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Motivation

@ Virus mutates continuously — epidemic

@ How to combat its impact?

o Mortality and morbidity —

Public health interventions:

@ Vaccine and antivirals

@ Non-pharmaceutical interventions

@ Workforce absenteeism

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013
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Motivation

e Objective: Counteract impact of epidemic-related

absenteeism on operation of critical infrastructure

o Energy plants
o Water plants
o Supply chains

e Hospitals and clinics



Motivation Model Robust Optimization Results

What to do?

e WHO, CDC, HHS - preparedness

e naralbi recommendations

of national pandemic influenza
preparedness plans

JANUARY 2011

@ World Health
§ #7 Organization

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

What to do?

e WHO, CDC, HHS - preparedness

e b recommendations

of national pandemic influenza Qo Absenteeism — surge Staﬂ:

preparedness plans

m World Health
§ #7 Organization

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

What to do?

e WHO, CDC, HHS - preparedness

e b recommendations

of national pandemic influenza Qo Absenteeism — surge Staﬂ:

preparedness plans

o Volunteer networks and DB

m World Health
¥ Organization

Bienstock, Zenteno



Motivation Model Robust Optimization Results

What to do?

e WHO, CDC, HHS - preparedness

e b recommendations

of national pandemic influenza Qo Absenteeism — surge Staﬂ:

preparedness plans

JANUARY 2011

e Volunteer networks and DB
=== o Students (health services)
- i

m World Health
§ #7 Organization

Bienstock, Zenteno



Motivation Model Robust Optimization Results

What to do?

e WHO, CDC, HHS - preparedness

e b recommendations

of national pandemic influenza Qo Absenteeism — surge Staﬂ:

preparedness plans

JANUARY 2011

--. o Volunteer networks and DB
--- o Students (health services)
- - o Recent retirees

m World Health
§ #7 Organization

Bienstock, Zenteno



Motivation Model Robust Optimization Results

What to do?

e WHO, CDC, HHS - preparedness

e b recommendations

of national pandemic influenza Qo Absenteeism — surge Staﬂ:

preparedness plans

JANUARY 2011

--. o Volunteer networks and DB
--- o Students (health services)
- - o Recent retirees

@ Planning horizon

@‘} World Health
§ #7 Organization

Bienstock, Zenteno



Motivation Model Robust Optimization Results

What to do?

e WHO, CDC, HHS - preparedness

e b recommendations

of national pandemic influenza Qo Absenteeism — surge Staﬂ:

preparedness plans

JANUARY 2011

--- o Volunteer networks and DB
--- o Students (health services)
- - o Recent retirees

@ Planning horizon - fully preplanned

@‘} World Health
§ #7 Organization

Bienstock, Zenteno
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What to do?

e WHO, CDC, HHS - preparedness

e b recommendations

of national pandemic influenza Qo Absenteeism — surge Staﬂ:

preparedness plans

JANUARY 2011

--- o Volunteer networks and DB
--- o Students (health services)
- - o Recent retirees

@ Planning horizon - fully preplanned

{}’%} World Health
§ #7 Organization

@ When and how many?

Bienstock, Zenteno
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1. A model for influenza

@ SEIR model

o Deterministic
o Spread of the disease in large populations

@ Individuals — compartments

) A avg contacts
S Susceptible 3 P{contact I} = I/N
E Exposed or latent p  P{contagion}
. (e Incubation rate
| Infectious ptrr Removal rate
R Removed

CENGEROENO
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Workers

Keep track of absenteeism — separate accounting of workers.

ApGp KRRy
@thﬁéb/—\)gD/ﬂ —  General population
Xofp KRRy
S @ -~ v
5= )\1/1 + )\2/2

)\1/\/1 + /\2N2
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Discrete time SEIR model

Model for subgroup j transition t — t+ 1:
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Discrete time SEIR model

Model for subgroup j transition t — t+ 1:

5{+1 — S{e—/\j*ﬁt*p

El, = Ele "5+ S|(1— e N*herr)
Hy = He ™™™ 4 Ei(1-e"9)
R, = Ri+H(1-e™).

