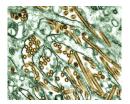

Robust Models of Epidemics, and Emergency Resource Allocation

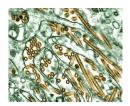
Daniel Bienstock, joint with A. Cecilia Zenteno

Columbia University

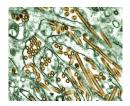
USC Epstein, February 2013


 $\bullet~$ Virus mutates continuously $\rightarrow~$ epidemic

 $\exists \rightarrow$

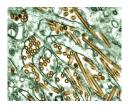

A B + A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $\bullet~$ Virus mutates continuously $\rightarrow~$ epidemic
- How to combat its impact?



A B + A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

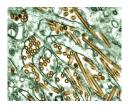
- $\bullet~$ Virus mutates continuously $\rightarrow~$ epidemic
- How to combat its impact?
 - Mortality and morbidity \rightarrow Public health interventions:



- $\bullet~$ Virus mutates continuously $\rightarrow~$ epidemic
- How to combat its impact?
 - Mortality and morbidity \rightarrow Public health interventions:
 - Vaccine and antivirals

A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

- $\bullet~$ Virus mutates continuously $\rightarrow~$ epidemic
- How to combat its impact?
 - Mortality and morbidity →
 Public health interventions:
 - Vaccine and antivirals
 - Non-pharmaceutical interventions



A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

- $\bullet~$ Virus mutates continuously $\rightarrow~$ epidemic
- How to combat its impact?
 - $\bullet~$ Mortality and morbidity $\rightarrow~$

Public health interventions:

- Vaccine and antivirals
- Non-pharmaceutical interventions
- Workforce absenteeism

A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Motivation	Model	Robust Optimization	Results
Mativation			
Motivation			

• **Objective**: Counteract impact of epidemic-related **absenteeism** on operation of critical infrastructure

イロト 不得入 不定人 不定人 一定し

Motivation	Model	Robust Optimization	Results
Motivation			
IVIOLIVALIOII			

• **Objective**: Counteract impact of epidemic-related **absenteeism** on operation of critical infrastructure

- Energy plants
- Water plants
- Supply chains
- Hospitals and clinics

What to do?

• WHO, CDC, HHS - preparedness

recommendations

Comparative analysis

of national pandemic influenza preparedness plans

JANUARY 2011

What to do?

Comparative analysis

of national pandemic influenza preparedness plans

• WHO, CDC, HHS - preparedness

ヘロト 人間ト 人造ト 人造ト

3

recommendations

 $\bullet \ Absenteeism \rightarrow surge \ staff$

Results

What to do?

Comparative analysis

of national pandemic influenza preparedness plans

• WHO, CDC, HHS - preparedness

recommendations

- $\bullet \ Absenteeism \rightarrow surge \ staff$
 - Volunteer networks and DB

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

э

Results

What to do?

Comparative analysis

of national pandemic influenza preparedness plans

- WHO, CDC, HHS preparedness recommendations
- Absenteeism \rightarrow surge staff
 - Volunteer networks and DB

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

-

• Students (health services)

Results

What to do?

Comparative analysis

of national pandemic influenza preparedness plans

- WHO, CDC, HHS preparedness recommendations
- $\bullet \ Absenteeism \rightarrow surge \ staff$
 - Volunteer networks and DB
 - Students (health services)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

• Recent retirees

Results

What to do?

Comparative analysis

of national pandemic influenza preparedness plans

- WHO, CDC, HHS preparedness recommendations
- $\bullet \ Absenteeism \rightarrow surge \ staff$
 - Volunteer networks and DB

イロト 不得下 不足下 不足下

-

- Students (health services)
- Recent retirees
- Planning horizon

Results

What to do?

Comparative analysis

of national pandemic influenza preparedness plans

- WHO, CDC, HHS preparedness recommendations
- Absenteeism \rightarrow surge staff
 - Volunteer networks and DB
 - Students (health services)
 - Recent retirees
- Planning horizon fully preplanned

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Results

What to do?

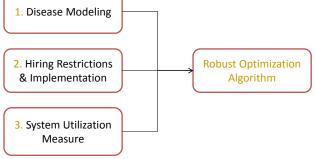
Comparative analysis

of national pandemic influenza preparedness plans

- WHO, CDC, HHS preparedness recommendations
- Absenteeism \rightarrow surge staff
 - Volunteer networks and DB
 - Students (health services)
 - Recent retirees
- Planning horizon fully preplanned

• When and how many?

