Solving QCQPs

Daniel Bienstock, Columbia University

Quadratically constrained, quadratic programming:

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, \quad 1 \le i \le m$
 $x \in \mathbb{R}^n$

Here,

$$f_i(x) = x^T M_i x + c_i^T x + d_i$$

is a general quadratic

Each M_i is $n \times n$, wlog symmetric

Folklore result: QCQP is NP-hard

Folklore result: QCQP is NP-hard

Let w_1, w_2, \ldots, w_n be **integers**, and consider:

$$W^* \doteq \min -\sum_i x_i^2$$

s.t.
$$\sum_i w_i x_i = 0,$$

$$-1 \le x_i \le 1, \quad 1 \le i \le n.$$

Folklore result: QCQP is NP-hard

Let w_1, w_2, \ldots, w_n be **integers**, and consider:

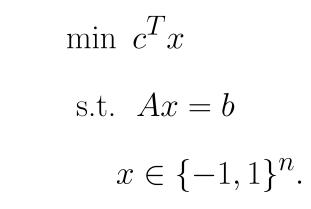
$$W^* \doteq \min -\sum_{i} x_i^2$$

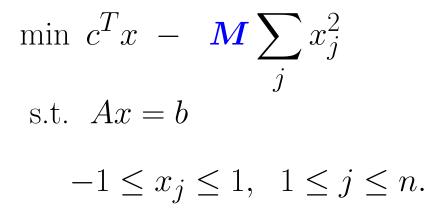
s.t.
$$\sum_{i} w_i x_i = 0,$$
$$-1 \le x_i \le 1, \quad 1 \le i \le n.$$

 $W^* = -n$, iff there exists a subset $J \subseteq \{1, \ldots, n\}$ with

$$\sum_{j \in J} w_j = \sum_{j \notin J} w_j$$

min $c^T x$ s.t. Ax = b $x \in \{-1, 1\}^n$.





(and many other similar transformations)

Observation

Any instance of bounded-variable QCQP

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m \\ & x \in \mathbb{R}^n, \quad 0 \leq x_j \leq 1 \quad \forall j \end{array}$$

with a **fixed** number of distinct bilinear terms can be solved in polynomial time.

Observation

Any instance of bounded-variable QCQP

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m \\ & x \in \mathbb{R}^n, \quad 0 \leq x_j \leq 1 \quad \forall j \end{array}$$

with a **fixed** number of distinct bilinear terms can be solved in polynomial time.

 $0 \le x_i \le 1 \implies x_i \approx \sum_{k=1}^N 2^{-k} y_{ik}, \quad y_i \in \{0, 1\}^N$ (Glover, 1970s)

Observation

Any instance of bounded-variable QCQP

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m \\ & x \in \mathbb{R}^n, \quad 0 \leq x_j \leq 1 \quad \forall j \end{array}$$

with a **fixed** number of distinct bilinear terms can be solved in polynomial time.

$$0 \le x_i \le 1 \implies x_i \approx \sum_{k=1}^N 2^{-k} y_{ik}, \quad y_{ik} \in \{0, 1\}^N \quad (\text{Glover, 1970s})$$

$$x_i x_j = \sum_{k=1}^{N} 2^{-k} w_{ijk} + O(2^{-N})$$
$$x_j - 1 + y_{ik} \leq w_{ijk} \leq x_j$$
$$0 \leq w_{ijk} \leq y_{ik}$$

Even more general

Solving systems of polynomial equations:

Problem: given polynomials $p_i : \mathbb{R}^n \to \mathbb{R}$, for $1 \le i \le m$ find $x \in \mathbb{R}^n$ s.t. $p_i(x) = 0, \forall i$

Even more general

Solving systems of polynomial equations:

Problem: given polynomials $p_i : \mathbb{R}^n \to \mathbb{R}$, for $1 \le i \le m$ find $x \in \mathbb{R}^n$ s.t. $p_i(x) = 0, \forall i$

Example: find a root for $3v^6w - v^4 + 7 = 0$.

Even more general

Solving systems of polynomial equations:

Problem: given polynomials $p_i : \mathbb{R}^n \to \mathbb{R}$, for $1 \le i \le m$ find $x \in \mathbb{R}^n$ s.t. $p_i(x) = 0, \forall i$

Example: find a root for $3v^6w - v^4 + 7 = 0$.

Equivalent to the system on variables v, v_2, v_4, v_6, w, y and c:

$$c^{2} = 1$$

$$v^{2} - cv_{2} = 0$$

$$v^{2}_{2} - cv_{4} = 0$$

$$v_{2}v_{4} - cv_{6} = 0$$

$$v_{6}w - cy = 0$$

$$3cy - cv_{4} = -7$$

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

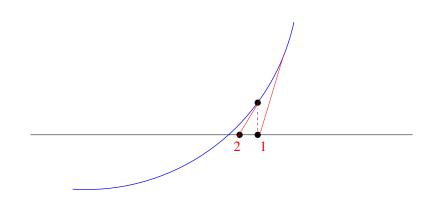
Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- Uniform algorithm?

 ${\bf Q}:$ How do practitioners and other lesser folk solve systems of nonlinear equations?

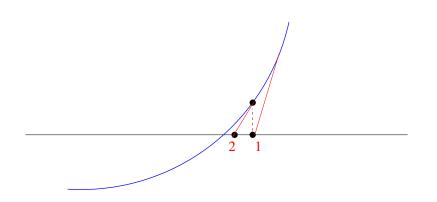
Q: How do practitioners and other lesser folk solve systems of nonlinear equations?



