
Solving QCQPs

Daniel Bienstock, Columbia University

Quadratically constrained, quadratic programming:

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,

fi(x) = xTMix + cTi x + di

is a general quadratic

Each Mi is n× n, wlog symmetric

Folklore result: QCQP is NP-hard

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

Take any {−1, 1}-linear program

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.

→

min cTx − M
∑
j

x2
j

s.t. Ax = b

−1 ≤ xj ≤ 1, 1 ≤ j ≤ n.

(and many other similar transformations)

Observation

Any instance of bounded-variable QCQP

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

x ∈ Rn, 0 ≤ xj ≤ 1 ∀j
with a fixed number of distinct bilinear terms can be solved in polynomial
time.

Observation

Any instance of bounded-variable QCQP

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

x ∈ Rn, 0 ≤ xj ≤ 1 ∀j
with a fixed number of distinct bilinear terms can be solved in polynomial
time.

0 ≤ xi ≤ 1 ⇒ xi ≈
∑N

k=1 2−kyik, yi ∈ {0, 1}N (Glover, 1970s)

Observation

Any instance of bounded-variable QCQP

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

x ∈ Rn, 0 ≤ xj ≤ 1 ∀j
with a fixed number of distinct bilinear terms can be solved in polynomial
time.

0 ≤ xi ≤ 1 ⇒ xi ≈
∑N

k=1 2−kyik, yik ∈ {0, 1}N (Glover, 1970s)

xixj =

N∑
k=1

2−kwijk + O(2−N)

xj − 1 + yik ≤ wijk ≤ xj
0 ≤ wijk ≤ yik

Even more general

Solving systems of polynomial equations:

Problem: given polynomials pi : Rn → R, for 1 ≤ i ≤ m
find x ∈ Rn s.t. pi(x) = 0, ∀ i

Even more general

Solving systems of polynomial equations:

Problem: given polynomials pi : Rn → R, for 1 ≤ i ≤ m
find x ∈ Rn s.t. pi(x) = 0, ∀ i

Example: find a root for 3v6w − v4 + 7 = 0.

Even more general

Solving systems of polynomial equations:

Problem: given polynomials pi : Rn → R, for 1 ≤ i ≤ m
find x ∈ Rn s.t. pi(x) = 0, ∀ i

Example: find a root for 3v6w − v4 + 7 = 0.

Equivalent to the system on variables v, v2, v4, v6, w, y and c:

c2 = 1

v2 − cv2 = 0

v22 − cv4 = 0

v2v4 − cv6 = 0

v6w − cy = 0

3cy − cv4 = −7

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns
be found approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Approximately?

• On the average?

• Uniform algorithm?

“Approximately”

“Approximately”

Q: How do practitioners and other lesser folk solve systems of nonlinear
equations?

“Approximately”

Q: How do practitioners and other lesser folk solve systems of nonlinear
equations?

A: Newton-Raphson, of course!

12

→ If we start near a solution, quadratic convergence

“Approximately”

Q: How do practitioners and other lesser folk solve systems of nonlinear
equations?

A: Newton-Raphson, of course!

12

→ If we start near a solution, quadratic convergence

“Approximate” solution to a system of polynomials:

a point in the region of quadratic convergence (to a solution)

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Approximately?

•On the average?

• Uniform algorithm?

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

• Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

• Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

• In that space, uniformly sample a ball (of appropriate radius) around a
given problem

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

• Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

• In that space, consider the set of problems given by a ball (of appropriate
radius) around a given problem

•We want the algorithm to run in polynomial time, on average, in that ball

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Approximately?

• On the average?

•Uniform algorithm? When is an algorithm non-uniform?

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Approximately?

• On the average?

•Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)

First version: A non-uniform algorithm specifies the existence of an algo-
rithm for each input size.

As such, we cannot write a “program” that implements the algorithm.

It is more a proof of existence of an algorithm for each input size.

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Approximately?

• On the average?

•Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)
Bürgisser, Cucker (2012)

Second version: A uniform algorithm

• allows operations over real numbers

• at unit cost per operation

• with infinite precision

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Approximately?

• On the average?

•Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)
Bürgisser, Cucker (2012)

Second version: A uniform algorithm

• allows operations over real numbers

• at unit cost per operation

• with infinite precision

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Approximately?

