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ABSTRACT

Cutting Planes for Convex Objective Nonconvex
Optimization

Alexander Michalka

This thesis studies methods for tightening relaxations of optimization problems with convex ob-

jective values over a nonconvex domain. A class of linear inequalities obtained by lifting easily

obtained valid inequalities is introduced, and it is shown that this class of inequalities is sufficient

to describe the epigraph of a convex and differentiable function over a general domain. In the spe-

cial case where the objective is a positive definite quadratic function, polynomial time separation

procedures using the new class of lifted inequalities are developed for the cases when the domain

is the complement of the interior of a polyhedron, a union of polyhedra, or the complement of the

interior of an ellipsoid. Extensions for positive semidefinite and indefinite quadratic objectives are

also studied. Applications and computational considerations are discussed, and the results from a

series of numerical experiments are presented.
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CHAPTER 1. INTRODUCTION AND BACKGROUND 1

Chapter 1

Introduction and Background

This thesis studies methods for generating linear inequalities to strengthen convex relaxations of

nonconvex optimization problems. We focus on problems with a convex function f in the objective,

or constraints on a convex function f , over a nonconvex domain F . We are interested specifically

in problems whose simplest convex relaxations are very weak. Problems with this structure arise in

the fields of signal processing ([47], [35]), semiconductor lithography ([1], [58]), and mixed-integer

nonlinear programming ([20], [15]), among others. Current solution methods rely on heuristics or

branching to obtain good feasible solutions, and achieving useful lower bounds may come at the cost

of substantial amounts of branching or an “extended” formulation which introduces a large number

of extra variables. With this motivation, we seek efficient ways to strengthen convex relaxations

and improve bounds on problems of this type.

Our approach focuses on the use of two main ideas: lifting and cutting planes. These two

methodologies share a similar history: both were originally conceived in the context of linear integer

programming (with some of the earliest work in both cases being done by Gomory - see [37], [38],

and [39]). More recently, both have been applied in continuous and nonlinear optimization. Later

in this chapter, we provide an introduction to the concepts of lifting inequalities and cutting planes

from their early development, briefly describe some later extensions, and highlight examples of

work which is similar to our own.

We devote significant attention to the case of a quadratic objective function. This is due both to

the prevalence of quadratics in applications (all of the applications listed above contain a quadratic

objective), and also to their tractability: the geometry of quadratically defined sets makes them
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especially amenable to the analysis required in our constructions of strong valid lifted inequalities.

The remainder of this chapter provides examples of particular problem classes motivating this

work, and reviews previous research in the fields of lifting and cutting plane methods. Chapter

2 introduces our lifting constructions and provides general results for convex and differentiable

objective functions. Chapters 3 and 4 focus on the special case where the objective is a quadratic

function, for different choices of domain. Chapter 5 presents results from numerical experiments in

which we apply the techniques we develop to randomly-generated problem instances and compare

their performance with similar existing methods. Finally, Chapter 6 provides some final discussion

and conclusion.

1.1 Notation

The notation we use is standard, but for completeness we provide a quick review before we begin

in earnest.

For a set S ⊆ Rn, int (S) denotes the interior of S, and cl (S) denotes the closure. ∂S denotes

the boundary of S, which is defined as the set of all points x ∈ Rn where, for every ε > 0, the

ball of radius ε centered at x contains both points S and points not in S. conv (S) represents the

convex hull of the set S. For µ ∈ Rn and r ≥ 0, we use B(µ, r) to denote the closed ball of radius r

centered at µ. For any two sets X and Y , X \ Y denotes the difference between X and Y : the set

of all elements of X that are not also elements of Y .

For two vectors x, y ∈ Rn, x ≥ y means that xi ≥ yi for each i ∈ {1, . . . , n}. x > y means that

each inequality is strict. x 6< y indicates that there is at least one index i for which xi ≥ yi. If

x ∈ Rn and y ∈ Rp are two vectors in different spaces, (x, y) denotes the (n+p)-dimensional vector

obtained by concatenating x and y. diag (x) represents the (n×n) diagonal matrix whose diagonal

entries are the entries of x.

When x and y are elements in a general vector space and K is a cone, x �K y means (x−y) ∈ K.

For matrices, when the � symbol appears alone, the cone K is assumed to be the set of positive

semidefinite matrices of the proper dimension: X � 0 means X is positive semidefinite, and X � 0

means X is positive definite. tr (X) denotes the trace of the square matrix X, and I represents the

identity matrix, whose dimension should be evident from the context.
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The term “argmin” denotes the set of optimal solutions to an optimization problem. For

example, argmin{f(x) | x ∈ F} is the set of optimal solutions to the problem

minimize: f(x)

subject to: x ∈ F .

1.2 Nonconvex Optimization

Convex optimization studies the minimization of convex objective functions over convex domains.

Such problems have the convenient feature that any local minimum is a global minimum. Convex

optimization is well-studied and, under reasonable assumptions, interior-point algorithms can solve

convex optimization problems in polynomial time (see [51]). Many practical problems from a variety

of applications can be formulated as convex optimization problems (see [19]).

Nonconvex, or global optimization, studies the minimization of general functions over general

domains, which may be nonconvex and can include integrality constraints on some or all of the

problem variables. Solution methods typically rely on branching - partitioning the feasible region

into smaller components and solving subproblems over these components - and convex approx-

imations of nonconvex functions (see [66] and [13] for more on global optimization techniques).

Heuristics, including randomized methods such as simulated annealing, can be used to find good

feasible solutions, but do not provide lower bounds on the objective value and therefore do not

prove optimality.

Our work was originally motivated by optimization problems with a convex objective function

but nonconvex domain. These are problems of the form

minimize: f(x)

subject to: x ∈ F ⊆ Rn

where f : Rn → R is convex and differentiable. In particular, our goal is to investigate ways to

provide strong lower bounds on problems on this form whose simplest convex relaxation

minimize: f(x)

subject to: x ∈ conv (F)

gives only a very weak bound on the optimal value of the original problem. This is the case, for

instance, when F = Rn \P , where P is a bounded set. In this case, conv (F) = Rn and the convex
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relaxation is trivial. In the sections that follow, we introduce several classes of problems fitting

into this mold, and describe some of the previous work concerning solution methods and strong

relaxations to these problems.

1.2.1 Quadratically Constrained Quadratic Programming

The formulation of the general Quadratically Constrained Quadratic Program (QCQP) is

minimize: xTQx+ qTx

subject to: xTAix− 2bTi x+ ci ≤ 0 i = 1, . . . ,m
(1.1)

where Q and each Ai are symmetric (n × n) matrices. When Q and all of the Ai are positive

semidefinite, the problem is convex - it is a special case of Second Order Cone Programming [2] -

but the general QCQP problem is NP-hard.

Nonconvex QCQPs of the form

minimize: xTx

subject to: xTAix ≥ 1 i = 1, . . . ,m
(1.2)

where each Ai is positive definite arise in semiconductor lithography and signal processing (see

[47], [1], [58]). Figure 1.1 shows an instance of such a problem with three quadratic constraints.

Geometrically, the goal of these problems is to find the vector of minimum (squared) Euclidean

norm which is not contained in the interior of any of the sets

Ei = {x ∈ Rn | xTAix ≤ 1},

each of which is a full-dimensional and bounded ellipsoid centered at the origin. In these problems,

the convex hull of the feasible region is Rn, and a naive convex relaxation would give a trivial lower

bound of 0.

A commonly used approach (see [68], [47], or [34]) for computing lower bounds for nonconvex

QCQPs is a semidefinite relaxation. As we have xTCx = tr (CxxT ) for any symmetric matrix C,

we can reformulate (1.1) as the following:

minimize: tr (QX) + qTx

subject to: tr (AiX)− 2bTi x+ ci ≤ 0 i = 1, . . . ,m

X = xxT .

(1.3)
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Figure 1.1: An instance of a nonconvex QCQP. The infeasible region is shaded in grey and the

point closest to the origin is shown in blue.

This formulation is completely equivalent to (1.1). The objective and the constraints tr (AiX) −

2bTi x+ ci ≤ 0 are all linear, but the new formulation includes the nonconvex constraint X = xxT .

In semidefinite relaxations, this constraint is relaxed to X � xxT , which yields a semidefinite

program (SDP). This relaxation is known to be exact when m = 1, and is in fact the Lagrange

bidual (the dual of the dual) of the original problem, for any n. Semidefinite relaxations have been

observed empirically to give strong lower bounds (see [4]), at the cost of increasing the number

of variables in the problem significantly and requiring the solution of a semidefinite program.

Moreover, the solution of the SDP typically does not immediately yield a feasible solution to the

original problem - see [47] for discussion of methods for obtaining feasible solutions from an SDP

relaxation. Semidefinite relaxations have been applied to combinatorial optimization problems (see

[36]), as the constraint xi ∈ {0, 1} can be written as the quadratic constraint x2
i = xi.

Another relaxation method is the Reformulation-Linearization Technique (RLT) (see [61] and

[62] for development of the RLT). This relaxation also introduces an (n × n) matrix X which,

ideally, is equal to xxT . Consider an instance of the problem (1.2) which includes “box” constraints
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bounding the values of the components of x:

`i ≤ xi ≤ ui for all i, (1.4)

where the bounds `i and ui are all finite. Constraints relating X and x are formed by multiplying

pairs of constraints from (1.4) and then linearizing by replacing each bilinear term xixj with the

linear term Xij . As an example, take the constraints xi − `i ≥ 0 and uj − xj ≥ 0 for two arbitrary

choices of indices i and j. Certainly the constraint (xi − `i)(uj − xj) ≥ 0 is valid; expanding out

the product on the left hand side gives the nonconvex constraint

ujxi − xixj − `iuj + `ixj ≥ 0.

The linearization step relaxes this to the convex constraint

Xij − ujxi − `ixj ≤ −`iuj .

The final reformulation, which explicitly includes the box constraints, is the following linear pro-

gram:

minimize: tr (QX) + qTx

subject to: tr (AkX)− 2bTk x+ ck ≤ 0 k = 1, . . . ,m

`i ≤ xi ≤ ui ∀ i

Xij − `jxi − `ixj ≥ −`i`j ∀ i, j

Xij − uixj − ujxi ≥ −uiuj ∀ i, j

Xij − ujxi − `ixj ≤ −`iuj ∀ i, j

X = XT

(1.5)

The bounds obtained from the RLT are typically not as strong as those obtained from the SDP

relaxation, and the RLT is not applicable when the entries of x are unbounded. Anstreicher [4] gives

a computational comparison of the SDP and RLT relaxations, and studies the effect of combining

the two methods.

In the case where `i = 0 and ui = 1 for each i, we can take advantage of the following result:

Proposition 1.2.1. Let Q be any (n × n) symmetric matrix and q ∈ Rn. Let α ∈ Rn+ be fixed.

Then

xT (Q+ diag (α))x+ (q − α)Tx ≤ xTQx+ qTx for all x ∈ [0, 1]n.
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The function xT (Q + diag (α))x + (q − α)Tx is called an αBB-underestimator of the function

xTQx + qTx. Consider an instance of (1.1) which includes the constraint xi ∈ [0, 1] for each i. If

nonnegative vectors α0, α1, . . . , αm are chosen so that Q+ diag (α0) � 0 and Ai + diag (αi) � 0 for

each i, then the following QCQP is a convex relaxation:

minimize: xT (Q+ diag (α0))x+ (q − α0)Tx

subject to: xT (Ai + diag (αi))x− (2bi + αi)
Tx+ ci ≤ 0 i = 1, . . . ,m

xj ∈ [0, 1] j = 1, . . . , n

(1.6)

The idea of the αBB-underestimator was first developed by Androulakis et al. in [3] for general

nonlinear functions. Anstreicher [5] shows that the relaxation (1.6) is weaker than one obtained

by adding the constraint diag (X) ≤ x to a semidefinite relaxation. The same paper also provides

a similar result for generalizations of these methods when the problem contains linear constraints

x ≥ 0, Ax ≤ b rather than the box constraint x ∈ [0, 1]n.

1.2.1.1 The Trust Region Subproblem

A frequently encountered example of a nonconvex QCQP is the trust region subproblem:

minimize: xTQx+ qTx

subject to: xTx ≤ 1
(1.7)

This problem arises in nonlinear programming algorithms. The objective is a quadratic approxima-

tion of some nonlinear objective function f about a current solution point. The set {x | xTx ≤ 1} is

the trust region. This is the set in which the quadratic approximation is “trusted” to be a suitably

close approximation of f . Because there is only a single constraint in the trust-region problem, it

can be solved exactly using the semidefinite relaxation (see [19]):

minimize: tr (QX) + qTx

subject to: tr (X) ≤ 1

X � xxT
(1.8)

The problem becomes more difficult with the addition of extra constraints. The authors of [65] and

[21] provide an exact semidefinite formulation in the presence of a single linear constraint, with [21]

providing a similar fomulation for the case with two parallel linear constraints. Burer and Yang [24]
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extend these results to derive a semidefinite formulation when a system of in equality constraints

Ax ≤ b is present, provided that the constraints do not intersect inside the unit ball: that is, there

is no point y ∈ Rn with yT y ≤ 1, aTj y = bj , and aTi y = bi for any distinct pair of indices i, j. These

formulations are obtained in a manner very similar to the RLT: by multiplying together pairs of

constraints (bi − aTi x) ≥ 0 and (bj − aTj x) ≥ 0 and linearizing the resulting valid inequalities, and

by linearizing the valid inequality
∣∣∣∣∣∣(bj − aTj x)x

∣∣∣∣∣∣ ≤ (bj − aTj x).

The addition of a second quadratic constraint (obtained as a sufficient decrease condition) is

considered in [25], and [70] provides an algorithm for the solution of this extension.

1.2.1.2 The S-Lemma

The S-Lemma (or S-Procedure) was first described in [67] and provides a means for describing when

one quadratic constraint implies another, regardless of the convexity or nonconvexity of either. It

is, in a sense, a quadratic analog to Farkas’s Lemma. It is often stated in different ways; here we

present one.

Lemma 1.2.2 (The S-Lemma). Let f : Rn → R and g : Rn → R be two quadratic functions.

Assume that there is some x̂ with g(x̂) < 0. Then

f(x) ≥ 0 for all x with g(x) ≤ 0

if and only if there exists a nonnegative multiplier τ where

f(x) + τg(x) ≥ 0 for all x ∈ Rn

The original proof of the S-Lemma relies on the result of Dines [32], stating that if f and g

are homogenous quadratic functions, the joint range {(f(x), g(x)) | x ∈ Rn} ⊆ R2 is convex.

The survey [54] provides a thorough background on the S-Lemma, including some extensions and

variations, as well as counterexamples in more complicated settings.

1.2.2 Disjunctive Programming

The authors of [58] and [1] study a relaxation of the nonconvex QCQP (1.2), in which the nonconvex

quadratic constraints are replaced with nonconvex polyhedral constraints. Letting Ai = V T
i Vi be
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the eigenvalue decomposition of each matrix Ai, their relaxation is the following:

minimize: xTx

subject to: ||Vix||1 ≥ 1 i = 1, . . . ,m
(1.9)

In this formulation, the ellipsoids Ei are replaced with the “diamond” shaped polyhedra

Di = {x | ||Vix||1 ≤ 1}.

The authors exploit the structure of these constraints to devise a parallelized algorithm which

searches the sphere enclosing all of the Di and solves a series of convex quadratic programs over

pieces of the feasible region. They are able to obtain good solutions very quickly using this method,

but as the resolution of their search is finite and the only lower bounds obtained are quite weak,

they are not able to guarantee global optimality.

This problem can be seen as a special case of a class of problems with a convex objective and a

feasible region which is the complement of the interior of a union of polyhedra. The general form

of these problems is

minimize: xTx

subject to: Akx 6< bk k = 1, . . . ,K
(1.10)

where Ak ∈ Rmk×n and bk ∈ Rmk for each k. These problems can be formulated and solved as

Mixed Integer Quadratic Programs (MIQP), as follows:

minimize: xTx

subject to: akj
T
x ≥ bkj −M(1−Bk

j ) k = 1, . . . ,K, j = 1, . . . ,mk∑mk
j=1B

k
j = 1 k = 1, . . . ,K

Bk
j ∈ {0, 1} k = 1, . . . ,K, j = 1, . . . ,mk

(1.11)

The parameter M is a number large enough so that the problem is feasible and all constraints

can be satisfied at the optimal solution. Relaxing the constraints Bk
j ∈ {0, 1} to Bk

j ∈ [0, 1] gives

a convex formulation, but this relaxation tends to result in very weak lower bounds on the true

optimal value of the MIQP.

All of these problems are examples of disjunctive programs: optimization problems where the

feasible region is defined by a disjunction, or union, of individual components. Disjunctive pro-

gramming was introduced by Balas [8] in linear integer programming. Later work by Ceria and
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Soares [26] generalized disjunctive programming to the nonlinear setting, using the perspective

transformation (see [19]) to obtain a description of the convex hull of a disjunctive set defined by

convex functions, and a means for optimizing over this set. Later, we will consider the formulation

of Ceria and Soares as an option for generating valid inequalities for the feasible regions of problems

we consider.

In the examples above, the components are polyhedra. In Sections 3.1 and 3.2, we will discuss

the use of lifting techniques to obtain lower bounds on problems of the form (1.11).

1.2.3 Cardinality Constraints

A cardinality constraint on a vector x ∈ Rn is a constraint on the number of nonzero entries a

feasible vector x is allowed to have. Such a constraint is represented as ||x||0 ≤ K, where || · ||0 is

the “zero-norm” (although it is not actually a norm). The set of vectors x ∈ Rn with ||x||0 ≤ K for

any positive K forms a basis for Rn, so the convex relaxation of any feasible set with a cardinality

constraint is typically weak. Bienstock [15] studies cardinality-constrained problems in portfolio

optimization, where the constraint limits the number of stocks the investor purchases. Later we

will point out a way in which the techniques we develop can be applied to improve lower bounds

in these types of problems.

1.3 Lifting

Much of the work in this thesis concerns or utilizes lifted inequalities. Generally speaking, lifting

is a method of modifying an inequality πTx ≤ π0 which is valid for a given set S to produce a new

valid inequality (π+α)Tx ≤ (π0 +α0). Ideally, the new inequality will be “strong”, in that it is not

implied by some another valid inequality, or a combination of valid inequalities. Exactly how this

is accomplished depends on the structure of the set S: as Nemhauser and Wolsey remark before

introducing lifting in [50], “The determination of families of strong valid inequalities is more of an

art than a formal methodology.” In this section we provide a brief overview of the history of lifting

and some of the classes of problems to which lifting has been applied successfully.
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1.3.1 Lifting in Integer Programming

Lifting has been studied since at least the late 1960s as a means for constructing valid inequalities

in 0/1 linear integer programs. In early work, lifting is performed sequentially: one variable at a

time. The initial valid inequality, which we will call the base inequality, is

∑
j∈J

πjxj ≤ π0, (1.12)

where J ⊂ {1, . . . n}. The lifted inequality gives a positive coefficient to a variable x` where ` /∈ J :

n∑
j∈J

πjxj + α`x` ≤ π0. (1.13)

The new coefficient α` is called the lifting coefficient. As the variables xi must take values in {0, 1},

any positive value for α` results in an an inequality that is stronger than the original, with the

strongest lifted inequality being the one with the largest value for α` (subject to validity for the set

S). The value of the largest possible lifting coefficient is computed by solving the lifting problem:

α` =

 maximize: α

subject to:
∑n

j∈J πjxj + α ≤ π0 ∀x ∈ S


The constraint in this problem ensures that the lifted inequality is valid for S. In this constraint,

the value of x` is fixed at one, as the validity of (1.12) implies (1.13) holds when x` = 0. Once the

lifting coefficient has been computed, the lifted inequality can be used as the next base inequality,

and the lifting coefficient for a new variable xk (where k /∈ J∪{`}) can be computed. In general, the

values for the lifting coefficients will depend on the order in which the new variables are chosen. To

compute all valid lifted inequalities, it is necessary to consider all possible orderings of the indices

not in the original index set J .

The formulation and solution of the lifting problem is problem specific; early work relied on the

combinatorial structure of the feasible set. Padberg [52] provides a method for using sequential

lifting to obtain facet-defining inequalities in set-packing problems. Nemhauser and Wolsey provide

derivations of lifted inequalities for the set-packing problem as well as the 0/1 knapsack problem in

[50]. Wolsey [69] studies lifting for more general integer linear programs, and Zemel [71] introduces

procedures for lifting multiple variables simultaneously in general 0/1 programs.
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1.3.2 Lifting in Continuous Optimization

Since its origination in integer programming, lifting has been applied in continuous (including

nonlinear) problems. Atamtürk and Narayanan [7] develop a generalization where a valid conic

inequality

C0x
0 �K d

defined over a subset of variables is lifted to a new conic inequality

p∑
j=0

Cjx
j �K d

over the complete set of variables. Here, K is a closed, convex, and full-dimensional cone with at

least one extreme point, the variables xj are vectors in Rnj , and the lifting “coefficients” Cj are

(m × nj) matrices. The lifting approach presented in the previous section is a special case of this

approach in the case where nj = 1 for each j and the cone K is R+,

Richard and Tawarmalani [56] present a method for lifting linear inequalities approximating a

nonlinear function f over a subspace to linear inequalities valid over the entire space, and discuss

applications to nonlinear mixed-integer knapsack problems. The lifting techniques we develop are

similar in that they use lifting to produce tight linear approximations to nonlinear functions. As the

functions f we consider are convex, they meet the criterion imposed by these authors of having an

affine minorant and their results apply. Our constructions, however, begin with an inequality which

is globally valid and produce a lifted inequality which is valid only over a (typically nonconvex)

subset of interest.

Belotti et al. [14] use lifted inequalities to obtain the convex envelope of sets of the form

M = {x ∈ R3 | x3 = x1x2, `i ≤ xi ≤ ui, i = 1, 2, 3}. They use for the base inequality the tangent

inequality

y2(x1 − y1) + y1(x2 − y2) ≥ 0

at a point y ∈ R2 with y1y2 = `3 and derive a lifted inequality

y2(x1 − y1) + y1(x2 − y2)− λ(x3 − `3) ≥ 0

where λ ∈ R+ is the lifting coefficient. The lifting procedures we develop will also use the tangent

inequality for a convex function f as the base inequality.
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1.4 Cutting Planes

Cutting plane methods are a means for solving optimization problems through a series of relaxations

whose feasible sets are progressively tightened through the addition of valid inequalities. The basis

of any cutting plane algorithm is the following result from convex analysis (see [57]):

Proposition 1.4.1. Any closed convex set F has a linear inequality description:

F =
⋂
j∈J
{x | γTj x ≤ βj}.

In this expression, J is an index set which may be infinite. The generic cutting plane algorithm

for solving an optimization problem min{fTx | x ∈ F} (the objective is assumed to be linear

without loss of generality) over a closed convex set F is as follows:

Algorithm 1.4.2 (Generic Cutting Plane Algorithm).

1. Let F0 be a closed convex set containing F , and set i = 0.

2. Let yi ∈ argmin{fTx | x ∈ Fi}.

3. If yi meets the stopping criteria, stop. Otherwise, find an inequality πTx ≤ π0 valid for

F , with πT yi > π0.

4. Let Fi+1 = Fi ∩ {x | πTx ≤ π0}. Set i = i+ 1 and go to Step 2.

In practice, the “stopping criteria” in Step 3 could be the condition yi ∈ F or something less

strict - for instance if yi is provably “close” to F or if fT yi, the objective value of the current

relaxation, is close to a known upper bound for the original problem. As each point yi is the

solution to a relaxation, each objective value fT yi gives a valid lower bound on the value of the

original problem.

