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ABSTRACT

Two Large-Scale Network Design Problems

In this work we consider two large-scale network design problems arising in network

routing and provisioning. The first problem combines long-term business and de-

sign decisions on large-scale telecommunication networks. The problem integrates

different elements of network business planning such as capacity expansion, routing

and protection and equipment maintenance as well as a complicated pricing model;

which altogether make the optimization particularly hard. We propose a scalable

optimization algorithm that exploits the structure of the model and produces a fast,

high-quality solution. In the second part of this work we consider the maximum

concurrent flow problem and analyze one of the first special-purpose approaches,

proposed in 1971 by Fratta, Gerla and Kleinrock, and show that it yields a fully

polynomial-time approximation scheme.
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Chapter 1

Introduction

In this thesis we deal with two network planning and operation problems. The

first problem concerns multiperiod business planning of a telecommunication network

while the second is a version of the maximum throughput routing problem.

Evolving technologies in telecommunication networks offer the capability of very

large wide-area networks with throughput on the order of terabits (1012 bit) per

second. These technologies are considered very promising for the next generation

of transport networks, as they can satisfy the growing demand for bandwidth that

is caused primarily by the explosive growth of web-related services offered over the

Internet. The challenge is to react quickly to these increasing bandwidth requirements

while maintaining a reliable service. Networks should be designed and operated so

as to provide adequate capacity in the areas with growing demand without reducing
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revenue. Models of this kind give rise to very difficult optimization problems of

constantly increasing size and complexity due to both the growth of network size

and traffic throughput, and to increasing concerns about data privacy, reliability,

and security. These decision and optimization problems generally require approaches

that dynamically update static solutions based on the current data and the state

of the network. Despite continuing advances, computer technology is still unable to

keep up with the growth in model and data sizes. At the same time, it is evident

that empirical and intuitive heuristics can no longer fulfill the need for fast and

provably good solutions. Clearly, there is a demand for sophisticated algorithms

employing state-of-the art mathematical and computing techniques to answer the

growing modeling and optimization needs.

In this work we provide scalable and rigorous algorithms for two difficult large-

scale network design problems. The first problem deals with long-term planning and

operation of an optical network. The major aspects of such planning involve decisions

spread over several time periods, which concern demand pricing, routing and protec-

tion as well as network design and capacity expansion. Each of these components

gives rise to a difficult optimization problem in its own right; thus the integration of

all these components poses a significant challenge to current optimization techniques.

We consider network operators who contemplate capacity planning in their networks

for a period that spans approximately a decade. A key feature in our model is the ex-
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pectation that, during such a period, several generations of transmission technologies

will emerge, technologies that will outperform prior ones by improved measures of

throughput such as the maximum number of wavelengths, capacity per wavelength,

or both.

However, there can be incentives to delay the deployment of new technology to

exploit savings from future cost reductions. A dynamic technology environment of

this kind immediately poses two interesting problems. First, there is one of timing:

when should the operator start to deploy new systems and phase out old technologies?

Second, there is one of sizing: what capacity that be deployed on each link during

every time period? These two questions have been referred to as the technology

substitution problem and capacity expansion problem, respectively. In our model,

the two problems are closely interrelated and will be considered together.

The network planning problem above has been discussed extensively in the liter-

ature. In many cases, it has been cast as an optimization problem of choosing the

capacity configuration strategy that satisfies forecast demands (which are given as

inputs) at minimum cost (which includes both the cost of deploying new capacities

and the cost of operating old systems); see for example, [5]. While min-cost modeling

rationalizes decision-making from an engineering perspective, more comprehensive

approaches have been taken in recent studies to integrate capacity planning into the

overall business optimization strategy [37], [20]. Under the generalized framework,
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instead of fixing forecast demands, the price-demand relationship is taken into con-

sideration and demands are treated as flexible quantities that can be controlled by

prices. As decision variables, prices play a dual role. On the one hand prices de-

termine the revenue for each unit of service rendered. On the other hand demands

cannot deployed capacity. To put it differently, capacity planning is driven not by

the need to meet a fixed demand target, but by the desire of generating more profit.