• On the average?

•Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)
Bürgisser, Cucker (2012)

Second version: A uniform algorithm

• allows operations over real numbers

• at unit cost per operation

• with infinite precision

•Not! the usual bit-model of computation

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Beltrán and Pardo (2009) – a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

• Bürgisser, Cucker (2012) – a deterministic O(nlog log n) (uniform) algo-
rithm for computing approximate zeros

• Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Beltrán and Pardo (2009) – a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

• Bürgisser, Cucker (2012) – a deterministic O(nlog log n) (uniform) algo-
rithm for computing approximate zeros

• Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over Cn, not Rn

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(but we are cheating)

• Beltrán and Pardo (2009) – a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

• Bürgisser, Cucker (2012) – a deterministic O(nlog log n) (uniform) algo-
rithm for computing approximate zeros

• Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over Cn, not Rn

So what can be done over the reals?

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.
→

min cTx − M
∑
j

x2j

s.t. Ax = b

−1 ≤ xj ≤ 1, 1 ≤ j ≤ n.

• Fixed number of linear constraints?

• Fixed number of quadratic constraints?

• Non-convex quadratic constraints?

What can be done in polynomial time?

(B. and Alex Michalka, SODA 2014)

min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,
x ∈ P .

= {x ∈ Rn : Ax ≤ b }
Theorem.
For each fixed |S|, |K| can be solved in polynomial time if either

(1) |S| ≥ 1 and polynomially large number of faces of P intersect⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh},

or

(2) |S| = 0 and the number of rows of A is bounded.

(B. and Alex Michalka, SODA 2014)

min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,
x ∈ P .

= {x ∈ Rn : Ax ≤ b }
Theorem.
For each fixed |S|, |K| can be solved in polynomial time if either

(1) |S| ≥ 1 and polynomially large number of faces of P intersecting⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh},

or

(2) |S| = 0 and the number of rows of A is bounded.

Strengthens previous results on the S-Lemma, and trust-region subproblem

The trust-region subproblem:.

min xTQx + cTx

s.t. ‖x− µ‖ ≤ r

The trust-region subproblem:.

min xTQx + cTx

s.t. ‖x− µ‖ ≤ r

Generalization: CDT (Celis-Dennis-Tapia) problem

min xTQ0x + cT0 x

s.t. xTQ1x + cT1 x + d1 ≤ 0

xTQ2x + cT2 x + d2 ≤ 0

where Q1 � 0, Q2 � 0

Even more general than QCQPs

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

where the Mi are general matrices.

Even more general than QCQPs

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

where the Mi are general matrices.

•Non-constructive. Algorithm says “yes” or “no.”

•Computational model? Uniform algorithm? “Real-RAM”?

A (better?) alternative: ε-feasibility

For each fixed p ≥ 1, given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Prove that the system is infeasible, or

•Output x̂ ∈ Rn with

−ε ≤ xTMi ≤ ε, 1 ≤ i ≤ p,

1− ε ≤ ‖x̂‖ ≤ 1 + ε,

in time polynomial in the data and in log ε−1.

A (better?) alternative: ε-feasibility

For each fixed p ≥ 1, given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Prove that the system is infeasible, or

•Output x̂ ∈ Rn with

−ε ≤ xTMi ≤ ε, 1 ≤ i ≤ p,

1− ε ≤ ‖x̂‖ ≤ 1 + ε,

in time polynomial in the data and in log ε−1.

Two issues: Constructiveness, and ε-feasibility

Modification to Barvinok’s result

Assume that for each fixed p ≥ 1, there is an algorithm that given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Proves that the system is infeasible, or

• Proves that is ε-feasible,

in time polynomial in the data and in log ε−1.

(so still nonconstructive)

Modification to Barvinok’s result

Assume that for each fixed p ≥ 1, there is an algorithm that given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Proves that the system is infeasible, or

• Proves that is ε-feasible,

in time polynomial in the data and in log ε−1.

(so still nonconstructive)

Assuming such an algorithm exists ...

How about systems of quadratic inequalities?

fi(x) ≤ 0 1 ≤ i ≤ m (*)

How about systems of quadratic inequalities?

fi(x) ≤ 0 1 ≤ i ≤ m (*)

Theorem (cheat)

If at least one fi is positive-definite, for each fixed m there is a polynomial
time to decide feasibility.