The key step of the cutting plane algorithm is in Step 3 - finding the linear inequality πTx ≤ π0

which separates yi from F . This is known as the separation problem. The closedness and convexity

of F guarantees that if yi /∈ F , such a separating inequality exists, but the method of finding π and

π0 will be specific to structure of the set F . In cases where the separation problem can be solved

efficiently, cutting plane algorithms provide an attractive means for solving (or providing bounds

for) problems where F does not have a convenient closed-form expression - for example when the

linear inequality description requires an infinite number of inequalities.
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1.4.1 Cutting Planes in Linear Integer Programming

As with lifting, the concept of cutting planes arose in linear integer programming. The general

formulation of a linear integer program is

maximize: fT z

subject to: Az ≤ b

z ∈ Zn
(1.14)

where A ∈ Zm×n and b ∈ Zn. Let P = {x ∈ Rn | Ax ≤ b}. The set PI = conv (Zn ∩ P ) is known

as the integer hull of P : it is the convex hull of all integral points in P . As all extreme points of

PI are integral, solving max{fTx | x ∈ PI} is equivalent to solving (1.14). In the terminology of

the general cutting plane algorithm, F = PI and F0 = P .

Gomory, in [37] and [38], provides a method to find a linear inequality separating a nonintegral

point y from PI , and proves that the integer program (1.14) can be solved in a finite number of

iterations using this method, when the polyhedron P is bounded. The cuts Gomory considered,

which are now known as Chvátal-Gomory cuts, are of the form

cTx ≤ bδ(c, P )c,

where

c ∈ Zn, and δ(c, P ) = max {cTx | x ∈ P}.

These cuts arise from the observation that for any c ∈ Zn, the optimal value of

max {cT z | z ∈ Zn, z ∈ P}

is an integer.

Adding the Chvátal-Gomory cut for every c ∈ Zn yields the Chvátal-Gomory closure of P ,

denoted P ′:

P ′ =
⋂
c∈Zn

{x | cTx ≤ bδ(c, P )c}.

It was proved by Schrijver in [60] that P ′, despite being defined by an infinite number of inequalities,

is in fact a polyhedron. This result was recently extended by Dadush et al. in [29], where the authors

show that the Chvátal-Gomory closure of any compact convex set (including a polytope defined

by irrational data) is a polytope.
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Defining P (1) = P ′, and then P (i+1) = P (i)′ for i ≥ 1 gives a series P (1), P (2), . . . of progressively

tighter approximations of PI . Later, in [27], Chvátal showed that for any bounded P defined by a

rational system Ax ≤ b, there is a finite integer r (which could be very large) where P (r) = PI .

Chvátal-Gomory cuts are only one of a number of families of valid cuts for integer linear pro-

grams. Cornuéjols [28] gives a thorough overview of several different families of cuts, and the

relationships between them, for mixed integer sets of the form

S = {(x, y) ∈ Rn × Zp | Ax+ Cy ≤ b}

which inludes the pure integer case when p = 0. The validity of any cut πTx x + πTy y ≤ π0 is

equivalent to the condition

{(x, y) | (x, y) ∈ S, πTx x+ πTy y > π0} = ∅.

That is, the subset of S violating the cut does not contain any y-integral points. Such sets are

termed lattice free sets.

1.4.2 Extensions to Mixed Integer Nonlinear Programming

Cutting plane algorithms have also been used outside of linear integer optimization, especially

when the integer variables are 0/1. In these problems, the separation problem concerns cutting

off fractional solutions of continuous relaxations. A simplified outline of the general procedure is

as follows: Let C ⊆ Rn × [0, 1]p be a bounded convex set. Let (x∗, y∗) ∈ C be a solution to a

continuous relaxation of the following mixed 0/1 program with linear objective:

maximize: fTx x+ fTy y

subject to: (x, y) ∈ C

y ∈ {0, 1}p
(1.15)

with y∗j ∈ (0, 1). Because the objective in this problem is linear, we can assume that (x∗, y∗) is an

extreme point of C. Define

C0 = {(x, y) ∈ C | yj = 0}, and C1 = {(x, y) ∈ C | yj = 1}.

The union C0∪C1 contains the feasible set of (1.15), and thus K = conv (C0 ∪ C1) is a valid convex

relaxation for (1.15). A point (x̂, ŷ) is in K if and only if there is a solution (λ0, x0, y0, λ1, x1, y1)
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to the system

(x̂, ŷ) = λ0(x0, y0) + λ1(x1, y1) (1.16)

(x0, y0) ∈ C0, (x1, y1) ∈ C1 (1.17)

λ0, λ1 ≥ 0, λ0 + λ1 = 1 (1.18)

This system is nonconvex, but a convex reformulation can be obtained through a change of variables

or transformation. Because (x∗, y∗) is an extreme point of C, we have (x∗, y∗) /∈ K, which implies

that there is no solution to the system (1.16)-(1.18), nor to its convex reformulation, when (x̂, ŷ) =

(x∗, y∗). A hyperplane separating (x∗, y∗) from K is found using this fact, and is added to the

constraints in (1.15).

Balas et al. introduce this approach, called the disjunctive approach, for the linearly constrained

case in [9]. Stubbs and Mehrotra [63] provide a generalization for the case when C is defined by

convex inequalities gi(x, y) ≤ 0 , and later describe a method for obtaining valid nonlinear inequal-

ities in this setting. Ceria and Soares [26] extend these ideas to more general disjunctive feasible

sets. Both [63] and [26] use the perspective transformation to achieve convexity. This presents a

problem computationally as the perspective function, while convex, is not everywhere differentiable

and therefore not compatible with general nonlinear programming algorithms. Moreover, the for-

mulation used to generate cuts contains multiples of the number of variables in the original problem.

Both [18] and [44] seek to avoid these difficulties and propose methods for generating valid cuts

using splits (see [28] for an introduction to split cuts). The former uses nonlinear programming to

find a cut separating a fractional point, while the latter uses a sequence of linear programs.

In [42], Iyengar and Çezik present a method of obtaining linear and quadratic cuts in mixed 0/1

convex quadratically-constrained problems, using SDP duality to formulate the separation problem.

The same authors extend their results to mixed 0/1 semidefinite programming in [43]. Although

the settings we consider do not necessarily include 0/1 variables, the use of duality to generate cuts

closely resembles the approach we take in Section 3.2.

Underlying much of this work is the goal of obtaining the convex hull of the union of two or

more convex sets - for instance, the sets C0 and C1 from above. Recent papers by Modaresi et

al. [48] and Belotti et al. [12] address this directly. [48] focuses mainly on sets obtained through

quadratic constraints and split disjunctions, but also includes results describing the convex hull
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of the difference of two quadratically-defined sets. [12] focuses on the case of a conic set with a

linear disjunction. The work in this thesis is similar: we will seek to obtain the convex hull of a set

obtained by taking the epigraph of a convex function over a non-convex region of Rn.

An interesting and illustrative application of the cutting plane methodology in a purely con-

tinuous nonlinear problem comes from Qualizza et al. in [55], in which cutting planes are used to

approximate the cone of (n×n) positive semidefinite matrices. Consider a semidefinite program of

the following form:

minimize: tr (X)

subject to: tr (AiX) ≥ 1 i = 1, . . . ,m

X � 0

(1.19)

Removing the constraint X � 0 and instead constraining X only to lie in the set of symmetric

(n× n) matrices yields a linear program. Suppose such a linear relaxation is solved, and let X∗ be

the optimal solution. If X∗ � 0, then X∗ is feasible (and therefore optimal) for (1.19). Otherwise,

X∗ has at least one eigenvector-eigenvalue pair (v, λ) with vTX∗v = tr (vvTX∗) = λ < 0. Adding

the valid linear cut tr (vvTX) ≥ 0 to the formulation (1.19) cuts off X∗, and in fact one cut can

be added for each negative eigenvalue of X∗. The authors use this idea, with several heuristics to

promote sparsity in the coefficients of the cuts, to provide bounds on problems similar to (1.19),

which are themselves relaxations of nonconvex quadratically constrained quadratic programs.
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Chapter 2

Approach and General Lifting Results

In this chapter, we describe the settings we wish to consider and introduce some terminology

which will be used throughout. We also provide some general results on the construction of lifted

inequalities in our settings of interest, as well as their ability to describe the convex hull of the

epigraph of a convex differentiable function over a general domain.

2.1 Generic Setting and Approach

In our general setting, we consider an optimization problem which includes a function f(x) : Rn → R

in either the objective or constraints. We assume that f is convex and differentiable, and that the

feasible set for x, which we denote by F , is a nonconvex subset of Rn. We refer to any point x ∈ F

as feasible. In the specific cases for F that we consider, relaxing x ∈ F to x ∈ conv (F) would

result in a very poor bound on the value of the optimization problem. We aim to find methods to

strenghen this bound.

2.1.1 Epigraph Formulation

We introduce a new variable z and study the set

S = {(x, z) ∈ Rn+1 | z ≥ f(x), x ∈ F},

the epigraph of f over the domain F . The use of the epigraph is helpful in cutting plane methods

with a nonlinear convex objective function, as it guarantees that the optimal solution to a relaxation
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will occur at an extreme point. Without the epigraph formulation, the optimal solution to a

relaxation may be in the interior of the relaxed feasible set, and it may be impossible to separate

this solution from F with a linear inequality. In our setting, it allows us to move from the weak

bound provided by the relaxation

z ≥ f(x), x ∈ conv (F)

to the stronger formulation

(x, z) ∈ conv (S).

We will attempt to obtain, through the use of lifted inequalities, a linear inequality description of

conv (S).

2.1.2 General Lifting Construction

Let y be any point in Rn. As f is convex, the inequality

f(x) ≥ ∇f(y)T (x− y) + f(y)

holds for all x ∈ Rn. With the addition of the extra variable z, we can express this as the linear

inequality

z ≥ ∇f(y)T (x− y) + f(y) (2.1)

which is valid for all (x, z) with z ≥ f(x). In particular, this inequality is valid for the set S and

supports S at the point (y, f(y)) when y ∈ F . This inequality, which will serve as the basis for our

lifting procedures, will be referred to as the tangent inequality generated at y.

By the differentiability of f , when y ∈ int (F) there is a unique hyperplane supporting S at

(y, f(y)), namely the set of points (x, z) satisfying (2.1) with equality. On the other hand, when

y is on the boundary of F , it may be possible to modify the coefficients of the tangent inequality

generated at y in such a way that the resulting inequality is still valid for S, but provides a tighter

description of conv (S). We now provide a definition of the type of modifications we consider.

Definition 2.1.1. Let y ∈ ∂F , λ ∈ Rn, and α ∈ R+. The inequality

z ≥ (∇f(y) + αλ)T (x− y) + f(y), (2.2)

is called a lifted first-order inequality generated from y, with lifting normal λ and lifting coefficient

α.
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All of the lifted inequalities we consider are in fact lifted first-order inequalities, and for the

most part we will refer to them more simply as lifted inequalities. The appearance of both λ and

α together in this definition may seem superfluous, but will prove convenient later. We do allow

the possibility that either α = 0 or λ = 0, in which case the lifted inequality is simply the tangent

inequality at y, but of course we are most interested in the cases where α and λ are nonzero.

Note that for points x with αλT (x− y) > 0, the lifted inequality is a strengthening of the tangent

inequality, in that it implies a higher value of z, our linearized proxy for the objective value.

For the lifted inequality (2.2) to be valid for S, we need

f(x) ≥ (∇f(y) + αλ)T (x− y) + f(y) for all x ∈ F ,

or equivalently

z ≥ (∇f(y) + αλ)T (x− y) + f(y) for all (x, z) ∈ S.

Suppose a point (x, z) ∈ S violates the lifted inequality. Then because z ≥ f(x) for all (x, z) ∈ S,

the point (x, f(x)) violates the lifted inequality as well. If we define V = V (y, λ, α) to be the

set of all points x such that (x, f(x)) violates (2.2), an equivalent characterization of validity is

int (V ) ∩ F = ∅. A recurring theme in this work will be to maximize the strength of the lifted

inequality, subject to its validity.

2.1.3 Separation

In general, the linear inequality description of the set conv (S) will require an infinite number of

inequalities and will not have a convenient closed-form description. We therefore focus on finding

efficient solutions to the problem of separating from conv (S) by means of lifted inequalities, with

the intention that our methods could be used as a component in a cutting plane algorithm. The

separation problem is formally stated below.

Problem 2.1.2 (The Separation Problem). Given a point (x̂, ẑ) with x̂ ∈ conv (F), find γ ∈ Rn

and β ∈ R where

z ≥ γTx+ β ∀ (x, z) ∈ S

and

ẑ < γT x̂+ β,

or provide proof that such γ and β do not exist.
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We point out that the set F does not necessarily need to be the feasible region for the “original”

problem being solved, but could be a relaxed feasible region with a simpler structure which allows

for easier separation from the set S.

2.2 Lifting in the General Case

In this section we present some of the results from [17] concerning the construction of lifted first

order inequalities for general convex and differentiable functions f and feasible sets F . We introduce

a necessary condition for when a tangent inequality can be lifted, and show that first-order lifted

inequalities, together with tangent inequalities and inequalities valid for F , are sufficient to describe

the convex hull of the epigraph set S.

Throughout, we assume that F and conv (F) are closed. We define the set P = cl (Rn \ F),

so we have F = Rn \ int (P ).

We begin with a definition, which we then establish as a necessary condition for constructing a

nontrivial lifted inequality from a point y.

Definition 2.2.1. Let P be a full-dimensional subset of Rn. Let y ∈ ∂P and p ∈ Rn, with ||p|| = 1.

P is called locally flat at y with normal p if for every r ∈ Rn with pT r > 0, there exists an ε > 0

with

y + δr ∈ int (P ) for all δ ∈ (0, ε).

Lemma 2.2.2. Let y ∈ ∂P , and let

z ≥ (∇f(y) + λ)T (x− y) + f(y) (2.3)

be valid for S, with λ 6= 0. Then P is locally flat at y, with normal λ
||λ|| .

Proof. Let r ∈ Rn with λT r > 0. Define

g(δ) = f(y + δr), and h(δ) = f(y) + δ(∇f(y) + λ)T r.

Then we have g(0) = h(0) = f(y), and

h′(0) = (∇f(y) + λ)T r = ∇f(y)T r + λT r > ∇f(y)T r = g′(0).
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This implies g(δ) < h(δ), or equivalently

f(y + δr) < f(y) + δ(∇f(y) + λ)T r

for δ positive and approaching 0. Then for any such δ, the inequality (2.3) is violated at (y + δr, f(y + δr)).

As this inequality is valid for S, we must have y + δr ∈ int (P ), which concludes the proof.

The following examples should help give a better understanding of local flatness.

Example 2.2.3. (a) Let P be a convex polygon in R2. Then P is locally flat at every point on its

boundary except the vertices; using as normals the unit vectors normal to the facets, oriented into

P . (b) The non-convex set P = {(x1, x2) ∈ R2 : |x1| ≥ x2} is locally flat at every point on its

boundary, even the vertex at (0, 0) (with normal (0,−1)).

As mentioned, local flatness of the set P at a point y is a necessary condition for the tangent

inequality at y to be nontrivially lifted. Unfortunately, this condition is not sufficient, as the next

example shows.

Example 2.2.4. In n = 2, Let P be the ellipsoid {x ∈ R2 | 1
9x

2
1 + x2

2 ≤ 1}, and f(x) = xTx. Then

P is locally flat at every point on its boundary. However, at the point y = (3, 0) ∈ ∂P , the only

inequality of the form (2.3) valid for S has λ = 0.

The intuitive reason for the negative result in this example is that it is impossible for a ball of

positive radius to be contained in P and contain the point (x1, x2) = (3, 0) in its boundary. We

will return to the problem of constructing lifted inequalities in the case where P is an ellipsoid in

Section 3.3.

Our next result provides a classification of all linear inequalities that are valid for S and support

S at some point.

Theorem 2.2.5. Let

δz ≥ γTx+ β (2.4)

be valid for S. Assume that this inequality is tight at a point (y, f(y)) with y ∈ F . Then one of the

following three conditions holds.

(1) δ = 0, and γTx+ β ≤ 0 is valid for F .
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(2) δ > 0, and δz ≥ γTx+ β is a positive multiple of the tangent inequality at y.

(3) δ > 0, and δz ≥ γTx+ β is a positive multiple of a lifted first-order inequality generated at y.

Proof. By the structure of S, it clearly must be the case that δ is nonnegative. First assume that

δ = 0. In this case,

γTx+ β ≤ 0

must be valid for F , so case (1) holds.

From here on we assume that δ > 0, and without loss of generality that δ = 1, so the inequality

in question is now

z ≥ γTx+ β. (2.5)

If y ∈ int (F), then by the differentiability of f , (2.5) is simply the tangent inequality at y, implying

case (2) holds.

Now we assume y ∈ ∂F . Define

λ = γ −∇f(y).

Then, using the fact that β = γT y − f(y), we can write (2.5) as

z ≥ (∇f(y) + λ)T (x− y) + f(y)

If λ = 0, then (2.5) is simply the tangent inequality at y. We assume λ 6= 0, and case (2) holds. If

λ 6= 0, then (2.5) is a nontrivial lifted first-order inequality and case (3) holds.

This theorem leads immediately to the following result.

Theorem 2.2.6. Let (x̂, ẑ) ∈ Rn+1 with x̂ ∈ conv (F), ẑ ≥ f(x̂), and (x̂, ẑ) /∈ conv (S). Then there

is a lifted first-order inequality separating (x̂, ẑ) from conv (S).

Proof. Because conv (S) is a closed convex set and does not contain (x̂, ẑ), there is some linear

inequality

δz ≥ γTx+ β

which is valid for S and separates (x̂, ẑ) from conv (S). We can assume without loss of generality

that this inequality supports S. We now consider each of the possibilities of Theorem 2.2.5.

If δ = 0, then γTx + β ≤ 0 is valid for F . But because x̂ ∈ conv (F), this inequality cannot

separate (x̂, ẑ) from conv (S). So we have δ > 0.
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As ẑ ≥ f(x̂), we know that (x̂, ẑ) must satisfy the tangent inequality at every point y ∈ F . So

the inequality separating (x̂, ẑ) from conv (S) cannot be a tangent inequality (or a positive multiple

of a tangent inequality).

By Theorem 2.2.5, the only case remaining is that the separating inequality is, up to a scaling,

a lifted first-order inequality.

The importance of Theorem 2.2.6 is that given a point (x̂, ẑ) with ẑ ≥ f(x̂) and x̂ ∈ conv (F),

we need only to consider lifted first-order inequalities to solve the separation problem.
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Chapter 3

Positive Definite Quadratic Objectives

In this chapter we study the specific case where the f(x) is a positive definite quadratic function.

Quadratic objectives arise in a number of applications, as a measure of distance or error ([20]),

variance ([15]), or power ([35]). We consider sets of the form

S = {(x, z) ∈ Rn × R | x ∈ F , z ≥ f(x)}, (3.1)

where F is the feasible region for the x variables. We provide characterizations of lifted inequalities

that are valid for conv (S), and demonstrate how these inequalities can be used to separate from

conv (S) in polynomial time, in the cases where the feasible set F is

• The complement of the interior of a polyhedron

• A union of polyhedra (which includes the previous case, but is handled differently)

• The complement of the interior of an ellipsoid.

We begin with a simplifying assumption in this case.

Proposition 3.0.7. If f(x) is a positive definite quadratic function, then without loss of generality,

we can assume f(x) = xTx, the squared Euclidean norm.

Proof. Assume f(x) is given by

f(x) = xTHx− 2hTx+ h0.
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Let H = CTC be the Cholesky decomposition of H. By means of the linear transformation

y = C(x−H−1h), or x = C−1y +H−1h, we have

xTHx− 2hTx+ h0 = (C−1y +H−1h)TH(C−1y +H−1h)− 2hT (C−1y +H−1h) + h0

= yTC−THC−1y + 2hTC−1y − hTH−1h− 2hTC−1y + h0

= yTC−TCTCC−1y + hTH−1h− 2hTH−1h+ h0

= yT y − hTH−1h+ h0

which is, up to an additive constant, the squared Euclidean norm.

Now consider any inequality

z ≥ γTx+ β. (3.2)

A point (x, xTx) violates this inequality if and only if

xTx < γTx+ β

which can be stated equivalently as ∣∣∣∣∣∣∣∣x− 1

2
γ

∣∣∣∣∣∣∣∣2 < 1

4
||γ||2 + β.

That is, the set of points x for which (x, xTx) violates the inequality (3.2) is the interior of the ball

with center 1
2γ and radius

√
1
4 ||γ||

2 + β. This leads to the following characterization for validity

of linear inequalities over S.

Proposition 3.0.8. A linear inequality

z ≥ γTx+ β (3.3)

is valid for S if and only if the interior of the ball

B = B

(
1

2
γ,

√
1

4
||γ||2 + β

)

does not intersect F .

Proof. Let x̂ ∈ F . If x̂ ∈ int (B), we have

x̂T x̂ < γT x̂+ β.
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Let ẑ = x̂T x̂. Then (x̂, ẑ) ∈ S and violates (3.3), so the inequality is not valid for S.

Conversely, if the inequality (3.3) is not valid for S, then there is some point (ẑ, x̂) with x̂ ∈ F

and x̂T x̂ ≤ ẑ which violates (3.3). But then we have

x̂T x̂ ≤ ẑ < γT x̂+ β,

which implies x ∈ int (B). Because x̂ ∈ F , we have that int (B) intersects F .

This result allows us to characterize validity geometrically, and in the space of the original x

variables only, which will prove useful later as we devise constraints to ensure the validity of lifted

inequalities.

With f(x) = xTx the tangent inequality at a point y, which is valid for all (x, z) ∈ Rn × R, is

z ≥ 2yT (x− y) + yT y = 2yTx− yT y. (3.4)

In what follows, we use this inequality as the base inequality in our lifting procedures.

3.1 Excluding a Polyhedron

The first case we consider is when the feasible region is given as the complement of the interior of

a single polyhedron. Let

P = {x ∈ Rn | aTi x ≤ bi, i = 1, . . . ,m} = {x ∈ Rn | Ax ≤ b}

be the polyhedron, and define

F = Rn \ {x | Ax < b},

so

S = {(x, z) ∈ Rn+1 | Ax 6< b, z ≥ xTx}.

We assume that m ≥ 2, that P is full-dimensional and that every inequality in the system Ax ≤ b

defines a facet of P ; that is, for each i ∈ {1, . . . ,m} there is some x with aTi x = bi and aTj x < bj

for j 6= i.

In this section, we prove constraints on the structure of valid lifted inequalities for the set S, and

derive expressions for the lifting coefficients of these inequalities. Using this, we develop a procedure

which solves the separation problem for S by solving a quadratic program in n + 1 variables for

each facet of P . We contrast this separation procedure with one obtained using a disjunctive

programming formulation and discuss some computational considerations with our method.
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3.1.1 The Structure of Valid Inequalities

For any x̄ ∈ Rn, the tangent inequality

z ≥ 2x̄T (x− x̄) + ||x̄||2 (3.5)

is valid for S and supports S at (x̄, x̄T x̄). If x̄ /∈ P , this is the unique (up to multiplication by a

nonnegative scalar) inequality with these two properties. We seek lifted cuts of the form

z ≥ (2x̄− λ)T (x− x̄) + ||x̄||2 (3.6)

where x̄ ∈ ∂P and λ ∈ Rn. The following lemma describes which choices of λ result in valid cuts,

in a slightly more general setting.

Lemma 3.1.1. Let F be given as the union of a finite number of polyhedra:

F =

K⋃
k=1

{
x | Ckx ≥ dk

}
Let x̄ ∈ F , so Ckx̄ ≥ dk for some particular index k. Assume without loss of generality that

cki
T
x̄ = dki for i = 1, . . . , p

cki
T
x̄ > dki for i > p.

If the inequality

z ≥ γTx+ β (3.7)

is valid for S and holds with equality at (x̄, x̄T x̄), then

γ = 2x̄−
p∑
i=1

αic
k
i (3.8)

β =

p∑
i=1

αid
k
i − ||x̄||

2 (3.9)

with αi ≥ 0 for each i.

Proof. Suppose that the inequality (3.7) is valid but γ cannot be expressed in the form (3.8). By

Farkas’s Lemma, this implies that there is a vector π where (2x̄ − γ)Tπ = − 1 and cki
T
π ≥ 0

for each i = 1, . . . , p. The latter of these conditions implies that the point x̄ + επ is feasible for
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nonnegative ε, and thus the cut must be satisfied at the point (x, z) = (x̄ + επ, ||x̄+ επ||2) for

ε ≥ 0. Substituting into (3.7), we get that this condition is equivalent to

γT (x̄+ επ − x̄) + β ≤ ||x̄+ επ||2

⇔ επTγ ≤ 2επT x̄+ ε2 ||π||2

⇔ ε(γ − 2x̄)Tπ ≤ ε2 ||π||2

⇔ ε− ε2 ||π||2 ≤ 0.