 \rightarrow If we start near a solution, quadratic convergence

 ${\bf Q}{\bf :}$ How do practitioners and other lesser folk solve systems of nonlinear equations?

A: Newton-Raphson, of course!



 \longrightarrow If we start near a solution, quadratic convergence

"Approximate" solution to a system of polynomials:

a point in the region of quadratic convergence (to a solution)

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- Uniform algorithm?

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

 ${\bf but}$ a "nearby" problem instance could be much easier

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a "nearby" problem instance could be much easier

• View a problem as a vector in an appropriate space

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a "nearby" problem instance could be much easier

- View a problem as a vector in an appropriate space
- Endow that space with an appropriate metric (Bombieri-Weyl Hermitian product)

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a "nearby" problem instance could be much easier

- View a problem as a vector in an appropriate space
- Endow that space with an appropriate metric (Bombieri-Weyl Hermitian product)
- In that space, uniformly sample a ball (of appropriate radius) around a given problem

A QCQP could be **quite** difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a "nearby" problem instance could be much easier

- View a problem as a vector in an appropriate space
- Endow that space with an appropriate metric (Bombieri-Weyl Hermitian product)
- In that space, consider the set of problems given by a ball (of appropriate radius) around a given problem
- We want the algorithm to run in polynomial time, on average, in that ball

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- Uniform algorithm? When is an algorithm non-uniform?

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- **Uniform algorithm?** When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)

First version: A non-uniform algorithm specifies the existence of an algorithm *for each input size*.

As such, we cannot write a "program" that implements the algorithm.

It is more a proof of existence of an algorithm for each input size.

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- **Uniform algorithm?** When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98) Bürgisser, Cucker (2012)

Second version: A uniform algorithm

- allows operations over real numbers
- \bullet at unit cost per operation
- \bullet with infinite precision

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- **Uniform algorithm?** When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98) Bürgisser, Cucker (2012)

Second version: A uniform algorithm

- allows operations over real numbers
- \bullet at unit cost per operation
- \bullet with infinite precision

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Approximately?
- On the average?
- Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98) Bürgisser, Cucker (2012)

Second version: A uniform algorithm

- allows operations over real numbers
- \bullet at unit cost per operation
- with infinite precision
- \bullet Not! the usual bit-model of computation

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Beltrán and Pardo (2009) a randomized (Las Vegas) uniform algorithm that computes an approximate zero in *expected* polynomial time
- Bürgisser, Cucker (2012) a deterministic $O(n^{\log \log n})$ (uniform) algorithm for computing approximate zeros
- **Techniques:** Homotopy (path-following method solving a sequence of problems), Newton's method

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Beltrán and Pardo (2009) a randomized (Las Vegas) uniform algorithm that computes an approximate zero in *expected* polynomial time
- Bürgisser, Cucker (2012) a deterministic $O(n^{\log \log n})$ (uniform) algorithm for computing approximate zeros
- **Techniques:** Homotopy (path-following method solving a sequence of problems), Newton's method

But we are cheating: All of this is over \mathbb{C}^n , not \mathbb{R}^n

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time, with a **uniform** algorithm?

(but we are cheating)

- Beltrán and Pardo (2009) a randomized (Las Vegas) uniform algorithm that computes an approximate zero in *expected* polynomial time
- Bürgisser, Cucker (2012) a deterministic $O(n^{\log \log n})$ (uniform) algorithm for computing approximate zeros
- **Techniques:** Homotopy (path-following method solving a sequence of problems), Newton's method

But we are cheating: All of this is over \mathbb{C}^n , not \mathbb{R}^n

So what can be done over the reals?

min
$$c^T x$$

s.t. $Ax = b$
 $x \in \{-1, 1\}^n$.

min
$$c^T x - M \sum_j x_j^2$$

s.t. $Ax = b$
 $-1 \le x_j \le 1, \ 1 \le j \le n.$

- Fixed number of linear constraints?
- Fixed number of quadratic constraints?
- Non-convex quadratic constraints?

What can be done in polynomial time?

(B. and Alex Michalka, SODA 2014)

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

Theorem.

For each fixed |S|, |K| can be solved in polynomial time if either

(1) $|S| \ge 1$ and polynomially large number of faces of P intersect $\bigcap_{h \in S} \{x \in \mathbb{R}^n : ||x - \mu_h|| \le r_h\},$

or

(2)
$$|S| = 0$$
 and the number of rows of A is bounded.

(B. and Alex Michalka, SODA 2014)

min
$$x^T Q x + c^T x$$

s.t. $||x - \mu_h|| \le r_h, \quad h \in S,$
 $||x - \mu_h|| \ge r_h, \quad h \in K,$
 $x \in P \doteq \{x \in \mathbb{R}^n : Ax \le b\}$

Theorem.

For each fixed |S|, |K| can be solved in polynomial time if either

(1) $|S| \ge 1$ and polynomially large number of faces of P intersecting $\bigcap_{h \in S} \{x \in \mathbb{R}^n : ||x - \mu_h|| \le r_h\},$

or

(2) |S| = 0 and the number of rows of A is bounded.