[LJS Allen et al, 1991; Larson, 2007]
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Model

Non-homogeneous contact

o It is likely that social contacts will change during epidemic

@ | Severity = Average # contacts |

M:N$+g+ﬂ
N;

[LJS Allen et al, 1991]
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An inconvenient fact

SEIR models — uncertain many parameters

New mutation - at best, noisy estimations

@ Incubation and recovery rates (ug, igrr) are “easy”

Contagion rate A\Gp ?

@ Focus uncertainty on probability of contagion p
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Planning under uncertainty

Leave SEIR parameters fixed, except probability of contagion, p.
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p =0.015, 2¥lambda att =10 ——

03 4

0.2

workforce shortage (%)

0.1+ —H

0.05 - —H

0 T T T T T T ST S SO SO A
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
time




Model

2. Implementing a strategy

@ Bringing in surge staff - restrictions



Model

2. Implementing a strategy

@ Bringing in surge staff - restrictions

o Limited availability



Model

2. Implementing a strategy

@ Bringing in surge staff - restrictions
o Limited availability

o Quantity



Model

2. Implementing a strategy

@ Bringing in surge staff - restrictions
o Limited availability

o Quantity

e Time



Model

2. Implementing a strategy

@ Bringing in surge staff - restrictions
o Limited availability
o Quantity

e Time

o Can also get sick



Model

2. Implementing a strategy

@ Bringing in surge staff - restrictions
o Limited availability
o Quantity

e Time

e Can also get sick

@ When is the surge strategy rolled out?
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Model

When does the surge commence?

o Epidemic declared when growth rate of infectious > threshold
@ Assumption: Deploy strategy only after epidemic is declared

@ Assumption: Epidemic is correctly declared
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A technical detail

workforce shortage (%)

@ the planner’s perspective:
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Model

3. Quantifying the impact - Utilization measures

Total “social” cost: sum of per day costs
Two specific settings:

@ Min workforce level to operate @ Queueing theory
m - threshold System utilization p:

\

Y

cost

I
t } t
m N 1 %av.workforce at t

av. workforce at t

Convex piecewise-linear functions



Robust Optimization

* First Optimization Model

Assumption: Size of surge staff corps is small relative to

population; so staff deployment does not alter epidemic

Key modeling variables:

V time periods t' > t, the quantities of surge staff that
@ are first deployed at time t, and

@ are susceptible, or exposed, or infected at time t/
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* First Optimization Model

e V/(h|p) := impact of epidemic under strategy h, given prob of

contagion p

Robust Optimization Problem

V= i g V(Hl)

Objective: Strategy resilient against all scenarios

H « set of feasible surge strategies
P < uncertainty set
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Robust Optimization

Discrete time SEIR model applied to surge staff

For each given time t/, track of condition of staff deployed at t':
hy: quantity deployed at t/
sf,t,: quantity deployed at t’ and susceptible at t,

e; /: quantity deployed at t' and exposed at t,

Sf’,t’ = ht/
and forall t/ <t < t' + K,

s _ s —As*kOtxp
Sty = Stp€

s _ s —i s A AjEBexp
€1y = Erpe 5—1—5”,(1 e )
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Robust Optimization

Some formulation details

@ at time t, variable a; = total number of available staff
= original staff, non-infective at time ¢ (known from SEIR model)

+ surge staff, non-infective at time t

@ use SEIR equations to keep track of the latter: linear for fixed p

o Likewise, constraints to keep track of (convex) costs are linear
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Robust Optimization

Example:

@ f(z) = piecewise-linear increasing function of z

we pay for shortage of staff below threshold 6,

So cost = k¢ = F((0; — ar)™)
@ So: constraint: [y > 0; — a;, variable 'y > 0,

@ and constraint: k; > sl +b;, for 1 < i</ (s; >0 for all i)
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Robust Optimization

% Summary: First Optimization model

V(h|p) : (given p) can be formulated as an LP

@ p fixed — we know trajectory of epidemic
@ SEIR equations linear for fixed p
@ So constraints that keep track of available staff and cost are linear
V(h|p) :=min  c"x
st. Apx=h (SEIR egs)
Cox > d,
x>0, x € H