This fails to hold for ε close to 0. Thus we have a contradiction, and the inequality cannot be valid.

The equality (3.9) can now be established using the fact that (3.7) is tight at
(
x̄, ||x̄||2

)
.

This proof also covers the case when Ckx̄ > dk, in which case we have γ = 2x̄ and β = ||x̄||2:

the inequality (3.7) is the tangent inequality generated from x̄.

This result shows that, for F and x̄ as described in the lemma, the vector λ in (3.6) must be of

the form

λ =
K∑
k=1

αic
k
i

with αi ≥ 0 for all i.

As a corollary, we obtain the necessary form of the vector λ when there is only a single excluded

polyhedron.

Corollary 3.1.2. Let

F = Rn \ {x | Ax < b}

Suppose Ax̄ ≤ b and that ai
T x̄ = bi for some particular index i. If the lifted inequality (3.6) is valid

and tight at (x̄, x̄T x̄), then

λ = αai

for some α ≥ 0.

In this case we refer to α as the lifting coefficient. From Lemma 3.1.1, we can see that in this

simpler setting, if x̄ is not in the relative interior of the ith facet of P , then α must be 0. This

is because if aTj x̄ = bj for some j 6= i, then we would need λ = αai = βaj for some positive α

and nonnegative β. However, this is impossible due to the assumption that each inequality in the
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definition of P is facet-defining. Recalling Definition 2.2.1, this result states that P is not locally

flat (for any choice of normal vector) at any point not in the relative interior of one of its facets.

Moreover, if P is locally flat with normal p at a point y with aTi y = bi for some i, then we must

have p = −ai
||ai|| .

3.1.2 Deriving the Maximum Lifting Coefficient

Returning to the case where F = {x ∈ Rn | Ax 6< b}, we now focus on deriving the strongest lifted

cut of the form

z ≥ (2x̄− αai)T (x− x̄) + ||x̄||2 (3.10)

where i is a fixed but arbitrary index and x̄ is a fixed point with aTi x̄ = bi and aTj x̄ ≤ bj for

j 6= i. We refer to any inequality of this form as a lifted inequality generated from x̄. This section

establishes that the lifting coefficient giving the strongest lifted inequality generated from x̄ can be

obtained in closed form, which will lead to a polynomial-time solvable formulation of the separation

problem.

For any x ∈ int (P ), we have aTi x < bi and so the cut value

(2x̄− αai)T (x− x̄) + x̄T x̄ = −x̄T x̄+ 2x̄Tx+ α(bi − aTi x) (3.11)

is increasing in α. Thus in order to get the strongest lifted inequality, we wish to make α as large

as possible while preserving validity. This motivates the following definitions.

Definition 3.1.3. Let x̄ be a point in the ith facet of P , and let C ⊆ S. Assume C contains a point

(x′, z′) with aTi x
′ < bi. Then let

α∗(x̄, C) = sup {α | inequality (3.10) is valid for C}.

Definition 3.1.4. Let x̄ be a point in the ith facet of P . The lifted inequality

z ≥ (2x̄− α∗(x̄,S)ai)
T (x− x̄) + ||x̄||2

is called the nondominated lifted inequality generated from x̄.

By the assumption about the point (x′, z′) ∈ C in Definition 3.1.3, the value of α∗(x̄, C) is finite.

If it is the case that aTi x ≥ bi for all x ∈ F , then the inequality (3.10) is valid for any nonnegative
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α. However, this possibility is precluded by our assumption that P has at least two facets, meaning

α∗(x̄,S) is finite. Note that we have not (yet) proved that the nondominated lifted inequality is

actually valid.

A key insight in deriving the maximum lifting coefficient will be the ability to write the excluded

polyhedron P as the intersection of (m− 1) polyhedra defined by only two inequalities:

P =
⋂
j 6=i
{x | aTi x ≤ bi, aTj x ≤ bj}.

With this in mind, let j 6= i be another fixed index, and let x̄ be a point with aTi x̄ = bi and

aTj x̄ ≤ bj . Define

Wij = {x | aTi x ≤ bi, aTj x ≤ bj},

which is nonempty by assumption. We wish to find a lifted inequality of the form (3.10) which is

valid for the set

Sij = {(x, z) | x /∈ int (Wij), z ≥ xTx},

a subset of S.

The first result of this section narrows down the set of points (x, z) we need to consider to

ensure validity of the lifted cut (3.10) over Sij .

Lemma 3.1.5. Suppose a point (x′, z′) ∈ Sij violates (3.10). Then aTi x
′ < bi.

Proof. As (x′, z′) ∈ Sij , we have x′Tx′ ≤ z′ and thus

x′
T
x′ ≤ z′ < (2x̄− αai)T (x′ − x̄) + x̄T x̄ ⇒

∣∣∣∣x̄− x′∣∣∣∣2 < −αaTi (x′ − x̄)

⇒ 0 < αaTi (x̄− x′)

⇒ aTi x
′ < aTi x̄

⇒ aTi x
′ < bi

Lemma 3.1.5 tells us that the validity of (3.10) over the set{
(x, z) | aTj x ≥ bj , z ≥ xTx

}
is sufficient to guarantee its validity over Sij . This leads to the following characterization of validity

of the lifted cut over Sij .
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Lemma 3.1.6. The lifted cut (3.10) is valid over Sij if and only if the following inequality holds minimize: ||x||2 − (2x̄− αai)Tx+ ||x̄||2 − αbi

subject to: aTj x ≥ bj

 ≥ 0. (3.12)

Proof. Suppose (3.12) holds. If any point (x′, z′) violates the lifted cut (3.10), then (x′, x′Tx′)

violates it as well, and we have

x′
T
x′ < (2x̄− αai)T (x′ − x̄) + x̄T x̄.

If aTj x
′ ≥ bj , then we have a contradiction with (3.12), so it must be the case that aTj x

′ < bj . By

Lemma 3.1.5 we have aTi x
′ < bi. So x′ ∈ int (Wij), which means (x′, z′) /∈ Sij . This implies that

the cut is valid over Sij .

Now suppose (3.12) does not hold: there exists some x′ with aTj x
′ ≥ bj and

x′
T
x′ < (2x̄− αai)T (x′ − x̄) + x̄T x̄.

Then (x′, x′Tx′) ∈ Sij , and this point violates (3.10), implying that the lifted cut is not valid over

Sij .

For any α, we define Vα to be the set of points x for which (x, xTx) (weakly) violates the lifted

cut. As shown previously, Vα is a ball: specifically we have

x ∈ Vα ⇔ xTx ≤ (2x̄− αai)T (x− x̄) + x̄T x̄

⇔ xTx− 2
(
x̄− α

2
ai

)T
x+ x̄T x̄− αbi ≤ 0

⇔
∣∣∣∣∣∣x− (x̄− α

2
ai

)∣∣∣∣∣∣2 − ∣∣∣∣∣∣x̄− α

2
ai

∣∣∣∣∣∣2 + ||x̄||2 − αbi ≤ 0

⇔
∣∣∣∣∣∣x− (x̄− α

2
ai

)∣∣∣∣∣∣2 ≤ α2

4
||ai||2 . (3.13)

Note that we can state the condition x ∈ Vα equivalently as

||x− x̄||2 + α(aTi x− bi) ≤ 0.

When x is fixed and aTi x < bi, the left hand side of this expression is decreasing in α. This means

that Vα grows with α, in the sense that Vα ⊂ Vα′ for α < α′. This implies that if the lifted cut

(3.10) is valid with α = α′ for some particular value α′, then it is valid for any α ∈ [0, α′]. Using this

fact, we can show that the value of the supremum in Definition 3.1.3 provides a valid inequality.
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Lemma 3.1.7. Let x̄ and C be as in Definition 3.1.3. Let α∗ = α∗(x̄, C). Then the lifted cut

z ≥ (2x̄− α∗ai)T (x− x̄) + ||x̄||2

is valid.

Proof. Suppose not. Then there exists some y ∈ C with y ∈ int (Vα∗). This implies α∗ > 0. By

the definition of α∗(x̄, C), the lifted cut is valid for any α ∈ [0, α∗). However, for ε positive and

small enough, we have y ∈ int (Vα∗−ε), implying that the lifted cut with α = α∗ − ε is not valid, a

contradiction.

An immediate consequence of this result is that the nondominated lifted inequality as defined

in Definition 3.1.4 is in fact valid.

We now continue the derivation of the quantity α∗(x̄,Sij). The convexity of Vα allows the

following tightening of Lemma 3.1.6.

Lemma 3.1.8. The lifted cut (3.10) is valid over Sij if and only if the following inequality holds minimize: ||x||2 − (2x̄− αai)Tx+ ||x̄||2 − αbi

subject to: aTj x = bj

 ≥ 0. (3.14)

Proof. Suppose (3.14) holds, but the cut is not valid over Sij . Then there is some point (x′, x′Tx′) ∈

Sij which violates the cut. By Lemma 3.1.5, we have aTi x
′ < bi, so if (x′, x′Tx′) ∈ Sij , we must

have aTj x
′ ≥ bj . Then by (3.14) we have aTj x

′ > bj .

Now, x̄ is on the boundary of the ball Vα, and aTj x̄ < bj . x
′ is in the interior of Vα, and aTj x

′ > bj .

By the convexity of Vα, every point x on the line segment between x̄ and x′ is in the interior of

Vα, and therefore the point (x, xTx) violates the cut for any such x. But because aTj x̄ < bj and

aTj x
′ > bj this line segment must intersect the hyperplane {x | aTj x = bj} at some point, which we

will denote x̂. At this point we have ||x̂||2− (2x̄−αai)T x̂+ ||x̄||2−αbi < 0 and aTj x̂, contradicting

(3.14).

The proof of the converse is essentially the same as in the previous Lemma and we omit it.

Next we show that the inequality in (3.14) can be assumed to be tight, which leads to a necessary

condition which must be satisfied by the lifting coefficent α∗(x̄,Sij).
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Lemma 3.1.9. Let α∗ = α∗(x̄,Sij) be the largest lifting coefficient giving a lifted inequality valid

for Sij. Then α∗ satisfies minimize: ||x||2 − (2x̄− α∗ai)Tx+ ||x̄||2 − α∗bi

subject to: aTj x = bj

 = 0 (3.15)

Proof. We have already shown that any valid lifted cut must satisfy (3.14). Suppose α ≥ 0 is such

that the inequality (3.14) is strict. This implies that the ball Vα does not intersect the halfspace

{x | aTj x ≥ bj}. As both of these sets are closed and convex, there is a hyperplane strictly separating

them. For any ε ∈ R, the center and radius of the ball Vα+ε vary continuously with ε. So for ε

positive but small enough, the same hyperplane separates Vα+ε from {x | aTj x ≥ bj}. Moreover, by

Lemma 3.1.5, int (Vα+ε) ∩ {x | aTi x = bi} = ∅ for any ε > 0. Together, these facts imply that the

lifted inequality with lifting coefficient α+ ε is valid. This shows that α is not as large as possible,

and does not give the strongest lifted inequality.

As a consequence of Lemma 3.1.9 we see that the lifted inequality generated from x̄ with lifting

coefficient α∗ will support Sij at two points: (x̄, ||x̄||2) and (x∗, ||x∗||2), where x∗ is the optimal

solution to the quadratic program in (3.15).

Given the condition (3.15), we can now derive closed-form solutions for the optimal lifting

coefficient α∗ as well as the second support point x∗.

Lemma 3.1.10. The value of α∗ = α∗(x̄,Sij) is given by the affine expression

α∗ =
−2(bj − aTj x̄)

aTi aj − ||ai|| ||aj ||
. (3.16)

Proof. From Corollary A.1.2, the optimal solution to the quadratic program in (3.15) is given by

x∗ = x̄+

(
bj − aTj x̄+ α∗

2 a
T
i aj

||aj ||2

)
aj −

α

2
ai (3.17)
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and results in an objective value of

||x∗||2 − (2x̄− α∗ai)Tx∗ + ||x̄||2 − α∗bi

= ||x̄||2 +
(bj − aTj x̄+ α∗

2 a
T
i aj)

2

||aj ||2
+
α∗2

4
||ai||2 + 2

(
bj − aTj x̄+ α∗

2 a
T
i aj

||aj ||2

)
aTj x̄− α∗aTi x̄

− α

(
bj − aTj x̄+ α∗

2 a
T
i aj

||aj ||2

)
aTi aj − 2 ||x̄||2 − 2

(
bj − aTj x̄+ α∗

2 a
T
i aj

||aj ||2

)
aTj x̄+ α∗aTi x̄

+ α∗aTi x̄+ α∗

(
bj − aTj x̄+ α∗

2 a
T
i aj

||aj ||2

)
aTi aj −

α∗2

2
||ai||2 + ||x̄||2 − α∗bi

=
1

4

(
(aTi aj)

2 − ||ai||2 ||aj ||2

||aj ||2

)
α∗2 +

aTi aj

||aj ||2
(bj − aTj x̄)α∗ +

(bj − aTj x̄)2

||aj ||2
(3.18)

We now set the resulting objective value equal to 0 as in (3.15) and multiply by ||aj ||2 to obtain a

quadratic equation which α∗ must satisfy:

1

4

(
(aTi aj)

2 − ||ai||2 ||aj ||2
)
α∗2 + aTi aj(bj − aTj x̄)α∗ + (bj − aTj x̄)2 = 0 (3.19)

The coefficient corresponding to α∗2 in this equation is nonpositive. In the case that it is strictly

negative, the quadratic equation has one positive and one negative root. The positive root, which

gives us the strongest valid lifted cut, is given by:

α∗ =
−2(bj − aTj x̄)

aTi aj − ||ai|| ||aj ||
. (3.20)

In the case that ai and aj are parallel, the coefficient in (3.19) corresponding to α∗2 is 0, and the

sole root to (3.19) is given by

α∗ =
−(bj − aTj x̄)

aTi aj

By the assumption that each inequality in Ax ≤ b is facet-defining, we must have that ai is a

negative multiple of aj in the case that the two vectors are parallel. Assume ai = −βaj for some

positive scalar β. Then aTi aj − ||ai|| ||aj || = −2β ||aj ||2. Also aTi aj = −β ||aj ||2, and so we obtain

α∗ =
−(bj − aTj x̄)

aTi aj
=
−(bj − aTj x̄)

−β ||aj ||2
=
−2(bj − aTj x̄)

aTi aj − ||ai|| ||aj ||
,

the same value as (3.20).

The lifting coefficient we have derived here gives a cut which is valid for the set Sij , but this cut

will not in general be valid for S. There may be feasible points on other facets of P , or outside of
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P , where the lifted inequality with lifting coefficient α∗ is violated. However, we have shown that

any α ∈ [0, α∗] gives a lifted inequality valid for Sij . To get a lifted cut valid over the entirety of

S, we can take the smallest lifting coefficient obtained by considering each of the other facets of P

individually. Specifically, we obtain the following.

Theorem 3.1.11. The lifting coefficient giving the strongest lifted cut from a point x̄ in the ith

facet of P which is valid over S is given by

α∗(x̄,S) = min
j 6=i

{
−2(bj − aTj x̄)

aTi aj − ||ai|| ||aj ||

}
. (3.21)

The following example illustrates a very simple case.

Example 3.1.12. Let n = 1 and F = R \ (−1, 2). Figure 3.1 shows the epigraph of f(x) = x2

shaded in grey, with S overlaid in dark blue. The tangent inequality z ≥ −2x − 1, which supports

S at (−1, 1) is shown as well.

Figure 3.1: Graphical depiction of the set S with a tangent inequality.

Figure 3.2 depicts the strongest lifted inequality generated from −1, which is given by z ≥ x+ 2.

The region of the epigraph that this inequality cuts off is shaded in red. We see that the lifted cut

supports S at two points: (-1, 1) and (2, 4). In this example,

conv (S) = {(x, z) | z ≥ x2, z ≥ x+ 2},
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and obtaining the convex hull requires only a single cut (in addition to the z ≥ x2 constraint). In

general this will not be the case - infinitely many cuts will be required.

Figure 3.2: Illustrating the lifted cut.

3.1.3 Solving the Separation Problem

We now show how to use this expression for the lifting coefficient to derive a polynomial time

procedure for separating from the set S. Assume that we have a point (x̂, ẑ) which we have

obtained as the optimal solution to a relaxed problem, with Ax̂ < b. Let i ∈ {1, . . . ,m} be a fixed

index. Our goal is to find the valid lifted inequality originating from a point on the ith facet of P

which gives the largest cut value. This can be obtained by solving the following quadratic program

with variables x ∈ Rn and α ∈ R+:

maximize: − ||x||2 + 2x̂Tx+ α(bi − aTi x̂)

subject to: aTi x = bi

aTj x ≤ bj ∀j 6= i

α ≤ −2(bj−aTj x)

aTi aj−||ai||||aj ||
∀j 6= i

α ≥ 0
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This problem can be simplified further by noticing that the constraints aTj x ≤ bj are redundant.

At a point with aTj x > bj for some j 6= i, the constraint

α ≤
−2(bj − aTj x)

aTi aj − ||ai|| ||aj ||

would imply α < 0, which contradicts the nonnegativity constraint on α. Therefore we can eliminate

the constraints aTj x ≤ bj , resulting in the simpler problem:

maximize: − ||x||2 + 2x̂Tx+ α(bi − aTi x̂)

subject to: aTi x = bi

α ≤ −2(bj−aTj x)

aTi aj−||ai||||aj ||
∀j 6= i

α ≥ 0

(SEP(i))

Solving this problem for each i ∈ {1, . . . ,m} gives valid cuts originating from points on each

facet of P , some of which will in fact be identical. The strongest cut overall is simply the one with

the largest objective value. Note that ẑ, the function value from the relaxation, does not appear

in the formulation. Separation of (x̂, ẑ) from conv (S) is achieved if and only if the strongest cut

results in a value greater than ẑ, which we now state formally:

Theorem 3.1.13. Let (x̂, ẑ) ∈ Rn+1 with x̂ ∈ int (P ). Let z∗i be the optimal objective value for the

problem SEP(i). Then (x̂, ẑ) ∈ conv (S) if and only if

max
1≤i≤m

{z∗i } ≤ ẑ.

3.1.4 A Geometric Derivation of the Lifting Coefficient

This section presents an alternative derivation of the affine expression for the maximum lifting

coefficient α∗. The alternative derivation exposes more of the geometry underlying the validity of

lifted inequalities. Moreover, it was the original method used by the author to derive the maximum

lifting coefficient.

As in Section 3.1.2, we consider two fixed indices i, j ∈ {1, . . . ,m}, and define the sets Wij

and Sij in the same way. We again form the lifted inequality from a point x̄ with aTi x̄ = bi and

aTj x̄ < bj : an inequality of the form

z ≥ (2x̄− αai)T (x− x̄) + ||x̄||2 . (3.22)
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In this derivation we assume that ai and aj are not parallel.

Define the two-dimensional plane

Π = {x | x = x̄+ v, vTu = 0 for all u where aTi u = 0 and aTj u = 0}

= {x | x = x̄+ ηai + θaj , where η, θ ∈ R}

Let

α∗ = max{α ∈ R | the lifted inequality (3.22) is valid for Sij} (3.23)

and

α′ = max{α ∈ R | the lifted inequality (3.22) is valid for Sij ∩Π} (3.24)

Lemma 3.1.14. α∗ = α′.

Proof. Clearly we have α′ ≥ α∗, as the maximum in (3.23) is taken over a smaller set than in

(3.24). So suppose α′ > α∗, and there is therefore some point w with aTj w ≥ bj and

||w||2 < (2x̄+ α′ai)
T (w − x̄) + ||x̄||2 .

Let ŵ be the projection of w onto Π. Then we have

||x̄− w||2 = ||x̄− ŵ||2 + ||w − ŵ||2

which gives

||w||2 < (2x̄+ α′ai)
T (w − x̄) + ||x̄||2 ⇔ ||x̄− w||2 < α′aTi (w − x̄)

⇔ ||x̄− ŵ||2 + ||w − ŵ||2 < α′aTi (w − x̄)

⇒ ||x̄− ŵ||2 < α′aTi (w − x̄)

⇔ ||ŵ||2 < (2x̄+ α′ai)
T (ŵ − x̄) + ||x̄||2

which shows that (ŵ, ŵT ŵ) violates (3.22) with α = α′. This contradicts the definition of α′.

Now suppose some point (w,wTw) with aTj w > bj violates (3.22). Define Vα as in the previous

section. The point x̄ is on the boundary of Vα, and aTj x̄ < bj . Because Vα is convex and contains

both w and x̄, every point x on the line segment between x̄ and w is in Vα as well. This means that

there is some point x̂ with aTj x̂ = bj and for which the point (x̂, x̂T x̂) violates the lifted inequality.
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This, together with the previous lemma, shows that we only need to ensure validity on the ray

R = {x | aTj x = bj , a
T
i x ≤ bi} ∩Π to ensure validity over Sij .

Continuing, let the point p be the projection of x̄ onto {x | aTi x = bi, a
T
j x = bj}. p is at the

end of the ray R. We can write any point in x ∈ R as x = p+ βδ where δ is the unique unit vector

satisfying

δTaj = 0, δTai ≤ 0, and δTu = 0 for all u where aTi u = 0 and aTj u = 0.

The right hand side value of the cut (3.22) at the point x is

(2x̄− αai)T (x− x̄) + ||x̄||2 ,

and we want to find a point x∗ = p + β∗δ where the hyperplane defined by the cut supports Sij .

Such a point x∗ will solve the quadratic equation

(2x̄− αai)T (x− x̄) + ||x̄||2 = ||x∗||2 .

Substituting p+ β∗δ for x∗ gives a quadratic equation with roots given by

β∗ =
1

2

(
(2(p− x̄) + αai)

T δ ±
√

(δT (2(p− x̄) + αai))
2 − 4 ||x̄− p||2

)
(3.25)

If the two roots are distinct, then there are points x on the ray R for which the cut value (2x̄ −

αai)
T (x− x̄) + ||x̄||2 is strictly greater than ||x||2, meaning the cut is not valid for Sij . So, in order

for the cut to be valid, there must only be a single root, or equivalently

(
δT (2(p− x̄) + αai)

)2 − 4 ||x̄− p||2 = 0.

This gives a new quadratic equation in α. The roots are given by

α = 2
−δT (p− x̄)

(
aTi δ

)
±
√(

aTi δ
)2 ||p− x̄||2(

aTi δ
)2 .

Because aTi δ < 0, the positive root is

α = 2
−δT (p− x̄)

(
aTi δ

)
−
√(

aTi δ
)2 ||p− x̄||2(

aTi δ
)2 = 2

−δT (p− x̄)− ||x− p||
aTi δ
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Subsituting this value into (3.25) gives

β∗ = −1

2

(
2(p− x̄) + αai

)T
δ

= −1

2

[
2(p− x̄)T δ + 2

(
−δT (p− x̄)− ||x̄− p||

)]
= ||x̄− p||

This gives the intuitively clear fact that the origination point x̄ and the point x∗ are equidistant

from the intersection of the two hyperplanes {x | aTi x = bi} and {x | aTj x = bj}. With this fact, we

can derive the lifting coefficient α. As the lifted inequality (3.22) holds with equality at (x∗, ||x∗||2),

we have

||x∗||2 = (2x̄− αai)T (x∗ − x̄) + ||x̄||2

⇒ α =
||x̄− x∗||2

bi − aTi x∗
. (3.26)

Using Corollary A.1.2, we can obtain a solution to the quadratic program which finds p, the

projection of x̄ onto the intersection of the two hyperplanes, in closed form to get

||x̄− p||2 =
(bj − aTj x̄)2 ||ai||2

||ai||2 ||aj ||2 − (aTi aj)
2
. (3.27)

The points x̄, x∗, and p all lie in the plane Π. Also, the vectors ai and aj are parallel to the surface

of Π, so we can work entirely in this two-dimensional plane.

Let θ be the angle between ai and aj , and φ = π − θ be the angle between x̄ − p and x∗ − p.

