Solving QCQPs

Daniel Bienstock, Columbia University



Quadratically constrained, quadratic programming:

min  fo(z)

st file) <0, 1<i<m

r e R"

Here,
filx) = $TMZ'CE — C,LTCC + d;

is a general quadratic

Each M; is n X n, wlog symmetric
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Folklore result: QCQP is NP-hard

Let wy, w9, ..., w, be integers, and consider:

W* = min —Zz%
1
S.t. sz x; =0,

1
1<z, <1, 1<i<n.

W?* = —n, iff there exists a subset J C {1,...,n} with

DW= D,

jeJ je&J
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Take any {—1, 1}-linear program

min CT:U

s.t. Az =b

re{—1,1}"

min ch — MZ:C?
J
s.t. Ax =10

—1<z;<1, 1<j<n.

(and many other similar transformations)
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Observation
Any instance of bounded-variable QCQP

min  fo(z)
st. fi(z) <0, 1<i<m
reR", 0<z;<1 Vj
with a fixed number of distinct bilinear terms can be solved in polynomial
time.

0<z;,<1 = z ~ Zi\;l 2%y, vy € {0,1}Y  (Glover, 1970s)

k=1
v — 1ty < wijr < x4

0 < wijr < Yk
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Even more general

Solving systems of polynomial equations:

Problem: given polynomials p; : R" — R, for 1 <7< m
find x € R" s.t. pj(x) =0, V1

Example: find a root for 3v%w — v* 4+ 7 = 0.

Equivalent to the system on variables v, vo, vy4, vg, w, y and c:

cc =1

V2 — cvy = 0

v —cvy = 0

vovs — cvg = 0
vew —cy = 0

3cy —cvy = —7



Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns
be found approximately,

on the average in polynomial time,

with a uniform algorithm?

(but we are cheating)



Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.

on the average in polynomial time,

with a uniform algorithm?

(but we are cheating)

e Approximately”
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“Approximately”
Q: How do practitioners and-ethertessertolk solve systems of nonlinear

equations?’

A: Newton-Raphson, of course!

— If we start near a solution, quadratic convergence
“Approximate” solution to a system of polynomials:

a point in the region of quadratic convergence (to a solution)
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e View a problem as a vector in an appropriate space
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e In that space, uniformly sample a ball (of appropriate radius) around a
given problem



“On the average” in polynomial time

A QCQP could be quite difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

e Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

e In that space, consider the set of problems given by a ball (of appropriate
radius) around a given problem

e We want the algorithm to run in polynomial time, on average, in that ball
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Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.

on the average in polynomial time,

with a uniform algorithm?

(but we are cheating)

e Approximately?
e On the average?

e Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)

First version: A non-uniform algorithm specifies the existence of an algo-
rithm for each input size.

As such, we cannot write a “program” that implements the algorithm.

[t is more a proof of existence of an algorithm for each input size.
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Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.

on the average in polynomial time,

with a uniform algorithm?

(but we are cheating)

e Approximately?
e On the average?
e Uniform algorithm? When is an algorithm non-uniform?

Blum, Shub, Smale (89), Blum, Cucker, Shub, Smale (98)
Biirgisser, Cucker (2012)

Second version: A uniform algorithm
e allows operations over real numbers
e at unit cost per operation
e with infinite precision

e Not! the usual bit-model of computation
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approximately.
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(but we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n!°¢!°¢") (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method
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Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.

on the average in polynomial time,

with a uniform algorithm?

(but we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n!°¢!°¢") (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over C", not R"

So what can be done over the reals?



Take any {—1, 1}-linear program

min ¢z
s.t. Ar =0
re{—1,1}"

min ¢z — Mg ZIZ?
J

st. Ar =b
—1<z; <1, 1<y<n.
e [ixed number of linear constraints?
e [ixed number of quadratic constraints?

e Non-convex quadratic constraints?



What can be done in polynomial time?