How about systems of quadratic inequalities?

fi(x) ≤ 0 1 ≤ i ≤ m (*)

Theorem (cheat)

If at least one fi is positive-definite, for each fixed m there is a polynomial
time to decide feasibility.

Assume f1(x) = ‖x‖2 − 1.

How about systems of quadratic inequalities?

fi(x) ≤ 0 1 ≤ i ≤ m (*)

Theorem (cheat)

If at least one fi is positive-definite, for each fixed m there is a polynomial
time to decide feasibility.

Assume f1(x) = ‖x‖2− 1. And otherwise write fi(x) = xTAix+ cTi x+ di.

How about systems of quadratic inequalities?

fi(x) ≤ 0 1 ≤ i ≤ m (*)

Theorem (cheat)

If at least one fi is positive-definite, for each fixed m there is a polynomial
time to decide feasibility.

Assume f1(x) = ‖x‖2− 1. And otherwise write fi(x) = xTAix+ cTi x+ di.

And assume |fi(x)| ≤ Ui over ‖x‖ ≤ 1, i = 2, . . . ,m.

How about systems of quadratic inequalities?

fi(x) ≤ 0 1 ≤ i ≤ m (*)

Theorem (cheat)

If at least one fi is positive-definite, for each fixed m there is a polynomial
time to decide feasibility.

Assume f1(x) = ‖x‖2− 1. And otherwise write fi(x) = xTAix+ cTi x+ di.

And assume |fi(x)| ≤ Ui over ‖x‖ ≤ 1, i = 2, . . . ,m.

Consider the system on variables x ∈ Rn, v0 ∈ R, w ∈ Rn, s ∈ Rn:

‖x‖2 − v20 + s21 = 0, (1a)

xTAix + cTi v0x + div
2
0 + s2i = 0 2 ≤ i ≤ m, (1b)

s2i + w2
i

Ui
− v20 = 0 2 ≤ i ≤ m, (1c)

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
+ v20 = m + 1. (1d)

Claim: System (1) is feasible iff (*) is feasible

Consider a solution to:

‖x‖2 − v20 + s21 = 0, (1)

for 2 ≤ i ≤ m:
s2i + w2

i

Ui
− v20 = 0, (2)

xTAix + cTi v0x + div
2
0 + s2i = 0, (3)

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
+ v20 = m + 1. (4)

Consider a solution to:

‖x‖2 − v20 + s21 = 0, (1)

for 2 ≤ i ≤ m:
s2i + w2

i

Ui
− v20 = 0, (2)

xTAix + cTi v0x + div
2
0 + s2i = 0, (3)

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
+ v20 = m + 1. (4)

Adding (1) and (2) yields

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
= mv20.

Consider a solution to:

‖x‖2 − v20 + s21 = 0, (1)

for 2 ≤ i ≤ m:
s2i + w2

i

Ui
− v20 = 0, (2)

xTAix + cTi v0x + div
2
0 + s2i = 0, (3)

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
+ v20 = m + 1. (4)

Adding (1) and (2) yields

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
= mv20.

and so by (4)
(m + 1)v20 = (m + 1)

Consider a solution to:

‖x‖2 − v20 + s21 = 0, (1)

for 2 ≤ i ≤ m:
s2i + w2

i

Ui
− v20 = 0, (2)

xTAix + cTi v0x + div
2
0 + s2i = 0, (3)

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
+ v20 = m + 1. (4)

Adding (1) and (2) yields

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
= mv20.

and so
(m + 1)v20 = (m + 1)

and so by (4)
v20 = 1,

Consider a solution to:

‖x‖2 − v20 + s21 = 0, (1)

for 2 ≤ i ≤ m:
s2i + w2

i

Ui
− v20 = 0, (2)

xTAix + cTi v0x + div
2
0 + s2i = 0, (3)

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
+ v20 = m + 1. (4)

Adding (1) and (2) yields

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
= mv20.

and so
(m + 1)v20 = (m + 1)

and so by (4)
v20 = 1,

and so

‖x‖2 − 1 ≤ 0,

xTAix + cTi v0x + di ≤ 0 2 ≤ i ≤ m,

which is what we wanted.