◆□ → ◆圖 → ◆注 → ◆注 → □ 注


Agenda

1. Disease Modeling

2. Hiring Restrictions & Implementation

3. System Utilization Measure

◆□ → ◆圖 → ◆注 → ◆注 → □ 注

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013

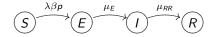
Motivation

1. A model for influenza

• SEIR model

- Deterministic
- Spread of the disease in large populations

1. A model for influenza


• SEIR model

- Deterministic
- Spread of the disease in large populations
- $\bullet \ Individuals \rightarrow compartments$

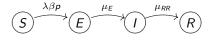
1. A model for influenza

• SEIR model

- Deterministic
- Spread of the disease in large populations
- $\bullet \ Individuals \rightarrow compartments$
 - S Susceptible
 - E Exposed or latent
 - I Infectious
 - R Removed

1. A model for influenza

• SEIR model


- Deterministic
- Spread of the disease in large populations
- $\bullet \ Individuals \rightarrow compartments$
 - S Susceptible
 - E Exposed or latent
 - I Infectious
 - R Removed

- λ avg contacts
- $\beta \qquad \mathbb{P}\{\text{contact } \mathsf{I}\}$
- $p \qquad \mathbb{P}\{\text{contagion}\}$
- μ_E Incubation rate

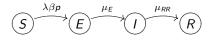
A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

3.1

 μ_{RR} Removal rate

1. A model for influenza

• SEIR model

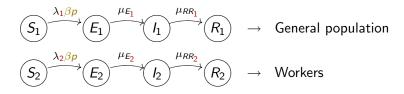

- Deterministic
- Spread of the disease in large populations
- $\bullet \ Individuals \rightarrow compartments$
 - S Susceptible
 - E Exposed or latent
 - I Infectious
 - R Removed

- λ avg contacts
- β $\mathbb{P}\{\text{contact } I\} = I/N$

ヘロト ヘアト ヘリト・

3

- $p \qquad \mathbb{P}\{\text{contagion}\}$
- μ_E Incubation rate
- μ_{RR} Removal rate



Motivation	Model	Robust Optimization	Results
Workers			

Keep track of absenteeism \rightarrow **separate** accounting of workers.

Motivation	Model	Robust Optimization	Results
Workers			

Keep track of absenteeism \rightarrow **separate** accounting of workers.

イロト イポト イヨト イ

B b

Motivation	Model	Robust Optimization	Results
Workers			
VVUINCIS			

Keep track of absenteeism \rightarrow **separate** accounting of workers.

$$\beta = \frac{\lambda_1 I^1 + \lambda_2 I^2}{\lambda_1 N^1 + \lambda_2 N^2}$$

・ロト ・ 戸 ト ・ ヨ ト ・

3.1

(日) (間) (日) (日) (日)

Discrete time SEIR model

Model for subgroup *j* transition $t \rightarrow t + 1$:

$$egin{array}{rcl} S^{j}_{t+1} &=& S^{j}_{t}e^{-\lambda_{j}*eta_{t}*p} \ E^{j}_{t+1} &=& E^{j}_{t}e^{-\mu_{E_{j}}}+S^{j}_{t}(1-e^{-\lambda_{j}*eta_{t}*p}) \ I^{j}_{t+1} &=& I^{j}_{t} \ e^{-\mu_{RR_{j}}}+E^{j}_{t}(1-e^{-\mu_{E_{j}}}) \ R^{j}_{t+1} &=& R^{j}_{t}+I^{j}_{t}(1-e^{-\mu_{RR_{j}}}). \end{array}$$

[LJS Allen et al, 1991; Larson, 2007]

(日) (間) (日) (日) (日)

Discrete time SEIR model

Model for subgroup *j* transition $t \rightarrow t + 1$:

$$\begin{split} S^{j}_{t+1} &= S^{j}_{t}e^{-\lambda_{j}*\beta_{t}*p} \\ E^{j}_{t+1} &= E^{j}_{t}e^{-\mu_{E_{j}}} + S^{j}_{t}(1-e^{-\lambda_{j}*\beta_{t}*p}) \\ I^{j}_{t+1} &= I^{j}_{t}f_{j}e^{-\mu_{RR_{j}}} + E^{j}_{t}(1-e^{-\mu_{E_{j}}}) \\ R^{j}_{t+1} &= R^{j}_{t} + I^{j}_{t}(1-e^{-\mu_{RR_{j}}}). \end{split}$$