Strengthens previous results on the S-Lemma, and trust-region subproblem

The trust-region subproblem:

$$\min \quad x^T Q x + c^T x \\ \text{s.t.} \quad \|x - \mu\| \le r$$

The trust-region subproblem:

$$\min \quad x^T Q x + c^T x \\ \text{s.t.} \quad \|x - \mu\| \le r$$

Generalization: CDT (Celis-Dennis-Tapia) problem

$$\min \quad x^T Q_0 x + c_0^T x$$
s.t.
$$x^T Q_1 x + c_1^T x + d_1 \leq 0$$

$$x^T Q_2 x + c_2^T x + d_2 \leq 0$$

where $Q_1 \succ 0$, $Q_2 \succ 0$

Even more general than QCQPs

Barvinok (STOC 1992):

For each fixed $p \geq 1$, there is a polynomial-time algorithm for deciding feasibility of a system

$$\begin{aligned} x^T M_i x &= 0, \quad 1 \le i \le p, \\ \|x\| &= 1, \quad x \in \mathbb{R}^n \end{aligned}$$

where the M_i are general matrices.

Even more general than QCQPs

Barvinok (STOC 1992):

For each fixed $p \geq 1$, there is a polynomial-time algorithm for deciding feasibility of a system

$$\begin{aligned} x^T M_i x &= 0, \quad 1 \le i \le p, \\ \|x\| &= 1, \quad x \in \mathbb{R}^n \end{aligned}$$

where the M_i are general matrices.

- Non-constructive. Algorithm says "yes" or "no."
- Computational model? Uniform algorithm? "Real-RAM"?

A (better?) alternative: ϵ -feasibility

For each fixed $p \ge 1$, given a system $x^T M_i x = 0, \quad 1 \le i \le p,$ $\|x\| = 1, \quad x \in \mathbb{R}^n$

and given $0 < \epsilon < 1$, either

• **Prove** that the system is **infeasible**, or

• Output $\hat{x} \in \mathbb{R}^n$ with

$$-\epsilon \leq x^T M_i \leq \epsilon, \quad 1 \leq i \leq p, \\ 1 - \epsilon \leq ||\hat{x}|| \leq 1 + \epsilon,$$

in time polynomial in the data and in $\log \epsilon^{-1}$.

A (better?) alternative: ϵ -feasibility

For each fixed $p \ge 1$, given a system $x^T M_i x = 0, \quad 1 \le i \le p,$ $\|x\| = 1, \quad x \in \mathbb{R}^n$

and given $0 < \epsilon < 1$, either

- **Prove** that the system is **infeasible**, or
- Output $\hat{x} \in \mathbb{R}^n$ with

$$-\epsilon \leq x^T M_i \leq \epsilon, \quad 1 \leq i \leq p, \\ 1 - \epsilon \leq ||\hat{x}|| \leq 1 + \epsilon,$$

in time polynomial in the data and in $\log \epsilon^{-1}$.

Two issues: Constructiveness, and ϵ -feasibility

Modification to Barvinok's result

Assume that for each fixed $p \ge 1$, there is an algorithm that given a system $x^T M_i x = 0, \quad 1 \le i \le p,$

$$||x|| = 1, \quad x \in \mathbb{R}^n$$

and given $0 < \epsilon < 1$, either

- **Proves** that the system is **infeasible**, or
- **Proves** that is ϵ -feasible,

in time polynomial in the data and in $\log \epsilon^{-1}$.

(so still nonconstructive)

Modification to Barvinok's result

Assume that for each fixed $p \ge 1$, there is an algorithm that given a system $x^T M_i x = 0, \quad 1 \le i \le p,$

$$||x|| = 1, \quad x \in \mathbb{R}^n$$

and given $0 < \epsilon < 1$, either

- **Proves** that the system is **infeasible**, or
- **Proves** that is ϵ -feasible,

in time polynomial in the data and in $\log \epsilon^{-1}$.

(so still nonconstructive)

Assuming such an algorithm exists ...

$$|f_i(x)| \leq 0$$
 $1 \leq i \leq m$ (*)

 $f_i(x) \leq 0 \quad 1 \leq i \leq m \quad \ \ (*)$

Theorem (cheat)

If at least one f_i is positive-definite, for each fixed m there is a polynomial time to decide feasibility.

 $f_i(x) \leq 0 \quad 1 \leq i \leq m \quad \ \ (*)$

Theorem (cheat)

If at least one f_i is positive-definite, for each fixed m there is a polynomial time to decide feasibility.

Assume $f_1(x) = ||x||^2 - 1.$

 $f_i(x) \leq 0 \quad 1 \leq i \leq m \quad \ \ (*)$

Theorem (cheat)

If at least one f_i is positive-definite, for each fixed m there is a polynomial time to decide feasibility.

Assume $f_1(x) = ||x||^2 - 1$. And otherwise write $f_i(x) = x^T A_i x + c_i^T x + d_i$.

$$f_i(x) \leq 0 \quad 1 \leq i \leq m \quad \ \ (*)$$

Theorem (cheat)

If at least one f_i is positive-definite, for each fixed m there is a polynomial time to decide feasibility.

Assume $f_1(x) = ||x||^2 - 1$. And otherwise write $f_i(x) = x^T A_i x + c_i^T x + d_i$.

And assume $|f_i(x)| \leq U_i$ over $||x|| \leq 1, i = 2, \ldots, m$.

$$f_i(x) \leq 0 \quad 1 \leq i \leq m \quad \ \ (*)$$

Theorem (cheat)

If at least one f_i is positive-definite, for each fixed m there is a polynomial time to decide feasibility.

