
Motivation Model Robust Optimization Results

Robust Models of Epidemics, and Emergency

Resource Allocation

Daniel Bienstock, joint with A. Cecilia Zenteno

Columbia University

USC Epstein, February 2013

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

Motivation

Virus mutates continuously → epidemic

How to combat its impact?

Mortality and morbidity →
Public health interventions:

Vaccine and antivirals

Non-pharmaceutical interventions

Workforce absenteeism
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Motivation

Objective: Counteract impact of epidemic-related

absenteeism on operation of critical infrastructure

Energy plants

Water plants

Supply chains

Hospitals and clinics
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Motivation Model Robust Optimization Results

What to do?

Comparative 
analysis 

of national pandemic influenza 
preparedness plans

JANUARY 2011

WHO, CDC, HHS - preparedness

recommendations

Absenteeism → surge staff

Volunteer networks and DB

Students (health services)

Recent retirees

Planning horizon

- fully preplanned

When and how many?
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Agenda

1 Disease Modeling1. Disease Modeling

2 Hiring Restrictions2. Hiring Restrictions 
& Implementation

3. System Utilization 
Measure
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Motivation Model Robust Optimization Results

1. A model for influenza

SEIR model

Deterministic
Spread of the disease in large populations

Individuals → compartments

S Susceptible

E Exposed or latent

I Infectious

R Removed

λ avg contacts
β P{contact I}

= I/N

p P{contagion}
µE Incubation rate
µRR Removal rate

?>=<89:;S

λβp
** ?>=<89:;E

µE
))?>=<89:;I

µRR
** ?>=<89:;R
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Motivation Model Robust Optimization Results

Workers

Keep track of absenteeism → separate accounting of workers.

GFED@ABCS1

λ1βp
++ GFED@ABCE1

µE1
**GFED@ABCI1

µRR1
++ GFED@ABCR1 → General population

GFED@ABCS2

λ2βp
++ GFED@ABCE2

µE2
**GFED@ABCI2

µRR2
++ GFED@ABCR2 → Workers

β =
λ1I

1 + λ2I
2

λ1N1 + λ2N2
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Motivation Model Robust Optimization Results

Discrete time SEIR model

Model for subgroup j transition t → t + 1:

S j
t+1 = S j

te
−λj∗βt∗p

E j
t+1 = E j

t e
−µEj + S j

t (1− e−λj∗βt∗p)

I j
t+1 = I j

t e
−µRRj + E j

t (1− e
−µEj )

R j
t+1 = R j

t + I j
t (1− e

−µRRj ).

[LJS Allen et al, 1991; Larson, 2007]
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Motivation Model Robust Optimization Results

Non-homogeneous contact

It is likely that social contacts will change during epidemic

↑ Severity ⇒ Average # contacts ↓

λj
t = Λj S j

t + E j
t + R j

t

N j
t

[LJS Allen et al, 1991]
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Motivation Model Robust Optimization Results

An inconvenient fact

SEIR models → uncertain many parameters

New mutation - at best, noisy estimations

Incubation and recovery rates (µE , µRR) are “easy”

Contagion rate λβp ?

Focus uncertainty on probability of contagion p

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

An inconvenient fact

SEIR models → uncertain many parameters

New mutation - at best, noisy estimations

Incubation and recovery rates (µE , µRR) are “easy”

Contagion rate λβp ?

Focus uncertainty on probability of contagion p

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

An inconvenient fact

SEIR models → uncertain many parameters

New mutation - at best, noisy estimations

Incubation and recovery rates (µE , µRR) are “easy”

Contagion rate λβp ?

Focus uncertainty on probability of contagion p

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

An inconvenient fact

SEIR models → uncertain many parameters

New mutation - at best, noisy estimations

Incubation and recovery rates (µE , µRR) are “easy”

Contagion rate λβp ?

