\|_0 > K \to \text{can compute ball } B \subseteq \mathbb{R}^n$ with $x^* \in \text{int } (B) \text{ and } \|x\| > K \quad \forall \ x \in \text{int } (B)$

Motivation: continuous problems with combinatorial structure

 $\rightarrow \text{Convex objective, cardinality-constrained optimization problems, e.g.}$ $\min \ x^T M x + c^T x$ $\text{s.t.} \quad Ax = b, \quad l_j \le x_j \le u_j, \quad 1 \le j \le n$ $\|x\|_0 \le K.$

 $M \succeq 0$, $\|\boldsymbol{x}\|_{0} =$ number of nonzero entries in x. (NP-Hard even if the number of rows of A is two.)

Relaxation: Let $x^* = \operatorname{argmin} \{ x^T M x + c^T x : Ax = b, \ l_j \le x_j \le u_j \}$

Suppose $\|x^*\|_0 > K \to \text{can compute ball } B \subseteq \mathbb{R}^n$ with $x^* \in \text{int } (B) \text{ and } \|x\| > K \quad \forall \ x \in \text{int } (B)$

Better relaxation:

 $\min\{x^T M x + c^T x : A x = b, \ l_j \le x_j \le u_j, \ x \notin \operatorname{int}(B)\}$

After some iterations

 $\min \ x^T M x + c^T x$ s.t. $Ax = b, \quad l_j \le x_j \le u_j, \quad 1 \le j \le n$ $\|x - \mu^h\| \ge r^h, \quad h = 1, 2, \dots$

After some iterations

$$\min \begin{array}{ll} x^T M x + c^T x \\ \text{s.t.} & A x = b, \quad l_j \le x_j \le u_j, \quad 1 \le j \le n \\ \|x - \mu^h\| \ge r^h, \quad h = 1, 2, \dots \end{array}$$

(a) How to solve?

(b) Experimental observation – the relaxation becomes much stronger after a small number of iterations.

After some iterations

$$\min \begin{array}{ll} x^T M x + c^T x \\ \text{s.t.} & A x = b, \quad l_j \leq x_j \leq u_j, \quad 1 \leq j \leq n \\ \|x - \mu^h\| \geq r^h, \quad h = 1, 2, \dots \end{array}$$

(a) How to solve?

(b) Experimental observation – the relaxation becomes much stronger after a small number of iterations.

Quadratically constrained, quadratic programs

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m \end{array}$$

Here,

$$f_i(x) = x^T M_i x + c_i^T x + d_i$$

is a general quadratic

Well-known result

$$\begin{array}{ll} \min & x^T Q x + c^T x \\ \text{s.t.} & A x \leq b \end{array}$$

is NP-hard, as are many variants.

Well-known result

$$\begin{array}{ll} \min & x^T Q x + c^T x \\ \text{s.t.} & A x \leq b \end{array}$$

is NP-hard, as are many variants.

Positive results?

 \rightarrow Polynomial optimization polynomially equivalent with QCQP

Well-known result

$$\begin{array}{ll} \min & x^T Q x + c^T x \\ \text{s.t.} & A x \leq b \end{array}$$

is NP-hard, as are many variants.

Positive results?

 \rightarrow Polynomial optimization polynomially equivalent with QCQP

 \rightarrow Cucker and Bürgisser (STOC 2010):

A solution to a system of **complex** polynomial equations can be computed in *near* polynomial time.

 \rightarrow A near answer to Smale's 17th problem.

How about over the reals? Let's start with easy results.

Simplest example: S-Lemma (abridged)

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists $\bar{x} \in \mathbb{R}^n$ such that $g(\bar{x}) > 0$. Then

 $f(x) \geq 0$ whenever $g(x) \geq 0$

if and only if there exists $\gamma \geq 0$ such that

 $f(x) \geq \gamma g(x)$ for all $x \in \mathbb{R}^n$.

Yakubovich (1971), also much earlier, related work

Corollary: Can solve

 $\min\{f(x)\,:\,g(x)\geq 0\}$

in polynomial time (using semidefinite programming)

Note: duality may not hold if there is more than one quadratic constraint

An application: the trust-region subproblem

 $\min\{f(x)\,:\,g(x)\leq 0\}$

can be solved in polynomial time, where f, g quadratics, g convex Scale, rotate, translate:

 $\min\{f(x) \, : \, \|x\| \leq 1\}$

can be solved in poly time $\rightarrow \log \epsilon^{-1}$

Y. Ye (1992) $\rightarrow \log \log \epsilon^{-1}$

How about *extensions* of the trust-region subproblem?