Theorem (abridged) System

‖x‖2 − 1 ≤ 0,

xTAix + cTi v0x + di ≤ 0 2 ≤ i ≤ m,

is ε- feasible iff system

‖x‖2 − v20 + s21 = 0, (1)

for 2 ≤ i ≤ m:
s2i + w2

i

Ui
− v20 = 0, (2)

xTAix + cTi v0x + div
2
0 + s2i = 0, (3)

‖x‖2 + s21 +

n∑
i=2

s2i + w2
i

Ui
+ v20 = m + 1. (4)

is O(mε)-feasible, and viceversa.

Optimization .

F ∗
.
= min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m.

All fi quadratic, at least one positive definite.

Optimization .

F ∗
.
= min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

All fi quadratic, at least one positive definite.

Binary search, → a sequence of feasibility problems:

f0(x) ≤ B

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m.

Optimization .

F ∗
.
= min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

All fi quadratic, at least one positive definite.

Binary search, → a sequence of feasibility problems:

f0(x) ≤ B

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m.

Theorem. In time polynomial in the problem size and log ε−1 we can
compute a value F̂ such that

F̂ ≤ F ∗ ≤ F̂ .

Obtaining explicit solutions

fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

(each fi a quadratic)

Obtaining explicit solutions

fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

(each fi a quadratic)

Algorithm:

→ For 1 ≤ j ≤ n compute*

Mj
.
= max |xj|

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

in polynomial time (fixed m)

Obtaining explicit solutions

fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

(each fi a quadratic)

Algorithm:

→ For 1 ≤ j ≤ n compute*

Mj
.
= max |xj|

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

in polynomial time (fixed m)

Assume wlog M1 = max{Mj}.

Obtaining explicit solutions

fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

(each fi a quadratic)

Algorithm:

→ For 1 ≤ j ≤ n compute*

Mj
.
= max |xj|

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

in polynomial time (fixed m)

Assume wlog M1 = max{Mj}. M1 is “big”

Obtaining explicit solutions

fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

(each fi a quadratic)

Algorithm:

→ For 1 ≤ j ≤ n compute*

Mj
.
= max |xj|

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

in polynomial time (fixed m)

Assume wlog M1 = max{Mj}. M1 is “big”, i.e. M1 ≥ n−1/2.

Obtaining explicit solutions

fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

(each fi a quadratic)

Algorithm:

→ For 1 ≤ j ≤ n compute*

Mj
.
= max |xj|

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

in polynomial time (fixed m)

Assume wlog M1 = max{Mj}. M1 is “big”, i.e. M1 ≥ n−1/2.

→ Fix x1 = ±M1

Inductive step

We have fixed

x1 = x̂1

x2 = x̂2

. . .

xk = x̂k

Inductive step

We have fixed

x1 = x̂1, x2 = x̂2, . . . xk = x̂k.

If
k∑
j=1

x̂k = 1,

STOP

Inductive step

We have fixed

x1 = x̂1, x2 = x̂2, . . . xk = x̂k.

If
k∑
j=1

x̂k = 1,

STOP → For k + 1 ≤ j ≤ n compute*

Mj
.
= max |xj|

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

xi = x̂i, 1 ≤ i ≤ k.

in polynomial time (fixed m)

Inductive step

We have fixed

x1 = x̂1, x2 = x̂2, . . . xk = x̂k.

If
k∑
j=1

x̂k = 1,

STOP → For k + 1 ≤ j ≤ n compute*

Mj
.
= max |xj|

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,

‖x‖2 = 1,

xi = x̂i, 1 ≤ i ≤ k.

in polynomial time (fixed m)

Assume wlog Mk+1 = max{Mj}. Mk+1 is “big”

→ Fix xk+1 = ±Mk+1

Theorem.

For each fixed m ≥ 1 there is a polynomial-time algorithm that, given an
optimization problem

min f0(x)
.
= xTQ0x+ cT0x

s.t. xTQix+ cTi x+ di ≤ 0 1 ≤ i ≤ m,
where Q1 � 0, and 0 < ε < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an ε-feasible vector x̂ such that there exists no feasible
x ∈ Rn with f0(x) < f(x̂)− ε.