Assume $f_1(x) = ||x||^2 - 1$. And otherwise write $f_i(x) = x^T A_i x + c_i^T x + d_i$. And assume $|f_i(x)| \le U_i$ over $||x|| \le 1, i = 2, ..., m$.

Consider the system on variables $\boldsymbol{x} \in \mathbb{R}^n, \ \boldsymbol{v_0} \in \mathbb{R}, \ \boldsymbol{w} \in \mathbb{R}^n, \ \boldsymbol{s} \in \mathbb{R}^n$:

$$||x||^2 - v_0^2 + s_1^2 = 0, (1a)$$

$$x^{T}A_{i}x + c_{i}^{T}v_{0}x + d_{i}v_{0}^{2} + s_{i}^{2} = 0 \qquad 2 \le i \le m,$$
 (1b)

$$\frac{s_i^2 + w_i^2}{U_i} - v_0^2 = 0 \qquad 2 \le i \le m, \tag{1c}$$

$$||x||^2 + s_1^2 + \sum_{i=2}^n \frac{s_i^2 + w_i^2}{U_i} + v_0^2 = m + 1.$$
 (1d)

Claim: System (1) is feasible iff (*) is feasible

$$||x||^2 - v_0^2 + s_1^2 = 0, (1)$$

for
$$2 \le i \le m$$
: $\frac{s_i^2 + w_i^2}{U_i} - v_0^2 = 0,$ (2)

$$x^{T}A_{i}x + c_{i}^{T}v_{0}x + d_{i}v_{0}^{2} + s_{i}^{2} = 0,$$
(3)

$$||x||^2 + s_1^2 + \sum_{i=2}^n \frac{s_i^2 + w_i^2}{U_i} + v_0^2 = m + 1.$$
 (4)

$$||x||^2 - v_0^2 + s_1^2 = 0, (1)$$

for
$$2 \le i \le m$$
: $\frac{s_i^2 + w_i^2}{U_i} - v_0^2 = 0,$ (2)

$$x^{T}A_{i}x + c_{i}^{T}v_{0}x + d_{i}v_{0}^{2} + s_{i}^{2} = 0,$$
(3)

$$||x||^2 + s_1^2 + \sum_{i=2}^n \frac{s_i^2 + w_i^2}{U_i} + v_0^2 = m + 1.$$
 (4)

Adding (1) and (2) yields

$$||x||^2 + s_1^2 + \sum_{i=2}^n \frac{s_i^2 + w_i^2}{U_i} = mv_0^2.$$

$$\|x\|^2 - v_0^2 + s_1^2 = 0, (1)$$

for
$$2 \le i \le m$$
: $\frac{s_i^2 + w_i^2}{U_i} - v_0^2 = 0,$ (2)

$$x^{T}A_{i}x + c_{i}^{T}v_{0}x + d_{i}v_{0}^{2} + s_{i}^{2} = 0,$$
(3)

$$||x||^2 + s_1^2 + \sum_{i=2}^{\infty} \frac{s_i^2 + w_i^2}{U_i} + v_0^2 = m + 1.$$
 (4)

Adding (1) and (2) yields

$$||x||^{2} + s_{1}^{2} + \sum_{i=2}^{n} \frac{s_{i}^{2} + w_{i}^{2}}{U_{i}} = mv_{0}^{2}.$$

and so by (4)

$$(m+1)v_0^2 = (m+1)$$

$$\|x\|^2 - v_0^2 + s_1^2 = 0, (1)$$

for
$$2 \le i \le m$$
: $\frac{s_i^2 + w_i^2}{U_i} - v_0^2 = 0,$ (2)

$$x^{T}A_{i}x + c_{i}^{T}v_{0}x + d_{i}v_{0}^{2} + s_{i}^{2} = 0,$$
(3)

$$||x||^2 + s_1^2 + \sum_{i=2}^{\infty} \frac{s_i^2 + w_i^2}{U_i} + v_0^2 = m + 1.$$
 (4)

Adding (1) and (2) yields

$$\|x\|^2 + s_1^2 + \sum_{i=2}^n \frac{s_i^2 + w_i^2}{U_i} = mv_0^2.$$

and so

$$(m+1)v_0^2 = (m+1)$$

and so by **(4)**

$$v_0^2 = 1,$$

$$\|x\|^2 - v_0^2 + s_1^2 = 0, \qquad (1)$$

for
$$2 \le i \le m$$
: $\frac{s_i^2 + w_i^2}{U_i} - v_0^2 = 0,$ (2)

$$x^{T}A_{i}x + c_{i}^{T}v_{0}x + d_{i}v_{0}^{2} + s_{i}^{2} = 0,$$
(3)

$$||x||^2 + s_1^2 + \sum_{i=2} \frac{s_i^2 + w_i^2}{U_i} + v_0^2 = m + 1.$$
 (4)

Adding (1) and (2) yields

$$||x||^2 + s_1^2 + \sum_{i=2}^n \frac{s_i^2 + w_i^2}{U_i} = mv_0^2.$$

and so

$$(m+1)v_0^2 = (m+1)$$

and so by **(4)**

$$v_0^2 = 1,$$

and so

$$||x||^2 - 1 \le 0, x^T A_i x + c_i^T v_0 x + d_i \le 0 \qquad 2 \le i \le m,$$

which is what we wanted.