(piecewise-linear approx)

x « groups SE(IR) + objective function aux. variables
H < set of feasible strategies
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Solving the problem

Our problem:

V* = mi V(h
ip ey V(#e)

(An infinite LP.) How to solve?
(Today) Approximate model: use finite Q C P

Vi~ min  c'x

st. Apx=h, VpeQ
Cox > dp, VpeQ
he H
x>0

e Example: P =[0.01,0.013],
Q = subset of P at integral multiples of 0.0001



Robust Optimization

Theoretical justification

Suppose we know that p > pg > 0.
For each epsilon > 0 small enough there is a § = O(e) s.t.

If |p—p’| < dthen V(h|p’) < (14 €)V(h|p) for any h
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@ Generalized Benders' Decomposition

Optimization problem

V= g vle

= minz
z,he H

st. z>V(hlp) VpeP
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Benders' Decomposition

o Generalized Benders' Decomposition

o Idea: replace V/(h|p) by cuts obtained from the dual

Approximation

V' =~ mi V(h
i g V(hl)

= minz
z,heH

st. z>alh+m]dp,, (dual Vp € Q)

Q is a relatively small subset of P - so separation problem is fast



Robust Optimization

Basic Algorithm

Iterate:

@ Solve Master Problem; let h be the computed surge and 2
be the estimate of its worst-case cost.

@ Sample: compute the worst-case data realization for h.
© If the cost of h under this resolution is at most 2, STOP.

@ Otherwise, add to the master a duality cut violated by ﬁ, Z,
and goto 1.
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Robust Optimization

Algorithmic enhancements

@ “"Powers of two" approximation to finite grid

@ “Pre-Benders”’ cuts



Robust Optimization

Alternative Optimization Problem 1

@ Intervals or tranches h,...} of [0,1]; a time period J
@ At time = 1, it is known that p € k.

@ At time J there is a switch. For t > J, p € I, (known at t = J)

Decision maker:
@ Rolls out a surge at t = 1 that covers periods 1 < t < J,
@ At t =1 announces m surge plans to cover periods J <t < T

@ At time = J, switches to one of the announced plans



Robust Optimization

Alternative Optimization Problem 2

@ There is a known interval | such that p, € [ for all t J
@ At time = t, pr = i+ J¢, and is observed

@ Here = midpoint of /, and d; = zero mean stochastic, small

Decision maker:

@ At time 1, announces “expected” surge quantities h; for all t, and a
multiplier A > 0

@ At time t, corrects h; by )\w

@ (up to a maximum allowable)
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Results

More general uncertainty sets

o Flexible algorithm - more general uncertainty sets

@ Sudden weather changes [Lowen et al, 2007]
@ Public Health measures could change course of epidemic

@ Analyze the impact of multiple values of p during 1 epidemic

Daily cumulative incidence
Flu epidemic - San Francisco

100%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Time (days)

——Sanfran peont=0.18 peont=02 ——pcont=0.194
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Survival prob (f) 1 1
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Numerical example

o Demography

General Population  High Risk Population

Size 900,000 20,000
Initial infected 5 0
Contact rates (per day) 30 35
Incubation rate (LE) 10/19 10/19
Removal rate (1R) 10/41 10/41
Survival prob (f) 1 1

@ Uncertainty set
o P =1[0.01,0.012] x [0.0125,0.0135]
o p can change in days {140, ...,160}
o Pool of surge staff

e Up to 3,000 staff
e Stay up to 1 week

@ Social Contact Model
o Non-homogeneous contact
o Contact rate decreases 30% when epidemic is declared
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Results

Comparisons:

e Do nothing at all (how bad is the "worst” epidemic?)

o Naive Worst-Case planning: prepare for the data realization
that is most expensive in the “do nothing” case

o The robust strategy
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No surge staff deployment

Most costly data realization: (p1, p2, d) = (0.0109,0.0135, 140)
Cost: 4.58
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Same data realization, but using Robust Strategy

(p1, p2,d) = (0.0109, 0.0135, 140)
Cost: 0.0495
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. and using Naive Worst-Case Strategy