The complexity of the algorithm is polynomial in the number of bits in the
data and in log ε−1

An application: the Optimal Power Flow problem (OPF)

Input: an undirected graph G.

• For every vertex k, two variables: ek and fk

• For every edge {k,m}, four (specific) quadratics:

HP
k,m(ek, fk, em, fm), HQ

k,m(ek, fk, em, fm)

HP
m,k(ek, fk, em, fm), HQ

m,k(ek, fk, em, fm).

An application: the Optimal Power Flow problem (OPF)

Input: an undirected graph G.

• For every vertex k, two variables: ek and fk

• For every edge {k,m}, four (specific) quadratics:

HP
k,m(ek, fk, em, fm), HQ

k,m(ek, fk, em, fm)

HP
m,k(ek, fk, em, fm), HQ

m,k(ek, fk, em, fm).

min
∑
k∈G

Fk

 ∑
{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm)


s.t. LPk ≤

∑
{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm) ≤ UP

k ∀k

LQk ≤
∑

{k,m}∈δ(k)

HQ
k,m(ek, fk, em, fm) ≤ UQ

k ∀k

V L
k ≤ ‖(ek, fk)‖ ≤ V U

k ∀k.
Function Fk in the objective: convex quadratic

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general
graphs.

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

min
∑
k∈G

Fk

 ∑
{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm)


s.t. LPk ≤

∑
{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm) ≤ UP

k ∀k

LQk ≤
∑

{k,m}∈δ(k)

HQ
k,m(ek, fk, em, fm) ≤ UQ

k ∀k

V L
k ≤ ‖(ek, fk)‖ ≤ V U

k ∀k.

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

e.g. e1f6 → we1,f6, etc

W
.
= {wi,j}, then W � 0, W of rank 1

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

Reformulation of OPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0, W of rank 1.

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0.

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0.

Fact: The SDP relaxation almost always has a rank-1 solution!!

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0.

Fact: The SDP relaxation frequently has a rank-1 solution!!

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0.

Fact: The SDP relaxation sometimes has a rank-1 solution!!

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0.

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is always very tight!!

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0.

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is frequently rather tight!!

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0.

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is usually good!!

But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...

But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 1: A graph has treewidth ≤ w if it has a chordal supergraph
with clique number ≤ w + 1

But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth ≤ w if it is a subgraph of an
intersection graph of subtrees of a tree, with ≤ w + 1 subtrees overlapping
at any vertex

But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth ≤ w if it is a subgraph of an inter-
section graph of subtrees of a tree, with ≤ w + 1 subtrees overlapping at
any vertex

(Seymour and Robertson, late 1980s)

But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Cholesky factorization of:

A =



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Cholesky factorization of:

1

2

3 4

5

6

7 8

But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Chordal supergraph:

1

2

3 4

5

6

7 8

Pivoting order: 1, 2, 5, 6, 7, 8, 3, 4

But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem gives fast SDP implementations:

Real-life grids with ≈ 3× 103 vertices: → 20 minutes runtime

OPF

Input: an undirected graph G.

• For every vertex k, two variables: ek and fk

• For every edge {k,m}, four (specific) quadratics:

HP
k,m(ek, fk, em, fm), HQ

k,m(ek, fk, em, fm)

HP
m,k(ek, fk, em, fm), HQ

m,k(ek, fk, em, fm).

min
∑
k∈G

Fk

 ∑
{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm)


s.t. LPk ≤

∑
{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm) ≤ UP

k ∀k

LQk ≤
∑

{k,m}∈δ(k)

HQ
k,m(ek, fk, em, fm) ≤ UQ

k ∀k

V L
k ≤ ‖(ek, fk)‖ ≤ V U

k ∀k.
Function Fk in the objective: convex quadratic

Graphical QCQP

Input: an undirected graph G.

• For every vertex k, a set of variables: {xj : j ∈ I(k)}
• For every edge e = {k,m}, a quadratic

He(x) = He ({xj : j ∈ I(k) ∪ I(m)}) .

min
∑
k

Fk

∑
e∈δ(k)

He(x)


s.t.