Sturm-Zhang (2003)

Where f(x) is a quadratic,

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \|x\| \leq 1 \\ & a^T x \leq b \end{array} \quad (\textbf{one linear side constraint}) \end{array}$$

can be solved in polynomial time, as can

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \|x\| \leq 1 \\ \|x - x^0\| \leq r_0 \end{array} \quad (\text{one additional convex ball constraint}) \end{array}$$

Ye-Zhang (2003)

$$\min f(x)$$

s.t. $||x|| \le 1$
 $a_i^T x \le b_i \quad i = 1, 2$
 $(a_1^T x - b_1)(a_2^T x - b_2) = 0$

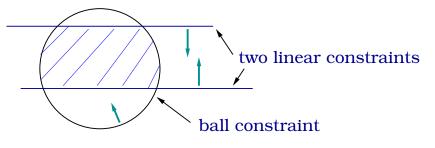
(two linear side constraints, but at least one binding)

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad i = 1, 2 \end{array}$$

provided the two linear constraints are parallel:

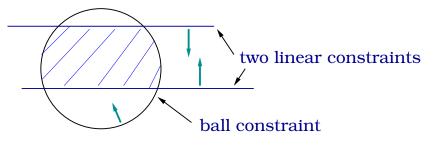


Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad i = 1, 2 \end{array}$$

provided the two linear constraints are parallel:



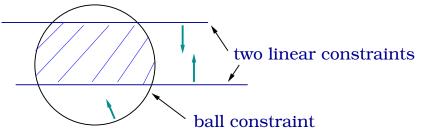
 $\rightarrow \min \left\{ x^T Q x + c^T x : l \le x_1 \le u, \|x\| \le 1 \right\}$

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad i = 1, 2 \end{array}$$

provided the two linear constraints are parallel:



$$\rightarrow \min \left\{ x^T Q x + c^T x : l \leq x_1 \leq u, ||x|| \leq 1 \right\}$$
restate as:
$$\min \sum_{i,j} q_{ij} X_{ij} + c^T x$$
s.t.
$$X_{11} + lu \leq (l+u) x_1$$

$$||X_{.1} - lx|| \leq x_1 - l$$

$$||ux - X_{.1}|| \leq u - x_1$$

$$\sum_j X_{jj} \leq 1 , X \succeq x x^T$$

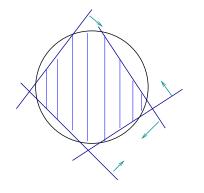
Lemma: This problem has an optimal solution with $X = xx^{T}$. Also: Ye-Zhang

Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad 1 \leq i \leq m \end{array}$$

if no two linear inequalities are simultaneously binding in the feasible region

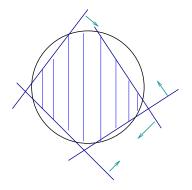


Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

$$\min \begin{array}{c} x^T Q x + c^T x \\ \text{s.t.} \quad \|x\| \leq 1 \\ a_i^T x \leq b_i \quad 1 \leq i \leq m \end{array}$$

if no two linear inequalities are simultaneously binding in the feasible region



Lemma: the following problem has an optimal solution with $X = xx^T$.

$$\min \sum_{\substack{i,j \\ i,j}} q_{ij}X_{ij} + c^T x$$

s.t. $X_{11} + lu \leq (l+u)x_1$
 $\|b_i x - Xa_i\| \leq b_i - a_i^T x$ $i \leq m$
 $b_i b_j - b_j a_i^T x - b_i a_j^T x + a_i^T Xa_j \leq 0$ $i < j \leq m$
 $\sum_j X_{jj} \leq 1$, $X \succeq xx^T$

This talk

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

Theorem.

For each fixed |S|, |K| can be solved in polynomial time if either

(1) $|S| \ge 1$ and polynomially large number of faces of P intersect $\bigcap_{h \in S} \{x \in \mathbb{R}^n : ||x - \mu_h|| \le r_h\},$

or

(2) |S| = 0 and the number of rows of A is bounded.

This talk

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

Theorem.