(p1, p2, d) = (0.0109,0.0135, 140),
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and using Naive Worst-Case Strategy

(p1, p2, d) = (0.0109,0.0135, 140), Cost: 0
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Results

Worst scenario, when played against the robust strategy:
(p1, p2,d) = (0.01168,0.0135, 140)
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Worst scenario, when played against the robust strategy:
(p1, p2,d) = (0.01168,0.0135, 140)

Using this data realization, “do nothing” cost: 1.69
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Same data: (p1, p2,d) = (0.01168,0.0135, 140)
against the Robust Strategy, Cost: 0.05
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Same data: (p1, p2,d) = (0.01168, 0.0135, 140)
against “Naive Worst-Case” Strategy
Cost: 0.69
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Motivation Model Robust Optimization Results

Example - Comparing strategies
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Motivation Model Robust Optimization Results

Example - Comparing strategies
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Example - Comparing strategies

. Robust Worst-Case
No Intervention
Strategy Strategy
No intervention: Cost 4.581 0.050 0.000
worst tuple Maximum p 1.002 1.048 1.000
(0.01092, 0.0135, 140)  Critical days (p > 1) 28 8 0
Robust Strategy: Cost 1.694 0.052 0.686
worst tuple Maximum p 1.024 1.003 1.017
(0.01168, 0.0135, 140)  Critical days (p > 1) 21 7 12
Worst-case Strategy: Cost 1.430 0.050 0.710
worst tuple Maximum p 1.021 1.002 1.018
(0.01172, 0.0135, 140) Critical days (p > 1) 20 8 13

Results



Example - Comparing strategies

Results

Take-away: Planning against most expensive scenario is not

enough!

. Robust Worst-Case
No Intervention
Strategy Strategy
No intervention: Cost 4.581 0.050 0.000
worst tuple Maximum p 1.002 1.048 1.000
(0.01092, 0.0135, 140)  Critical days (p > 1) 28 8 0
Robust Strategy: Cost 1.694 0.052 0.686
worst tuple Maximum p 1.024 1.003 1.017
(0.01168, 0.0135, 140)  Critical days (p > 1) 21 7 12
Worst-case Strategy: Cost 1.430 0.050 0.710
worst tuple Maximum p 1.021 1.002 1.018
(0.01172, 0.0135, 140) Critical days (p > 1) 20 8 13




Results

Example - Out-of-sample Analysis

@ Uncertainty set
o P =1[0.01,0.012] x [0.0125,0.0135]
e p can change in days {140, ...,160}

—————

——————

: } } time

epidemic surge staff
declared comes in
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Example - Out-of-sample Analysis

@ Uncertainty set

o P =1[0.01,0.012] x [0.0125,0.0135]
o p can change in days {140, ...,160}

o Worst case:(py, p2, d) = (0.01168,0.0135, 140)

Worst case given Robust Policy

Scenarios Original Hypothetical 1 Hypothetical 2
p_1 0.01168 0.01168 0.01168
p_2 0.0135 0.014 0.015
day epidemic is declared 113 113 113
day deployment starts 140 140 140
day p changes 140 150 155 160 165- 150 155 160 165
cost Robust Policy 0.0508 0.3268 0.07295 0 0 2.1737 1.4068 0.6282 0.0294
cost No Intervention 4.58 1.609 0.762 0.087 0 4.133 2.669 1.243 0.146

Results



Results

Example - Numeric Performance

@ 350 days
@ max-cost tuple : grid search

e VBA (Ul) 4+ C (SEIR) + AMPL (Gurobi solver)



Results

Example - Numeric Performance

350 days

@ max-cost tuple : grid search

VBA (Ul) + C (SEIR) + AMPL (Gurobi solver)

@ ~ 175 iterations

5% duality gap

@ ~ 15min CPU time



Results

Example - Numeric Performance

e 350 days

@ max-cost tuple : grid search

VBA (Ul) + C (SEIR) + AMPL (Gurobi solver)

Enhancement:

@ 8 pre-Benders’ iterations + 1 Benders' cut

Duality gap 0.0052%

@ <1 min CPU time
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