Using the law of cosines and (3.27) along with the fact that x̄ and x∗ are equidistant from p, we

get

||x̄− x∗||2 = 2 ||p− x̄||2 (1− cos(φ))

= 2 ||p− x̄||2 (1− cos(π − θ))

= 2
(bj − aTj x̄)2 ||ai||2

||ai||2 ||aj ||2 − (aTi aj)
2
(1 + cos (θ))

= 2
(bj − aTj x̄)2 ||ai||2

||ai||2 ||aj ||2 − (aTj ai)
2

(
1 +

aTi aj
||ai|| ||aj ||

)

= 2
(bj − aTj x̄)2 ||ai||

||aj || (||ai|| ||aj || − aTi aj)
. (3.28)
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Next, we can see that π
2 −

θ
2 is the angle between ai and x̄− x∗. Then we have

aTi (x̄− x∗) = ||ai|| ||x̄− x∗|| cos

(
π

2
− θ

2

)
= ||ai|| ||x̄− x∗|| sin

(
θ

2

)
. (3.29)

Finally we combine (3.26), (3.27), and (3.29) to get

α =
||x̄− x∗||2

aTi (x̄− x∗)

=
||x̄− x̂j ||2

||ai|| ||x̄− x̂j || sin
( θj

2

)
=

||x̄− x∗||
||ai|| sin

(
θ
2

)
=

1

||ai|| sin
(
θ
2

) ( 2(bj − aTj x̄)2 ||ai||
||aj || (||ai|| ||aj || − aTi aj)

) 1
2

=
(bj − aTj x̄)

sin
(
θ
2

) (
2

||ai|| ||aj || (||ai|| ||aj || − aTi aj)

) 1
2

Use of the trigonometric half-angle identity

2 sin2

(
θ

2

)
= 1− cos (θ)

confirms that this expression agrees with (3.20).

3.1.5 The Disjunctive Approach

In this section we discuss the application of the disjunctive programming formulation of Ceria

and Soares (see [26]) in the case where the feasible region is the complement of a polyhedron.

We demonstrate how this approach can be used to obtain linear inequalities for separating from

conv (S), and discuss the theoretical complexity advantage of the method derived in Section 3.1.3

over this disjunctive approach.

We assume again that we have a point (x̂, ẑ) with x̂ ∈ int (P ), and we wish to separate (x̂, ẑ)

from conv (S), if possible. Writing

S =
m⋃
i=1

{
(x, z) ∈ Rn+1 | aTi x ≥ bi, z ≥ xTx

}
,
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we have (x̂, ẑ) ∈ conv (S) if and only if there exists a set of vectors

{(xi, zi, θi)}mi=1 ⊂ Rn × R × R

satisfying the following system:

(x̂, ẑ) =

m∑
i=1

θi(xi, zi) (3.30a)

aTi xi − bi ≥ 0 i ∈ {1, . . . ,m} (3.30b)

||xi||2 ≤ zi, i ∈ {1, . . . ,m} (3.30c)

m∑
i=1

θi = 1, θi ≥ 0, i ∈ {1, . . . ,m} (3.30d)

Unfortunately this system contains nonlinear equalities, due to the the products θi(xi, zi) in (3.30a),

and could not be used in a convex optimization formulation. Our next result shows that, through

a change of variables, we can answer the question of whether or not (x̂, ẑ) is in conv (S) by solving

a convex feasibility system.

Lemma 3.1.15. (x̂, ẑ) ∈ conv (S) if and only if there is a set of vectors {(yi, wi, λi)}mi=1 following

system:

(x̂, ẑ) =
m∑
i=1

(yi, wi) (3.31a)

aTi yi − λibi ≥ 0 i ∈ {1, . . . ,m} (3.31b)

||(2yi, wi − λi)|| ≤ λi + wi i ∈ {1, . . . ,m} (3.31c)

m∑
i=1

λi = 1, λi ≥ 0, wi ≥ 0, i ∈ {1, . . . ,m} (3.31d)

Proof. First suppose (x̂, ẑ) ∈ conv (S). Then there is a set of vectors {(xi, zi, θi)}mi=1 satisfying

(3.30). Let λi = θi, yi = λixi, and wi = λizi for each i. Then {(yi, wi, λi)}mi=1 clearly satisfy

(3.31a), (3.31b), and (3.31d). We now only need to show that these vectors satisfy (3.31c). Let i

be fixed. If λi = 0, then yi = 0 and wi = 0 and (3.31c) holds for this i. So suppose λi > 0. Notice
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that because wi ≥ 0 and λi ≥ 0, we have

||(2yi, wi − λi)|| ≤ λi + wi ⇔ ||(2yi, wi − λi)||2 ≤ (λi + wi)
2

⇔ 4 ||yi||2 + w2
i − 2λiwi + λ2

i ≤ w2
i + 2λiwi + λ2

i

⇔ 4 ||yi||2 ≤ 4λiwi

⇔ λ2
i ||xi||

2 ≤ λ2
i zi

⇔ ||xi||2 ≤ zi

and therefore (3.31c) is satisfied.

Now suppose that {(yi, wi, λi)}mi=1 satisfy (3.31). If λi = 0, then by squaring both sides of

(3.31c) (which is valid as both sides are nonnegative), we have

4 ||yi||2 + w2
i ≤ w2

i

which implies yi = 0. For i with λi = 0, let (xi, zi, θi) = (0, 0, 0) ∈ Rn+2. For i with λi > 0, define

xi = yi/λi, zi = wi/λi and θi = λi. Then {(xi, zi, θi)}mi=1 satisfy (3.30b)-(3.30d), and

(x̂, ẑ) =

m∑
i=1

(yi, wi)

=
∑
{i|λi>0}

θi(xi, zi) +
∑
{i|λi=0}

(0, wi). (3.32)

The first expression on the right hand side of (3.32) is in conv (S), and as wi ≥ 0 for all i, the

second term is in the recession cone of S. Thus we have (x̂, ẑ) ∈ conv (S) as well.

If (x̂, ẑ) ∈ conv (S), then by the definition of S we will have (x̂, ẑ + t) ∈ conv (S) for any t ≥ 0.

However, we do not know for which t ≥ 0 we will have (x̂, ẑ − t) ∈ conv (S). We now show how

we can answer this question and provide a separation procedure by imposing the system (3.31) as

constraints in an optimization problem.

Consider the primal problem below, which we denote P(x̂):

minimize: w1 + . . .+ wm

subject to: y1 + . . .+ ym = x̂

aTi yi − λibi ≥ 0, i ∈ {1, . . . ,m}

||(2yi, wi − λi)|| ≤ λi + wi i ∈ {1, . . . ,m}

λ1 + . . .+ λm = 1

λ ≥ 0, w ≥ 0

(P(x̂))
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The constraints of P(x̂) are identical to the system (3.31), except for the omission of the constraint

m∑
i=1

wi = ẑ.

Instead of simply seeking a representation of (x̂, ẑ) as a convex combination of points in S, this

problem seeks (after reversing the change of variables) the smallest value z where (x̂, z) ∈ conv (S).

Furthermore, as we now show, it will allow us to separate (x̂, ẑ) from conv (S) when possible by

means of a linear inequality obtained from the dual problem.

Lemma 3.1.16. Let z∗ be the optimal value of P(x̂). Then (x̂, ẑ) ∈ conv (S) if and only if z∗ ≤ ẑ.

Proof. First suppose that (x̂, ẑ) ∈ conv (S). Then by Lemma 3.1.15, there exists a set of vectors

{(yi, wi, λi)}mi=1 satisfying the system (3.31). These vectors provide a feasible solution for P(x̂),

with an objective value of ẑ. Because this solution is feasible but not necessarily optimal, we have

z∗ ≤ ẑ.

Conversely, suppose that {(y∗i , w∗i , λ∗i )}mi=1 is an optimal solution for P(x̂), with an objective

value of z∗ ≤ ẑ.

For i where λ∗i = 0, we must have y∗i = 0. Then the constraint

||(2yi, wi − λi)|| ≤ λi + wi

would be satisfied by any nonnegative wi, but due to the form of the objective, we must have

w∗i = 0 in an optimal solution. Thus we can ignore all indices i where λ∗i = 0.

For indices i where λ∗i > 0, define xi = y∗i /λ
∗
i and zi = w∗i /λ

∗
i . We then have (xi, zi) ∈ S for

each i, ∑
{i|λ∗i>0}

λ∗ixi = x̂, and
∑

{i|λ∗i>0}

λ∗i zi = z∗,

and so (x̂, z∗) ∈ conv (S). Then, because z∗ ≤ ẑ and (x, z+ ε) ∈ S for any (x, z) ∈ S and ε ≥ 0, we

have that (x̂, ẑ) is indeed contained in conv (S).

Note that in the primal problem, the conic constraints will always hold with equality. This can

be seen from the equivalence

||(2yi, wi − λi)|| ≤ λi + wi ⇔ ||yi||2 ≤ λiwi.

For fixed values of yi and λi, wi will be as small as possible in an optimal solution. Thus we will

have the intuitively obvious fact zi = ||xi||2 for each i.
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Next we show how the dual problem of the disjunctive formulation can be used to obtain a linear

equality separating (x̂, ẑ) from conv (S), if one exists. First observe that as long as x̂ ∈ conv (F),

the primal problem P(x̂) is feasible and satisfies the Slater condition for strong duality, as the

w variables can be made arbitrarily large while preserving feasibility. The objective of the dual

problem to P(x̂) (see [46]) is to maximize γT x̂ + β. γ and β are only a subset of the variables in

the dual problem, but they are the only ones appearing in the objective. Additionally, x̂ does not

appear in the constraints: the feasible set for the dual of P(x) is the same for any x. If z∗ is the

optimal objective value for P(x̂) and (γ∗, β∗) is part of an optimal solution to the dual, then by

strong duality we have

γ∗T x̂+ β∗ = z∗.

Lemma 3.1.17. Let {(y∗i , w∗i , λ∗i )}mi=1 be optimal for P(x̂), with an objective value of z∗, and

(γ∗, β∗) be part of an optimal solution to the dual problem to P(x̂). Then the linear inequality

z ≥ γ∗Tx+ β∗

is valid for conv (S) and holds with equality at the points (y∗i /λ
∗
i , w

∗
i /λ
∗
i ) for i with λ∗i > 0.

Proof. Let (x′, z′) ∈ conv (S). Let the primal problem P(x′) have an optimal objective value of

v′ ≤ z′. γ∗, β∗, and the other variables in the optimal solution to the dual of P(x̂) are feasible for

the dual of P(x′), but of course not necessarily optimal. So we have

γ∗Tx′ + β∗ ≤ v′ ≤ z′

which shows that the cut holds for (x′, z′). As (x′, z′) was arbitrary this implies that the cut is

valid for conv (S).

Now suppose, without loss of generality, that λ∗i > 0 for i = 1, . . . , p and λ∗i = 0 for i > p. This

implies w∗i = 0 and y∗i = 0 for i > p. For i ≤ p define xi = y∗i /λ
∗
i and zi = w∗i /λ

∗
i . Then we have

γ∗T x̂+ β∗ =

p∑
i=1

w∗i ⇒ γ∗T
(

p∑
i=1

y∗i

)
+ β∗ =

p∑
i=1

w∗i

⇒
p∑
i=1

(
γ∗T y∗i − w∗i

)
= −β∗

⇒
p∑
i=1

λ∗i

(
γ∗Txi − zi

)
= −β∗
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Then, because the λ∗i ’s are nonnegative and sum to one, and γ∗Txi − zi ≤ β∗ for each i, we have

γ∗Txi − zi = β∗

for each i: the cut is tight at each point (xi, zi).

The disjunctive approach provides a straightforward and easily implementable means of solving

the separation problem in this setting. One possible disadvantage is the computational burden

for large problems. The disjunctive formulation requires solving a second-order cone program

with O (mn) variables and O (m+ n) constraints, including m conic constraints. Alternatively,

our approach requires solving at most m quadratic programs in O (n) variables and O (m) linear

constraints. For larger problem sizes, our method could provide a significant decrease in compu-

tational cost. Morever, for very large problems the disjunctive formulation may be impractical for

commercial solvers.

The development of the separation procedure using duality in this section is quite similar to

that in [33] and [44], with the difference being that both the problem P(x̂) and its dual are conic

(rather than linear) programs, which obviates the need for any normalization constraint in the dual

problem.

3.1.6 Computational Considerations

We have shown that the problem of separating a point (x̂, ẑ) from conv (S) using lifted inequalities

can be achieved by solving m convex quadratic programs. Although each QP is small, this could

represent a substantial amount of computation when m is large. As such, we would like to identify

some ways in which the computational load may be decreased. In this section, we will provide a

theoretical result giving a sufficient condition for optimality in the separation problem, and point

out a heuristic for choosing the order of searching through the facets of P for the separating cut.

Let y be a point in the ith facet of P , and define

α∗(y) = α∗(y,S) = min
j 6=i

{
2(bj − aTj y)

||ai|| ||aj || − aTi aj

}
. (3.33)

Then the inequality

z ≥ (2y − α∗(y)ai)
T (x− y) + ||y||2 (3.34)



CHAPTER 3. POSITIVE DEFINITE QUADRATIC OBJECTIVES 48

is the nondominated lifted inequality generated from y. If y is not in the relative interior of the ith

facet, then (y, ||y||2) is the only point in S for which this inequality is tight. Otherwise, by Lemma

3.1.9 there is at least one other feasible point y′ so that the inequality is tight at (y′, ||y′||2). Any

such point y′ must lie in the relative interior of some facet of P , and due to the strict convexity

of the function xTx, it cannot lie if the ith. In fact, from the derivation of the lifting coefficient in

Section 3.1.2 it can be seen that for each j attaining the minimum in (3.33), there is a point yj

in the jth facet of P for which the lifted inequality (3.34) holds with equality at (yj ,
∣∣∣∣yj∣∣∣∣2). This

motivates the following definition.

Definition 3.1.18. For a point y ∈ F , define T (y) to be the set of all points y′ ∈ F for which the

nondominated lifted inequality generated from y holds with equality at (y′, ||y′||2).

The set T (y) is defined for any feasible point y, but will only contain more than one point when

y is in the relative interior of a facet of P . For any y, we have 1 ≤ |T (y)| ≤ m, as y ∈ T (y) for all

y and T (y) can contain at most one point from each facet of P .

The next result establishes a relationship between the sets T (y) and T (y′) for distinct points y

and y′.

Lemma 3.1.19. Let y and y′ be distinct feasible points. If y′ ∈ T (y), then T (y) = T (y′). Otherwise

T (y) and T (y′) do not intersect.

Proof. Assume that y and y′ are in the ith and jth facets of P , respectively. Let

z ≥
(
2y − α∗(y)ai

)T
(x− y) + ||y||2 (3.35)

be the nondominated lifted inequality generated at y. As y′ ∈ T (y), we have∣∣∣∣y′∣∣∣∣2 =
(
2y − α∗(y)ai

)T
(y′ − y) + ||y||2

and therefore

α∗(y) =
||y − y′||2

aTi (y − y′)
. (3.36)

The inequality (3.35) is valid and holds with equality at (y′, ||y′||2), and so by Lemma (3.1.1), we

have

2y − α∗(y)ai = 2y′ − θaj (3.37)

α∗(y)bi − ||y||2 = θbj −
∣∣∣∣y′∣∣∣∣2 (3.38)
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for some nonnegative scalar θ. By (3.37) we have

(
2y − α∗(y)ai

)T
(y′ − y) = (2y′ − θaj)T (y′ − y)

which gives

θaTj (y′ − y) = − (2y − α∗(y)ai)
T (y′ − y) + 2y′

T
(y′ − y)

= 2
∣∣∣∣y − y′∣∣∣∣2 + α∗(y)aTi (y′ − y)

= 2
∣∣∣∣y − y′∣∣∣∣2 − ∣∣∣∣y − y′∣∣∣∣2 by (3.36)

=
∣∣∣∣y − y′∣∣∣∣2

and so

θ =
||y − y′||2

aTj (y′ − y)
.

Let the nondominated lifted inequality generated at y′ be given by

z ≥
(
2y′ − α∗

(
y′
)
aj
)

(x− y′) +
∣∣∣∣y′∣∣∣∣2 .

From the preceding analysis we know that the cut

z ≥
(
2y′ − θaj

)T
(x− y′) +

∣∣∣∣y′∣∣∣∣2 .
is valid, so α∗(y′) ≥ θ. Moreover, we know that this cut holds with equality (y, ||y||2). So if α∗(y′) >

θ, it would be violated at (y, ||y||2), implying θ = α∗(y′). This means that the nondominated

inequality generated at y′ is exactly the same as the nondominated inequality generated at y.

Applying this result to every point in T (y) proves the first part of claim, and the second part

follows clearly from this.

We obtain the following as a corollary:

Corollary 3.1.20. The relation “x ∈ T (y)” is an equivalence relation whose equivalence classes

are {T (x) | x ∈ F}.

Proof. Reflexivity of the relation is clear. Lemma (3.1.19) shows symmetry. For transitivity,

suppose x ∈ T (y) and y ∈ T (w). Then we have T (x) = T (y) = T (w) by Lemma (3.1.19), and

therefore x ∈ T (w).
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The last theoretical result in this section gives a sufficient condition for a lifted cut to be the

strongest possible at a given point. This gives a justifiable criterion for stopping the search through

all m facets to find a separating cut.

Theorem 3.1.21. Let x̂ ∈ int (P ), and let x̄ be a feasible point with x̂ ∈ conv (T (x̄)). Then the

nondominated lifted cut generated from x̄ is the strongest possible lifted cut at x̂.

Proof. Let T (x̄) = {v1, . . . , vp}, and let

z ≥ γTx+ β

be the nondominated lifted cut generated from x̄. Then let y be any other feasible point, and let

z ≥ δTx+ θ

be the nondominated lifted cut generated from y. If T (x̄) and T (y) intersect, then by Lemma 3.1.19

the two sets are identical and the lifted cuts generated at the points in this set are the same. So

we assume that T (x̄) and T (y) are disjoint. This implies

||vj ||2 > δT vj + θ for all vj ∈ T (x̄). (3.39)

The strict inequality comes from the fact that the lifted cut generated from y is valid and vj /∈ T (y).

Now let λ1, . . . , λp be the coefficients such that

x̂ =

p∑
j=1

λjvj ,

p∑
j=1

λj = 1, and λj ≥ 0 ∀j.

Then we have

γT x̂+ β = γT

 p∑
j=1

λjvj

+ β

=

p∑
j=1

λj
(
γT vj + β

)
=

p∑
j=1

λj ||vj ||2 because vj ∈ T (x̄)

>

p∑
j=1

λj
(
δT vj + θ

)
by (3.39)

= δT x̂+ θ.
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Thus we have shown that at x̂, the cut generated from x̄ is strictly stronger than the cut generated

from y.

Now suppose we are searching for a lifted cut separating some given point (x̂, ẑ) with x̂ infeasible.

We can accomplish this by solving the quadratic program (SEP(i)) from Section 3.1.2 for each

i = 1, . . . ,m. Suppose we solve this problem for some fixed i and the optimal solution is (x̄, ᾱ).

Let J be the set of all indices j for which (x̄, ᾱ) satisfy

ᾱ =
−2(bj − aTj x̄)

aTi aj − ||ai|| ||aj ||
.

The facets of P corresponding to the indices in J are the ones containing points in T (x̄). Using

Equation (3.17), we can compute the points in T (x̄) and check if x̂ is in their convex hull, which

can be accomplished by solving a linear program. If it is, then the cut from the ith facet is the

strongest possible, and we can terminate the search.

This result guarantees that we have found the strongest cut when we stop early, but doesn’t

give any guidance on what order to search through the indices {1, . . . ,m}. One heuristic that we

have found useful is to order the facets according to their distance to the point x̂. This makes sense

intuitively: the first two terms in the objective of (SEP(i)) are equivalent to the negative squared

distance between x̂ and the point x in the ith facet of P . Moreover, suppose that the ith facet of

P is the one closest to x̂, and let p be the projection onto this facet. Then the ball with center

x̂ and radius
bi−aTi x̂
||ai|| is contained in P and touches the ith facet of P at p. This implies that the

nondominated lifted cut generated from p will be violated by (x̂, ||x̂||2), although possibly not by

(x̂, ẑ). In practice, we have found that finding the lifted cut from only the nearest facet gives good

cuts quickly.

3.2 Multiple Polyhedra

We now consider the case where F is the complement of the interior of the union of multiple

polyhedra:

F = Rn \

(
K⋃
k=1

{x | Akx < bk}

)
where Ak ∈ Rmk×n and bk ∈ Rmk for eack k. First we note that we can also express F as a

disjunction. Choosing an index ik ∈ {1, . . . ,mk} for each k ∈ {1, . . . ,K} gives a K-tuple (i1, . . . , iK)
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and a corresponding (possibly empty) polyhedron

D(i1,...,iK) = {x | akik
T
x ≥ bkik , k ∈ 1, . . . ,K}.

Here, akik is the ik
th row of the matrix Ak. F is the union of all such polyhedra. This type of

feasible set is encountered in applications: lattice-free sets in mixed integer programming often

take the form of a union of polyhedra (see [45], [31], or [20]), and the feasible set in [1] is obtained

by excluding the interiors of multiple polytopes from Rn.

As before, we define the set

S = {(x, z) ∈ Rn+1 | z ≥ xTx, x ∈ F}.

This section introduces a new parameterization of lifted inequalities, then develops validity con-

straints for this new parameterization and a method for solving the separation problem for S by

means of a single QCQP. We also discuss the relationship between our separation procedure and

the disjunctive programming approach.

3.2.1 Applying the Disjunctive Method

As the feasible region F can be expressed as a finite union of polyhedra, the disjunctive formulation

can be applied. Following the construction above, we write

F =
⋃{
D(i1,...,iK) | ik ∈ {1, . . . ,mk} for i ∈ {1, . . . ,K}

}
∆
=

D⋃
j=1

{x | Cjx ≥ dj} (3.40)

Here, D is the total number of polyhedra defining the disjunction.

Given a point (x̂, ẑ) with x̂ /∈ F , the primal problem for the disjunctive formulation is:

minimize: w1 + . . .+ wD

subject to: y1 + . . .+ yD = x̂

Cjyj − λjdj ≥ 0 for j ∈ {1, . . . , D}

||(2yj , wj − λj)|| ≤ λj + wj for j ∈ {1, . . . , D}

λ1 + . . .+ λD = 1

λ ≥ 0, w ≥ 0

(P(x̂))
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The analysis of the use of this method to separate (x̂, ẑ) from conv (S) is identical to that in Section

(3.1.5), so we state the following result without proof.

Lemma 3.2.1. Let z∗ be the optimal value of P(x̂). Then (x̂, ẑ) ∈ conv (S) if and only if z∗ ≤ z̄.

Moreover, let (γ∗, β∗) be optimal variables for the dual problem of P(x̂). Then the linear inequality

γ∗Tx− z ≤ −β∗

is valid for conv (S) and holds with equality at (x̂, z∗).

The computational burden imposed by the disjunctive approach becomes even more severe than

in the case of a single excluded polyhedron. The problem P(x̂) is a second-order cone problem with

O
(
n
∏K
k=1mk

)
variables and constraints, which will become impractical for even modest problem

sizes. This motivates the search for more efficient methods in this setting.

3.2.2 A Simple Case

We first consider a case with two polyhedra, where the first is defined by two inequalities and the

second is a halfspace. This is an extremely simple example, but in trying to devise a separation

procedure similar to that in Section 3.1.3 we will encounter an amount of complexity which will

motivate alternative approaches. For this case, let the inequalities aT1 x ≤ b1 and aT2 x ≤ b2 define

the first polyhedron, and cTx ≤ d define the second. We then have

F = {x | aT1 x ≥ b1, cTx ≥ d}
⋃
{x | aT2 x ≥ b2, cTx ≥ d}

Starting from a point x̄ with aT1 x̄ = b1, a
T
2 x̄ ≤ b2 and cT x̄ ≥ d, we want to find the strongest valid

cut of the form

z ≥ (2x̄− αa1)T (x− x̄) + ||x̄||2 . (3.41)

Specifically, we are in search of the largest value α so that this cut is valid. If we fix any x where

aT1 x < b1, then for α large enough, the inequality (3.41) will be violated at (x, xTx). So as long

as there is some point x′ where aT1 x
′ < b1, aT2 x

′ ≥ b2, and cTx′ ≥ d, the lifting coefficient will be

finite. If there is no such x′, then F = {x | aT1 x ≥ b1, cTx ≥ d}, and the cut is valid for any α ≥ 0.