For each fixed |S|, |K| can be solved in polynomial time if either

(1) $|S| \ge 1$ and polynomially large number of faces of P intersecting $\bigcap_{h \in S} \{x \in \mathbb{R}^n : ||x - \mu_h|| \le r_h\},$ or

(2) |S| = 0 and the number of rows of A is bounded.

Anstreicher-Burer: Case (1) with 3 faces of P meeting the feasible region. Burer-Yang: Case (1) with m + 1 faces of P meeting the feasible region.

More precise statement for case (1)

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

Theorem.

For each fixed $|S| \ge 1$, |K| there is an algorithm that solves the problem, to tolerance $0 < \epsilon < 1$ in time

(a) Polynomial in the number of bits in the data and $\log \epsilon^{-1}$

(b) Linear in the number of faces of P that intersect

$$\bigcap_{h\in S} \{x \in \mathbb{R}^n : \|x - \mu_h\| \le r_h\}.$$

For fixed $|S| \ge 1$, |K| how to test for feasibility of

$$||x - \mu_h|| \le r_h, \quad h \in S,$$
$$||x - \mu_h|| \ge r_h, \quad h \in K,$$
$$Ax \le b,$$

in time polynomial in the size of the data,

linear in the number of faces of $Ax \leq b$ that intersect

$$\bigcap_{h\in S} \{x \in \mathbb{R}^n : \|x - \mu_h\| \le r_h\}.$$

For fixed $|S| \ge 1$, |K| how to test for feasibility of

$$||x - \mu_h|| \leq r_h, \quad h \in S,$$
$$||x - \mu_h|| \geq r_h, \quad h \in K,$$
$$Ax \leq b,$$

in time polynomial in the size of the data,

linear in the number of faces of $Ax \leq b$ that intersect

$$\bigcap_{h\in S} \{x \in \mathbb{R}^n : \|x - \mu_h\| \le r_h\}.$$

1. If $K = \emptyset$, a convex optimization problem:

min
$$||x - \mu_i||$$
, any given $i \in S$
s.t. $||x - \mu_h|| \le r_h$, $h \in S - i$,
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

For fixed $|S| \ge 1$, |K| how to test for feasibility of

$$||x - \mu_h|| \leq r_h, \quad h \in S,$$
$$||x - \mu_h|| \geq r_h, \quad h \in K,$$
$$Ax \leq b,$$

in time polynomial in the size of the data,

linear in the number of faces of $Ax \leq b$ that intersect

$$\bigcap_{h\in S} \{x \in \mathbb{R}^n : \|x - \mu_h\| \le r_h\}.$$

1. If $K = \emptyset$, a convex optimization problem:

min
$$||x - \mu_i||$$
, any given $i \in S$
s.t. $||x - \mu_h|| \le r_h$, $h \in S - i$,
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

2. Otherwise, pick any $i \in K$, and solve

$$\min \quad -\|x - \mu_i\|$$
s.t.
$$\|x - \mu_h\| \le r_h, \quad h \in S,$$

$$\|x - \mu_h\| \ge r_h, \quad h \in K - i,$$

$$Ax \le b.$$

Corollary (but more than we need):

Given a collection of balls $B_h \subset \mathbb{R}^n \ (h \in S)$

and a polyhedron

$$P = \{ x \in \mathbb{R}^n : Ax \le b \},\$$

there is an algorithm that lists the faces of P that intersect $\bigcap_{h \in S} B_h$

In time

(a) polynomial in the number of bits in the data(b) linear in the number of intersecting faces

Corollary (but more than we need):

Given a collection of balls $B_h \subset \mathbb{R}^n \ (h \in S)$

and a polyhedron

$$P = \{ x \in \mathbb{R}^n : Ax \le b \},\$$

there is an algorithm that lists the faces of P that intersect $\bigcap_{h \in S} B_h$

In time

(a) polynomial in the number of bits in the data

(b) linear in the number of intersecting faces

Proof sketch. Use e.g. breadth-first search on the faces of P, starting with P itself.

Basic step:

- Pick a row $a_i^T x \leq b_i$ of $Ax \leq b$.
- Impose $a_i^T x = b_i$.
- Test for feasibility. If feasible, found a new face.

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let $\boldsymbol{x^*}$ be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple.

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple. x^{*} : tight for $(S^{=}, K^{=}, I^{=})$

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple. x^{*} : tight for $(S^{=}, K^{=}, I^{=})$

Algorithm will guess $(S^{=}, K^{=}, I^{=})$ (actually, compute $I^{=}$).