Theorem (abridged) System

$$||x||^2 - 1 \le 0, x^T A_i x + c_i^T v_0 x + d_i \le 0 \qquad 2 \le i \le m,$$

is $\epsilon\text{-}$ feasible iff system

$$||x||^2 - v_0^2 + s_1^2 = 0,$$
 (1)

for
$$2 \le i \le m$$
: $\frac{s_i^2 + w_i^2}{U_i} - v_0^2 = 0,$ (2)

$$x^{T}A_{i}x + c_{i}^{T}v_{0}x + d_{i}v_{0}^{2} + s_{i}^{2} = 0, \qquad (3)$$

$$||x||^2 + s_1^2 + \sum_{i=2}^n \frac{s_i^2 + w_i^2}{U_i} + v_0^2 = m + 1.$$
 (4)

is $O(m\epsilon)$ -feasible, and viceversa.

Optimization .

$$F^* \doteq \min \quad f_0(x)$$

s.t. $f_i(x) \le 0, \qquad 1 \le i \le m.$

All f_i quadratic, at least one positive definite.

Optimization .

$$F^* \doteq \min \quad f_0(x)$$

s.t. $f_i(x) \le 0, \qquad 1 \le i \le m$

All f_i quadratic, at least one positive definite.

Binary search, \rightarrow a sequence of feasibility problems:

$$f_0(x) \leq B$$

s.t. $f_i(x) \leq 0, \qquad 1 \leq i \leq m.$

Optimization .

$$F^* \doteq \min \quad f_0(x)$$

s.t. $f_i(x) \le 0, \qquad 1 \le i \le m$

All f_i quadratic, at least one positive definite.

Binary search, \rightarrow a sequence of feasibility problems:

$$f_0(x) \leq B$$

s.t. $f_i(x) \leq 0, \qquad 1 \leq i \leq m.$

Theorem. In time polynomial in the problem size and $\log \epsilon^{-1}$ we can compute a **value** \hat{F} such that

$$\hat{F} \leq F^* \leq \hat{F}.$$

$$f_i(x) \le 0, \qquad 1 \le i \le m, \\ \|x\|^2 = 1,$$

(each f_i a quadratic)

$$f_i(x) \leq 0, \qquad 1 \leq i \leq m, \\ \|x\|^2 = 1,$$

(each f_i a quadratic)

Algorithm:

$$\rightarrow \text{ For } 1 \leq j \leq n \text{ compute}^*$$

$$\begin{array}{l} \mathbf{M}_{j} \doteq \max & |\mathbf{x}_{j}| \\ \text{ s.t. } f_i(x) \leq 0, & 1 \leq i \leq m, \\ \|x\|^2 = 1, \end{array}$$

in polynomial time (fixed m)

$$f_i(x) \leq 0, \qquad 1 \leq i \leq m, \\ \|x\|^2 = 1,$$

(each f_i a quadratic)

Algorithm:

$$\rightarrow \text{ For } 1 \leq j \leq n \text{ compute}^*$$

$$\begin{array}{rcl} \boldsymbol{M_j} \doteq \max & |\boldsymbol{x_j}| \\ & \text{ s.t. } & f_i(x) \leq 0, & 1 \leq i \leq m, \\ & \|\boldsymbol{x}\|^2 = 1, \end{array} \end{array}$$

in polynomial time (fixed m)

Assume wlog $M_1 = \max\{M_j\}$.

$$f_i(x) \leq 0, \qquad 1 \leq i \leq m, \\ \|x\|^2 = 1,$$

(each f_i a quadratic)

Algorithm:

$$\rightarrow \text{ For } 1 \leq j \leq n \text{ compute}^*$$

$$\begin{array}{l} \mathbf{M}_{j} \doteq \max & |\mathbf{x}_{j}| \\ \text{ s.t. } f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ \|x\|^2 = 1, \end{array}$$

in polynomial time (fixed m)

Assume wlog $M_1 = \max\{M_j\}$. M_1 is "big"

$$f_i(x) \leq 0, \qquad 1 \leq i \leq m, \\ \|x\|^2 = 1,$$

(each f_i a quadratic)

Algorithm:

$$\rightarrow \text{ For } 1 \leq j \leq n \text{ compute}^*$$

$$\begin{array}{l} \boldsymbol{M_j} \doteq \max & |\boldsymbol{x_j}| \\ \text{ s.t. } f_i(x) \leq 0, & 1 \leq i \leq m, \\ & \|\boldsymbol{x}\|^2 = 1, \end{array} \end{array}$$

in polynomial time (fixed m)

Assume wlog $M_1 = \max\{M_j\}$. M_1 is "big", i.e. $M_1 \ge n^{-1/2}$.

$$f_i(x) \leq 0, \qquad 1 \leq i \leq m, \\ \|x\|^2 = 1,$$

(each f_i a quadratic)

Algorithm:

$$\rightarrow \text{For } 1 \leq j \leq n \text{ compute}^*$$

$$\begin{array}{rcl} \boldsymbol{M_j} \ \doteq \ \max & |\boldsymbol{x_j}| \\ & \text{s.t.} & f_i(x) \ \leq \ 0, \\ & \|\boldsymbol{x}\|^2 \ = \ 1, \end{array} \end{array}$$

in polynomial time (fixed m)

Assume wlog $M_1 = \max\{M_j\}$. M_1 is "big", i.e. $M_1 \ge n^{-1/2}$.

$$ightarrow {
m Fix} \, \, x_1 \, = \, \pm M_1$$

We have fixed

$$egin{array}{rcl} x_1 &=& \hat{x}_1 \ x_2 &=& \hat{x}_2 \ && \cdots \ x_k &=& \hat{x}_k \end{array}$$