We assume that such a point x′ does exist, so the lifting coefficient is finite.
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In what follows, we will frequently refer to the set

Vα = {x | ||x||2 − (2x̄− αa1)Tx+ ||x̄||2 − αb1 ≤ 0},

the ball of points x for which (x, xTx) weakly violates (3.41). Recall from Proposition 3.3 that the

inequality (3.41) is valid for S if and only if int (Vα) ∩ F = ∅.

Let

α′ =
2(b2 − aT2 x̄)

||a1|| ||a2|| − aT1 a2
(3.42)

and

x∗ = x̄+

(
b2 − aT2 x̄+ α′

2 a
T
1 a2

||a2||2

)
a2 −

α′

2
a1

= x̄+
(b2 − aT2 x̄)

||a1|| ||a2|| − aT1 a2

(
||a1||
||a2||

a2 − a1

)
(3.43)

be the lifting coefficent and support point derived in Section 3.1.2. Recall that α′ was the largest

possible lifting coefficient resulting in a lifted inequality valid for

{(x, z) | z ≥ xTx, aT1 x ≥ b1} ∪ {(x, z) | z ≥ xTx, aT2 x ≥ b2},

and that this inequality was tight at (x∗, ||x∗||2). We may find that x∗ satisfies cTx∗ ≥ d and is

therefore feasible. If this is the case, then α′ is the largest possible lifting coefficient and we are

done. We therefore assume that cTx∗ < d. As a consequence, we obtain the following.

Proposition 3.2.2. Assume that x∗ as defined in (3.43) satisfies cTx∗ < d, and define

α∗ = sup {α | inequality (3.41) is valid}.

Then α∗ > α′.

Proof. The ball Vα′ intersects

{x | aT1 x ≥ b1} ∪ {x | aT2 x ≥ b2}

only at the points x∗ and x̄. Because cTx∗ < d, there is a ball B(x∗, r) centered at x∗ with positive

radius r such that cTx < d for all x ∈ B(x∗, r). For ε > 0 and small enough Vα′+ε ∩ {x | aT2 x ≥ b2}

is contained in B(x∗, r). Moreover, by Lemma 3.1.5,

int (Vα) ∩ {x | aT1 x ≥ b1} = ∅
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for any α ≥ 0. Therefore, for small but positive ε, int (Vα′+ε)∩F = ∅, and therefore the cut (3.41)

with α = α′ + ε is valid, and is stronger than the cut with α = α′. This finishes the proof.

The next example should help to illuminate the current setting.

Example 3.2.3. Let

A =

−5 1

5 1

 , b =

15

−5

 , c =
[
−2 1

]
, and d = −5.

Suppose we want to compute the nondominated lifted inequality from x̄ = (0.8,−1.0). Ignoring the

new constraint cTx ≥ d and using equations (3.42) and (3.43), we obtain

α′ = 0.48, and x∗ =

(
16

5
,−1.0

)
,

and we have cTx∗ = −7.4 < d. Thus the lifting coefficient for the nondominated lifted cut generated

from x̄ is strictly larger than α′. It can be shown that the largest possible lifting coefficient is

α∗ ≈ .8366. Figure 3.3 illustrates this example.

Figure 3.3: A case where the lifting coefficient can be increased due to a new linear inequality.

In this figure, F is shaded in grey. The projected cut-off regions from two different lifted cuts

generated from x̄ are shaded in red. The cut with lifting coefficient α′ cuts off the darker inner
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region, which intersects F at only one point. The cut with lifting coefficient α∗ cuts off the lighter

outer region, which contains the darker region and intersects F at two points: x̄ and
(

20
7 ,

5
7

)
.

We point out that we can express the condition cTx∗ < d as a linear inequality:

cTx∗ < d ⇔ cT x̄+
(b2 − aT2 x̄)

||a1|| ||a2|| − aT1 a2
cT
(
||a1||
||a2||

a2 − a1

)
< d. (3.44)

Following the derivation in Section 3.1, we can characterize the lifting coefficient α which gives

the strongest lifted cut through the optimal value of a quadratic program.

Lemma 3.2.4. The strongest valid lifted cut (3.41) is given by the largest α satisfying
minimize: ||x||2 − (2x̄− αa1)Tx+ ||x̄||2 − αb1

subject to: aT2 x ≥ b2

cTx ≥ d

 = 0. (3.45)

Proof. Let v∗ be the optimal value of the minimization problem in (3.45). v∗ ≥ 0 is necessary and

sufficient to ensure the lifted cut (3.41) is valid. Suppose v∗ > 0; we have

||x̄− x||2 + α(aT1 x− b1) > 0 for all x with aT2 x ≥ b2 and cTx ≥ d.

This statement is equivalent to

Vα ∩ {x | aT2 x ≥ b2, cTx ≥ d} = ∅.

Both of these sets are closed and convex, so this implies that there is a hyperplane strictly separating

them. Then, because the center and radius of Vα vary continuously with α, the same hyperplane

strictly separates Vα+ε for small but positive ε. The cut (3.41) is valid for all (x, z) ∈ S with

aT1 x ≥ b1, for any nonnegative choice of the lifting coefficient, so this implies that the cut is valid

with lifting coefficent α+ ε, and therefore α does not give the strongest possible cut.

As in Section 3.1, we will show that we can tighten the constraints in (3.45) to equalities,

which will allow us the solve the quadratic program in closed form and obtain an expression for

the optimal α.

Lemma 3.2.5. The strongest valid lifted cut (3.41) is given by the α satisfying
minimize: ||x||2 − (2x̄− αa1)Tx+ ||x̄||2 − αb1

subject to: aT2 x = b2

cTx = d

 = 0. (3.46)
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Proof. Suppose we have found an α satisfying (3.45). Let x′ be optimal for the minimization

problem. First suppose that cTx′ > d. This means that for this α, we could solve the optimization

problem without the cTx ≥ d constraint and still get the same optimal solution. But this is the

same problem as in Lemma 3.1.6. Thus the α satisfying (3.45) would be exactly the same as in

(3.20), meaning x′ = x∗. As we assumed cTx∗ < d, this is a contradiction, implying cTx′ = d.

Next suppose that aT2 x
′ > b2. The ball Vα has x̄ and x′ on its boundary, and contains x∗. If

aT2 x
′ > b2, then the set {x | cTx = d} must be a supporting hyperplane for Vα at x′. If not, then

there is some point x′ with

||y||2 − (2x̄− αa1)Tx′ + ||x̄||2 − αb1 < 0

aT2 y > b2

cT y > d

which contradicts the optimality of x′. This implies that cTx ≥ d for all x ∈ Vα. However, this

leads to a contradiction: as we know α > α′, we know Vα contains x∗ which would imply cTx∗ ≥ d.

This contradicts our prior assumption that cTx∗ < d.

So we now face the problem of finding α ≥ 0 satisfying (3.46). As in Section 3.1, we will derive

a closed-form solution to the quadratic program in (3.46) and use the resulting optimal objective

value to get an expression for α. To save space, we will represent the two equality constraints in

the quadratic program as Gx = g. We first derive a quadratic equation which the optimal α must

satisfy.

Lemma 3.2.6. Let α satisfy (3.46). Then α must satisfy the quadratic equation

−α2

4
aT1

(
I −GT

(
GGT

)−1
G
)
a1 + α

(
aT1 G

T
(
GGT

)−1
(g −Gx̄)

)
+
∣∣∣∣∣∣GT (GGT )−1

(g −Gx̄)
∣∣∣∣∣∣2 = 0.

(3.47)

Proof. By Corollary (A.1.2), the optimal solution to the quadratic program in (3.46), which we

denote by x′, is given by:

x′ = x̄− α

2
a1 +

1

2
GT
(
GGT

)−1
(2g − 2Gx̄+ αGa1) . (3.48)
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Now we use this expression for x′, piece by piece, to determine the optimal objective value:

∣∣∣∣x′∣∣∣∣2 =
1

4
(2gT − 2x̄TGT + αaT1 G

T )
(
GGT

)−1
GGT

(
GGT

)−1
(2g − 2Gx̄+ αGa1)

+ x̄T x̄+
α2

4
||a1||2 − αx̄Ta1 + x̄TGT

(
GGT

)−1
(2g − 2Gx̄+ αGa1)

− α

2
aT1 G

T
(
GGT

)−1
(2g − 2Gx̄+ αGa1)

=
1

2
gT
(
GGT

)−1
(2g − 2Gx̄+ αGa1)− 1

2
x̄TGT

(
GGT

)−1
(2g − 2Gx̄+ αGa1)

+
α

4
aT1 G

T
(
GGT

)−1
(2g − 2Gx̄+ αGa1) + x̄T x̄+

α2

4
||a1||2 − αb1

+ x̄TGT
(
GGT

)−1
(2g − 2Gx̄+ αGa1)− α

2
aT1 G

T
(
GGT

)−1
(2g − 2Gx̄+ αGa1)

=
1

2
gT
(
GGT

)−1
(2g − 2Gx̄+ αGa1) +

1

2
x̄TGT

(
GGT

)−1
(2g − 2Gx̄+ αGa1)

− α

4
aT1 G

T
(
GGT

)−1
(2g − 2Gx̄+ αGa1) + x̄T x̄+

α2

4
||a1||2 − αb1

= gT
(
GGT

)−1
g − x̄TGT

(
GGT

)−1
Gx̄+ αaT1 G

T
(
GGT

)−1
Gx̄

− α2

4
aT1 G

T
(
GGT

)−1
Ga1 + x̄T x̄+

α2

4
||a1||2 − αb1

Next,

(2x̄− αa1)Tx′ = 2x̄T
(
x̄− α

2
a1 +

1

2
GT
(
GGT

)−1
(2g − 2Gx̄+ αGa1)

)
− αaT1

(
x̄− α

2
a1 +

1

2
GT
(
GGT

)−1
(2g − 2Gx̄+ αGa1)

)
= 2x̄T x̄− 2αb1 + x̄TGT

(
GGT

)−1
(2g − 2Gx̄+ αGa1) +

α2

2
||a1||2

− α

2
aT1 G

T
(
GGT

)−1
(2g − 2Gx̄+ αGa1)

= 2x̄T x̄− 2αb1 +
α2

2
||a1||2 + 2x̄TGT

(
GGT

)−1
g − 2x̄TGT

(
GGT

)−1
Gx̄

+ αx̄TGT
(
GGT

)−1
Ga1 − αaT1 GT

(
GGT

)−1
g + αaT1 G

T
(
GGT

)−1
Gx̄

− α2

2
aT1 G

T
(
GGT

)−1
Ga1

= 2x̄T x̄− 2αb1 +
α2

2
||a1||2 + 2x̄TGT

(
GGT

)−1
g + 2αaT1 G

T
(
GGT

)−1
Gx̄

− αaT1 G
T
(
GGT

)−1
g − α2

2
aT1 G

T
(
GGT

)−1
Ga1 − 2x̄TGT

(
GGT

)−1
Gx̄
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Combining these two results gives∣∣∣∣x′∣∣∣∣2 − (2x̄− αa1)Tx′ = gT
(
GGT

)−1
g + x̄TGT

(
GGT

)−1
Gx̄− αaT1 GT

(
GGT

)−1
Gx̄

+
α2

4
aT1 G

T
(
GGT

)−1
Ga1 − 2x̄GT

(
GGT

)−1
g

+ αaT1 G
T
(
GGT

)−1
g − ||x̄||2 + αb1 −

α2

4
||a1||2 .

Finally we get that the condition∣∣∣∣x′∣∣∣∣2 − (2x̄− αa1)Tx′ + ||x̄||2 − αb1 = 0

is equivalent to

−α2

4
aT1

(
I −GT

(
GGT

)−1
G
)
a1 + α

(
aT1 G

T
(
GGT

)−1
(g −Gx̄)

)
+
∣∣∣∣∣∣GT (GGT )−1

(g −Gx̄)
∣∣∣∣∣∣2 = 0

(3.49)

which is precisely (3.47).

As in the case of a single polyhedron, we have found that the optimal α must satisfy a quadratic

equation, although the coefficients of the particular quadratic equation are much more complicated

in this setting. We can, however, still find its solution, as we now show.

Lemma 3.2.7. The quadratic equation (3.49) has real roots.

Proof. Let

K1 = aT1

(
I −GT

(
GGT

)−1
G
)
a1,

which appears in the coefficient for α2. Because the matrix GT
(
GGT

)−1
G is an orthogonal pro-

jection matrix, its eigenvectors are either 0 or 1 and we have

aT1 G
T
(
GGT

)−1
Ga1 ≤ aT1 a1

and so K1 ≥ 0. Define

D =
1√

||a2||2 ||c||2 − (aT2 c)
2

 ||c|| 0

−aT2 c
||c||

√
||a2||2 −

(aT2 c)
2

||c||2


so DDT =

(
GGT

)−1
, then we can write the discriminant of (3.49) as

16

∣∣∣∣∣∣
∣∣∣∣∣∣
 √

K1D
TG

aT1 G
T
(
GGT

)−1

 x̄−
 √

K1D
T g

aT1 G
T
(
GGT

)−1
g

∣∣∣∣∣∣
∣∣∣∣∣∣
2
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which is clearly nonnegative, implying that (3.49) does indeed have real roots.

Finally, we can obtain the solution to (3.49) and the expression for the lifting coefficent α.

Theorem 3.2.8. In the case where K1 > 0, the positive root of the quadratic equation (3.49) is

given by

α =

2

aT1 GT (GGT )−1
(g −Gx̄) +

∣∣∣∣∣∣
∣∣∣∣∣∣
 √

K1D
TG

aT1 G
T
(
GGT

)−1

 x̄−
 √

K1D
T g

aT1 G
T
(
GGT

)−1
g

∣∣∣∣∣∣
∣∣∣∣∣∣


aT1

(
I −GT (GGT )−1G

)
a1

(3.50)

When K1 = 0, (3.49) becomes a linear equation and we get

α = −

∣∣∣∣∣∣GT (GGT )−1
(g −Gx̄)

∣∣∣∣∣∣2
aT1 G

T (GGT )−1 (g −Gx̄)
(3.51)

In both cases we observe that α is a strictly convex function of the point x̄. This is unfortunate;

we would hope to be able to solve the separation problem using a procedure similar to that of

Section 3.1.3. However, the objective function in this formulation of the objective problem would

be

maximize:− ||x||2 + 2x̂Tx+ α(b1 − aT1 x̂)

where (x̂, ẑ) is the point we wish to separate. As α is a strictly convex function of x and aT1 x̂ < b1,

this formulation of the separation problem is no longer convex.

3.2.3 A New Parameterization

Until now, we have attempted to construct lifted inequalities following the algebraic definition:

starting with a tangent inequality and lifting by explicitly modifying its coefficients. With this

approach, lifted inequalities were parameterized by their origination point, the lifting normal vec-

tor, and the lifting coefficient. This worked well in the case where F was the complement of a

polyhedron, but as we saw in the previous section, breaks down in an even slightly more complex

setting. This section introduces a new parameterization for lifted cuts which emerges naturally

from the geometry of the sets of points at which they are violated.

Recall that the set of points x for which (x, xTx) violating the linear inequality

z ≥ γTx+ β, (3.52)



CHAPTER 3. POSITIVE DEFINITE QUADRATIC OBJECTIVES 61

is a ball in Rn with center 1
2γ and radius

√
1
4 ||γ||

2 + β. Defining

µ =
1

2
γ

and

ρ =
1

4
||γ||2 + β

= ||µ||2 + β (3.53)

we have

γTx+ β = 2µTx+ ρ− µTµ.

We will now parameterize cuts directly by µ and ρ, the center and squared radius of the ball of

points x for which (x, xTx) violates the cut.

Definition 3.2.9. For (µ, ρ) ∈ Rn × R+, we call the inequality

z ≥ 2µTx− ||µ||2 + ρ (3.54)

the ball inequality defined by (µ, ρ).

We note that ball inequalities are only defined for ρ ≥ 0, but as the next result shows, this is

not a restriction.

Lemma 3.2.10. Any inequality

z ≥ γTx+ β (3.55)

which holds with equality at at least one point (y, yT y) is a ball inequality.

Proof. We need only to show that ρ as defined in (3.53) is nonnegative. Let (y, yT y) be the point

where the inequality (3.55) is tight. Then we have

yT y = γT y + β, or β = yT y − γT y.

Then

ρ =
1

4
||γ||2 + β =

1

4
||γ||2 + yT y − γT y =

∣∣∣∣∣∣∣∣y − 1

2
γ

∣∣∣∣∣∣∣∣2 ≥ 0.

Conversely, we have the following.
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Lemma 3.2.11. Consider a ball inequality defined by the parameters (µ, ρ), which supports S at

some point (y, yT y). If ρ = 0, then the ball inequality is the tangent inequality at y. If ρ > 0, then

the ball inequality is a nontrivial first-order lifted inequality.

Proof. If ρ = 0, then the ball inequality is valid for all (x, z) with z ≥ xTx. The differentiability of

f(x) = xTx and the fact that the ball inequality is tight at (y, yT y) together imply that the ball

inequality must be the tangent inequality at y.

If ρ > 0, then by Theorem 2.2.5, the ball inequality must be a lifted inequality.

With this new parameterization, the generic formulation for finding the strongest valid cut at

a given point x̂ is:

maximize: 2µT x̂+ ρ− µTµ

subject to: int (B(µ, ρ)) ∩ F = ∅

The constraint in this problem follows from Proposition 3.0.8. Note that the objective remains a

concave quadratic function of the parameters of the inequality.

3.2.4 Separation for Multiple Excluded Polyhedra

In this section we utilize the new geometric characterization of lifted inequalities to devise a sep-

aration algorithm for the case when F is the complement of the union of the interiors of several

polyhedra. As before, we choose to express F as a union of polyhedra. We begin by deriving a

necessary and sufficient condition for the validity of a ball inequality

z ≥ 2µTx− µTµ+ ρ (3.56)

in the case of a single feasible polyhedron. The extension of this validity condition to the case of a

union of polyhedra follows easily, and we conclude this section by using this validity condition to

develop a formulation of the separation problem.

Our first result characterizes the validity of the ball inequality (3.56) when the feasible region

is a polyhedraon as a lower bound on the optimal value of a quadratic program.

Lemma 3.2.12. The ball inequality (3.56) is valid over

{(x, z) | Cx ≥ d, z ≥ xTx}
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if and only if  minimize: 1
2 ||x− µ||

2 − 1
2ρ

subject to: Cx ≥ d

 ≥ 0 (3.57)

Proof. By Proposition 3.0.8, the inequality (3.56) is valid if and only if there is no point x with

Cx ≥ d and ||x− µ||2 < ρ, which is equivalent to (3.57).

The quadratic program in (3.57) is convex and all constraints are linear. Therefore strong

duality holds for this problem (for results on strong duality and the dual of a quadratic program,

see [19]). Using this, we can derive a new equivalent condition for the validity of the ball inequality

(3.56).

Lemma 3.2.13. The ball inequality (3.56) defined by µ and ρ is valid for

{(x, z) | Cx ≥ d, z ≥ xTx}

if and only if there exists a vector of nonnegative multipliers λ where

− 1

2

∣∣∣∣CTλ∣∣∣∣2 − λT (Cµ− d)− 1

2
ρ ≥ 0. (3.58)

Proof. The dual of the quadratic program in (3.57) is

maximize: −1
2

∣∣∣∣CTλ∣∣∣∣2 − λT (Cµ− d)− 1
2ρ

subject to: λ ≥ 0

By weak duality, the objective value of any dual feasible solution gives a lower bound on the primal

value. So the existence of λ ≥ 0 satisfying (3.58) implies (3.57) and therefore that the cut is valid.

If no such λ exists, then the optimal dual value is strictly negative. By strong duality, primal

and dual optimal values are equal, and so the primal value is negative as well. This implies that

there is some point x with Cx ≥ d and ||x− µ||2 < ρ and therefore the ball inequality is not valid.

By multiplying (3.58) by 2 and then adding and subtracting µTµ, we get the equivalent condi-

tion:

−
∣∣∣∣CTλ+ µ

∣∣∣∣2 + 2λTd+ µTµ− ρ ≥ 0. (3.59)

When F is the union of multiple polyhedra, we can apply this condition to each one to ensure that

the lifted inequality is valid over S.
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Write

F =
K⋃
k=1

{x | Ckx ≥ dk}. (3.60)

and

S = {(x, z) | z ≥ xTx, x ∈ F}

=
K⋃
k=1

{(x, z) | z ≥ xTx, Ckx ≥ dk}. (3.61)

The ball inequality defined by (µ, ρ) is valid for S if and only if the interior of the ball B(µ,
√
ρ)

does not intersect any of the polyhedra comprising F . Thus we have the following characterization

of validity:

Theorem 3.2.14. The ball inequality defined by µ and ρ is valid for S if and only if there exist

nonnegative vectors λ1, . . . , λK with

−
∣∣∣∣CTk λk + µ

∣∣∣∣2 + 2λTk d+ µTµ− ρ ≥ 0 for each k ∈ {1, . . . ,K}.

Proof. Apply Lemma 3.2.13 to each set

{(x, z) | z ≥ xTx, Ckx ≥ dk}

in the definition of S.

Given a point x̂ with x̂ /∈ F but x̂ ∈ conv (F), we can find the strongest valid ball inequality at

x̂ using the following formulation:

maximize: 2µT x̂− (µTµ− ρ)

subject to: −
∣∣∣∣CTk λk + µ

∣∣∣∣2 + 2λTk dk + µTµ− ρ ≥ 0 k = 1, . . . ,K

λk ≥ 0 k = 1, . . . ,K

This constraints in this formulation are nonconvex. However, notice that the term µTµ−ρ appears

in the objective and in each of the quadratic constraints. Suppose we replace µTµ − ρ in the

objective by a new variable τ , and add the valid convex constraint µTµ− ρ ≤ τ to the formulation.

We would clearly have τ = µTµ − ρ in any optimal solution: if µTµ − ρ < τ , then τ could be

decreased to yield a strictly better objective value. Thus we replace µTµ − ρ with τ in both the
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objective and the constraints, obtaining the convex formulation:

maximize: 2µT x̂− τ

subject to: −
∣∣∣∣CTk λk + µ

∣∣∣∣2 + 2λTk dk + τ ≥ 0 k = 1, . . . ,K

λk ≥ 0 k = 1, . . . ,K

(3.62)

With this formulation, we have the following separation result.

Theorem 3.2.15. Let F and S be as defined in (3.60) and (3.61), and let (x̂, ẑ) ∈ Rn+1 with x̂ ∈

conv (F). Let z∗ be the optimal value to the optimization problem in (3.62). Then (x̂, ẑ) ∈ conv (S)

if and only if z∗ ≤ ẑ.

3.2.5 A Closer Look

In our analysis of the disjunctive approach, we observed that the dual problem to P (x̂) had the

linear objective of γT x̂+ β. Moreover, we showed that any feasible solution to the dual, composed

of the variables γ and β along with others which do not appear in the objective, provided an

inequality

z ≥ γTx+ β

which is valid for S, and that the optimal γ∗ and β∗ gave the strongest valid lifted inequality at

S. Now compare this to the formulation (3.62) from the last section. This problem also has a

linear objective (2µT x̂ − τ), and any feasible solution provides an inequality valid for S, with the

optimal solution providing the strongest valid inequality at x̂. Given these facts, it seems that our

formulation for solving the separation problem is at least very similar to the dual of the problem

P (x̂) from the disjunctive formulation, and as such we will refer to it as the “dual” formulation.