∑
e∈δ(k)

He(x) ≤ bk ∀k

0 ≤ xj ≤ 1, ∀j

Function Fk in the objective: arbitrary quadratic

Graphical PCPP

Input: an undirected graph G.

• For every vertex k, a set of variables: {xj : j ∈ I(k)}
• For every edge e = {k,m}, a polynomial

Pe(x) = Pe ({xj : j ∈ I(k) ∪ I(m)}) .

min
∑
k

Fk

∑
e∈δ(k)

Pe(x)


s.t.

∑
e∈δ(k)

Pe(x) ≤ bk ∀k

0 ≤ xj ≤ 1, ∀j

Function Fk in the objective: arbitrary polynomial

Graphical BPCPP

Input: an undirected graph G.

• For every vertex k, a set of variables: {xj : j ∈ I(k)}
• For every edge e = {k,m}, a polynomial

Pe(x) = Pe ({xj : j ∈ I(k) ∪ I(m)}) .

min
∑
k

Fk

∑
e∈δ(k)

Pe(x)


s.t.

∑
e∈δ(k)

Pe(x) ≤ bk ∀k

xj ∈ {0, 1}, ∀j

Function Fk in the objective: arbitrary polynomial

BPCPP

min P0(x)

s.t. Pi(x) ≤ bi i = 1, 2, . . . ,m

xj ∈ {0, 1}, ∀j

→ P0, P1, . . . , Pm: polynomials

BPCPP

min P0(x)

s.t. Pi(x) ≤ bi i = 1, 2, . . . ,m

xj ∈ {0, 1}, ∀j
→ the Clique graph has:

• A vertex corresponding to each variable

• An edge {xi, xj} if xi and xj occur in the same row

BPCPP:min P0(x)

s.t. Pi(x) ≤ bi i = 1, 2, . . . ,m

xj ∈ {0, 1}, ∀j

→ the Clique graph has:

• A vertex corresponding to each variable

• An edge {xi, xj} if xi and xj occur in the same row

Theorem:

If the clique graph has treewidth ≤ w, there is an LP with O(2wm)
variables and constraints that solves BPCPP.

BPCPP:min P0(x)

s.t. Pi(x) ≤ bi i = 1, 2, . . . ,m

xj ∈ {0, 1}, ∀j

→ the Clique graph has:

• A vertex corresponding to each variable

• An edge {xi, xj} if xi and xj occur in the same row

Theorem:

If the clique graph has treewidth ≤ w, there is an LP with O(2wm)
variables and constraints that solves BPCPP.

Proof. Lift-and-project techniques.

From GBPCPP to GPCPP

GPCPP: F ∗ .
= min

∑
k

Fk

∑
e∈δ(k)

Pe(x)


s.t.

∑
e∈δ(k)

Pe(x) ≤ bk ∀k

0 ≤ xj ≤ 1, ∀j

From GBPCPP to GPCPP

GPCPP: F ∗ .
= min

∑
k

Fk

∑
e∈δ(k)

Pe(x)


s.t.

∑
e∈δ(k)

Pe(x) ≤ bk ∀k

0 ≤ xj ≤ 1, ∀j

0 ≤ xi ≤ 1 ⇒ xi =
∑N

k=1 2−kyik + O(2−N), yi ∈ {0, 1}N

From GBPCPP to GPCPP

GPCPP: F ∗ .
= min

∑
k

Fk

∑
e∈δ(k)

Pe(x)


s.t.

∑
e∈δ(k)

Pe(x) ≤ bk ∀k

0 ≤ xj ≤ 1, ∀j

0 ≤ xi ≤ 1 ⇒ xi =
∑N

k=1 2−kyik + O(2−N), yi ∈ {0, 1}N

Theorem:

Given an instance of GPCPP with fixed treewidth of the underlying graph,
and 0 < ε < 1, we can find a vector x̂

• in time polynomial in the data and in ε−1,

• s.t. ∀k,
∑

e∈δ(k) Pe(x̂) ≤ bk + Mkε

(Mk = largest coefficient in
∑

e∈δ(k) Pe(x))

• and
∑

k Fk

(∑
e∈δ(k) Pe(x̂)

)
≤ F ∗ + Mε

Mathematical Programming C

The best optimization journal !

Tue.Dec..2.195728.2014@littleboy