[LJS Allen et al, 1991; Larson, 2007]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Non-homogeneous contact

• It is likely that social contacts will change during epidemic

Non-homogeneous contact

• It is likely that social contacts will change during epidemic

• \uparrow Severity \Rightarrow Average # contacts \downarrow

$$\lambda_t^j = \Lambda^j \, \frac{S_t^j + E_t^j + R_t^j}{N_t^j}$$

[LJS Allen et al, 1991]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

An inconvenient fact

 \bullet SEIR models \rightarrow uncertain many parameters

・ロト ・雪 ・ 当 ・ 小田 ・ 小田 ・ 今日・

An inconvenient fact

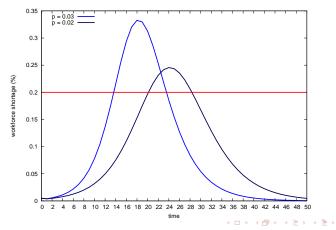
- \bullet SEIR models \rightarrow uncertain many parameters
- New mutation at best, noisy estimations

An inconvenient fact

- $\bullet~SEIR~models \rightarrow$ uncertain many parameters
- New mutation at best, noisy estimations
- Incubation and recovery rates (μ_E, μ_{RR}) are "easy"

An inconvenient fact

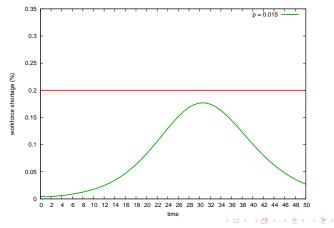
- \bullet SEIR models \rightarrow uncertain many parameters
- New mutation at best, noisy estimations
- Incubation and recovery rates (μ_E, μ_{RR}) are "easy"
- Contagion rate $\lambda\beta p$?


(日) (四) (王) (王) (王)

An inconvenient fact

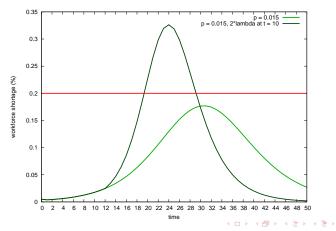
- \bullet SEIR models \rightarrow uncertain many parameters
- New mutation at best, noisy estimations
- Incubation and recovery rates (μ_E, μ_{RR}) are "easy"
- Contagion rate $\lambda\beta p$?
- Focus uncertainty on probability of contagion **p**

Planning under uncertainty


Leave SEIR parameters fixed, except probability of contagion, p.

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013

Planning under uncertainty


Leave SEIR parameters fixed, except probability of contagion, p.

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013

Planning under uncertainty

Leave SEIR parameters fixed, except probability of contagion, p.

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

2. Implementing a strategy

• Bringing in surge staff - restrictions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

2. Implementing a strategy

- Bringing in surge staff restrictions
 - Limited availability

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

2. Implementing a strategy

- Bringing in surge staff restrictions
 - Limited availability
 - Quantity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

2. Implementing a strategy

- Bringing in surge staff restrictions
 - Limited availability
 - Quantity
 - Time

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

2. Implementing a strategy

- Bringing in surge staff restrictions
 - Limited availability
 - Quantity
 - Time
 - Can also get sick

2. Implementing a strategy

• Bringing in surge staff - restrictions

- Limited availability
 - Quantity
 - Time
- Can also get sick
- When is the surge strategy rolled out?

・ロト ・雪 ・ 当 ・ 小田 ・ 小田 ・ 今日・

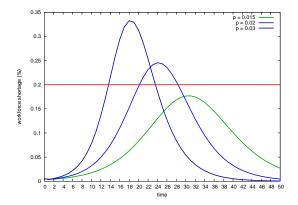
When does the surge commence?

• Epidemic declared when growth rate of infectious > threshold

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

When does the surge commence?

- Epidemic declared when growth rate of infectious > threshold
- Assumption: Deploy strategy only after epidemic is declared


When does the surge commence?