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple. x^{*} : tight for $(S^{=}, K^{=}, I^{=})$

Algorithm will guess $(S^{=}, K^{=}, I^{=})$ (actually, compute $I^{=}$).

For each enumerated triple (\$\hat{S}, \$\hat{K}, \$\hat{I}\$), it will (in polynomial time) either
(a) Compute a finite set of vectors tight for (\$\hat{S}, \$\hat{K}, \$\hat{I}\$), one of which must be \$\mathcal{x}^*\$ if the guess is right, or

 $\min\{x^T Q x + c^T x : \|x - \mu_h\| \le r_h, h \in S, \|x - \mu_h\| \ge r_h, h \in K, Ax \le b\}$ Let \boldsymbol{x}^* be optimal. Trivial: there exist (possibly empty) subsets

 $S^{=}$ of S, $K^{=}$ of K, and $I^{=}$ of the rows of $Ax \leq b$, such that

$$\|x^* - \mu_h\| = r_h \quad \forall h \in S^= \cup K^=, \quad a_i^T x^* = b_i \quad \forall i \in I^=$$
$$\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^=, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^=$$
$$a_i^T x^* < b_i \quad \forall i \notin I^=.$$

 $(S^{=}, K^{=}, I^{=})$: an optimal triple. x^{*} : tight for $(S^{=}, K^{=}, I^{=})$

Algorithm will guess $(S^{=}, K^{=}, I^{=})$ (actually, compute $I^{=}$).

For each enumerated triple (\$\hat{S}, \$\hat{K}, \$\hat{I}\$), it will (in polynomial time) either
(a) Compute a finite set of vectors tight for (\$\hat{S}, \$\hat{K}, \$\hat{I}\$), one of which must be \$\mathcal{x}^*\$ if the guess is right, or

(b) Prove that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, there is a different **optimal** triple $(\tilde{S}, \tilde{K}, \tilde{I})$ with

 $ilde{S} \supseteq \hat{S}, \; ilde{K} \supseteq \hat{K}, \; ilde{I} \supseteq \hat{K} \; ext{ and } \; | ilde{S}| + | ilde{K}| + | ilde{I}| > |\hat{S}| + |\hat{K}| + |\hat{I}|.$

Notation. Given a ball $B = \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| \le \hat{r}\},\$ $\partial B \doteq \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| = \hat{r}\}$

Notation. Given a ball $B = \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| \le \hat{r}\},\$ $\partial B \doteq \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| = \hat{r}\}$

Lemma. Let $B_i = \{x \in \mathbb{R}^n : ||x - \mu_i|| \le r_i\}, i = 1, 2$, be **distinct** and **intersecting**.

Notation. Given a ball $B = \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| \le \hat{r}\},\$ $\partial B \doteq \{x \in \mathbb{R}^n : ||x - \hat{\mu}_i|| = \hat{r}\}$

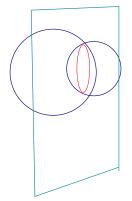
Lemma. Let $B_i = \{x \in \mathbb{R}^n : ||x - \mu_i|| \le r_i\}, i = 1, 2$, be **distinct** and **intersecting**.

There exists an (n-1)-dim hyperplane H, a point $v \in H$, and $r \ge 0$ such that

$$\partial B_1\cap \partial B_2 ~=~ \{x\in H~:~ \|x-v\|=r\}$$

and

 $\partial B_i \cap H \;=\; \{x \in H \,:\, \|x-v\|=r\}, \ \ i=1,2$



Corollary Given balls B_i , $i \in I$, not all equal, with

$$\bigcap_{i\in I} B_i \neq \emptyset,$$

there exists an (n - t)-dim hyperplane H ($t \ge 1$), $v \in H$ and $r \ge 0$ s.t.

$$igcap_{i\in I}\partial B_i \ = \ \{x\in H \ : \ \|x-v\|=r\}$$

Corollary Given balls B_i , $i \in I$, not all equal, with

$$\bigcap_{i\in I} B_i \neq \emptyset,$$

there exists an (n-t)-dim hyperplane H ($t \ge 1$), $v \in H$ and $r \ge 0$ s.t.

