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Consider a mathematical program of the following form

min cTx

subject to x ∈ S ∩ P.

P := {x ∈ R
n|Ax ≤ b} is a polyhedral set, and S ⊂ R

n is a

closed set.

Can we strengthen P with cuts?
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Consider a mathematical program of the following form

min cTx

subject to x ∈ S ∩ P.

P := {x ∈ R
n|Ax ≤ b} is a polyhedral set, and S ⊂ R

n is a

closed set.

Can we strengthen P with cuts?

We shall focus on the geometric approach: cuts via S-free sets.

(Many other ways to generate cuts, e.g. disjunctions, algebraic

arguments, combinatorics, convex cuts, etc.)
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P

S

Let S be some closed set. Example: a rectangle P . Want to

separate the extreme point marked with a red circle from S.
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P

S

C

C is an S-free set [Dey and Wolsey 2010]: a closed convex set with

an interior that does not intersect with S.
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P

S

C

We obtain a cut by subtracting C from P .
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conv(Pnint(C))

S

Applying the single cut gives us conv(P \ C).
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More than one cut, possibly an infinite number are needed.

Separation is generally NP-Hard, e.g. P a polytope, C a ball

models an NP-complete set containment problem.
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Balas, 1971 (see also Tuy, 1964): If P is a simplicial cone then the

intersection cut guarantees separation over conv(P \ int(C))
Simplicial cone: n linearly independent linear inequalities

Simplicial conic relaxation P ′ ⊇ P is easily obtained from a basic

solution of P

With less ambition we go for conv(P ′ \ int(C))
Intersection cut is described in closed form → fast separation of

extreme points of P using P ′
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Bigger C , deeper cuts.

P

S

C

C
0

An S-free set C is maximal S-free if it is not contained in another

S-free set.
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Maximal S-free sets and minimal valid inequalities: [Basu et al.

2010], [Conforti et al. 2014], [Cornuejols, Wolsey, Yildiz, 2015],

[Kilinc-Karzan 2015], etc.

Intersection cuts and for mixed-integer conic programs

programming: [Atamturk and Narayanan 2010], [Belotti et al., 2013],

[Andersen and Jensen, 2013], [Dadush, Dey, Vielma 2011],

[Modaresi, Kilinc, Vielma 2015/2016], etc.

Intersection cuts for bilevel optimization: [Fischetti, Monaci, Sinni,

2016].

Generalized intersection cut procedures: [Balas and Margot, 2013],

[Balas, Kazachkov, Margot 2016]
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1) A simple, generic way to generate S-free sets that ensures

separation. Also, a corresponding cutting plane method for arbitrary

closed sets, guaranteed to converge on bounded problems.

2) A study of maximal S-free sets for polynomial optimization
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Suppose we have an oracle for a closed set S that gives us the

distance d(x, S) from any point x ∈ R
n to the nearest point in S.
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Suppose we have an oracle for a closed set S that gives us the

distance d(x, S) from any point x ∈ R
n to the nearest point in S.

Examples:

Integer programming: if S is the lattice, then one can round.

Polynomial optimization: distance can be calculated to arbitrary

accuracy in polynomial time

Cardinality constraints: nearest vector of card (k) can be obtained

by rounding.
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Suppose we have an oracle for a closed set S that gives us the

distance d(x, S) from any point x ∈ R
n to the nearest point in S.

Examples:

Integer programming: if S is the lattice, then one can round.

Polynomial optimization: distance can be calculated to arbitrary

accuracy in polynomial time

Cardinality constraints: nearest vector of card (k) can be obtained

by rounding.

Observation. The ball centered around x with radius d(x, S) is

S-free. Call it B(x, d(x, S)).
We shall call the corresponding intersection cut an oracle ball cut.
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Start with a polytope P0. Define Pk+1 as Pk intersected with

conv(Pk \ int(B(x, d(x, S)))) for every extreme point x. This is the

rank k oracle cut closure.
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Start with a polytope P0. Define Pk+1 as Pk intersected with

conv(Pk \ int(B(x, d(x, S)))) for every extreme point x. This is the

rank k oracle cut closure.

Theorem: limk→∞ Pk = conv(S ∩ P ).
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Start with a polytope P0. Define Pk+1 as Pk intersected with

conv(Pk \ int(B(x, d(x, S)))) for every extreme point x. This is the

rank k oracle cut closure.