Focus uncertainty on probability of contagion p

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

An inconvenient fact

SEIR models → uncertain many parameters

New mutation - at best, noisy estimations

Incubation and recovery rates (µE , µRR) are “easy”

Contagion rate λβp ?

Focus uncertainty on probability of contagion p

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

Planning under uncertainty

Leave SEIR parameters fixed, except probability of contagion, p.
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Motivation Model Robust Optimization Results

2. Implementing a strategy

Bringing in surge staff - restrictions

Limited availability

Quantity

Time

Can also get sick

When is the surge strategy rolled out?
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Motivation Model Robust Optimization Results

When does the surge commence?

Epidemic declared when growth rate of infectious > threshold

Assumption: Deploy strategy only after epidemic is declared

Assumption: Epidemic is correctly declared
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Motivation Model Robust Optimization Results

A technical detail

Epidemics with different “p” declared at different times
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Motivation Model Robust Optimization Results

3. Quantifying the impact - Utilization measures

Total “social” cost: sum of per day costs
Two specific settings:

Min workforce level to operate
m - threshold

z t

1

m N 1 % av. workforce at t

Queueing theory
System utilization ρt

Cost =
∑

t

zt

Cost =
∑

t

eK(ρt−1)+ − 1
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Total “social” cost: sum of per day costs
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Min workforce level to operate
m - threshold

z t

1

m N 1 % av. workforce at t

Queueing theory
System utilization ρt

co
st
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Motivation Model Robust Optimization Results

F First Optimization Model

Assumption: Size of surge staff corps is small relative to

population; so staff deployment does not alter epidemic

Key modeling variables:

∀ time periods t ′ > t, the quantities of surge staff that

are first deployed at time t, and

are susceptible, or exposed, or infected at time t ′
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Motivation Model Robust Optimization Results

F First Optimization Model

V (h|p) := impact of epidemic under strategy h, given prob of

contagion p

Robust Optimization Problem

V ∗ = min
h∈H

max
p∈P

V (h|p)

Objective: Strategy resilient against all scenarios

H ← set of feasible surge strategies
P ← uncertainty set
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Motivation Model Robust Optimization Results

Some formulation details

at time t, variable at = total number of available staff

= original staff, non-infective at time t (known from SEIR model)

+ surge staff, non-infective at time t

use SEIR equations to keep track of the latter: linear for fixed p
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Motivation Model Robust Optimization Results

Discrete time SEIR model applied to surge staff

For each given time t ′, track of condition of staff deployed at t ′:

ht′ : quantity deployed at t ′

ss
t,t′ : quantity deployed at t ′ and susceptible at t,

es
t,t′ : quantity deployed at t ′ and exposed at t,

ss
t′,t′ = ht′

and for all t ′ ≤ t < t ′ + K ,

ss
t+1,t′ = ss

t,t′e
−λs∗βt∗p

es
t+1,t′ = es

t,t′e
−µs + ss

t,t′(1− e−λj∗βt∗p)
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Motivation Model Robust Optimization Results

Example:

f (z) = piecewise-linear increasing function of z

we pay for shortage of staff below threshold θt

So cost = κt = f ((θt − at)+)

So: constraint: Γt ≥ θt − at , variable Γt ≥ 0,

and constraint: κt ≥ siΓt + bi , for 1 ≤ i ≤ It (si ≥ 0 for all i)
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Motivation Model Robust Optimization Results

F Summary: First Optimization model

V (h|p) :

(given p) can be formulated as an LP

p fixed → we know trajectory of epidemic

SEIR equations linear for fixed p

So constraints that keep track of available staff and cost are linear

V (h|p) := min cT x

s.t. Apx = h (SEIR eqs)

Cpx ≥ dp (piecewise-linear approx)

x ≥ 0, x ∈ H

x ← groups SE (IR) + objective function aux. variables
H ← set of feasible strategies

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

F Summary: First Optimization model

V (h|p) : (given p) can be formulated as an LP

p fixed → we know trajectory of epidemic

SEIR equations linear for fixed p

So constraints that keep track of available staff and cost are linear

V (h|p) := min cT x

s.t. Apx = h (SEIR eqs)