At first glance, it is unclear what we have gained through this new formulation. As with the

primal formulation, it also has a large number of variables, and a quadratic constraint for every

component of the disjunction defining F . The sheer number of quadratic constraints may make

solution of (3.62) difficult. However, notice the independence in the constraints: each vector of

variables λk appears only in one constraint. For fixed values of µ and τ , the left hand side of each

constraint

−
∣∣∣∣CTk λk + µ

∣∣∣∣2 + 2λTk dk + τ ≥ 0 (3.63)
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can be maximized independently (possibly in parallel) to see if the cut defined by µ and τ (which

is a ball inequality whose corresponding ball has center µ and radius
√
µTµ− τ) is valid for the

kth component of the disjunction defining S. That is, we solve the problem:

maximize: −
∣∣∣∣CTk λk + µ

∣∣∣∣2 + 2λTk dk

subject to: λk ≥ 0
(3.64)

with µ fixed. The cut defined by µ and τ is valid for

{(x, z) | Ckx ≥ d, z ≥ xTx}.

if and only if the optimal λk satisfies (3.63). We have experimented in solving the problem (3.62)

using the following procedure:

Algorithm 3.2.16 (Iterative Algorithm for the Dual Formulation).

1. Choose an initial µ. Initialize the variables λk by solving (3.64) for each k. Initialize a

small subset of the constraints to be “active”.

2. Solve a relaxed version of (3.62), enforcing only the current subset of active constraints,

to obtain a new µ and τ . If the relaxation is unbounded, add constraints as necessary

until it is bounded.

3. Check validity: for each k, test if λk satisfies (3.63) with the current µ and τ . If not,

update λk by solving (3.64), and test again if the updated λk satisfies (3.63).

4. If all constraints are satisfied, stop. The current µ and τ are feasible and optimal. If

not, update the set of active constraints and go to Step 2.

The task in Step 4 of updating the set of active constraints may be performed in any number of

ways. We may simply choose the new set to be the set of all constraints which were not satisfiable

with the previous µ and τ , or perhaps choose only a subset of the constraints which were most

violated. In our experiments, we kept all constraints which were satisfied with equality in the

current solution in the active set, and added a small number of the constraints which were most

violated. We also ensured that the size of the active set would always increase with each update,

to give a simple guarantee that the algorithm would terminate (although we hope not to reach the

point where all constraints are active). We point out that in Step 3, the constraints in the current
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active set will be satisfied, and it is not necessary to check these constraints. Also, once a valid

cut has been found for a particular x̂, the variables λk can be stored and reused if another cut is

needed. This allows the initialization of the λk’s in Step 1 to be bypassed, which can lead to a

substantial decrease in computational cost.

This approach has theoretical justification. In the primal form we obtain, after reversing the

change of variables, a description of (x̂, z∗) (with z∗ defined as in Lemma 3.2.1) as a convex com-

bination of vectors in S. By Carathéodory’s Theorem, expressing any point in conv (S) in this

manner requires at most n + 2 elements from S. Therefore, we should expect that at most n + 2

constraints are truly needed in (3.62), even if K is much larger than n.

Our approach has been successful in finding cuts in problems with a small number of variables

but a large number of component polyhedra defining F . We provide the details of our experiments

and results in Section 5.3.

3.3 Excluding an Ellipsoid

We now extend our analysis of the set conv (S) to the case where the feasible region is the com-

plement of an ellipsoid. This is an extremely simple case of a nonconvex quadratically constrained

quadratic program as described in Section 1.2.1, and bears strong resemblance to the approach of

“no-good” cuts in nonlinear programming (see [10], [30], or [49]), where a nonconvex constraint

on the minimum distance from a current infeasible relaxed solution point is imposed using known

information about the structure of the feasible set. The methods used in the case of a single ex-

cluded polyhedron, including the disjunctive formulation, relied upon the excluded region having

a representation as a union of a finite number of components and no longer apply in this setting.

Fortunately, the geometric insights obtained in the polyhedral setting do prove valuable in deriving

a polynomial-time separation procedure.

Let A ∈ Rn×n, b ∈ Rn, and c ∈ R, where A is symmetric and positive definite. The set

P = {x ∈ Rn | xTAx− 2bTx+ c ≤ 0}

is an ellipsoid which we assume is nonempty and full-dimensional. We define the feasible region as

F = Rn \ int (P )

= {x ∈ Rn | xTAx− 2bTx+ c ≥ 0}



CHAPTER 3. POSITIVE DEFINITE QUADRATIC OBJECTIVES 68

and as usual we define the set

S = {(x, z) | x ∈ F , z ≥ xTx}. (3.65)

In this section, we show that the parameters for separating inequalities for S can be obtained

in closed form, at the cost of computing the largest eigenvalue of the matrix A. We also point out

some applications of this setting and consider an extension in which a linear inequality is added to

the definition of the feasible region.

3.3.1 Valid Lifted Inequalities

Before continuing, we state a corollary to Lemma 3.1.1 which defines the choice of lifting vector

when the feasible set is defined by a convex function.

Corollary 3.3.1. Let x̄ ∈ ∂F , let ε > 0 and suppose that for all x with ||x− x̄|| ≤ ε, we have

x ∈ F if and only if g(x) ≥ 0.

where g is convex and differentiable. Let

z ≥ γTx+ β

be valid for S, and suppose that this inequality is tight at (x̄, ||x̄||2). Then we must have

γ = 2x̄− α∇g(x̄)

β = α∇g(x̄)T x̄− ||x̄||2

for some α ≥ 0.

Proof. By the convexity of g, the condition

∇g(x̄)Tx ≥ ∇g(x̄)T x̄

is sufficient to guarantee x ∈ F , for x inside the ball B(x̄, ε). This inequality is tight at x̄. The

result follows from the arguments in the proof of Lemma 3.1.1.

Returning to our current setting, consider a point x̄ ∈ ∂P . Applying Corollary 3.3.1 with

g(x) = xTAx − 2bTx + c, we see that any valid lifted inequality generated from x̄ must be of the

form

z ≥
(
2x̄− α(2Ax̄− 2b)

)T
(x− x̄) + x̄T x̄. (3.66)
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This inequality is valid for α nonnegative and small enough - in some cases only for α = 0. Of

course, constructing lifted cuts in this form will not be helpful in solving the separation problem, as

it would require optimizing over the boundary of the ellipsoid P . We instead choose to parameterize

cuts as ball inequalities, in the form

z ≥ 2µTx− µTµ+ ρ. (3.67)

As we will see, this choice of parameterization proves natural when P is a region defined by a

quadratic constraint.

3.3.2 Applying the S-Lemma

As the first step towards showing how we can solve the separation problem in this setting, we now

show how the S-Lemma can be applied to obtain an equivalent condition for the validity of a ball

inequality. By Proposition 3.0.8, the validity of a lifted cut defined by the ball with center µ and

radius
√
ρ is equivalent to the condition

int (B(µ,
√
ρ)) ∩ F = ∅.

Geometrically, this is equivalent to B(µ,
√
ρ) being contained in the ellipsoid P . That is, we need

−(xTAx− 2bTx+ c) ≥ 0 for all x with ||x− µ||2 ≤ ρ.

Applying the S-Lemma (1.2.2) with

f(x) = −(xTAx− 2bTx+ c) and g(x) = ||x− µ||2 − ρ,

this is equivalent to the existence of τ ≥ 0 where

− (xTAx− 2bTx+ c) + τ
(
||x− µ||2 − ρ

)
≥ 0 ∀x ∈ Rn. (3.68)

Note that the condition of the existence of x̂ with g(x̂) < 0 is satisfied by the assumption that P is

full-dimensional. Also, because A has positive eigenvalues, it cannot be the case that τ = 0. Thus,

dividing (3.68) by τ and defining θ = τ−1 the validity of the cut defined by µ and ρ is equivalent

to the existence of θ > 0 where

− θ(xTAx− 2bTx+ c) +
(
||x− µ||2 − ρ

)
≥ 0 ∀x ∈ Rn. (3.69)

This condition will prove instrumental in formulating and solving the separation problem.
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3.3.3 The Separation Problem

We now show how to solve the separation problem in the ellipsoidal case. Assume we have a point

(x̂, ẑ) with x̂ ∈ int (P ). We wish to find a valid linear inequality separating (x̂, ẑ) from conv (S), if

one exists. If the lifted cut is parameterized by its center µ and squared radius ρ, the value of the

cut at x̂ is

2µT x̂− µTµ+ ρ,

and this is therefore the quantity to be maximized. Also note that the validity condition (3.69) can

be expressed as the existence of a positive multiplier θ such that

min
x∈Rn

{
−θ(xTAx− 2bTx+ c) +

(
||x− µ||2 − ρ

)}
≥ 0. (3.70)

Once again we have characterized the validity of a lifted cut as a bound on the optimal value of a

minimization problem.

The following theorem gives closed-form expressions for the optimal µ and ρ.

Theorem 3.3.2. Let λ̄ be the largest eigenvalue of A, and define θ∗ = λ̄−1. Given a point x̂ ∈

int (P ), the µ and ρ giving the strongest valid inequality at x̂ are

µ∗ = θ∗b+ (I − θ∗A) x̂ (3.71)

ρ∗ = ||µ∗ − x̂||2 − θ∗(x̂TAx̂− 2bT x̂+ c) (3.72)

Proof. Using the validity condition derived in Section 3.3.2, we can formulate the separation

problem as:

maximize: 2µT x̂− µTµ+ ρ

subject to: min
x∈Rn

{
−θ(xTAx− 2bTx+ c) +

(
||x− µ||2 − ρ

)}
≥ 0

θ > 0

The constraint ρ ≥ 0 is omitted, but we will show that we always have ρ ≥ 0 at optimality. Also,

the strict inequality constraint on θ might seem to be a cause for concern, but we will show that θ

is strictly positive at optimality as well.

Expanding some terms in the first constraint and moving terms that do not depend on x from

the scope of the minimization gives the equivalent constraint:

min
x∈Rn

{
xT (I − θA)x− 2(µ− θb)Tx)

}
− θc+ µTµ− ρ ≥ 0 (3.73)
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For this constraint to hold, the value of the minimization problem must be finite. By Lemma

(A.2.1), this is true if and only if (I − θA) is positive semidefinite and µ = θb + (I − θA)π for

some π ∈ Rn. Requiring θ ≤ λ̄−1 is necessary and sufficient to ensure (I − θA) � 0. With these

conditions, the optimal solution to the minimization problem is any x∗ satisfying

(I − θA)x∗ = µ− θb = (I − θA)π,

implying that π is an optimal solution, with an optimal value of −πT (I − θA)π. We now have the

following formulation of the separation problem:

maximize: 2µT x̂− µTµ+ ρ

subject to: −πT (I − θA)π − θc+ µTµ− ρ ≥ 0

0 < θ ≤ λ̄−1

µ = θb+ (I − θA)π

The problem now includes the variable vector π in addition to µ, θ, and ρ. Notice that ρ appears

in the objective and the first constraint, but nowhere else. Clearly the first constraint will hold

with equality in any optimal solution. If not, it would be possible to increase ρ by a small but

positive amount, which would yield a better objective value while preserving feasibility. We can

then substitute

ρ = µTµ− πT (I − θA)π − θc (3.74)

in the objective, removing the variable ρ and the first constraint from the formulation. At the same

time, we substitute

µ = θb+ (I − θA)π (3.75)

into the objective to eliminate µ and the last constraint. This results in the new formulation:

maximize: 2(θb+ (I − θA)π)T x̂− πT (I − θA)π − θc

subject to: 0 < θ ≤ λ̄−1

For any fixed feasible value of θ, the optimal solution to this problem is given by π∗ = x̂. The

objective value obtained is

x̂T (I − θA)x̂+ 2θbT x̂− θc = x̂T x̂− θ(x̂TAx̂− 2bT x̂+ c). (3.76)
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Because x̂ ∈ int (P ) by assumption, we have x̂TAx̂ − 2bT x̂ + c < 0 and the objective value is

increasing in θ. Thus the optimal θ∗ will be at the upper bound of λ̄−1. Recalling the substitutions

(3.74) and (3.75), we obtain expressions for the optimal µ∗ and ρ∗:

µ∗ = θ∗b+ (I − θ∗A)π∗

= θ∗b+ (I − θ∗A)x̂

and

ρ∗ = µ∗Tµ∗ − π∗T (I − θA)π∗ − θ∗c

= µ∗Tµ∗ − x̂T (I − θ∗A)x̂− θ∗c

= µ∗Tµ∗ − 2x̂T (I − θ∗A)x̂+ x̂T (I − θ∗A)x̂− θ∗c

= µ∗Tµ∗ − 2x̂T (µ∗ − θ∗b) + x̂T (I − θ∗A)x̂− θ∗c

= ||µ∗ − x̂||2 − θ∗(x̂TAx̂− 2bT x̂+ c)

which completes the proof.

Note that in this case, we do not know for which points (x, xTx) with x feasible the cut

z ≥ 2µ∗Tx− µ∗Tµ∗ + ρ∗

holds with equality. We are, however, guaranteed that there will be at least one such feasible x.

This is due to the fact that the value of the cut increases with the squared radius ρ. Any valid cut

with a fixed center µ ∈ int (P ) is made as strong as possible by increasing ρ until the ball B(µ,
√
ρ)

touches the boundary of the infeasible ellipsoid P at some point x̄. This implies that the ball

inequality supports S at (x̄, x̄T x̄). Certainly the ball inequality defined by (µ∗, ρ∗) must support

S, for if not ρ∗ could be increased while preserving validity. By Lemma 3.2.11, this shows that the

ball inequality defined by µ∗ and ρ∗ is a lifted inequality.

Using Theorem 2.2.6, we obtain as a corollary a means for solving the separation problem.

Corollary 3.3.3. Let (x̂, ẑ) ∈ Rn+1 with x̂ ∈ int (P ). Define µ∗ and ρ∗ as in (3.71) and (3.72).

Then (x̂, ẑ) ∈ conv (S) if and only if

2µ∗T x̂− µ∗Tµ∗ + ρ∗ ≤ ẑ.

We note in passing that that result in this section can be generalized slightly.
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Remark 3.3.4. We assumed that the matrix A is positive definite, but this is not necessary. All

of the analysis above holds when A is positive semidefinite with at least one positive eigenvalue.

In [48] it was pointed out that conv (S) actually has a finite representation involving a second

convex quadratic constraint. Here we present a proof of this fact which follows from our derivation

of the solution to the separation problem.

Corollary 3.3.5. Let λ̄ be the largest eigenvalue of A, and define θ = λ̄−1. Then

conv (S) = {(x, z) ∈ Rn+1 | z ≥ xTx, z ≥ xT (I − θA)x+ 2θbTx− θc}.

Proof. Let (x, z) ∈ S. Then xTAx− 2bTx+ c ≥ 0, which implies

xTx ≥ xT (I − θA)x+ 2θbTx− θc.

Also, because (x, z) ∈ S, we have z ≥ xTx, and therefore

z ≥ xT (I − θA)x+ 2θbTx− θc.

Any point (x̂, ẑ) ∈ conv(S) can be written as

(x̂, ẑ) =

p∑
i=1

λi(xi, zi)

where
∑

i λi = 1, λi ≥ 0 and (xi, zi) ∈ S for each i. As (xi, zi) ∈ S, we have

zi ≥ xTi xi ≥ xTi (I − θA)xi + 2θbTxi − θc for each i,

and so by convexity we have

ẑ ≥ x̂T x̂ and ẑ ≥ x̂T (I − θA)x̂+ 2θbT x̂− θc.

This shows

conv(S) ⊆ {(x, z) | z ≥ xTx, z ≥ xT (I − θA)x+ 2θbTx− θc}.

To show the opposite inclusion, consider a point (x̂, ẑ) satisfying

ẑ ≥ x̂T x̂ (3.77)

ẑ ≥ x̂T (I − θA)x̂+ 2θbT x̂− θc (3.78)
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First, assume x̂ /∈ int(P ). In this case the condition ẑ ≥ x̂T x̂ is sufficient to conclude (x̂, ẑ) ∈

conv(S). Next we assume x̂ ∈ int(P ). Suppose (x̂, ẑ) /∈ conv(S). If this is the case, then the linear

inequality

z ≥ 2µTx− µTµ+ ρ

with µ and ρ defined as in (3.71) and (3.72) separates (x̂, ẑ) from conv(S). That is, we have

ẑ < 2µT x̂− µTµ+ ρ. (3.79)

However, making the substitutions from (3.71) and (3.72) into (3.79) gives

ẑ < x̂T (I − θA)x̂+ 2θbT x̂− θc,

which contradicts (3.78).

3.3.4 An Application

Consider an optimization problem of the form

minimize: z

subject to: z ≥ xTQx+ qTx

x ∈ C

(3.80)

where C ⊂ Rn is a nonconvex set and Q is positive definite. Let (x̂, ẑ) be the optimal solution to a

relaxation of this problem, and suppose that it is known that there is a ball B(σ,
√
φ) with x̂ in its

interior, but whose interior does not intersect C. This would be true, for instance, if a lower bound

on the distance from x̂ to the set C was known, in which case we would have σ = x̂.

Because any feasible solution to 3.80 must lie outside of int (B(σ,
√
φ)), any lower bound on the

value of the problem

minimize: z

subject to: z ≥ xTQx− 2qTx

||x− σ||2 ≥ φ

(3.81)

gives a valid lower bound for the value of (3.80). Let Q = CTC be the Cholesky decomposition

of Q. Introducing the change of variables y = Cx − C−T q and letting w = z + qTQ−1q gives an
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equivalent problem:

minimize: w − qTQ−1q

subject to: w ≥ yT y

yTC−TC−1y − 2(σ −Q−1q)TC−1y +
∣∣∣∣Q−1q − σ

∣∣∣∣2 − φ ≥ 0

(3.82)

the constraint set of this problem is exactly in the form of the set S defined in (3.65), with

A = C−TC−1, b = C−T (σ −Q−1q), and c =
∣∣∣∣Q−1q − σ

∣∣∣∣2 − φ.
From (3.71) and (3.72), we have that the parameters for the strongest ball inequality at ŷ =

Cx̂− C−T q are

µ∗ = θ∗C−T (σ −Q−1q) + (I − θ∗C−TC−1)ŷ (3.83)

ρ∗ = ||µ∗ − ŷ||2 − θ∗
(
ŷTC−TC−1ŷ − 2(σ −Q−1q)TC−1ŷ +

∣∣∣∣Q−1q − σ
∣∣∣∣2 − φ) , (3.84)

where θ∗ is the inverse of the largest eigenvalue of C−TC−1. These parameters give the valid cut

w ≥ 2µ∗T y + ρ∗ − ||µ∗||2 . (3.85)

Using (3.83) and (3.84) and the transformation ŷ = Cx̂− C−T q, we have

ρ∗ − ||µ∗||2 = −2µ∗T ŷ + ŷT ŷ − θ∗ ||x̂− σ||2

= −2µ∗T ŷ + x̂TQx̂− 2qT x̂+ qTQ−1q − θ∗(||x̂− σ||2 − φ).

The cut (3.85) is then equivalent to

z ≥ 2µ∗T (y − ŷ) + x̂TQx̂− 2qT x̂− θ∗(||x̂− σ||2 − φ),

which, after transforming back into the original variables, is

z ≥ 2µ∗TC(x− x̂) + x̂TQx̂− 2qT x̂− θ∗(||x̂− σ||2 − φ).

This can be simplified even further to give the following:

z ≥ 2 (θ∗(σ − x̂) +Qx̂− q)T x+ x̂T (θI −Q) x̂− θ(σTσ − φ) (3.86)

The set of points x for which (x, xTQx− 2qTx) violates this cut is an ellipsoid which is contained

in the ball B(σ,
√
φ), implying that the cut is valid.
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The expression (3.86) no longer contains the matrix C. As the maximum eigenvector of C−TC−1

is the inverse of the minimum eigenvector of Q, computing the Cholesky decomposition of Q is

actually not necessary. Then, as the eigenvalue θ∗ can be computed once and stored, this represents

a very inexpensive way to potentially cut off a series of points (x̂, ẑ) to improve the bound on the

optimal solution to the original problem.

3.3.4.1 Two Examples

The situation described above occurs in (at least) two situations. The first is in cardinality con-

strained quadratic programming. In this problem, the objective is to minimize xTQx − 2qTx

(where Q � 0) and the feasible set includes the constraints aTx = b and ||x||0 ≤ K. Suppose we

are given a vector x̂ with ||x||0 > K. In [16] it is shown that it is possible to obtain a strong lower

bound (within a factor of (1 + ε)) on the distance from x̂ to {x | aTx = b, ||x||0 ≤ K}, which can

then be used to form the ball B(σ,
√
φ) as described above.

The second situation is mixed-integer quadratic programming. In this problem, the objective

is the same, and the feasible set includes the constraints

xi ∈ Z for i ∈ I ⊆ {1, . . . , n}.

Given a point x̂ with x̂i /∈ Z for at least one i ∈ I, we construct the center point σ as follows:

σi =


x̂i if i /∈ I or x̂i ∈ Z

bx̂ic+ 1
2 if i ∈ I and x̂i /∈ Z.

Then with

φ =
1

4

∣∣{i | x̂i /∈ Z, i ∈ I}
∣∣,

the interior of the ball B(σ,
√
φ) does not contain any feasible points, and a valid cut can be obtained

using the procedure above.

3.3.5 Adding a Linear Inequality

We now consider an extension where the feasible region F is the intersection of a halfspace and

the complement of the interior of an ellipsoid. The addition of the linear inequality complicates

the characterization of valid ball inequalities, and in this case we are not able to obtain a provably
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polynomial-time separation procedure, although we do obtain a method which we have observed

to work well empirically.

To begin, assume F is given by

F = {x | xTAx− 2bTx+ c ≥ 0, hTx ≤ h0}.

where A is positive definite. Our first result establishes a set of conditions for the validity of the

ball inequality

z ≥ 2µTx− µTµ+ ρ (3.87)

defined by (µ, ρ) over the set

S = {(x, z) | z ≥ xTx, x ∈ F}.

Lemma 3.3.6. The ball inequality (3.87) is valid over S if and only if there exist a multiplier

β > 0, a vector q ∈ Rn, and a scalar q0 ∈ R satisfying the following:

β
(
−xTAx+ 2bTx− c

)
+ ||x− µ||2 − ρ+ (qTx− q0)(hTx− h0) ≥ 0 ∀x ∈ Rn (3.88a)

(qTx− q0) ≥ 0 ∀x : ||x− µ||2 ≤ ρ,−2µTx+ µTµ ≤ ρ (3.88b)

Proof. It is easily shown that the ball inequality (3.87) is valid if and only if there is no point y

with

−yTAy + 2bT y − c < 0

||y − µ||2 − ρ ≤ 0

hT y ≤ h0

By a variant of the S-Lemma given in [54], this is equivalent to the existence of a nonnegative

multiplier θ, a vector v ∈ Rn, and a scalar v0 satisfying the following conditions:

−xTAx+ 2bTx− c+ θ
(
||x− µ||2 − ρ

)
+ (vTx− v0)(hTx− h0) ≥ 0 ∀x ∈ Rn (3.89a)

vTx ≥ 0 ∀x : xTx ≤ 0,−2µTx ≤ 0 (3.89b)

vTx− v0 ≥ 0 ∀x : ||x− µ||2 ≤ ρ,−2µTx+ µTµ ≤ ρ (3.89c)

First, we notice that the condition (3.89b) can be ignored: the only x with xTx ≤ 0 is x = 0, which

satisfies vTx ≥ 0 for any choice of the vector v. Next, by the assumption that A � 0, we see that
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it cannot be the case that θ = 0. Thus we can define β = θ−1 and divide (3.89a) and (3.89c) by

θ to obtain that an equivalent condition for validity is the existence of a vector v, scalar v0, and

positive multiplier β satisfying:

β
(
−xTAx+ 2bTx− c

)
+ ||x− µ||2 − ρ+ β(vTx− v0)(hTx− h0) ≥ 0 ∀x ∈ Rn (3.90a)

β(vTx− v0) ≥ 0 ∀x : ||x− µ||2 ≤ ρ,−2µTx+ µTµ ≤ ρ (3.90b)

Next, we observe that v and v0 only appear in (3.90) with a multiplicative factor of β. Introducing

the changes of variables q = βv and q0 = βv0 establishes the equivalence of (3.88) and (3.90), and

proves the claim.

Next we analyze each of the conditions in (3.88) separately to obtain a characterization of

validity more suitable for use in a formulation of the separation problem.