Theorem: limk→∞ Pk = conv(S ∩ P ).
Corollary: given an inexact but arbitrarily accurate distance oracle,

we can obtain arbitrarily close (in terms of Hausdorff distance)

polyhedral approximation to conv(S ∩ P ) in finite time.

Borrows from proof technique used in [Averkov 2011].
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z∗ := inf
x∈S

p0(x)

S := {x ∈ R
n|p1(x) ≥ 0, ..., pm(x) ≥ 0}
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[Saxena, Bonami, Lee 2010/2011] Disjunctive cuts from MILP

inner-approximation + convex cuts

Applies to bounded polynomial optimization

[Ghaddar, Vera, Anjos 2011] Projections of moment relaxations.

Generalizes Balas, Ceria, Cornuejols lifting. Separation not

guaranteed in general.

Older literature on convex envelopes of functions, e.g. multilinear.
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[Saxena, Bonami, Lee 2010/2011] Disjunctive cuts from MILP

inner-approximation + convex cuts

Applies to bounded polynomial optimization

[Ghaddar, Vera, Anjos 2011] Projections of moment relaxations.

Generalizes Balas, Ceria, Cornuejols lifting. Separation not

guaranteed in general.

Older literature on convex envelopes of functions, e.g. multilinear.

Our intersection cuts (using e.g. the ball) guarantee polynomial-time

separation without boundedness assumptions.
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[Shor 1987], [Lovasz and Schrijver 1991] Define a vector of

monomials, m = [1, x1, ..., xn, x1x2, x1x3, ..., x
k
n]. Let

M = mmT .

Polynomial optimization can be formulated as

min〈A0,M〉

s.t. 〈Ai,M〉 ≤ bi, i = 1, ...,m.

This is a linear programming relaxation with respect to M .

〈Ai,M〉 :=
∑

aijmij is the inner product.
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[Shor 1987], [Lovasz and Schrijver 1991] Define a vector of

monomials, m = [1, x1, ..., xn, x1x2, x1x3, ..., x
k
n]. Let

M = mmT .

Polynomial optimization can be formulated as

min〈A0,M〉

s.t. 〈Ai,M〉 ≤ bi, i = 1, ...,m.

This is a linear programming relaxation with respect to M .

〈Ai,M〉 :=
∑

aijmij is the inner product.

Equivalency when M � 0, rank(M) = 1 and consistency

constraints. Dropping the rank constraint gives the moment

relaxation [Lasserre, SIAMOPT 2001].
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Geometric notions are with respect to a vectorized space, e.g.

M ∈ S
2×2 → {M11,M12,M22} ∈ R

3

A convex set (in the appropriate vectorized space) is

outer-product-free (OPF) if no point in the interior corresponds to a

matrix that can be represented as an outer-product.

A set is maximal OPF if no OPF set strictly contains it.
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Geometric notions are with respect to a vectorized space, e.g.

M ∈ S
2×2 → {M11,M12,M22} ∈ R

3

A convex set (in the appropriate vectorized space) is

outer-product-free (OPF) if no point in the interior corresponds to a

matrix that can be represented as an outer-product.

A set is maximal OPF if no OPF set strictly contains it.

It turns out OPF sets can have nice structure and lead to easily

generated intersection cuts.
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Using a modification by Dax (2016) of the Eckart-Young-Mirksy

theorem, we can find the nearest (by Frobenius norm) outer-product

to a given matrix. This uses eigenvalues, and hence can be

generated (to specified precision) in polynomial time.
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Theorem: Let C ⊂ S
n×n be an outer-product-free set with full

dimension. Then clcone(C) is outer-product-free.
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〈Pi,M〉 ≥ 0
Theorem: Every such halfspace with Pi NSD is maximal

outer-product-free.

These halfspaces yield the standard outer approximation cut for

SDP: M � 0 ⇐⇒ cTMc ≥ 0∀c ∈ R
n.
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Define Ci,j := {M ∈ S
n×n|M[i,j] � 0}

Theorem: Ci,j is max OPF for 1 ≤ i 6= j ≤ n.
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The 3-dimensional case.