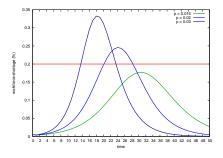
- Epidemic declared when growth rate of infectious > threshold
- Assumption: Deploy strategy only after epidemic is declared
- Assumption: Epidemic is *correctly* declared

A technical detail

• Epidemics with different "p" declared at different times

・ロト ・得ト ・ヨト ・ヨト

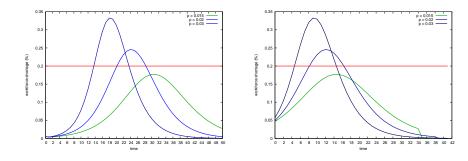
э


Motivation	Model	Robust Optimization	Results

ヘロト 人間 とくほ とくほとう

э

A technical detail

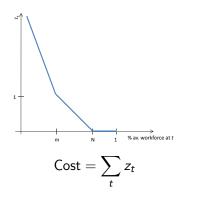

• the planner's perspective:

Motivation	Model	Robust Optimization	Results

A technical detail

• the planner's perspective:

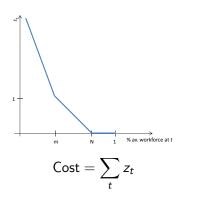
▲□▶ ▲圖▶ ▲注▶ ▲注▶ -


э

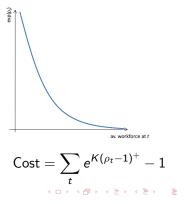
イロト 不得 とうき とうとう

3. Quantifying the impact - Utilization measures

Total "social" cost: sum of per day costs Two specific settings:


Min workforce level to operate
 m - threshold

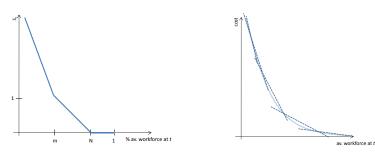
3. Quantifying the impact - Utilization measures


Total "social" cost: sum of per day costs Two specific settings:

 Min workforce level to operate *m* - threshold

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013

Queueing theory System utilization ρ_t


Queueing theory

System utilization ρ_t

3. Quantifying the impact - Utilization measures

Total "social" cost: sum of per day costs Two specific settings:

 Min workforce level to operate *m* - threshold

Convex piecewise-linear functions

★ First Optimization Model

Assumption: Size of surge staff corps is small relative to population; so staff deployment does not alter epidemic

Key modeling variables:

- \forall time periods t' > t, the quantities of surge staff that
 - are first deployed at time t, and
 - \bullet are susceptible, or exposed, or infected at time t^\prime

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

★ First Optimization Model

V(h|p) := impact of epidemic under strategy h, given prob of contagion p

★ First Optimization Model

V(h|p) := impact of epidemic under strategy h, given prob of contagion p

Robust Optimization Problem

$$V^* = \min_{h \in H} \max_{p \in P} V(h|p)$$

Objective: Strategy resilient against all scenarios

 $H \leftarrow$ set of feasible surge strategies $P \leftarrow$ uncertainty set

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Some formulation details

- at time t, variable $a_t = total number of available staff$
 - = original staff, non-infective at time t (known from SEIR model)
 - + surge staff, non-infective at time t

イロン 不得 とうき とうとう ほう

Some formulation details

- at time t, variable $a_t = total number of available staff$
 - = original staff, non-infective at time t (known from SEIR model)
 - + surge staff, non-infective at time t
- use SEIR equations to keep track of the latter: linear for fixed p

Discrete time SEIR model applied to surge staff

- For each given time t', track of condition of staff deployed at t':
- $\mathbf{h_{t'}}$: quantity deployed at t'
- $\mathbf{s_{t,t'}^s}$: quantity deployed at t' and susceptible at t,
- $\mathbf{e}_{\mathbf{t},\mathbf{t}'}^{\mathbf{s}}$: quantity deployed at t' and exposed at t,

$$s_{t',t'}^{s} = h_{t'}$$
and for all $t' \le t < t' + K$,
$$s_{t+1,t'}^{s} = s_{t,t'}^{s} e^{-\lambda_{s} * \beta_{t} * p}$$

$$e_{t+1,t'}^{s} = e_{t,t'}^{s} e^{-\mu_{s}} + s_{t,t'}^{s} (1 - e^{-\lambda_{j} * \beta_{t} * p})$$

Some formulation details

- at time t, variable $\mathbf{a}_{t} = \text{total number of available staff}$
 - = original staff, non-infective at time t (known from SEIR model)

+ surge staff, non-infective at time t

• use SEIR equations to keep track of the latter: linear for fixed p

Some formulation details

- at time t, variable $\mathbf{a}_{t} = \text{total number of available staff}$
 - = original staff, non-infective at time t (known from SEIR model)

+ surge staff, non-infective at time t

- use SEIR equations to keep track of the latter: linear for fixed p
- Likewise, constraints to keep track of (convex) costs are linear