$$igcap_{i\in I}\partial B_i \ = \ \{x\in H \ : \ \|x-v\|=r\}$$

Implication: When guessing an optimal triple $(S^{=}, K^{=}, I^{=})$ $\|x^* - \mu_h\| = r_h \quad \forall h \in S^{=} \cup K^{=}, \quad a_i^T x^* = b_i \quad \forall i \in I^{=}$ $\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^{=}, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^{=}$ $a_i^T x^* < b_i \quad \forall i \notin I^{=}.$

Corollary Given balls B_i , $i \in I$, not all equal, with

$$\bigcap_{i\in I} B_i \neq \emptyset,$$

there exists an (n-t)-dim hyperplane H ($t \ge 1$), $v \in H$ and $r \ge 0$ s.t.

$$igcap_{i\in I}\partial B_i \ = \ \{x\in H \ : \ \|x-v\|=r\}$$

Implication: When guessing an optimal triple $(S^{=}, K^{=}, I^{=})$ $\|x^* - \mu_h\| = r_h \quad \forall h \in S^{=} \cup K^{=}, \quad a_i^T x^* = b_i \quad \forall i \in I^{=}$ $\|x^* - \mu_h\| < r_h \quad \forall h \in S - S^{=}, \quad \|x^* - \mu_h\| > r_h \quad \forall h \in K - K^{=}$ $a_i^T x^* < b_i \quad \forall i \notin I^{=}.$

we

(1) Restrict to a lower dimensional space(2) Obtain a single, binding, ball constraint

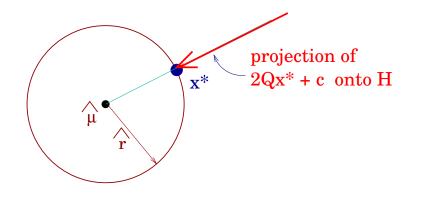
$$\min \quad x^T Q x + c^T x \\ s.t. \quad \|x - \mu_h\| \leq r_h, \quad h \in S, \\ \|x - \mu_h\| \geq r_h, \quad h \in K, \\ a_i^T x \leq b_i, \quad i \in I$$

$$\min \quad x^T Q x + c^T x \\ s.t. \quad \|x - \mu_h\| \leq r_h, \quad h \in S, \\ \|x - \mu_h\| \geq r_h, \quad h \in K, \\ a_i^T x \leq b_i, \quad i \in I$$

$$\min \quad x^T Q x + c^T x \\ s.t. \quad \|x - \mu_h\| \leq r_h, \quad h \in S, \\ \|x - \mu_h\| \geq r_h, \quad h \in K, \\ a_i^T x \leq b_i, \quad i \in I$$

Given a guess, this becomes (ignoring the non-binding constraints): min $x^TQx + c^Tx$ $s.t. ||x - \hat{\mu}|| = \hat{r},$ $x \in H$

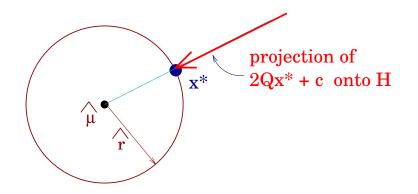
Almost correct: first-order condition restricted to H



$$\min \quad x^T Q x + c^T x \\ s.t. \quad \|x - \mu_h\| \leq r_h, \quad h \in S, \\ \|x - \mu_h\| \geq r_h, \quad h \in K, \\ a_i^T x \leq b_i, \quad i \in I$$

Given a guess, this becomes (ignoring the non-binding constraints): min $x^TQx + c^Tx$ $s.t. ||x - \hat{\mu}|| = \hat{r},$ $x \in H$

Almost correct: first-order condition restricted to H



Better: Use projected quadratic representation

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points $x^{j}, (j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points x^{j} , $(j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

(1) $x^* = x^j$ for some $j \in J$, or

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points x^{j} , $(j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

(1) $x^* = x^j$ for some $j \in J$, or

(2) There exists *infeasible* \boldsymbol{y} and a Jordan curve $\boldsymbol{\Theta}$ joining \boldsymbol{y} and \boldsymbol{x}^* , s.t.

 $z^TQz + c^Tz = x^{*T}Qx^* + c^Tx^* \hspace{1em} orall \hspace{1em} z \in \Theta$

 $old z \hspace{0.1 in} ext{tight for} \hspace{0.1 in} (\hat{S}, \hat{K}, \hat{I}) \hspace{0.1 in} orall \hspace{0.1 in} z \in \Theta$

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points x^{j} , $(j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

(1) $x^* = x^j$ for some $j \in J$, or

(2) There exists *infeasible* \boldsymbol{y} and a Jordan curve $\boldsymbol{\Theta}$ joining \boldsymbol{y} and \boldsymbol{x}^* , s.t.