(B. and Alex Michalka, SODA 2014)

min 2! Qz + 'z

st. |z —pnl| <rp, heES,
|z — ppl| = rp, hE€K,
reP ={xeR": Ax <b}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersect

(M €R" : |z — | < i},
hesS
or

(2) |S| = 0 and the number of rows of A is bounded.



(B. and Alex Michalka, SODA 2014)

min 2! Qr +clx
st |l —pn|| <rp, hES,
|z — pp|| =>7H, h €K,

reP ={zeR": Az <}
Theorem.

For each fixed |S|, | K| can be solved in polynomial time if either

(1) |.S| > 1 and polynomially large number of faces of P intersecting

(e eR" : |lo— il < 7ra},
hes
or

(2) |S| = 0 and the number of rows of A is bounded.

Strengthens previous results on the S-Lemma, and trust-region subproblem



The trust-region subproblem:.

min 2! Qzr+clx

st o —pl <7



The trust-region subproblem:.
min 2! Qzr+clx
st. o —pl| <r
Generalization: CDT (Celis-Dennis-Tapia) problem
min 2z’ Qoz + ¢ v

s.t. ZCTQliE + clTa: + d;
w1 Qqx + ch +dy < 0

VA
-

where Q1 > 0, Q2 > 0



Even more general than QCQPs
Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding
feasibility of a system

Mz =0, 1<i<np,
lz]l =1, z€eR"

where the M; are general matrices.



Even more general than QCQPs
Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding
feasibility of a system

Mz =0, 1<i<np,
lz]l =1, z€eR"

where the M; are general matrices.

e Non-constructive. Algorithm says “yes” or “no.”

e Computational model? Uniform algorithm? “Real-RAM”?



A (better?) alternative: e-feasibility
For each fixed p > 1, given a system

Mz =0, 1<i<np,
|z = 1, xeR"

and given 0 < € < 1, either

e Prove that the system is infeasible, or

e Output & € R"™ with
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1 —e€ S Hi’” S 1+€7

in time polynomial in the data and in log e~



A (better?) alternative: e-feasibility
For each fixed p > 1, given a system

Mz =0, 1<i<np,
|z = 1, xeR"

and given 0 < € < 1, either

e Prove that the system is infeasible, or

e Output & € R"™ with

—ES.CIZ'TMZ'SE, 1§2§p,
1 —e€ S Hi’” S 1+€7

in time polynomial in the data and in log e~

Two issues: Constructiveness, and e-feasibility



Modification to Barvinok’s result
Assume that for each fixed p > 1, there is an algorithm that given a system

Mz =0, 1<i<np,
|z = 1, xeR"

and given 0 < € < 1, either

e Proves that the system is infeasible, or

e Proves that is e-feasible,

in time polynomial in the data and in loge™*.

(so still nonconstructive)



Modification to Barvinok’s result
Assume that for each fixed p > 1, there is an algorithm that given a system

Mz =0, 1<i<np,
|z = 1, xeR"

and given 0 < € < 1, either

e Proves that the system is infeasible, or

e Proves that is e-feasible,

in time polynomial in the data and in loge™*.

(so still nonconstructive)

Assuming such an algorithm exists ...
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How about systems of quadratic inequalities?

file) <0 1<:<m (%)
TheOI‘em (cheat)
If at least one f; is positive-definite, for each fixed m there is a polynomial
time to decide feasibility.
Assume fi(x) = ||z]|* — 1. And otherwise write f;(z) = 2! Ajz + ¢/ x + d;.
And assume |f;(z)| < U; over ||z|| < 1,1=2,...,m.

Consider the system on variables * € R", vg € R, w € R", s € R™
y ) )

lzl* =g+ st =0, (1a)
ol Ajx + ctogr + dv + 82 = 0 2 <1 <m, 1b
1 ) 20 1
Si;wi—vg:o 2 <i<m, (1c)
i
no 9 2
S; + W;
|z + 57+ ) — Ll = m+ L (1d)
i=2 !