We have fixed

$$m{x_1 = \hat{x}_1, \quad x_2 = \hat{x}_2, \ \dots \ x_k = \hat{x}_k.} \ \sum_{j=1}^k \hat{x}_k \ = \ 1,$$

 \mathbf{STOP}

If

We have fixed

$$x_1=\hat{x}_1,\quad x_2=\hat{x}_2,\ \ldots \ \ x_k=\hat{x}_k.$$

If

$$\sum_{j=1}^k \hat{x}_k = 1,$$

STOP \rightarrow For $k + 1 \le j \le n$ compute*

$$M_{j} \doteq \max |x_{j}|$$

s.t. $f_{i}(x) \leq 0, \quad 1 \leq i \leq m,$
 $\|x\|^{2} = 1,$
 $x_{i} = \hat{x}_{i}, \quad 1 \leq i \leq k.$

in polynomial time (fixed m)

We have fixed

$$x_1=\hat{x}_1,\quad x_2=\hat{x}_2,\ \ldots \ \ x_k=\hat{x}_k.$$

If

$$\sum_{j=1}^k \hat{x}_k = 1,$$

STOP \rightarrow For $k + 1 \le j \le n$ compute*

in polynomial time (fixed m)

Assume wlog $M_{k+1} = \max\{M_j\}$. M_{k+1} is "big"

$$\rightarrow$$
 Fix $x_{k+1} = \pm M_{k+1}$

Theorem.

For each fixed $m \geq 1$ there is a polynomial-time algorithm that, given an optimization problem

 $\begin{array}{rll} \min & f_0(x) \doteq x^T Q_0 x + c_0^T x \\ & \text{s.t.} & x^T Q_i x + c_i^T x + d_i \leq 0 \quad 1 \leq i \leq m, \end{array}$ where $Q_1 \succ 0$, and $0 < \epsilon < 1$, either

(1) proves that the problem is infeasible,

or

(2) computes an ϵ -feasible vector \hat{x} such that there exists no feasible $x \in \mathbb{R}^n$ with $f_0(x) < f(\hat{x}) - \epsilon$.

The complexity of the algorithm is polynomial in the number of bits in the data and in $\log \epsilon^{-1}$

An application: the Optimal Power Flow problem (OPF) Input: an undirected graph G.

- For every vertex k, **two** variables: e_k and f_k
- For every edge $\{k, m\}$, **four** (specific) quadratics:

$$\begin{array}{ll} H^P_{k,m}(e_k,f_k,e_m,f_m), & H^Q_{k,m}(e_k,f_k,e_m,f_m) \\ H^P_{m,k}(e_k,f_k,e_m,f_m), & H^Q_{m,k}(e_k,f_k,e_m,f_m). \end{array}$$

An application: the Optimal Power Flow problem (OPF) Input: an undirected graph G.

- For every vertex k, **two** variables: e_k and f_k
- For every edge $\{k, m\}$, **four** (specific) quadratics:

$$\begin{aligned} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m}), & H_{k,m}^{Q}(e_{k}, f_{k}, e_{m}, f_{m}) \\ H_{m,k}^{P}(e_{k}, f_{k}, e_{m}, f_{m}), & H_{m,k}^{Q}(e_{k}, f_{k}, e_{m}, f_{m}). \end{aligned}$$

$$\begin{aligned} \min \quad \sum_{k \in \mathbb{G}} F_{k} \left(\sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m}) \right) \\ \text{s.t.} & L_{k}^{P} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m}) \leq U_{k}^{P} \quad \forall k \\ L_{k}^{Q} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{Q}(e_{k}, f_{k}, e_{m}, f_{m}) \leq U_{k}^{Q} \quad \forall k \\ V_{k}^{L} \leq \|(e_{k}, f_{k})\| \leq V_{k}^{U} \quad \forall k. \end{aligned}$$

Function F_k in the objective: convex quadratic

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

$$\min \sum_{k \in \mathbb{G}} F_k \left(\sum_{\{k,m\} \in \delta(k)} H^P_{k,m}(e_k, f_k, e_m, f_m) \right)$$
s.t. $L^P_k \leq \sum_{\{k,m\} \in \delta(k)} H^P_{k,m}(e_k, f_k, e_m, f_m) \leq U^P_k \quad \forall k$

$$L^Q_k \leq \sum_{\{k,m\} \in \delta(k)} H^Q_{k,m}(e_k, f_k, e_m, f_m) \leq U^Q_k \quad \forall k$$

$$V^L_k \leq ||(e_k, f_k)|| \leq V^U_k \quad \forall k.$$

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

e.g.
$$e_1 f_6 \rightarrow w_{e_{1,f_6}}$$
, etc
 $W \doteq \{w_{i,j}\}$, then $W \succeq 0$, W of rank 1

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

Reformulation of OPF:

min
$$F \bullet W$$

s.t. $A_i \bullet W \leq b_i \quad i = 1, 2, \dots$
 $W \succeq 0, \quad W \text{ of rank 1.}$

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$\min \quad F \bullet W \\ \text{s.t.} \quad A_i \bullet W \leq b_i \quad i = 1, 2, \dots \\ W \succeq 0.$$

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$\begin{array}{ll} \min \quad F \bullet W \\ \text{s.t.} \quad A_i \bullet W &\leq b_i \quad i = 1, 2, \dots \\ W \succeq 0. \end{array}$$

Fact: The SDP relaxation almost always has a rank-1 solution!!