Cpx ≥ dp (piecewise-linear approx)

x ≥ 0, x ∈ H

x ← groups SE (IR) + objective function aux. variables
H ← set of feasible strategies

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

F Summary: First Optimization model

V (h|p) : (given p) can be formulated as an LP

p fixed → we know trajectory of epidemic

SEIR equations linear for fixed p

So constraints that keep track of available staff and cost are linear

V (h|p) := min cT x

s.t. Apx = h (SEIR eqs)

Cpx ≥ dp (piecewise-linear approx)

x ≥ 0, x ∈ H

x ← groups SE (IR) + objective function aux. variables
H ← set of feasible strategies

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

F Summary: First Optimization model

V (h|p) : (given p) can be formulated as an LP

p fixed → we know trajectory of epidemic

SEIR equations linear for fixed p

So constraints that keep track of available staff and cost are linear

V (h|p) := min cT x

s.t. Apx = h (SEIR eqs)

Cpx ≥ dp (piecewise-linear approx)

x ≥ 0, x ∈ H

x ← groups SE (IR) + objective function aux. variables
H ← set of feasible strategies

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

F Summary: First Optimization model

V (h|p) : (given p) can be formulated as an LP

p fixed → we know trajectory of epidemic

SEIR equations linear for fixed p

So constraints that keep track of available staff and cost are linear

V (h|p) := min cT x

s.t. Apx = h (SEIR eqs)

Cpx ≥ dp (piecewise-linear approx)

x ≥ 0, x ∈ H

x ← groups SE (IR) + objective function aux. variables
H ← set of feasible strategies

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

F Summary: First Optimization model

V (h|p) : (given p) can be formulated as an LP

p fixed → we know trajectory of epidemic

SEIR equations linear for fixed p

So constraints that keep track of available staff and cost are linear

V (h|p) := min cT x

s.t. Apx = h (SEIR eqs)

Cpx ≥ dp (piecewise-linear approx)

x ≥ 0, x ∈ H

x ← groups SE (IR) + objective function aux. variables
H ← set of feasible strategies

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

F Summary: First Optimization model

V (h|p) : (given p) can be formulated as an LP

p fixed → we know trajectory of epidemic

SEIR equations linear for fixed p

So constraints that keep track of available staff and cost are linear

V (h|p) := min cT x

s.t. Apx = h (SEIR eqs)

Cpx ≥ dp (piecewise-linear approx)

x ≥ 0, x ∈ H

x ← groups SE (IR) + objective function aux. variables
H ← set of feasible strategies

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

Solving the problem

Our problem:
V ∗ = min

h∈H
max
p∈P

V (h|p)

(An infinite LP.) How to solve?

(Today) Approximate model: use finite Q ⊂ P

V ∗≈ min cT x

s.t. Apx = h, ∀p ∈ Q

Cpx ≥ dp, ∀p ∈ Q

h ∈ H

x ≥ 0

Example: P = [0.01, 0.013],
Q = subset of P at integral multiples of 0.0001
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Motivation Model Robust Optimization Results

Theoretical justification

Suppose we know that p ≥ p0 > 0.

For each epsilon > 0 small enough there is a δ = O(ε) s.t.:

If |p− p′| < δ then V(h|p′) ≤ (1 + ε)V(h|p) for any h
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Motivation Model Robust Optimization Results

Benders’ Decomposition

Generalized Benders’ Decomposition

Idea: replace V (h|p) by cuts obtained from the dual

Approximation

V ∗ ≈ min
h∈H

max
p∈P

V (h|p)

= min
z,h∈H

z

s.t. z ≥ αT
p h + πT

p dp, (dual ∀p ∈ Q)

Q is a relatively small subset of P - so separation problem is fast
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Motivation Model Robust Optimization Results

Basic Algorithm

Iterate:

1 Solve Master Problem; let ĥ be the computed surge and ẑ
be the estimate of its worst-case cost.

2 Sample: compute the worst-case data realization for ĥ.

3 If the cost of ĥ under this resolution is at most ẑ, STOP.

4 Otherwise, add to the master a duality cut violated by ĥ, ẑ,
and goto 1.

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

Algorithmic enhancements

“Powers of two” approximation to finite grid

“Pre-Benders”’ cuts
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Motivation Model Robust Optimization Results

Alternative Optimization Problem 1

Intervals or tranches I1, . . . I1 of [0, 1]; a time period J

At time = 1, it is known that p ∈ I1.

At time J there is a switch. For t ≥ J, p ∈ Ih (known at t = J)

Decision maker:

Rolls out a surge at t = 1 that covers periods 1 ≤ t < J,

At t = 1 announces m surge plans to cover periods J ≤ t ≤ T

At time = J, switches to one of the announced plans
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Motivation Model Robust Optimization Results

Alternative Optimization Problem 2

There is a known interval I such that pt ∈ I for all t J

At time = t, pt = µ+ δt , and is observed

Here µ = midpoint of I , and δt = zero mean stochastic, small

Decision maker:

At time 1, announces “expected” surge quantities ht for all t, and a
multiplier λ ≥ 0

At time t, corrects ht by λ
P

j<t(pt−µ)

t

(up to a maximum allowable)
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Motivation Model Robust Optimization Results

More general uncertainty sets

Flexible algorithm - more general uncertainty sets

Sudden weather changes [Lowen et al, 2007]

Public Health measures could change course of epidemic

Analyze the impact of multiple values of p during 1 epidemic

Daily cumulative incidence
Flu epidemic ‐ San Francisco
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Motivation Model Robust Optimization Results

Numerical example

Demography

General Population High Risk Population

Size 900,000 20,000

Initial infected 5 0

Contact rates (per day) 30 35

Incubation rate (µE) 10/19 10/19

Removal rate (µR) 10/41 10/41

Survival prob (f) 1 1

Uncertainty set
P = [0.01, 0.012]× [0.0125, 0.0135]
p can change in days {140, ..., 160}

Pool of surge staff
Up to 3,000 staff
Stay up to 1 week

Social Contact Model
Non-homogeneous contact
Contact rate decreases 30% when epidemic is declared
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Motivation Model Robust Optimization Results

Comparisons:

Do nothing at all (how bad is the “worst” epidemic?)

Näıve Worst-Case planning: prepare for the data realization
that is most expensive in the “do nothing” case

The robust strategy
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Motivation Model Robust Optimization Results

No surge staff deployment

Most costly data realization: (p1, p2, d) = (0.0109, 0.0135, 140)
Cost: 4.58
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Motivation Model Robust Optimization Results

Same data realization, but using Robust Strategy

(p1, p2, d) = (0.0109, 0.0135, 140)
Cost: 0.0495

100

200

300

400

500

600

0.8

0.85

0.9

0.95

1

1.05

P
ro
cu
re
m
e
n
t 
St
ra
te
gy

ρ

0

100

0.75

0.8

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

Time from declaration of epidemic

ρ (Robust); Cost = 0.0495 ρ (No Interv); Cost = 4.58

ρ* Robust Strategy

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

.. and using Näıve Worst-Case Strategy

(p1, p2, d) = (0.0109, 0.0135, 140),

Cost: 0
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Worst scenario, when played against the robust strategy:
(p1, p2, d) = (0.01168, 0.0135, 140)

Using this data realization, “do nothing” cost: 1.69

0.85

0.9

0.95

1

1.05

ρ

0.75

0.8

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

Time from declaration of epidemic

ρ (No Interv); Cost =1.6938 ρ*

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

Worst scenario, when played against the robust strategy:
(p1, p2, d) = (0.01168, 0.0135, 140)