Claim: System (1) is feasible iff (*) is feasible



Consider a solution to:

||513H22 —v§+8? =0, (1)
for 2 <i < m: S;w — 2 = 0, (2)
i
' Aix + ¢ vor + dvg + 57 = 0, (3)
N2 .2
2, 2 5 Wi 9
T~ + s8]+ + = L. 4
ol 5t + 3 i = @

1=2



Consider a solution to:

||513H22 —v§+8? = 0,
for 2 < < m: Si+wi—v820,
Ui
QjTAiﬂf—l—C;-rvoﬂf—l—dﬂJ(Q)—l—S? = 0,
n.o 2 2
2, 2 S; + W 2
x||”+ s8]+ +v; = m+ 1.
ol + st + 3 S e = m

1=2

Adding (1) and (2) yields

9 9 . s7 + w? 9
|||+ s7+ g — = muj.
i=2 Ui

(1)
(2)
(3)
(4)



Consider a solution to:

l=lI*  —v5+s1 =0, (1)
for 2 <@ < m: s ;wg —v5 = 0, (2)
! Aiw + ] vox + ng +s7 =0, (3)
n
H:I:H2+sf+zsl2 ;wngvg = m+ 1. (4)
i

1=2

Adding (1) and (2) yields

9 9 . s7 + w? 9
|||+ s7+ g — = muj.
i=2 Ui

and so by (4)
(m+1v; = (m+1)



Consider a solution to:

l=lI*  —v5+s1 =0, (1)
for 2 <@ < m: s ;wg —v5 = 0, (2)
! Aiw + ] vox + ng +s7 =0, (3)
n
H:I:H2+sf+zsl2 ;wngvg = m+ 1. (4)
i

1=2

Adding (1) and (2) yields

9 9 . s7 + w? 9
|||+ s7+ g — = muj.
i=2 Ui

and so
(m+ vy = (m+1)
and so by (4)
U% = 1,



Consider a solution to:

l=lI*  —v5+s1 =0, (1)
for 2 <@ < m: s ;;wf —v5 = 0, (2)
! Aiw + ] vox + ;lzvg +s7 =0, (3)
H:I:H2+sf+isl2 ;wngvg = m+ 1. (4)

i

1=2

Adding (1) and (2) yields

9 9 . s7 + w? 9
|||+ s7+ g — = muj.
i=2 Ui

and so
(m + l)vg = (m+1)
and so by (4)

and so

lzf* -1 <
T A +clvgr+d;, <0 2<i<m,

which 1s what we wanted.



Theorem (abridged) System

l=[I* =1
ZETAZ'QZ' + C;FU()QZ’ + dz'

IA A

is e- feasible iff system

|zl —vg+si =0,
for 2 <1 < m: S?;wg—vg:(),
xTAierciTvoerchwg#—s? = 0,
n
ol 5t + 305 g = g
i

1=2

is O(me)-feasible, and viceversa.

(1)
(2)
(3)
(4)



Optimization .

F* = min fy(z)
st. filz) <0, 1<i<m.

All f; quadratic, at least one positive definite.
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Optimization .

F* = min fy(z)

All f; quadratic, at least one positive definite.

1 <1<m

Binary search, — a sequence of feasibility problems:

fo()

INIA

Theorem. In time polynomial in the problem size and loge ! we can

compute a value F' such that
< F*<F
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Obtaining explicit solutions

fz<$> S O, 1§i<m,

lz|* = 1,
(each f; a quadratic)
Algorithm:
— For 1 < j < n compute™

M; = max |x;
st filz) <0, 1<i<m
lz|* = 1,

in polynomial time (fixed m)
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M; = max |x;
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Obtaining explicit solutions

IA
=
IA
A
E

fi(z)

|=|* =

|
—_

(each f; a quadratic)
Algorithm:

— For 1 < j < n compute™

M; = max |x;
st filz) <0, 1 <i<m,
|zl = 1,

in polynomial time (fixed m)
Assume wlog My = max{M,}. M, is “big",ie. M; > n~1/2,

— Fix ; = :l:Ml
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We have fixed

If

STOP



Inductive step

We have fixed

If

k
Yy = 1
J=1

STOP — For k+ 1 < j < n compute™

M; = max |z
st filz) <0,
|zl = 1,
T, = Ty,

in polynomial time (fixed m)



Inductive step

We have fixed

If )
d dp =1,
j=1

STOP — For k+ 1 < j < n compute™

M; = max |z
st filz) <0, 1 <i<m,
|zl = 1,
xi = T, 1 <1<k

in polynomial time (fixed m)
Assume wlog M1 = max{M;}. M. is “big’

— Fix L1 = :|:Mk_|_1



Theorem.

For each fixed m > 1 there is a polynomial-time algorithm that, given an
optimization problem
min  fo(z) = z'Qox + ¢l
s.t. :BTQZ-a:—|—csz—|—di <0 1<11<m,

where Q1 > 0, and 0 < € < 1, either

(1) proves that the problem is infeasible,
or
(2) computes an e-feasible vector & such that there exists no feasible

x € R" with fo(x) < f(&) — €.

The complexity of the algorithm is polynomial in the number of bits in the
data and in loge™?!



An application: the Optimal Power Flow problem (OPF)
Input: an undirected graph G.
e For every vertex k, two variables: e, and fj.

e For every edge {k, m}, four (specific) quadratics:
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An application: the Optimal Power Flow problem (OPF)
Input: an undirected graph G.
e For every vertex k, two variables: e, and fj.

e For every edge {k, m}, four (specific) quadratics:

HE (ex, foo€m, f)y  H2(er, fo €ms fin)
an;,k<€k7fk7€m7fm)7 Hg,k<6k7fk7emafm>-

min ZFk Z H£m<ek7fkaem7fM)

keG {k;m}ed(k)

.. L? < Z Hlfm(ekafhem?fm) < Ukp vk
{k;m}ei(k)
Lg < Z Hgm(ekafkaemufm> < U;? vk
{k;m}eo(k)
Vi < e, f)l < Vi k.

Function Fj in the objective: convex quadratic
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Complexity
Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

min ZFk Z H]{Ijm(ek7f]€7€m7fm)

keG {km}ed(k)
st Ly < > Hy(er frsems fn) < UP
(km)ed(k)
Lg < Z ekafk76m7fm) < U}? VE
{k;m}eo(k)

VE < llew fo)ll < V7 Vk.
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Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

e.g. eife — Werfe, etc
W = {w;,;}, then W =0, W ofrank1l
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Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

Reformulation of OPF":
min FeW
st. A, oW < b, 1=1,2,...
W >0, W of rank 1.



Complexity
Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.
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Fact: The SDP relaxation sometimes has a rank-1 solution!!
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Complexity
Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min FeW
st. A, oW < b, 1=1,2,...
W = 0.

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is frequently rather tight!!



Complexity
Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min FeW
st. A, oW < b, 1=1,2,...
W = 0.

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is usually good!!
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But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 1: A graph has treewidth < aw if it has a chordal supergraph
with clique number < w + 1



But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth < w if it is a subgraph of an
intersection graph of subtrees of a tree, with < w 4+ 1 subtrees overlapping
at any vertex



But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth < w if it is a subgraph of an inter-
section graph of subtrees of a tree, with < w —+ 1 subtrees overlapping at
any vertex

(Seymour and Robertson, late 1980s)
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But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Chordal supergraph:

Pivoting order: 1, 2, 5,6, 7, 8, 3, 4



But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem gives fast SDP implementations:

Real-life grids with ~ 3 x 10° vertices: — 20 minutes runtime



OPF
Input: an undirected graph G.

e For every vertex k, two variables: e, and fj.

e For every edge {k, m}, four (specific) quadratics:

HE (ex, foo€m, f)y  H2(er, fo €ms fin)
an;,k<€k7fk7€m7fm)7 Hyg,k<6/<?7fk7emafm>-

min ZFk Z H£m<ek7fkaem7fM)

keG {k;m}ed(k)

.. L? < Z Hlfm(ekafhem?fm) < Ukp vk
{k;m}ei(k)
Lg < Z Hgm(ekafkaemufm> < U;? vk
{km}ed(k)
Vi < e, f)l < Vi k.