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$\begin{array}{ll} \min \quad F \bullet W \\ \text{s.t.} \quad A_i \bullet W &\leq b_i \quad i = 1, 2, \dots \\ W \succeq 0. \end{array}$$

Fact: The SDP relaxation frequently has a rank-1 solution!!

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$\begin{array}{ll} \min \quad F \bullet W \\ \text{s.t.} \quad A_i \bullet W &\leq b_i \quad i = 1, 2, \dots \\ W \succeq 0. \end{array}$$

Fact: The SDP relaxation sometimes has a rank-1 solution!!

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$\begin{array}{ll} \min \quad F \bullet W \\ \text{s.t.} \quad A_i \bullet W &\leq b_i \quad i = 1, 2, \dots \\ W \succeq 0. \end{array}$$

Fact: The SDP relaxation sometimes has a rank-1 solution!!Fact: But it is always very tight!!

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$\begin{array}{ll} \min \quad F \bullet W \\ \text{s.t.} \quad A_i \bullet W &\leq b_i \quad i = 1, 2, \dots \\ W \succeq 0. \end{array}$$

Fact: The SDP relaxation sometimes has a rank-1 solution!!Fact: But it is frequently rather tight!!

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$\begin{array}{ll} \min \quad F \bullet W \\ \text{s.t.} \quad A_i \bullet W &\leq b_i \quad i = 1, 2, \dots \\ W \succeq 0. \end{array}$$

Fact: The SDP relaxation sometimes has a rank-1 solution!!Fact: But it is usually good!!

- Real-life grids $\rightarrow > 10^4$ vertices
- \bullet SDP relaxation of OPF does not terminate

But...

- Real-life grids $\rightarrow > 10^4$ vertices
- \bullet SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Definition 1: A graph has treewidth $\leq w$ if it has a chordal supergraph with clique number $\leq w + 1$

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth $\leq w$ if it is a subgraph of an intersection graph of subtrees of a tree, with $\leq w + 1$ subtrees overlapping at any vertex

- Real-life grids $\rightarrow > 10^4$ vertices
- \bullet SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth $\leq w$ if it is a subgraph of an intersection graph of subtrees of a tree, with $\leq w + 1$ subtrees overlapping at any vertex

(Seymour and Robertson, late 1980s)

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

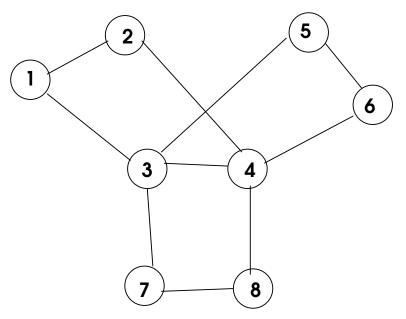
Cholesky factorization of:

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Cholesky factorization of:

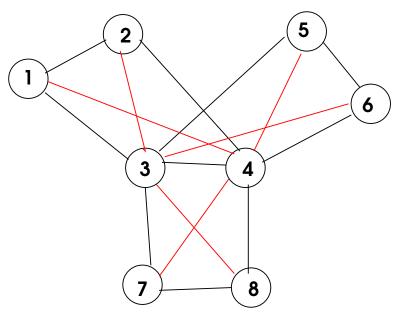


- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Chordal supergraph:



Pivoting order: 1, 2, 5, 6, 7, 8, 3, 4

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Matrix-completion Theorem gives fast SDP implementations:

Real-life grids with $\approx 3 \times 10^3$ vertices: $\rightarrow 20$ minutes runtime

OPF

Input: an undirected graph G.

- For every vertex k, **two** variables: e_k and f_k
- For every edge $\{k, m\}$, **four** (specific) quadratics:

$$\begin{aligned} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m}), & H_{k,m}^{Q}(e_{k}, f_{k}, e_{m}, f_{m}) \\ H_{m,k}^{P}(e_{k}, f_{k}, e_{m}, f_{m}), & H_{m,k}^{Q}(e_{k}, f_{k}, e_{m}, f_{m}). \end{aligned}$$

$$\begin{aligned} \min & \sum_{k \in \mathbb{G}} F_{k} \left(\sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m}) \right) \\ \text{s.t.} & L_{k}^{P} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m}) \leq U_{k}^{P} \quad \forall k \\ & L_{k}^{Q} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{Q}(e_{k}, f_{k}, e_{m}, f_{m}) \leq U_{k}^{Q} \quad \forall k \\ & V_{k}^{L} \leq ||(e_{k}, f_{k})|| \leq V_{k}^{U} \quad \forall k. \end{aligned}$$

Function F_k in the objective: convex quadratic

Graphical QCQP

Input: an undirected graph G.

- For every vertex k, a set of variables: $\{x_j : j \in I(k)\}$
- For every edge $e = \{k, m\}$, a quadratic

 $H_e(x) = H_e(\{x_j : j \in I(k) \cup I(m)\}).$

$$\min \sum_{k} F_k \left(\sum_{e \in \delta(k)} H_e(x) \right)$$

s.t.
$$\sum_{e \in \delta(k)} H_e(x) \leq b_k \quad \forall k$$
$$0 \leq x_j \leq 1, \quad \forall j$$

Function F_k in the objective: arbitrary quadratic

Graphical PCPP

Input: an undirected graph G.