Using this data realization, “do nothing” cost: 1.69

0.85

0.9

0.95

1

1.05

ρ

0.75

0.8

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

Time from declaration of epidemic

ρ (No Interv); Cost =1.6938 ρ*

Bienstock, Zenteno | Robust Models of Epidemics | USC, 2013



Motivation Model Robust Optimization Results

Same data: (p1, p2, d) = (0.01168, 0.0135, 140)

... against the Robust Strategy, Cost: 0.05
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Same data: (p1, p2, d) = (0.01168, 0.0135, 140)
... against “Näıve Worst-Case” Strategy
Cost: 0.69
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Example - Comparing strategies

Scenario I
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Motivation Model Robust Optimization Results

Example - Comparing strategies

Scenario II
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Motivation Model Robust Optimization Results

Example - Comparing strategies

Take-away: Planning against most expensive scenario is not

enough!

No Intervention
Robust 

Strategy

Worst‐Case 

Strategy

No intervention: Cost 4.581 0.050 0.000

worst tuple Maximum ρ 1.002 1.048 1.000

(0.01092, 0.0135, 140) Critical days ( ρ > 1) 28 8 0

Robust Strategy: Cost 1.694 0.052 0.686

worst tuple Maximum ρ 1.024 1.003 1.017

(0.01168, 0.0135, 140) Critical days ( ρ > 1) 21 7 12

Worst‐case Strategy: Cost 1.430 0.050 0.710

worst tuple Maximum ρ 1.021 1.002 1.018

(0.01172, 0.0135, 140) Critical days ( ρ > 1) 20 8 13
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enough!
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worst tuple Maximum ρ 1.002 1.048 1.000

(0.01092, 0.0135, 140) Critical days ( ρ > 1) 28 8 0

Robust Strategy: Cost 1.694 0.052 0.686

worst tuple Maximum ρ 1.024 1.003 1.017

(0.01168, 0.0135, 140) Critical days ( ρ > 1) 21 7 12

Worst‐case Strategy: Cost 1.430 0.050 0.710
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Motivation Model Robust Optimization Results

Example - Out-of-sample Analysis

Uncertainty set

P = [0.01, 0.012]× [0.0125, 0.0135]

p can change in days {140, ..., 160}

Worst case:(p1, p2, d) = (0.01168, 0.0135, 140)

p changes

time

epidemic
declared

surge staff 
comes in
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Motivation Model Robust Optimization Results

Example - Out-of-sample Analysis

Uncertainty set

P = [0.01, 0.012]× [0.0125, 0.0135]

p can change in days {140, ..., 160}

Worst case:(p1, p2, d) = (0.01168, 0.0135, 140)

Scenarios Original 
p_1 0.01168
p_2 0.0135

day epidemic is declared 113
day deployment starts 140

day p changes 140 150 155 160 165‐ 150 155 160 165

cost Robust Policy 0.0508 0.3268 0.07295 0 0 2.1737 1.4068 0.6282 0.0294
cost No Intervention 4.58 1.609 0.762 0.087 0 4.133 2.669 1.243 0.146

Worst case given Robust Policy
Hypothetical 1 Hypothetical 2

0.01168 0.01168
0.014 0.015
113 113
140 140
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Motivation Model Robust Optimization Results

Example - Numeric Performance

350 days

max-cost tuple : grid search

VBA (UI) + C (SEIR) + AMPL (Gurobi solver)
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Motivation Model Robust Optimization Results

Example - Numeric Performance

350 days

max-cost tuple : grid search

VBA (UI) + C (SEIR) + AMPL (Gurobi solver)

∼ 175 iterations

5% duality gap

∼ 15min CPU time
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Motivation Model Robust Optimization Results

Example - Numeric Performance

350 days

max-cost tuple : grid search

VBA (UI) + C (SEIR) + AMPL (Gurobi solver)

Enhancement:

8 pre-Benders’ iterations + 1 Benders’ cut

Duality gap 0.0052%

< 1 min CPU time
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