Lemma 3.3.7. The condition (3.88a) is equivalent to the following:

µTµ− ρ ≥ yT
(
I − βA+

1

2

(
hqT + qhT

))
y − q0h0 + βc (3.91a)(

I − βA+
1

2

(
hqT + qhT

))
y = µ− βb+

1

2
(q0h+ h0q) (3.91b)(

I − βA+
1

2

(
hqT + qhT

))
� 0 (3.91c)

for some y ∈ Rn.

Proof. First, observe that (3.88a) is equivalent to

min
x∈Rn

{
xT
(
I − βA+

1

2

(
hqT + qhT

))
x− (2µ− 2βb+ q0h+ h0q)

T x

}
+ µTµ− ρ+ q0h0 − βc ≥ 0. (3.92)

For this to hold, the value of the minimization problem must be bounded. By Lemma A.2.1, this

is true if and only if (3.91b) and (3.91c) hold, for some y ∈ Rn. Assuming these conditions are

satisfied, the optimal solution to the minimization problem is y, and the corresponding optimal

value is

− yT
(
I − βA+

1

2

(
hqT + qhT

))
y. (3.93)

Substituting (3.93) for the value of the minimization problem in (3.92) and rearranging gives (3.91a).
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Lemma 3.3.8. The condition (3.88b) is equivalent to the existence of σ ≥ 0 with

µTµ− ρ ≥ ||σq − µ||2 + 2σq0 (3.94)

Proof. We begin by expressing (3.88b) as a bound on an optimization problem: (3.88b) is equivalent

to 
minimize: qTx− q0

subject to: ||x− µ||2 ≤ ρ

−2µTx+ µTµ ≤ ρ

 ≥ 0

Notice that if the left hand side of the first constraint in this formulation is always at least as large

as the left hand side of the second constraint. This implies that the second constraint is redundant

and can be removed, giving the equivalent condition: minimize: qTx− q0

subject to: ||x− µ||2 ≤ ρ

 ≥ 0 (3.95)

It is easily shown that strong duality holds for the QCQP in (3.95), as long as ρ is positive. Therefore

the inequality (3.95) holds if and only if there is a dual feasible λ with nonnegative objective value.

Thus (3.95) is equivalent to the existence of a positive scalar λ with

−q
T q

λ
+ 2qTµ− λρ− 2q0 ≥ 0.

Dividing this inequality by λ, adding and subtracting µTµ, and introducing the change of variables

σ = λ−1 gives the equivalent condition:

µTµ− ρ ≥ ||σq − µ||2 + 2σq0 for some σ ≥ 0,

which is exactly (3.94).

Suppose we are given a point x̂ with x̂TAx̂ − 2bT x̂ + c < 0 and hT x̂ ≤ h0. Combining the

results of Lemmas 3.3.7 and 3.3.8 gives the following formulation for finding the strongest valid

lifted inequality at x̂:

maximize: 2x̂Tµ− µTµ+ ρ

subject to: µTµ− ρ ≥ yT
(
I − βA+ 1

2

(
hqT + qhT

))
y − q0h0 + βc(

I − βA+ 1
2

(
hqT + qhT

))
y = µ− βb+ 1

2 (q0h+ h0q)(
I − βA+ 1

2

(
hqT + qhT

))
� 0

µTµ− ρ ≥ ||σq − µ||2 + 2σq0

σ ≥ 0, β > 0
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As in Section 3.2.4, we replace all occurrences of µTµ − ρ in this formulation with a new variable

τ to obtain a slightly simpler formulation:

maximize: 2x̂Tµ− τ

subject to: τ ≥ yT
(
I − βA+ 1

2

(
hqT + qhT

))
y − q0h0 + βc(

I − βA+ 1
2

(
hqT + qhT

))
y = µ− βb+ 1

2 (q0h+ h0q)(
I − βA+ 1

2

(
hqT + qhT

))
� 0

τ ≥ ||σq − µ||2 + 2σq0

σ ≥ 0, β > 0

(3.96)

The variables in this formulation are (µ, τ, β, q, q0, y, σ) ∈ Rn × R × R × Rn × R × Rn × R. This

problem is nonconvex, due to q being multiplied by x and σ, q0 being multiplied by σ, and x being

multiplied by β. However, it is biconvex [40]: convex in µ, τ, β, q, and q0 when y and σ are fixed, and

convex in µ, τ, σ, and y when q, q0 and β are fixed. We have experimented with solving this problem

using an alternating scheme, optimizing over subsets of variables while holding others fixed, and

have been successful in generating much stronger cuts than those obtained using Theorem 3.3.2.

There is only a small amount of literature regarding biconvex programming, but we suspect that

this particular problem may be aided by the fact that the obective is linear and the variables

appearing in the objective never need to be fixed in the alternating scheme. In any case, we have

the following result regarding the resolution of the separation problem in this setting:

Theorem 3.3.9. Given a point (x̂, ẑ) with x̂TAx̂ − 2bT x̂ + c < 0 and hT x̂ ≤ h0, then (x̂, ẑ) ∈

conv (S) if and only if the optimal value to problem (3.96) is no greater than ẑ.
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Chapter 4

General Quadratics

In this chapter we relax the restriction that the function f is a positive definite quadratic, consid-

ering first a setting where f is semidefinite, and then showing how lifted inequalities can be used

to tighten bounds in problems with indefinite quadratic constraints.

4.1 Semidefinite Objective

Here we consider the case where the f is a positive definite quadratic function of all variables except

one. We introduce an extra variable w to denote the one left out by f , so the natural dimension

is now n + 1. We assume F ⊂ Rn+1 is the complement of the interior of a polyhedron which is

explicitly unbounded in the direction w. The analysis here is similar to that of Section 3.1, but

presents some differences which we will later see paralleled when we consider the case where f is

an indefinite quadratic. Because the analysis is so similar, we skip over some of the details in the

derivations in this section.

To begin, let f : Rn+1 → R be given by

f(x,w) = xTHx− 2hTx

where H is an (n × n) positive definite matrix. Through a linear transformation, we can assume

without loss of generality that f(x,w) = xTx. Let A ∈ Rm×n and define

P =
{

(x,w) ∈ Rn+1 | aTi x− w ≤ bi, i = 1, . . . ,m
}
.
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The set F is defined as

F = Rn+1 \ int (P ) (4.1)

and the set S is

S = {(x,w, z) ∈ Rn+2 | z ≥ xTx, (x,w) ∈ F}. (4.2)

In the remainder of this section we will show how strong lifted inequalities can be derived in this

setting, exposing along the way the key differences between this and the positive definite case.

Take a point (x̄, w̄) ∈ P , with aTi x̄ − w̄ = bi for some fixed index i ∈ {1, . . . ,m}. The tangent

inequality at (x̄, w̄), which holds for all (x,w, z) ∈ Rn+2 with z ≥ xTx, is

z ≥

2x̄

w̄

T x− x̄
w − w̄

+

x̄
w̄

T I 0

0 0

x̄
w̄

 . (4.3)

It is easily shown that this inequality can only be lifted by adding a nonpositive multiple of the

normal vector (ai,−1) to the gradient 2x̄ in (4.3). That is, lifted cuts in this setting must be of the

form

z ≥

2x̄

w̄

− α
 ai
−1

T x− x̄
w − w̄

+

x̄
w̄

T I 0

0 0

x̄
w̄


with α ≥ 0 being the lifting coefficient, or more simply

z ≥ (2x̄− αai)Tx+ αw + αbi − x̄T x̄. (4.4)

Consider a point (x,w, z) which (weakly) violates (4.4). Then the point (x,w, xTx) violates (4.4)

as well, and we have

xTx ≤ (2x̄− αai)Tx+ α(aTi x̄− w̄) + αw

⇔ xTx− 2xT x̄+ x̄T x̄ ≤ αbi + αw

⇔ ||x− x̄||2 ≤ αbi + αw. (4.5)

The projection of the cut-off region to the (x,w) space is the interior of a paraboloid with a recession

direction of (0, 1) ∈ Rn+1. This is the expected analog to the cut off ball in previous settings where

S was the epigraph of a strictly positive definite function.

Using the same approach as in Section 3.1.2, we can derive an expression for the lifting coefficient

α giving the strongest lifted cut of the form (4.4). Let j 6= i be another index in {1, . . . ,m}. The
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lifting coefficient for the jth facet is the α ≥ 0 satisfying minimize: xTx− (2x̄− αai)Tx− αw

subject to: aTj x− w = bj

 = αbi − x̄T x̄ (4.6)

Let (x∗, w∗) be the optimal solution to the minimization problem in (4.6), which is easily shown to

be given by:

x∗ = x̄− α

2
ai +

α

2
aj

w∗ = aTj x̄− bj −
α

2
aTj ai +

α

2
aTj aj .

Substituting these expressions into Equation (4.6) gives a quadratic equation the optimal α must

satisfy:

α
(
aTi x̄− bi − (aTj x̄− bj)

)
− 1

4
α2
(
aTi ai − 2aTi aj + aTj aj

)
= 0. (4.7)

α = 0 is a trivial root of this equation, which gives x∗ = x̄ and w∗ = aTj x̄− bj . With this choice of

α, the set of violated points is simply the line x = x̄, and no point (x,w) satisfies (4.5) with strict

inequality - the lifted cut is no stronger than the tangent cut (4.3).

The second and nontrivial root is

α =
4
(
aTi x̄− bi − (aTj x̄− bj)

)
aTi ai − 2aTi aj + aTj aj

=
4
(
aTi x̄− bi − (aTj x̄− bj)

)
||ai − aj ||2

. (4.8)

Because aTi x̄− w̄ = bi and aTj x̄− w̄ ≤ bj , we have aTi x̄− bi − (aTj x̄− bj) ≥ 0 and therefore α ≥ 0.

Equation (4.8) gives the lifting coefficient for the jth facet of P : the cut (4.4) using this choice of

α is only guaranteed to be valid for

{(x,w, z) | aTi x− w ≥ bi, z ≥ xTx}
⋃
{(x,w, z) | aTj x− w ≥ bj , z ≥ xTx}

and not necessarily for all of S. In order to find a valid cut, we must take the smallest of the lifting

coefficients obtained by considering each facet separately:

α = min
j 6=i

4
(
aTi x̄− bi − (aTj x̄− bj)

)
||ai − aj ||2

 .

Formulating and solving the separation problem in this setting is essentially identical to the method

presented in Section 3.1.3 so we do not present it here.
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4.2 Indefinite Quadratics

Consider an optimization problem with an objective of

minimize: xTQx+ 2bTx− c

where Q is a symmetric but indefinite matrix. Even with simple convex constraint sets, such

problems are in general NP-hard; we would like to employ our cutting plane methodologies to

strengthen bounds obtained using convex relaxations.

A common technique when working with indefinite quadratic forms is to express xTQx as a

difference of two convex quadratic forms (see [6] and [53] for more on difference-of-convex methods

in nonconvex quadratic programming). By writing Q = B − A, where A and B are both positive

definite, we can rewrite the problem as

minimize: z − w

subject to: z ≥ xTBx

w ≤ xTAx− 2bTx+ c

Similarly, we may consider a constraint of the form

xTQx+ 2bTx− c ≥ 0.

A point x satisfies this constraint if and only if there exist z, w ∈ R with

z − w ≥ 0

z ≥ xTBx

w ≤ xTAx− 2bTx+ c.

Either case leads to an interest in the set

{(x,w, z) ∈ Rn+2 | z ≥ xTBx, w ≤ xTAx− 2bTx+ c}.

By a change of coordinates we may assume that B is the identity matrix, and we therefore study

the set

S = {(x,w, z) ∈ Rn+2 | z ≥ xTx, (x,w) ∈ F},
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with F defined as

F = {(x,w) ∈ Rn+1 | w ≤ xTAx− 2bTx+ c}, (4.9)

the complement of the interior of a paraboloid in the (x,w) space. This is similar to the case of

an excluded ellipsoid studied in Section 3.3. After introducing a new parameterization of cuts,

our main result in this section is the derivation of closed-form solutions to the separation problem.

Again, the greatest computational task is computing the largest eigenvalue of A.

4.2.1 Paraboloid Inequalities

Consider any inequality

δz ≥ θw + γTx+ β (4.10)

that is valid for S. From the structure of S, we must have δ ≥ 0. If δ = 0, the inequality only

involves the x and w variables and is valid for F . We assume δ > 0, and without loss of generality

that δ = 1. Next, suppose θ < 0. For any fixed x, the point

(x, xTAx− 2bTx+ c− ε, xTx)

is in S for any ε ≥ 0. But then if θ < 0, the inequality (4.10) would be violated for ε large enough.

So we can assume θ ≥ 0.

Now consider a point (x,w, xTx) violating the inequality

z ≥ θw + γTx+ β (4.11)

For this point, we have

xTx < θTw + γTx+ β ⇔ xTx− γTx < θw + β

⇔
∣∣∣∣∣∣∣∣x− 1

2
γ

∣∣∣∣∣∣∣∣2 < θw + β +
1

4
||γ||2

The set of points (x,w) for which (x,w, xTx) violates (4.11) is a paraboloid. This suggests the

following parameterization of cuts in this setting similar the that of Definition 3.2.9.

Definition 4.2.1. For (µ, α, ν) ∈ Rn × R+ × R, we call the inequality

z ≥ 2µTx+ αw − ||µ||2 − αν (4.12)

the paraboloid inequality defined by (µ, α, ν).
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We let P(µ, α, ν) denote the paraboloid

{(x,w) | xTx ≤ 2µTx+ αw − ||µ||2 − αν} = {(x,w) | ||x− µ||2 ≤ α(w − ν)}

which gives the following characterization of valid paraboloid inequalities.

Proposition 4.2.2. The paraboloid inequality defined by (µ, α, ν) is valid for S if and only if

int (P(µ, α, ν)) ∩ F = ∅.

The proof of this proposition is almost identical to Proposition 3.0.8 and is omitted. Notice that

if α = 0, then P(µ, α, ν) is the line {(x,w) | x = µ}, and has no interior. Therefore the paraboloid

inequality defined by (µ, 0, ν) is valid for any choice of µ and ν.

The following two lemmas demonstrate the equivalence between valid lifted inequalities for S

and paraboloid inequalities.

Lemma 4.2.3. Let the inequality

z ≥ θw + γTx+ β (4.13)

be valid for S, and assume that this inequality is tight at some point (x̄, w̄, x̄T x̄). Then (4.13) is a

paraboloid inequality.

Proof. We previously established that if (4.13) is valid, θ must be nonnegative. First assume θ = 0.

The inequality (4.13) is violated at a point (x,w, xTx) if and only if∣∣∣∣∣∣∣∣x− 1

2
γ

∣∣∣∣∣∣∣∣2 < β +

∣∣∣∣∣∣∣∣12γ
∣∣∣∣∣∣∣∣2 .

For any fixed x, the point (x, xTAx − 2bTx + c − ε) is in F for any ε ≥ 0. So if (4.13) is valid, it

must be the case that β +
∣∣∣∣1

2γ
∣∣∣∣2 ≤ 0. By the assumption about the point (x̄, w̄, x̄T x̄), we have∣∣∣∣∣∣∣∣x̄− 1

2
γ

∣∣∣∣∣∣∣∣2 = β +

∣∣∣∣∣∣∣∣12γ
∣∣∣∣∣∣∣∣2 ,

which, because
∣∣∣∣x̄− 1

2γ
∣∣∣∣2 ≥ 0 and (4.13) is valid, implies β +

∣∣∣∣1
2γ
∣∣∣∣2 = 0. Then letting µ = 1

2γ,

α = 0, and ν = 0 gives a paraboloid inequality equivalent to (4.13).

Next assume θ > 0. In this case letting µ = 1
2γ, α = θ, and ν = −1

θ

(
β +

∣∣∣∣1
2γ
∣∣∣∣2) gives (4.13)

as a paraboloid inequality.
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Lemma 4.2.4. Let (µ, α, ν) define a paraboloid inequality which is valid for S and supports S at

some point (x̄, w̄, x̄T x̄). Then this paraboloid inequality is either a tangent inequality or a lifted

first-order inequality.

Proof. This follows directly from Theorem 2.2.5. The paraboloid inequality is a nontrivial lifted

inequality if and only if α > 0.

Together with Theorem 2.2.6, Lemmas 4.2.3 and 4.2.4 imply that paraboloid inequalities are

sufficient to solve the separation problem for a point (x̂, ŵ, ẑ) with (x̂, ŵ) ∈ conv (F), which is the

focus of the next section.

4.2.2 The Separation Problem

We now show how to solve the separation problem in this setting. As in the case of the excluded

ellipsoid, we will utilize the S-Lemma and derive closed-form expressions for the optimal parameters

(µ∗, α∗, ν∗). The most costly operation required again will be the computation of the largest

eigenvalue of the matrix A.

Let us suppose that we have a point (x̂, ŵ) /∈ F and that we wish to find the strongest lifted

inequality at this point. Our objective is therefore

maximize: 2µT x̂+ αŵ − ||µ||2 − αν,

subject to the parameters (µ, α, ν) defining a paraboloid inequality that is valid for S.

We first derive a characterization of validity which will aid in the formulation of the separation

problem.

Lemma 4.2.5. The paraboloid inequality defined by (µ, α, ν) is valid for S if and only if

min
x∈Rn
{xT (I − αA)x− 2(µ− αb)Tx}+ µTµ+ α(ν − c) ≥ 0.

Proof. By Proposition 4.2.2, the paraboloid inequality is valid if and only if

||x− µ||2 + αν − αw ≥ 0 for all (x,w) with w −
(
xTAx− 2bTx+ c

)
≤ 0.

By the S-Lemma, this is equivalent to the existence of a nonnegative multiplier θ such that

||x− µ||2 + αν − αw + θw − θ
(
xTAx− 2bTx+ c

)
≥ 0 ∀(x,w) ∈ Rn+1.
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If this is to hold, it must be the case that θ = α. If not, then letting w tend to ±∞ (depending on

the sign of (θ − α)) would violate the condition. Thus validity can be expressed as

||x− µ||2 + αν − α
(
xTAx− 2bTx+ c

)
≥ 0 ∀x ∈ Rn.

or equivalently

min
x∈Rn
{xT (I − αA)x− 2(µ− αb)Tx}+ µTµ+ α(ν − c) ≥ 0. (4.14)

Next we use conditions for the boundedness of the minimization problem in (4.14) to obtain a

condition for validity which does not contain any auxiliary optimization problems, and a formulation

of the separation problem.

Lemma 4.2.6. The separation problem can be formulated as

maximize: 2µT x̂+ αŵ − ||µ||2 − αν

subject to: −πT (I − αA)π + µTµ+ α(ν − c) ≥ 0

µ = αb+ (I − αA)π

0 ≤ α ≤ λ̄−1

(4.15)

Proof. For the inequality (4.14) to hold, the value of the minimization problem on the left hand

side must be bounded. Define λ̄ to be the largest eigenvalue of A. By Lemma A.2.1, the optimal

value of the minimization problem is finite if and only if the following two conditions are satisfied:

α ≤ λ̄−1 (4.16)

µ = αb+ (I − αA)π for some π ∈ Rn (4.17)

With these conditions imposed, the optimal solution to the minimization problem is any x∗ satis-

fying

(I − αA)x∗ = µ− αb = (I − αA)π. (4.18)

Thus π is an optimal solution, with a resulting optimal value of −πT (I − αA)π. Making this

substitution into (4.14) and adding the constraints (4.16) and (4.17) gives the formulation (4.15).

Notice that the formulation (4.15) is not convex, due to α multiplying other variables in the

objective as well as in the first two constraints. The formulation is convex, however, for any fixed
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choice of α. We use this fact to show that the problem (4.15) can actually be solved in closed form,

which gives expressions for the parameters for the optimal paraboloid inequality.

Theorem 4.2.7. Given a point (x̂, ŵ, ẑ) with (x̂, ẑ) /∈ F , the parameters for the strongest paraboloid

inequality at (x̂, ẑ) are

α∗ = λ̄−1

µ∗ = α∗b+ (I − α∗A)x̂

ν∗ = x̂TAx̂− 2bT x̂+ c− 1

α∗
||µ∗ − x̂||2

where λ̄ is the largest eigenvalue of A.

Proof. First we will show that we can assume that the first constraint in (4.15) will hold with

equality. Assume that α is fixed at any value in the interval [0, λ̄]. Because α ≥ 0, the objective

value in (4.15) is nonincreasing with ν. Also, as this is the only constraint in which ν appears, it

is always possible to decrease ν until the constraint is tight without decreasing the objective value.

We can therefore eliminate the first constraint by substituting

µTµ+ αν = αc+ πT (I − αA)π (4.19)

into the objective. Then, with the additional substitution

µ = αb+ (I − αA)π (4.20)

we can eliminate µ and the second constraint, and arrive at the following reformulation:

maximize: −πT (I − αA)π + 2x̂T (I − αA)π + 2αbT x̂− αc+ αŵ

subject to: 0 ≤ α ≤ λ̄−1

By Lemma A.2.1, for any fixed feasible α, the optimal solution to this problem is any π∗ satisfying

−2(I − αA)π∗ + 2(I − αA)x̂ = 0.

So π∗ = x̂ is optimal and results in an objective value of

x̂T x̂− α(x̂TAx̂− 2bT x̂+ c− ŵ).
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Because (x̂, ŵ) /∈ F by assumption, we have x̂TAx̂ − 2bT x̂ + c < ŵ, and this objective value is

increasing in α. Therefore α∗ will be at the upper bound of λ̄−1. The equality (4.20) gives the

expression for µ∗, and the equality (4.19) gives the expression for ν∗.

It is easily shown that the optimal parameters derived in the proof of Theorem 4.2.7 produce

a cut which supports S at some point, implying that this cut is a lifted inequality. The optimal

parameters also provide a solution to the separation problem.

Corollary 4.2.8. Let (x̂, ŵ, ẑ) ∈ Rn+2 with (x̂, ŵ) /∈ F . Define α∗, µ∗, and ν∗ as in the statement

of theorem of Theorem 4.2.7. Then (x̂, ŵ, ẑ) ∈ conv (S) if and only if

2µ∗T x̂+ α∗ŵ − ||µ∗||2 − α∗ν∗ ≤ ẑ.

Also, analogous to Corollary 3.3.5, we obtain a finite description of conv (S).

Corollary 4.2.9. Let λ̄ be the largest eigenvalue of A, and define α = λ̄−1. Then

conv (S) = {(x,w, z) ∈ Rn+2 | z ≥ xTx, z ≥ xTx− α(xTAx− 2bTx+ c− w)}.

The proof of this statement is essentially identical to that of Corollary 3.3.5 and is omitted.
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Chapter 5

Numerical Experiments

To validate the computational practicality of our separation procedures, we ran several numerical

experiments on randomly generated test problem instances. All computations were performed on

an 8-core i7 computer, with 48 GB of physical memory. Unless otherwise noted, all optimization

problems were solved using Gurobi 5.50 [41] through the GurobiPy interface.

5.1 A Comparison With the Disjunctive Method

In Section 3.1.5 we discussed some potential advantages of the separation method derived in Section

3.1.3 over the disjunctive approach. In this section we present the results of a direct comparison

of the two methods. In our comparison, we focus on the use of cutting planes to derive lower

bounds on problems of the form min{xTx | Ax 6< b}. We point out that solving such problems is

trivial: the optimal solution is found by computing the projection of the origin onto each hyperplane

{x | aTj x = bj} and comparing the norms of the resulting vectors. Our interest is not in using the

lifting techniques to solve this problem, but instead to compare the efficacy of generating lifted cuts

versus using the disjunctive approach.

Each experiment was conducted as follows. First, a random polyhedron {x | Ax ≤ b} was

generated, using the following method: The entries of the current normal vector ai were set to

random uniform values between −1 and 1, and then each was set to 0 with probability 0.5. The

vector was rejected if it was a positive multiple of any of the previous vectors a1, . . . , ai−1. ai was

then scaled to have unit norm and the entries were rounded to three digits. Next, the value b̄i was
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calculated as

b̄i = max{aTi x | aTj x ≤ bj , j = 1, . . . , i− 1}.

If b̄i was finite, bi was set to a value randomly distributed between 0.5b̄i and 0.95b̄i. Otherwise bi

was set to 1+Γ, where Γ was a generated randomly from a gamma distribution with shape
√
n and

scale 0.5
√
n. This somewhat complicated procedure was intended to ensure that the inequalities in

the system Ax ≤ b were all facet-defining. In either case bi was then rounded to three digits. Next,

lower bounds were computed using this algorithm:

Algorithm 5.1.1.