The objective is to choose the prices of network services and network capacity simul-

taneously, so as to maximize the overall net profit generated by the network. In a

multiple period model such as ours, the net profit is referred to as Net Present Value

(NPV), and is defined to be the total revenue minus the total cost over the planning

horizon, using an appropriate discount factor.

To meet the challenge of solving the generalized multi-period price setting and

capacity planning problem, our work develops a set of efficient, scalable algorithms.

The overall problem is formulated as a nonlinear optimization model with a concave

objective function and linear constraints. While a concave maximization problem is

(in theory) solvable using standard techniques, the problem sizes arising in realistic

settings makes such models essentially impossible to solve by conventional methods,

within anything even remotely resembling a reasonable time frame. The algorithm

described in this work provides a considerable improvement in terms of both opti-

mality error and computing time, when compared to state-of-the-art general-purpose
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solvers.

The second problem considered in this work is a version of the maximum through-

put routing problem, namely the canonical version, called the maximum concurrent

flow problem. The maximum concurrent flow problem frequently arises in practical

applications and has received much attention because of its difficulty.

Many telecommunication network design problems contain a multicommodity flow

problem as one of the components. Generally, in a multicommodity flow problem we

need to route a set of demands (or traffic requirements) over a given network with

prespecified joint capacities on its edges. The minimization version of the problem

requires a minimum cost routing, while the feasibility version merely tries to find

a routing of the demands such that no edge capacity is violated. It is well known

that even the feasibility version is fairly difficult. When the problem turns out to be

infeasible it can be significant to determine the extent of the infeasibility. In that

case we want to find the maximum throughput of the network, that is the maximum

common fraction of the demands that can be routed simultaneously without exceeding

any of the network capacities. This is called the maximum concurrent flow problem.

This problem arises in telecommunications in many different variations (directed

or undirected edges, restrictions on the routings, etc.). Further, many algorithms for

network design rely on solving maximum concurrent flow problems in order to find a

feasible routing.
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What makes this problem especially noteworthy is that it gives rise to extremely

difficult linear programs – instances of a size and type relevant to applications often

prove beyond the reach of state-of-the-art linear programming codes, despite recent

progress in computer technologies. For this reason there has been sustained research

devoted to the development of approximation algorithms. The use of approximation is

justified, as a fast, partially accurate result is much more desirable than an algorithm

that provides an exact solution but requires an excessive amount of time.

In this work we analyze the convergence of one of the first approximation al-

gorithms developed for this type of problem as well as some enhancements of the

algorithm that help to improve performance and simplify implementation. In addi-

tion we offer a further refinement of this algorithmic approach as a direction for future

research.

This thesis is organized as follows.

In Chapter 2 we present our work on the first problem – multiperiod business planning

of a telecommunication network. Section 2.2 reviews several essential optimization

concepts used in our work, as well as some essential components of telecommunica-

tion network design, such as capacity planning and routing and protection. We also

provide a brief review of a recently developed demand-price model used in our design.

Section 2.3 introduces the basic underlying model and discusses the major differences

between this model and classical network design problems. Section 2.4 gives a broad
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overview of the optimization algorithms and the resulting changes in the model.

Section 2.5 analysis the complexity of the problem and the performance of some well

known commercial optimizers. In Section 2.6 we expand one of the key concept of

the problem – the survivability of the network, and give precise formulations of the

four different optimization models resulting from applying different protection and

integration techniques. Section 2.7 outlines the stages of the algorithm and presents

the landmarks of each step. Section 2.8 provides the detailed description of the algo-

rithm and the justification of the upper bound technique. Section 2.9 describes the

heuristic used to obtain the initial solution. Section 2.10 presents the summary and

the analysis of the extensive experiments conducted with real-life networks and also

large generated networks. Section 2.11 concludes with a discussion of the results.