Theorem: For n = 2, the maximal OPF set are C1,2 and halfspaces

of the form 〈P,M〉 ≥ 0, where P is NSD.

i.e. the PSD cone and halfspaces with boundaries that support the

cone
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Recall: we want every extreme point of our relaxation to be an

outer-product, i.e. PSD and rank one.

Any non-PSD extreme point can be separated by the

outer-approximation cuts cTMc ≥ 0.

Any PSD extreme point with rank greater than 1 can be separated

by the intersection cut given by Ci,j for some i, j [Chen, Oren,

Atamturk 2016].

The oracle cut can be strengthened by recentering the ball and

taking the conic hull (complicated expression but computationally

fast).
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Pure cutting plane algorithm implemented in Python using

combinations of the following cuts:

OB (Oracle Ball Cuts), SO (Strengthened Oracle Cuts)

OA (Outer Approximation Cuts), 2x2 (2x2 Principal Minor Cuts)

LP solver: Gurobi 7.0.1

Hardware: 20-core server, Intel Xeon 3.10GHz CPU, 264 GB RAM

26 QCQP problems from GLOBALLib (6-63 variables)

99 BoxQP instances (21-126 variables)
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Cut Family Initial Gap End Gap Closed Gap # Cuts Iters Time (s) LPTime (%)

OB 1387.92% 1387.85% 1.00% 16.48 17.20 2.59 2.06%

SO 1387.83% 8.77% 18.56 19.52 4.14 2.29%

OA 1001.81% 8.61% 353.40 83.76 33.25 7.51%

2x2 + OA 1003.33% 32.61% 284.98 118.08 30.40 15.03%

SO+2x2+OA 1069.59% 31.91% 174.79 107.16 29.55 12.56%

Table 1: Averages for GLOBALLib instances

Cut Family Initial Gap End Gap Closed Gap # Cuts Iters Time (s) LPTime (%)

OB 103.59% 103.56% 0.04% 12.84 13.62 127.15 0.40%

SO 103.33% 0.34% 14.34 15.45 132.07 0.49%

OA 30.88% 75.55% 676.90 137.52 459.28 31.80%

2x2 + OA 32.84% 74.52% 349.21 140.40 473.18 28.76%

SO+2x2+OA 33.43% 74.03% 227.39 136.93 475.38 26.59%

Table 2: Averages for BoxQP instances
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V2: second-order conic outer-approximation of PSD constraint MIP

to derive disjunctive cuts
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Instance V2 Gap V2 Time Gap Closed Time

Ex2 1 1 72.62% 704.40 53.21% 0.41

Ex2 1 5 99.98% 0.17 99.68% 0.13

Ex2 1 6 99.95% 3397.65 93.87% 0.95

Ex2 1 8 84.70% 3632.28 73.23% 19.13

Ex2 1 9 98.79% 1587.94 29.87% 36.9

Ex3 1 1 15.94% 3600.27 0.34% 0.55

Ex3 1 2 99.99% 0.08 99.98% 0.04

Ex3 1 4 86.31% 21.26 29.49% 0.26

Ex5 2 2 case1 0.00% 0.02 2.05% 0.47

Ex5 2 2 case2 0.00% 0.05 0.00% 0.26

Ex5 2 2 case3 0.36% 0.36 0.00% 0.16

Ex5 2 4 79.31% 68.93 29.04% 5.69

Table 3: Comparison with V2 on GLOBALLib instances
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Instance V2 Gap V2 Time Gap Closed Time

Ex5 3 2 7.27% 245.82 0.00% 2.33

Ex5 4 2 27.57% 3614.38 0.24% 0.59

Ex9 1 4 0.00% 0.60 0.00% 0.34

Ex9 2 1 60.04% 2372.64 54.17% 28.37

Ex9 2 2 88.29% 3606.36 77.90% 30.84

Ex9 2 6 87.93% 2619.02 90.45% 0.12

Ex9 2 8 - - 83.27% 0.12
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We introduced an oracle-based intersection cut for closed sets.

Furthermore, we constructed a convergent cutting plane algorithm

that uses this oracle to ’ping’ the set S. All of this is done without

using any explicit structure about S.

Outer-product-free sets provide a new way to generate cuts for

polynomial optimization.
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Preprint available:

http://arxiv.org/abs/1610.04604

http://arxiv.org/abs/1610.04604
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