1. Start with the initial feasible set F = {(x, z) | z ≥ xTx}.

2. Solve the current problem: min{z | (x, z) ∈ F}, and let (x̂, ẑ) be the optimal solution.

3. Compute an inequality z ≥ γTx+ β separating (x̂, ẑ) from S.

4. If the stopping conditions are met, stop. Otherwise, set

F = F ∩ {(x, z) | z ≥ γTx+ β}

and go to Step 2.

The algorithm was stopped when 500 cuts had been added, when the relative gap between the

lower bound and the true value of the problem was less than a tolerance of 10−5, or when more

than 600 seconds had passed since the cutting plane procedure started. When generating lifted

inequalities, we used the heuristic of only computing the lifted inequality from the facet closest to

the current solution x̂.

Table 5.1 displays the results from this comparison. The columns marked n and m give the

dimension and number of inequalities in the system Ax ≤ b. val gives the true solution value to

the problem. Lol, Timel, and Cutsl give the lower bound proved, the total amount of time spent

in the cutting plane algorithm, and the number of cuts added when using lifted inequalities to

solve the separation problem. Lod, Timed, and Cutsd give the corresponding information when the

disjunctive method was used to generate cuts. An asterisk next to an entry in the Timed column

indicates that the algorithm was stopped early because at some point the disjunctive method was

unable to compute the dual variables giving the cut coefficients. From this table we see that lifted
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Table 5.1: Comparison with disjunctive method

n m val Lol Lod T imel T imed Cutsl Cutsd

10 50 5.191 5.190 2.121 0.2 74.7 51 500

20 100 14.537 14.536 0.366 0.1 88.1 15 500

20 300 17.831 17.830 0.771 0.3 311.4 15 500

50 200 79.888 79.887 0.154 0.3 381.5 20 500

75 250 343.897 336.353 36.872 126.7 317.1∗ 500 95

100 300 324.486 324.485 16.139 0.6 126.7∗ 14 10

200 400 2207.060 2207.038 0.000 8.7 91.0∗ 92 0

300 500 4583.748 4583.733 0.000 2.4 155.3∗ 20 0

800 1200 38142.592 38142.243 0.000 32.1 1879.1∗ 42 0

1000 2000 61726.150 61725.542 0.000 227.8 3304.3∗ 134 0

inequalities enjoy a clear advantage over the disjunctive method. In six of the ten test cases, the

disjunctive method was unable to compute dual variables and was forced to stop early. Even in

the smaller cases, the disjunctive method ran into numerical difficulties and reached the maximum

number of cuts with a much weaker bound than the one obtained using lifted inequalities.

5.2 Comparing Cutting Plane Variants

We also experimented with variants of Algorithm 5.1.1 in which the quadratic constraint z ≥ xTx

was not included in the convex relaxations. Instead, the algorithm was initialized with F =

{(x, z) | z ≥ 0} and tangent inequalities were used to approximate the constraint z ≥ xTx. In these

tests, a polyhedron {x | Ax ≤ b} was generated randomly using the same method as before, and

the objective was xTQx, with Q being a randomly generated positive definite matrix. The initial

feasible set was simply

{(x, z) ∈ Rn+1 | z ≥ 0}.

When a relaxed solution (x̂, ẑ) was obtained, the tangent inequality

z ≥ 2 (Qx̂)T (x− x̂) + x̂TQx̂

was added to the formulation, in addition to the strongest lifted inequality at x̂, in the case where

Ax̂ < b. Without the quadratic constraint, every relaxation solved is a linear program.
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Table 5.2 presents results on the variants we tested. The most basic version (whose results

are in the columns marked “Basic”) uses the method described above. The second version (in the

columns marked “Heuristics”) incoroprates the following three heuristics:

1. Before starting, the tangent cut was added at each unit vector ei as well as −ei.

2. Before starting, the lifted inequality at the point closest to the origin on each facet of {x | Ax ≤

b} was added, if possible.

3. The constraint Ax ≤ b was added in the relaxation.

Finally, for comparison purposes, we tested a version of the algorithm which included the quadratic

constraint z ≥ xTQx and used neither tangent cuts nor the heuristics mentioned above. Table 5.3

shows the results from this variant, in the columns marked “Full”.

These tests were terminated if, between subsequent iterations, the objective value z and all

entries of the solution x were within a tolerance of 10−3 of the previous values. In this test, each

method was limited to 30 minutes to add cuts, and maximum of 10, 000 iterations were performed.

Table 5.2: Comparison of cutting plane variants

Basic Heuristics

n m val zlo lin lfo t zlo lin lfo t

10 50 5.2 5.2 286 120 0.8 5.2 280 212 1.1

20 100 14.5 14.5 2104 824 19.5 14.5 890 744 8.6

20 300 17.8 17.8 1903 577 28.7 17.8 2831 13 34.0

50 200 79.9 0.0 10000 1 688.0 79.9 10300 38 646.2

75 250 343.9 0.0 10000 1 768.6 343.9 8198 7841 1803.9

100 300 324.5 0.0 10000 1 1127.2 320.6 6780 6361 1804.1

200 400 2207.1 0.0 269 1 1807.1 2207.1 6168 151 1803.3

300 500 4583.74 0.0 301 1 13.3 597.6 2938 2003 1803.3

800 1200 38142.6 0.0 302 1 66.7 569.5 2940 651 1811.4

1000 2000 61726.1 0.0 246 1 108.7 61726.1 4001 893 2330.6

In these tables, n and m give the dimension of number of facets in the excluded polyhe-

dron, and val gives the true optimal value of the problem (obtained by solving the problem

min {xTQx | aTj x ≥ bj} for each j). For each of the three methods zlo gives the final lower bound,

lfo and lin give the number of lifted and tangent inequalities generated during the course of the
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Table 5.3: Including the quadratic constraint

Full

n m val zlo lfo t

10 50 5.2 5.2 133 1.1

20 100 14.5 14.5 33 0.3

20 300 17.8 17.8 26 0.6

50 200 79.9 79.9 28 0.6

75 250 343.9 339.5 1370 1802.3

100 300 324.5 324.5 25 1.1

200 400 2207.1 2207.0 87 9.6

300 500 4583.74 4583.74 24 3.7

800 1200 38142.6 38142.5 55 53.9

1000 2000 61726.1 57689.3 18 40.0

procedure, and t gives the total time taken. We see that the Basic method performs poorly for

larger instances. In this implementation, we observed that the magnitude of the entries of the linear

program relaxations tend to become quite large, creating numerical difficulties. This was the ra-

tionale for adding the third heuristic. The implementation which includes the quadratic constraint

gives significantly better performance in all instances except the last.

5.3 Testing the Dual Formulation

In order to evaluate the performance of the “dual” separation formulation of Section 3.2.4, we

performed an experiment similar to that in the previous section. Instead of a single polyhedron,

either two or three polyhedra {x | Aix ≤ bi} were randomly generated using the method described

in the previous section. The feasible region F was defined as F = {x | Aix 6< bi}, and polyhedra

{x | Ckx ≥ dk} were computed as described in the beginning of Section 3.2 so that

F =

K⋃
k=1

{x | Ckx ≥ dk}.

A cutting plane algorithm was then used to prove bounds on the problem min{xTx | x ∈ F}. We

followed the same cutting plane procedure as in the previous section, with the exception of the time

limit, which was changed from ten minutes to 30 minutes. Algorithm 3.2.16 from Section 3.2.5 was

used to compute the separating inequalities at the current relaxed solution (x̂, ẑ). The initial µ
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was chosen to be x̂, and initially n+ 1 constraints were enforced. At each iteration, the number of

enforced constraints was increased by 10. The constraints which had been enforced and were tight

in the previous solution were kept active, and the rest of the active set was formed by choosing the

constraints most violated with the current values of µ, τ and λk. In the first iteration of the cutting

plane algorithm, the variables {λk}Kk=1 were initialized from scratch by solving the problem (3.64)

for each k. If this problem was unbounded for a certain k, the corresponding polyhedron (which is

infeasible) was removed from the formulation. After the first iteration, the variables {λk}Kk=1 were

stored and used as initial values in the computation of the next cut. We found that this makes

a significant difference. Figure 5.1 shows the time taken for the first 100 cuts for an instance in

n = 20 dimensions with K = 62,500 component polyhedra. The first cut takes about 108 seconds

to compute, while subsequent cuts take an average of 8 seconds.

Figure 5.1: Time per cut decreases after the first.

Table 5.4 displays the results from this experiment. n gives the dimension of the problem. The

tuple in the column labled m gives the number of rows in the matrices Ai. Depending on this

test instance, there are either two or three values for m. K is the total number of component

polyhedra defining F , which is the product of the values in m. val gives the true value of the

problem, obtained by enumerating all of the component polyhedra. Bound, Cuts, and Time give
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the lower bound achieved by the cutting plane algorithm, the number of cuts required to achieve

this bound, and the total time spent by the algorithm.

Table 5.4: Results from the dualized method

n m K val Bound Cuts Time

10 (40, 50) 2000 7.00 7.00 14 7.97

15 (100, 200) 20000 22.06 22.06 41 141.72

20 (250, 250) 62500 29.51 29.49 217 1806.87

20 (300, 300) 90000 23.85 23.85 131 1619.73

20 (30, 40, 50) 60000 52.38 51.07 121 1805.32

50 (200, 300) 60000 134.17 134.17 47 1017.26

50 (150, 500) 75000 123.36 123.36 80 1810.98

75 (30, 30, 50) 45000 755.13 680.49 16 1808.21

100 (200, 400) 80000 460.12 423.22 7 1878.55

200 (250, 250) 62500 2889.63 2019.59 1 2196.29

As the table shows, Algorithm 3.2.16 is able to generate cuts reasonably quickly for smaller

instances, but becomes much slower as the dimension increases. For the largest instance, the

algorithm is only able to compute a single cut. We point out that for these test instances (with

the exception of the first), the “primal” disjunctive formulation is completely unable to run -

the number of variables and constraints is simply too large. We also point out, again, that the

problem min{xTx | x ∈ F} is easily solved by solving a quadratic program over each polyhedron

{x | Ckx ≥ dk}. Our goal in this experiment is to show that the iterative algorithm and the

dual formulation make the computation of cutting planes tractable in cases where the disjunctive

method fails.

5.3.1 Heuristic Improvements

We experimented with several modifications to help speed up the progress of Algorithm 3.2.16.

First was the number of initial active constraints, and the way the set of active constraints was

updated in each iteration. Noticing that a large number of active constraints made solving the

relaxed problem in Step 2 very slow, and that far fewer than n constraints ever held with equality

in the relaxed problems, we decreased the size of the initial active set to the larger of 10 and 0.1n.

We also modified the update rule in Step 4. If we found a relaxed solution violated any inactive
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constraints, we added the larger of 5 and 0.05n constraints to the active set, unless the number

of violated constraints was smaller than this value, in which case this number of constraints were

added.

The second modification was in the initialization and updates of the variables {λk}Kk=1. Solving

the problem

maximize: −
∣∣∣∣CTk λk + µ

∣∣∣∣2 + 2λTk dk

subject to: λk ≥ 0
(5.1)

for many k was time consuming. We implemented the following heuristic update rule: given a

current vector λoldk and the current values for µ and τ , we maximized the function

g(σ) = −
∣∣∣∣∣∣CTk (σλoldk )+ µ

∣∣∣∣∣∣2 + 2
(
σλoldk

)T
dk

over σ (equivalent to maximizing the objective of (5.1) over the line defined by the origin and λoldk ).

Because g(σ) is quadratic in σ, this could be done easily in closed form. Letting σ∗ denote the

optimal choice of σ, then if the vector σ∗λoldk was feasible and satisfied the kth constraint:

−
∣∣∣∣∣∣CTk (σ∗λoldk )+ µ

∣∣∣∣∣∣2 + 2
(
σ∗λoldk

)T
dk + τ ≥ 0, (5.2)

we set λnewk = σ∗λoldk . Otherwise, λnewk was set to the optimal solution of (5.1). In the intialization

step, before λoldk was available, we used the vector of all 1’s as a substitute for λoldk .

The final modification was in the size of the initial set of active constraints. Instead of always

starting from the same value in the computation of each cut, the size of the active set was maintained

for all cuts after the first, meaning it could only increase as more and more cuts were computed.

Table 5.5 shows the results after the addition of these modifications. We found that the perfor-

mance was similar (and sometimes slightly worse) than the original version for smaller problems,

but markedly better for larger instances.
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Table 5.5: Results after adding heuristics

n m K val Bound Cuts Time

10 (40, 50) 2000 7.00 7.00 13 5.56

15 (100, 200) 20000 22.06 22.06 34 127.53

20 (250, 250) 62500 29.51 29.43 173 1808.89

20 (300, 300) 90000 23.85 23.85 118 1807.88

20 (30, 40, 50) 60000 52.38 50.18 100 1827.76

50 (200, 300) 60000 134.17 134.17 27 360.45

50 (150, 500) 75000 123.36 123.36 36 686.10

75 (30, 30, 50) 45000 755.13 719.83 33 1829.78

100 (200, 400) 80000 460.12 460.12 77 1477.92

200 (250, 250) 62500 2889.63 2702.21 7 2016.18
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Chapter 6

Conclusion and Future Work

In this work, we have studied the use of lifted inequalities to tighten relaxations on nonconvex

optimization problems. We have shown that the class of lifted first-order inequalities of the form

z ≥ (∇f(y) + αλ)T (x− y) + f(y)

is sufficient to obtain the convex hull of sets of the form

S = {(x, z) ∈ Rn+1 | z ≥ f(x), x ∈ F}

when f is convex and differentiable. In the case where f is a positive definite quadratic function,

we have proven polynomial time methods for finding separating from conv (S) when F is the union

of polyhedra or the complement of the interior of an ellipsoid by means of lifted inequalities. We

have also shown how our methods may be applied in some cases when f is a positive semidefinite

quadratic, and how they may be used to tighten constraints on indefinite quadratic functions. We

have presented the results of numerical experiments demonstrating the computational tractability

and efficacy of our methods, including solving large problem instances completely out of the reach

of the current state of the art.

Our development of separation procedures and characterizations of valid lifted inequalities fo-

cused on quadratic objective functions. As mentioned in the introduction, this was partly due

to the analytical tractability that the geometry of quadratic objectives exhibited. While there is

certainly no shortage of applications with quadratic objectives, research into separation procedures

and characterizations of strong valid lifted inequalities for other classes of objective functions would

be of great interest.
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Our computational experiments were successful, if somewhat limited, and the implementations

used in these experiments were not especially sophisticated. Although the theory presented in

Chapters 2, 3, and 4 is elegant and interesting in its own right, this work was motivated by

problems encountered in applications, and its true merit may be best judged by its utility in

practice. We welcome further testing and validation of our methods through application to specific

“real” problems.
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[12] P. Belotti, J. C. Góez, I. Pólik, T. K. Ralphs, and T. Terlaky, A Conic Represen-

tation of the Convex Hull of Disjunctive Sets and Conic Cuts for Integer Second Order Cone

Optimization, Optimization Online, (2012).

[13] P. Belotti, J. Lee, L. Liberti, F. Margot and A. Wachter, Branching and Bounds

Tightening Techniques for Non-convex MINLP, Optimization Methods and Software 24 (2009),

597 - 634.

[14] P. Belotti, A.J. Miller and M. Namazifar, Valid Inequalities and Convex Hulls for

Multilinear Functions, Electronic Notes in Discrete Mathematics 36 (2010), 805 - 812.

[15] D. Bienstock, Computational Study of a Family of Mixed-Integer Quadratic Programming

Problems, Mathematical Programming 74 (1996), 121 – 140.

[16] D. Bienstock, Eigenvalue Techniques for Proving Bounds for Convex Objective, Nonconvex

Programs, Integer Programming and Combinatorial Optimization, Lecture Notes in Computer

Science 6080 (2010), 29 – 42.

[17] D. Bienstock and A. Michalka, Strong Formulations for Convex Functions over Noncon-

vex Sets, manuscript, (2011).

[18] P. Bonami, Lift-and-Project Cuts for Mixed Integer Convex Programs, Integer Programming

and Combinatorial Optimization, Lecture Notes in Computer Science 6655 (2011), 52 – 64.

[19] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press (2004).

[20] C. Buchheim, A. Caprara and A. Lodi, An Effective Branch-and-Bound Algorithm for

Convex Quadratic Integer Programming, Lecture Notes in Computer Science 6080 (2010), 285

– 298.



BIBLIOGRAPHY 104

[21] S. Burer and K. M. Anstreicher, Second-Order Cone Constraints for Extended Trust-

Region Subproblems SIAM Journal on Optimization (to appear).

[22] S. Burer and A. N. Letchford, On Non-convex Quadratic Programming with Box Con-

straints, SIAM Journal on Optimization, 20 (2009), 1073 – 1089.

[23] S. Burer and A. N. Letchford, Non-Convex Mixed-Integer Nonlinear Programming: A

Survey, Optimization Online, (2012).

[24] S. Burer and B. Yang, The Trust Region Subproblem with Non-Intersecting Linear Con-

straints, manuscript, (2013).

[25] M. R. Celis, J. E. Dennis, and R. A. Tapia, A Trust Region Strategy for Nonlinear

Equality Constrained Optimization, Numerical Optimization, SIAM, Philadelphia, (1985), 71

– 82.

[26] S. Ceria and J. Soares, Convex Programming for Disjunctive Convex Optimization, Math-

ematical Programming 86 (1999), 595 - 614.
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[31] S. Dash, S. S. Dey, and O. Günlük Two Dimensional Lattice-free Cuts and Asymmetric

Disjunctions for Mixed-integer Polyhedra, Mathematical Programming A 135 (2012), 221 –

254.



BIBLIOGRAPHY 105

[32] L. L. Dines, On the Mapping of Quadratic Forms, Bulletin of the American Mathematical

Society 47 (1941), 494 – 498.

[33] M. Fischetti, A. Lodi, and A. Tramontani, On the Separation of Disjunctive Cuts,

Mathematical Programming A 128 (2011), 205 – 230.

[34] T. Fujie and M. Kojima, Semidefinite Programming Relaxation for Nonconvex Quadratic

Programs, Journal of Global Optimization 10 (1997), 367 – 380.

[35] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, and B. Ot-

tersten, Convex Optimization-based Beamforming: From Receive to Transmit and Network

Designs, IEEE Signal Processing Magazine (2010), 62 – 75.

[36] M. X. Goemans, Semidefinite Programming in Combinatorial Optimization, Mathematical

Programming 79 (1997), 143 – 161.

[37] R. E. Gomory, Outline of an Algorithm for Integer Solutions to Linear Programs, Bulletin

of the American Mathematical Society 64 (1958), 275 – 278.

[38] R. E. Gomory, An Algorithm for Integer Solutions to Linear Programs, Recent Advances in

Mathematical Programming, McGraw-Hill, New York (1963), 269 – 302.

[39] R. E. Gomory, Some Polyhedra Related to Combinatorial Problems, Linear Algebra and its

Applications 2 (1979), 451 – 558.

[40] J. Gorski, F. Pfeuffer, and K. Klamroth, Biconvex Sets and Optimization with Bicon-

vex Functions: a Survey and Extensions, Mathematical Methods of Operations Research 66(3)

(2007), 373 – 407.

[41] Gurobi Optimizer. http://www.gurobi.com/.

[42] G. Iyengar and M. Çezik Cut Generation for Mixed 0-1 Quadratic Programming, Columbia

University Technical Report TR-2001-02 (2001).
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Appendix A

Quadratic Programming

Several of the results in this thesis rely on closed-form solutions for quadratic programs. In this

appendix we provide derivations of the forms of these solutions, as well as their accompanying opti-

mal objective values. We restrict our attention to convex objective, linearly constrained quadratic

programs. These are convex optimization problems, and can be solved using the the method of

Lagrange multipliers.

A.1 Positive Definite Objective

In this section we give results for the case when the objective function is a positive definite quadratic.

Lemma A.1.1. Let Q be positive definite, and let A ∈ Rm×n be a matrix of full row rank. Then

the optimal solution to the quadratic program

minimize: xTQx+ qTx

subject to: Ax = b

is given by

x∗ = −1

2
Q−1q +Q−1AT

(
AQ−1AT

)−1
(
b+

1

2
AQ−1q

)
(A.1)

Proof. The Lagrangian of this quadratic program, with Lagrange multipliers θ ∈ Rm, is

L(x, θ) = xTQx+ qTx− θT (Ax− b).
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Equating the gradient of L in x to 0 gives

∇xL = 0 ⇔ 2Qx+ q −AT θ = 0

⇔ Qx = −1

2
q +

1

2
AT θ

⇔ x = −1

2
Q−1q +

1

2
Q−1AT θ. (A.2)

Next we use the Ax = b constraint to determine θ:

Ax = b ⇔ A

(
−1

2
Q−1q +

1

2
Q−1AT θ

)
= b

⇔ 1

2
AQ−1AT θ = b+

1

2
AQ−1q

⇔ θ =
(
AQ−1AT

)−1 (
2b+AQ−1q

)
. (A.3)

Substituting this expression for θ into (A.2) gives (A.1).

Corollary A.1.2. Let A ∈ Rm×n be a matrix of full row rank. Then the optimal solution to the

quadratic program

minimize: xTx+ qTx

subject to: Ax = b

is given by

x∗ = −1

2
q +AT

(
AAT

)−1
(
b+

1

2
q

)
and has an optimal objective value of

−1

4
qT q +

(
b+

1

2
Aq

)T
(AAT )−1

(
b+

1

2
Aq

)
Proof. Replace Q with the identity matrix in (A.1) and substitute the result into xTx+ qTx.

Finally we note that in the case where A has either one or two rows, the matrix (AAT )−1 can

be obtained easily in closed form. Specifically, we have

(AAT )−1 =
1

||a1||2
when A =

[
aT1

]
∈ R1×n (A.4)

and

(AAT )−1 =

||a1||2 aT1 a2

aT1 a2 ||a2||2

−1

=

 ||a2||2 −aT1 a2

−aT1 a2 ||a1||2


||a1||2 ||a2||2 − (aT1 a2)2

(A.5)
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when

A =

aT1
aT2

 ∈ R2×n.

A.2 Semidefinite Objectives

In this section we allow the matrix Q to be positive semidefinite. We give necessary and sufficient

conditions for the minimum value of xTQx + qTx to be finite, and an expression for the optimal

value when these conditions hold.

Lemma A.2.1. Let Q be an n× n symmetric matrix. Then

minimize: {xTQx+ qTx} > −∞ (A.6)

if and only if

Q � 0 and q = Qπ for some π ∈ Rn (A.7)

Proof. Suppose (A.7) does not hold. Then either Q is not positive semidefinite, or there is no

solution to Qπ = q. First assume the former is true. Then Q has an eigenvector v with an

associated eigenvalue λ < 0. For any σ ∈ R, we have

(σv)TQ(σv) + qT (σv) = σ2vTQv + σqT v = σ2λvT v + σqT v = σ2λ+ σqT v

which approaches −∞ as σ tends to ∞. Next, assume Q � 0 but there is no solution to Qπ = q.

By Farkas’s Lemma, this is equivalent to the existence of a vector δ with Qδ = 0 and qT δ = −1.

Then for σ ∈ R, we have

(σδ)TQ(σδ) + qT (σδ) = 0 + σqT δ = −σ

which approaches −∞ as σ tends to ∞.

Now assume that (A.7) does hold. Then the minimization problem in (A.6) is equivalent to

minimize: {xTQx+ πTQx}. (A.8)

Define f(x) = xTQx + πTQx, and x∗ = −1
2π. Then ∇f(x∗) = 0, and ∇2f(x) = Q for all x.

Moreover, because the function f is quadratic, the second-order Taylor expansion for f is exact
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and so for any y ∈ Rn, we have

f(y) = f(x∗) + (y − x∗)T∇f(x∗) +
1

2
(y − x∗)T∇2f(x∗)(y − x∗)

= f(x∗) +
1

2
(y − x∗)TQ(y − x∗)

≥ f(x∗) (because Q � 0).

Therefore x∗ is a global minimizer of f , with an objective value of

−1

4
πTQπ > −∞.
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