- For every vertex k, a set of variables: $\{x_j : j \in I(k)\}$
- For every edge $e = \{k, m\}$, a **polynomial**

 $P_e(x) = P_e\left(\{ \boldsymbol{x_j} : \boldsymbol{j} \in \boldsymbol{I(k)} \cup \boldsymbol{I(m)} \} \right).$

$$\min \sum_{k} F_k \left(\sum_{e \in \delta(k)} P_e(x) \right)$$

s.t.
$$\sum_{e \in \delta(k)} P_e(x) \leq b_k \quad \forall k$$
$$0 \leq x_j \leq 1, \quad \forall j$$

Function F_k in the objective: arbitrary polynomial

Graphical BPCPP

Input: an undirected graph G.

- For every vertex k, a set of variables: $\{x_j : j \in I(k)\}$
- For every edge $e = \{k, m\}$, a **polynomial**

 $P_e(x) = P_e(\{x_j : j \in I(k) \cup I(m)\}).$

min
$$\sum_{k} F_k \left(\sum_{e \in \delta(k)} P_e(x) \right)$$

s.t. $\sum_{e \in \delta(k)} P_e(x) \leq b_k \quad \forall k$
 $x_j \in \{0, 1\}, \quad \forall j$

Function F_k in the objective: arbitrary polynomial

BPCPP

$$\begin{array}{ll} \min & P_0(x) \\ \text{s.t.} & P_i(x) \leq b_i \quad i = 1, 2, \dots, m \\ & x_j \in \{0, 1\}, \quad \forall j \end{array}$$

 $\rightarrow P_0, P_1, \ldots, P_m$: polynomials

BPCPP

 $\begin{array}{ll} \min & P_0(x) \\ \text{s.t.} & P_i(x) \leq b_i \quad i = 1, 2, \dots, m \\ & x_j \in \{0, 1\}, \quad \forall j \end{array}$

 \rightarrow the Clique graph has:

- \bullet A vertex corresponding to each ${\bf variable}$
- An edge $\{x_i, x_j\}$ if x_i and x_j occur in the same **row**

BPCPP: min $P_0(x)$ s.t. $P_i(x) \leq b_i \quad i = 1, 2, \dots, m$ $x_j \in \{0, 1\}, \quad \forall j$

 \rightarrow the Clique graph has:

- A vertex corresponding to each **variable**
- An edge $\{x_i, x_j\}$ if x_i and x_j occur in the same row

Theorem:

If the clique graph has treewidth $\leq w$, there is an LP with $O(2^w m)$ variables and constraints that solves BPCPP.

BPCPP: min $P_0(x)$ s.t. $P_i(x) \leq b_i \quad i = 1, 2, \dots, m$ $x_j \in \{0, 1\}, \quad \forall j$

 \rightarrow the Clique graph has:

- A vertex corresponding to each **variable**
- An edge $\{x_i, x_j\}$ if x_i and x_j occur in the same row

Theorem:

If the clique graph has treewidth $\leq w$, there is an LP with $O(2^w m)$ variables and constraints that solves BPCPP.

Proof. Lift-and-project techniques.

From GBPCPP to GPCPP

GPCPP:
$$\mathbf{F}^* \doteq \min \sum_{k} F_k \left(\sum_{e \in \delta(k)} P_e(x) \right)$$

s.t. $\sum_{e \in \delta(k)} P_e(x) \leq b_k \quad \forall k$
 $0 \leq x_j \leq 1, \quad \forall j$

From GBPCPP to GPCPP

$$\begin{aligned} \text{GPCPP:} \quad \mathbf{F}^* \doteq \min \quad \sum_k F_k \left(\sum_{e \in \delta(k)} P_e(x) \right) \\ \text{s.t.} \quad \sum_{e \in \delta(k)} P_e(x) \leq b_k \quad \forall k \\ 0 \leq x_j \leq 1, \quad \forall j \end{aligned} \\ 0 \leq x_i \leq 1 \implies x_i = \sum_{k=1}^N 2^{-k} y_{ik} \quad + O(2^{-N}), \quad y_i \in \{0, 1\}^N \end{aligned}$$

From GBPCPP to GPCPP

$$\begin{aligned} \text{GPCPP:} \quad \boldsymbol{F}^* \doteq \min \quad \sum_k F_k \left(\sum_{e \in \delta(k)} P_e(x) \right) \\ \text{s.t.} \quad \sum_{e \in \delta(k)} P_e(x) \leq b_k \quad \forall k \\ 0 \leq x_j \leq 1, \quad \forall j \end{aligned} \\ 0 \leq x_i \leq 1 \implies x_i = \sum_{k=1}^N 2^{-k} y_{ik} \quad + O(2^{-N}), \quad y_i \in \{0, 1\}^N \end{aligned}$$

Theorem:

Given an instance of GPCPP with fixed treewidth of the underlying graph, and $0 < \epsilon < 1$, we can find a vector \hat{x}

• in time polynomial in the data and in ϵ^{-1} ,

• s.t.
$$\forall k, \sum_{e \in \delta(k)} P_e(\hat{x}) \leq b_k + M_k \epsilon$$

 $(M_k = \text{largest coefficient in } \sum_{e \in \delta(k)} P_e(x))$
• and $\sum_k F_k \left(\sum_{e \in \delta(k)} P_e(\hat{x}) \right) \leq F^* + M \epsilon$

Mathematical Programming C

The best optimization journal !

Tue.Dec..2.195728.2014@littleboy