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example:

• f(z) = piecewise-linear increasing function of z

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Example:

- f(z) = piecewise-linear increasing function of z
- we pay for shortage of staff below threshold θ_t

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Example:

- f(z) = piecewise-linear increasing function of z
- we pay for shortage of staff below threshold θ_t

• So cost =
$$\kappa_t = f((\theta_t - a_t)^+)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example:

- f(z) = piecewise-linear increasing function of z
- we pay for shortage of staff below threshold θ_t

• So cost =
$$\kappa_t = f((\theta_t - a_t)^+)$$

• So: constraint: $\Gamma_t \geq \theta_t - a_t$, variable $\Gamma_t \geq 0$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example:

- f(z) = piecewise-linear increasing function of z
- we pay for shortage of staff below threshold θ_t

• So cost =
$$\kappa_t = f((\theta_t - a_t)^+)$$

- So: constraint: $\Gamma_t \geq \theta_t a_t$, variable $\Gamma_t \geq 0$,
- and constraint: $\kappa_t \geq s_i \Gamma_t + b_i$, for $1 \leq i \leq l_t$ $(s_i \geq 0$ for all i)

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

★ Summary: First Optimization model

V(h|p):

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

★ Summary: First Optimization model

V(h|p): (given p) can be formulated as an LP

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

★ Summary: First Optimization model

V(h|p): (given p) can be formulated as an LP

• p fixed \rightarrow we know trajectory of epidemic

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

★ Summary: First Optimization model

V(h|p): (given p) can be formulated as an LP

- p fixed \rightarrow we know trajectory of epidemic
- SEIR equations linear for fixed p

★ Summary: First Optimization model

V(h|p): (given p) can be formulated as an LP

- p fixed \rightarrow we know trajectory of epidemic
- SEIR equations linear for fixed p
- So constraints that keep track of available staff and cost are linear

★ Summary: First Optimization model

V(h|p): (given p) can be formulated as an LP

- p fixed \rightarrow we know trajectory of epidemic
- SEIR equations linear for fixed p
- So constraints that keep track of available staff and cost are linear

★ Summary: First Optimization model

V(h|p): (given p) can be formulated as an LP

- p fixed \rightarrow we know trajectory of epidemic
- SEIR equations linear for fixed p
- So constraints that keep track of available staff and cost are linear

$$\begin{array}{rll} V(h|p) := \min & c^{\mathsf{T}} x \\ \text{s.t.} & A_p x = h & (\text{SEIR eqs}) \\ & C_p x \geq d_p & (\text{piecewise-linear approx}) \\ & x \geq 0, \quad x \in H \end{array}$$

 $x \leftarrow$ groups SE(IR) + objective function aux. variables $H \leftarrow$ set of feasible strategies

Results

Solving the problem

Our problem:

$$V^* = \min_{h \in H} \max_{p \in P} V(h|p)$$

(An infinite LP.) How to solve?

Results

Solving the problem

Our problem:

$$V^* = \min_{h \in H} \max_{p \in P} V(h|p)$$

(An infinite LP.) How to solve?

(Today) Approximate model: use finite ${\bf Q} \subset {\it P}$

$$V^* \approx \min \quad c^T x$$

s.t. $A_p x = h, \quad \forall p \in \mathbf{Q}$
 $C_p x \ge d_p, \quad \forall p \in \mathbf{Q}$
 $h \in H$
 $x \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theoretical justification

Suppose we know that $p \ge p_0 > 0$.

For each epsilon > 0 small enough there is a $\delta = O(\epsilon)$ s.t.:

If $|\mathbf{p} - \mathbf{p}'| < \delta$ then $V(\mathbf{h}|\mathbf{p}') \leq (1 + \epsilon)V(\mathbf{h}|\mathbf{p})$ for any h

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Benders' Decomposition

• Generalized Benders' Decomposition

М				

Model

Robust Optimization

(日) (四) (王) (王) (王)

Results

Benders' Decomposition

• Generalized Benders' Decomposition

Optimization problem							
$V^* = \min_{h \in H} \max_{p \in P} V(h p)$							
=	$\min_{z,h\in H} z$						
	s.t. $z \ge V(h p) \forall p \in P$						

Benders' Decomposition

- Generalized Benders' Decomposition
- Idea: replace V(h|p) by cuts obtained from the dual