Function Fj in the objective: convex quadratic



Graphical QCQP
Input: an undirected graph G.
e For every vertex k, a set of variables: {z; : 7 € I(k)}
e For every edge e = {k, m}, a quadratic

Hiz) = H.({x;:j€I(k)UI(m)}).

min ZFk ZH€<CC>
k

ecd(k)

s.t. H.(z) < by Vk
(k)

ecd

OSSC]'SI, \V/]

Function Fj in the objective: arbitrary quadratic



Graphical PCPP

Input: an undirected graph G.
e For every vertex k, a set of variables: {z; : 7 € I(k)}
e For every edge e = {k, m}, a polynomial

P(z) = P.({z;:jecI(k)UI(m)}).

st. Y Pz) < b Vk

Function Fj, in the objective: arbitrary polynomial



Graphical BPCPP

Input: an undirected graph G.
e For every vertex k, a set of variables: {z; : 7 € I(k)}
e For every edge e = {k, m}, a polynomial

P(z) = P.({z;:jecI(k)UI(m)}).

st. Y Pz) < b Vk

Function F} in the objective: arbitrary polynomial



— Py, P, ...

BPCPP

min  FPy(x)

st. Pxr) < b i=1,2,...

L j S {Oa 1}7 V]

, P,,,: polynomials



BPCPP

min  FPy(x)
st. Pxr) < b i=1,2,...,m
L j S {Oa 1}7 V]

— the Clique graph has:
e A vertex corresponding to each variable

e An edge {x;,z,} if x; and z; occur in the same row



BPCPP:min  Fy(x)
st.  P(x) < b 1=12...,m
z; €{0,1}, Vj
— the Clique graph has:

e A vertex corresponding to each variable

e An edge {x;,z;} if x; and z; occur in the same row

Theorem:

If the clique graph has treewidth < w), there is an LP with O(2"“m)
variables and constraints that solves BPCPP.



BPCPP:min  Fy(x)
st.  P(x) < b 1=12...,m
z; €{0,1}, Vj
— the Clique graph has:

e A vertex corresponding to each variable

e An edge {x;,z;} if x; and z; occur in the same row

Theorem:

If the clique graph has treewidth < w), there is an LP with O(2"“m)
variables and constraints that solves BPCPP.

Proof. Lift-and-project techniques.



From GBPCPP to GPCPP

GPCPP: F* = min Y Fj (Z Pe(g;))
k ecs(k)

st. Y Px) < by VEk

ecd(k)

0<a; <1, Vj



From GBPCPP to GPCPP
GPCPP: F* = min Y F (Z Pe(x))
k e€d(k)

st. Y Puz) < b Vk

e€d(k)

0<ux <1, Vj

0<z, <1 = x; = Zi\;l 2%y +0R7Y), y e {0, 1}



From GBPCPP to GPCPP

GPCPP: F* = min ZFk(Z . ( )

€o(k)

s.t. Z P.(z) < b, Vk

ecd(k)

0<z; <1 =z = S, 2% +02N), ye{01}V

Theorem:

Given an instance of GPCPP with fixed treewidth of the underlying graph,
and 0 < € < 1, we can find a vector x

e in time polynomial in the data and in e *,

ost. Vk >
(M}, = 1argest coefficient in » sy Pe())

<§3) < b, + Me

ecd(k

e and ) , Fj (ZeEcS(k) Pe(i')) < " + Me
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