 $z^TQz + c^Tz = x^{*T}Qx^* + c^Tx^* \hspace{1em} orall \hspace{1em} z \in \Theta$

 $old z \hspace{0.1 in} ext{tight for} \hspace{0.1 in} (\hat{S}, \hat{K}, \hat{I}) \hspace{0.1 in} orall \hspace{0.1 in} z \in \Theta$

Implication: In case (2), there is a different **optimal** triple $(\tilde{S}, \tilde{K}, \tilde{I})$ with

 $\tilde{S} \supseteq \hat{S}, \ \tilde{K} \supseteq \hat{K}, \ \tilde{I} \supseteq \hat{K}$ and $|\tilde{S}| + |\tilde{K}| + |\tilde{I}| > |\hat{S}| + |\hat{K}| + |\hat{I}|.$

Given a triple $(\hat{S}, \hat{K}, \hat{I})$ there is polynomially computable list of points x^{j} , $(j \in J)$ tight for the triple, such that if $(\hat{S}, \hat{K}, \hat{I})$ is optimal, then either

(1) $x^* = x^j$ for some $j \in J$, or

(2) There exists *infeasible* \boldsymbol{y} and a Jordan curve $\boldsymbol{\Theta}$ joining \boldsymbol{y} and \boldsymbol{x}^* , s.t.

 $z^TQz + c^Tz = x^{*T}Qx^* + c^Tx^* \hspace{1em} orall \hspace{1em} z \in \Theta$

 $old z \hspace{0.1 in} ext{tight for} \hspace{0.1 in} (\hat{S}, \hat{K}, \hat{I}) \hspace{0.1 in} orall \hspace{0.1 in} z \in \Theta$

Implication: In case (2), there is a different **optimal** triple $(\tilde{S}, \tilde{K}, \tilde{I})$ with

 $\tilde{S} \supseteq \hat{S}, \ \tilde{K} \supseteq \hat{K}, \ \tilde{I} \supseteq \hat{K}$ and $|\tilde{S}| + |\tilde{K}| + |\tilde{I}| > |\hat{S}| + |\hat{K}| + |\hat{I}|.$

Algorithm: Record the minimum-objective x^{j} .

Generalization.

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{ x \in \mathbb{R}^n : Ax \le b \}$

Generalization.

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

CDT problem

$$\min \quad x^T Q_0 x + c_0^T x$$
s.t.
$$x^T Q_1 x + c_1^T x + d_1 \leq 0$$

$$x^T Q_2 x + c_2^T x + d_2 \leq 0$$

where $Q_1 \succ 0$, $Q_2 \succ 0$

A blast from the past.

Barvinok (STOC 1992):

For each fixed $p \geq 1$, there is a polynomial-time algorithm for deciding feasibility of a system

$$x^T M_i x = 0, \quad 1 \le i \le p,$$

 $||x|| = 1,$

where the M_i are general matrices.

A blast from the past.

Barvinok (STOC 1992):

For each fixed $p \geq 1$, there is a polynomial-time algorithm for deciding feasibility of a system

$$x^T M_i x = 0, \quad 1 \le i \le p,$$

 $||x|| = 1,$

where the M_i are general matrices.

Connection with discrete geometry:

 \rightarrow J. Canny, The complexity of robot motion planning (1987)

 \rightarrow Connectivity queries in algebraic sets

Theorem.

For each fixed $m \geq 1$ there is a polynomial-time algorithm that, given an optimization problem

 $egin{array}{cccc} \min & f_0(x) \ \doteq & x^T Q_0 x + c_0^T x \ & ext{s.t.} & x^T Q_i x + c_i^T x + d_i \ \leq & 0 & 1 \leq i \leq m, \end{array}$

where $Q_1 \succ 0$, and $0 < \epsilon < 1$, either

(1) proves that the problem is infeasible,

or

(2) computes an ϵ -feasible vector \hat{x} such that there exists no feasible $x \in \mathbb{R}^n$ with $f_0(x) < f(\hat{x}) - \epsilon$.

The complexity of the algorithm is polynomial in the number of bits in the data and in $\log \epsilon^{-1}$