Optimization problem

$$V^* = \min_{h \in H} \max_{p \in P} V(h|p)$$

=
$$\min_{z,h \in H} z$$

s.t. $z \ge \alpha_p^T h + \pi_p^T d_p$, (dual $\forall p \in P$)

イロト 不得 ト イヨト イヨト ニヨー

Benders' Decomposition

- Generalized Benders' Decomposition
- Idea: replace V(h|p) by cuts obtained from the dual

Approximation $V^* \approx \min_{h \in H} \max_{p \in P} V(h|p)$ $= \min_{z,h \in H} z$ s.t. $z \ge \alpha_p^T h + \pi_p^T d_p$, (dual $\forall p \in \mathbf{Q}$)

 \mathbf{Q} is a relatively small subset of P - so separation problem is fast

Basic Algorithm

Iterate:

- Solve Master Problem; let $\hat{\mathbf{h}}$ be the computed surge and $\hat{\mathbf{z}}$ be the estimate of its worst-case cost.
- **Q** Sample: compute the worst-case data realization for $\hat{\mathbf{h}}$.
- **③** If the cost of $\hat{\mathbf{h}}$ under this resolution is at most $\hat{\mathbf{z}}$, **STOP**.
- Otherwise, add to the master a duality cut violated by h, z, and goto 1.

Model

Robust Optimization

Results

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Algorithmic enhancements

• "Powers of two" approximation to finite grid

Model

Robust Optimization

Results

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Algorithmic enhancements

- "Powers of two" approximation to finite grid
- "Pre-Benders"' cuts

Alternative Optimization Problem 1

- Intervals or tranches $I_1, \ldots I_1$ of [0, 1]; a time period J
- At time = 1, it is known that $p \in I_1$.
- At time J there is a switch. For $t \ge J$, $p \in I_h$ (known at t = J)

Decision maker:

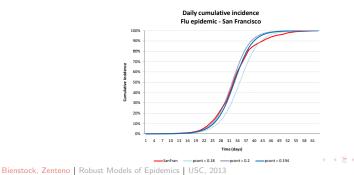
- Rolls out a surge at t = 1 that covers periods $1 \le t < J$,
- At t = 1 announces *m* surge plans to cover periods $J \le t \le T$
- At time = J, switches to one of the announced plans

Alternative Optimization Problem 2

- There is a known interval I such that $p_t \in I$ for all t J
- At time = t, $p_t = \mu + \delta_t$, and is observed
- Here $\mu = \text{midpoint of } I$, and $\delta_t = \text{zero mean stochastic, small}$

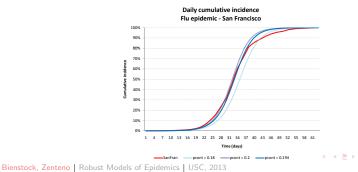
Decision maker:

- At time 1, announces "expected" surge quantities h_t for all t, and a multiplier $\lambda \ge 0$
- At time t, corrects h_t by $\lambda \frac{\sum_{j < t} (p_t \mu)}{t}$
- (up to a maximum allowable)


More general uncertainty sets

• Flexible algorithm - more general uncertainty sets

B (1)


More general uncertainty sets

- Flexible algorithm more general uncertainty sets
- Sudden weather changes [Lowen et al, 2007]
- Public Health measures could change course of epidemic

More general uncertainty sets

- Flexible algorithm more general uncertainty sets
- Sudden weather changes [Lowen et al, 2007]
- Public Health measures could change course of epidemic
- Analyze the impact of multiple values of p during 1 epidemic

◆□>
◆□>
E>

Numerical example

Demography

	General Population	High Risk Population		
Size	900,000	20,000		
Initial infected	5	0		
Contact rates (per day)	30	35		
Incubation rate (µE)	10/19	10/19		
Removal rate (µR)	10/41	10/41		
Survival prob (f)	1	1		

Numerical example

• Demography

	General Population	High Risk Population		
Size	900,000	20,000		
Initial infected	5	0		
Contact rates (per day)	30	35		
Incubation rate (µE)	10/19	10/19		
Removal rate (µR)	10/41	10/41		
Survival prob (f)	1	1		

Uncertainty set

- $P = [0.01, 0.012] \times [0.0125, 0.0135]$
- *p* can change in days {140, ..., 160}

イロト イポト イヨト イヨト 三日

Numerical example

Demography

	General Population	High Risk Population		
Size	900,000	20,000		
Initial infected	5	0		
Contact rates (per day)	30	35		
Incubation rate (µE)	10/19	10/19		
Removal rate (µR)	10/41	10/41		
Survival prob (f)	1	1		

Uncertainty set

- $P = [0.01, 0.012] \times [0.0125, 0.0135]$
- p can change in days $\{140, ..., 160\}$

Pool of surge staff

- Up to 3,000 staff
- Stay up to 1 week

Numerical example

• Demography

	General Population	High Risk Population		
Size	900,000	20,000		
Initial infected	5	0		
Contact rates (per day)	30	35		
Incubation rate (µE)	10/19	10/19		
Removal rate (µR)	10/41	10/41		
Survival prob (f)	1	1		

Uncertainty set

- $P = [0.01, 0.012] \times [0.0125, 0.0135]$
- *p* can change in days {140, ..., 160}

Pool of surge staff

- Up to 3,000 staff
- Stay up to 1 week

• Social Contact Model

- Non-homogeneous contact
- Contact rate decreases 30% when epidemic is declared

Model

Robust Optimization

Results

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

Comparisons:

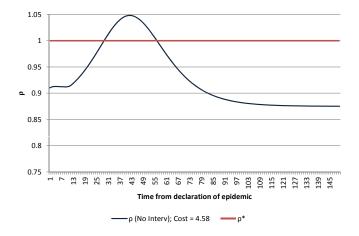
• Do nothing at all (how bad is the "worst" epidemic?)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Comparisons:

- Do nothing at all (how bad is the "worst" epidemic?)
- Naïve Worst-Case planning: prepare for the data realization that is most expensive in the "do nothing" case

イロト 不得 ト イヨト イヨト ニヨー

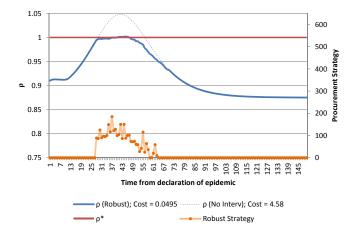

Comparisons:

- Do nothing at all (how bad is the "worst" epidemic?)
- Naïve Worst-Case planning: prepare for the data realization that is most expensive in the "do nothing" case
- The robust strategy

Results

No surge staff deployment

Most costly data realization: $(p_1, p_2, d) = (0.0109, 0.0135, 140)$ Cost: 4.58


ヘロト ヘアト ヘリト・

∃) ∃

Results

Same data realization, but using Robust Strategy

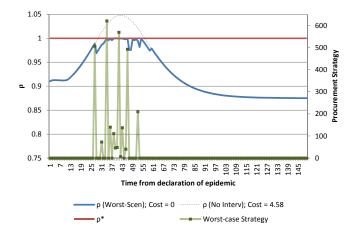
 $(p_1, p_2, d) = (0.0109, 0.0135, 140)$ Cost: 0.0495

Results

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

.. and using Naïve Worst-Case Strategy

 $(p_1, p_2, d) = (0.0109, 0.0135, 140),$

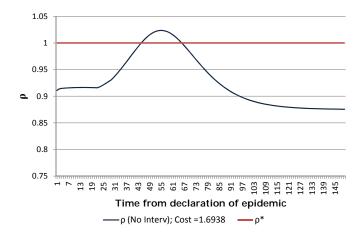

イロト 不得下 不足下 不足下

3

Results

.. and using Naïve Worst-Case Strategy

 $(p_1, p_2, d) = (0.0109, 0.0135, 140), \text{ Cost: } 0$

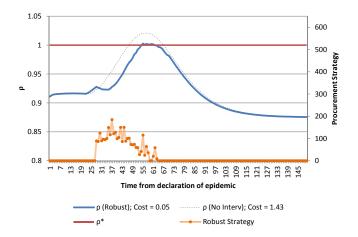


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Worst scenario, when played against the robust strategy: $(p_1, p_2, d) = (0.01168, 0.0135, 140)$

Worst scenario, when played against the robust strategy: $(p_1, p_2, d) = (0.01168, 0.0135, 140)$

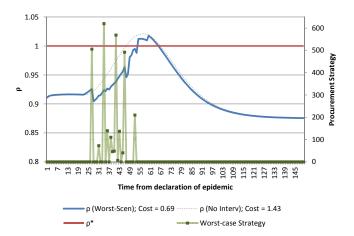
Using this data realization, "do nothing" cost: 1.69


Model

ヘロト ヘアト ヘリト・

∃) ∃

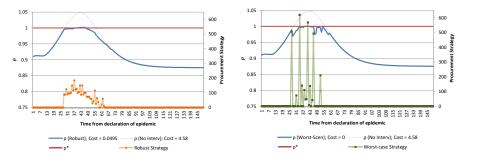
Same data: $(p_1, p_2, d) = (0.01168, 0.0135, 140)$


... against the Robust Strategy, Cost: 0.05

イロト 不得下 イヨト イヨト

ъ

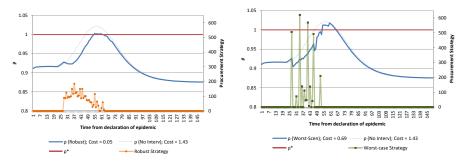
Same data: $(p_1, p_2, d) = (0.01168, 0.0135, 140)$... against "Naïve Worst-Case" Strategy Cost: 0.69



イロト イポト イヨト イ

∃) ∃

Example - Comparing strategies


Scenario I

A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Example - Comparing strategies

Scenario II

<□> <@> < E> < E> E のへぐ

Example - Comparing strategies

		No Intervention	Robust Strategy	Worst-Case Strategy
No intervention:	Cost	4.581	0.050	0.000
worst tuple	Maximum p	1.002	1.048	1.000
(0.01092, 0.0135, 140)	Critical days ($\rho > 1$)	28	8	0
Robust Strategy:	Cost	1.694	0.052	0.686
worst tuple	Maximum p	1.024	1.003	1.017
(0.01168, 0.0135, 140)	Critical days (ρ > 1)	21	7	12
Worst-case Strategy:	Cost	1.430	0.050	0.710
worst tuple	Maximum p	1.021	1.002	1.018
(0.01172, 0.0135, 140)	Critical days ($\rho > 1$)	20	8	13

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Example - Comparing strategies

Take-away: Planning against most expensive scenario is **not** enough!

		No Intervention	Robust Strategy	Worst-Case Strategy
No intervention:	Cost	4.581	0.050	0.000
worst tuple	Maximum p	1.002	1.048	1.000
(0.01092, 0.0135, 140)	Critical days ($\rho > 1$)	28	8	0
Robust Strategy:	Cost	1.694	0.052	0.686
worst tuple	Maximum p	1.024	1.003	1.017
(0.01168, 0.0135, 140)	Critical days (ρ > 1)	21	7	12
Worst-case Strategy:	Cost	1.430	0.050	0.710
worst tuple	Maximum p	1.021	1.002	1.018
(0.01172, 0.0135, 140)	Critical days (ρ > 1)	20	8	13

Example - Out-of-sample Analysis

- Uncertainty set
 - $P = [0.01, 0.012] \times [0.0125, 0.0135]$
 - *p* can change in days {140, ..., 160}

Example - Out-of-sample Analysis

- Uncertainty set
 - $P = [0.01, 0.012] \times [0.0125, 0.0135]$
 - *p* can change in days {140, ..., 160}

Example - Out-of-sample Analysis

Uncertainty set

- $P = [0.01, 0.012] \times [0.0125, 0.0135]$
- *p* can change in days {140, ..., 160}
- Worst case: $(p_1, p_2, d) = (0.01168, 0.0135, 140)$

	Worst case given Robust Policy								
Scenarios	Original	Hypothetical 1				Hypothetical 2			
p_1	0.01168	0.01168				0.01168			
p_2	0.0135	0.014				0.015			
day epidemic is declared	113	113			113				
day deployment starts	140	140				14	40		
day p changes	140	150 155 160 165-			150	155	160	165	
cost Robust Policy	0.0508	0.3268	0.07295	0	0	2.1737	1.4068	0.6282	0.0294
cost No Intervention	4.58	1.609	0.762	0.087	0	4.133	2.669	1.243	0.146

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Example - Numeric Performance

- 350 days
- max-cost tuple : grid search
- VBA (UI) + C (SEIR) + AMPL (Gurobi solver)

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Example - Numeric Performance

- 350 days
- max-cost tuple : grid search
- VBA (UI) + C (SEIR) + AMPL (Gurobi solver)
- ullet \sim 175 iterations
- 5% duality gap
- m ullet $\sim 15 min$ CPU time

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Example - Numeric Performance

- 350 days
- max-cost tuple : grid search
- VBA (UI) + C (SEIR) + AMPL (Gurobi solver)

Enhancement:

- 8 pre-Benders' iterations + 1 Benders' cut
- Duality gap 0.0052%
- < 1 min CPU time