Chapter 3 proceeds with the second part of this work – the maximum concurrent

flow problem. In Section 3.1 we introduce the problem and give an overview of the

previous work. In Section 3.2 we formulate the problem and introduce some basic

notation used in our work. Section 3.3 outlines the algorithm and explains some

essential underlying ideas. Section 3.4 describes the algorithm in detail and then

proceeds with the complexity analysis. In Section 3.5 we describe and analyze a

slightly different version of the algorithm. Finally Section 3.6 presents some ideas for

future research.
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Chapter 2

Business Planning of Optical

Networks

2.1 Introduction

Strategic planning for an optical network involves sophisticated decision making in

many respects. While a major component of this task is to minimize cost by optimiz-

ing routing and protection of network traffic and by determining network capacity, the

business impact of these schemes should also be put into a broad perspective. Specif-

ically, cost reductions resulting from routing and capacity decisions can be translated

into pricing advantages that enable the carrier to generate more demand and revenue.

Therefore, optimizing pricing and demand should be integrated into the optimization
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model. To maximize the total value to the carrier, routing, capacity, and pricing

decisions should not be examined individually, but rather be incorporated into an

integrated business model and optimized systematically.

In this work we develop efficient algorithms for solving capacity planning problems

for long-distance optical transport networks. In our model, a network is formulated

as a set of nodes, representing cities and metropolitan areas, connected by links,

representing physical routes (right-of-way) owned by the network operator. Commu-

nications between a node pair are carried by transmission systems deployed on links

that connect the pair. A transmission system is composed of a collection of optical

wavelengths, where each wavelength is a carrier of information with a fixed amount

of capacity. The capacity of a system can be set at different levels by configuring dif-

ferent numbers of wavelengths, up to the maximum. Therefore, the cost of deploying

new capacity involves a fixed investment of installing the initial system and a variable

cost of adding wavelengths. Each system or wavelength in use is also associated with

a recurring maintenance cost, also defined as the operating expense.

It is natural to plan the capacity expansion over several time periods. During

such a span of time, several generations of transmission technologies will emerge.

A later technology always outperforms previous ones by increasing the maximum

number of wavelengths, capacity per wavelength, or both. Though a newer system

may have a higher fixed cost and/or variable cost per wavelength, the magnitude
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of capacity improvement usually will outpace the corresponding cost increase. As

a result, a fully-loaded new system usually has a lower deployment cost per unit

of capacity than the older ones, which makes it an attractive candidate for new

deployment. Nevertheless, after a new technology becomes available, the deployment

cost of systems and wavelengths decreases over time due to a learning effect.

Implementing the value-based approach in large-scale optical networks poses sig-

nificant challenges to optimization techniques. In comparison with the min-cost ca-

pacity planning model, the new approach introduces a set of pricing variables, whose

number is on the order of n2T , where T is the number of planning periods and n is the

number of nodes in the network (and, consequently, the number of node pairs between

which the price of network service needs to be determined grows proportional to n2).

Furthermore, since revenue equals price times demand and demand is a function of

price, the pricing variables are nonlinear components of the revenue in the objective

function. As a result when planning a national or international optical transport

networks (which usually contain 50− 100 nodes) over a 10-period horizon, applying

the generalized model can easily lead to a nonlinear model with tens of thousands, or

even millions of variables.

The network aspect of the problem brings yet another set of complexities for

optimization. To ensure reliable communications in the presence of possible node and

link failure, optical transport networks are designed to have multiple non-overlapping
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paths between every node pair. The non-uniqueness of routes leads to questions about

which routes should be used to carry demand, and in what quantity. Additional

planning is required to specify the rerouting of traffic when a network failure occurs.

There are several different restoration models that can be employed in this framework.

For example, we can reroute all or some of the commodities to utilize the existing

network capacity. Or, we can only allow to reroute the commodities that used the

disconnected link or node. Or, some resilient capacities are reserved throughout the

network and used only to restore the some or all of the affected traffic. See [7], [31],

[1], [2] for the discussions of different models and solution approaches.

These routing and protection decisions need to be modeled in the overall optimiza-

tion framework. As it will be shown in the following sections, the efficient routing

and protection schemes lead to vastly different formulations of the overall optimiza-

tion model. Formulations of some complicated schemes require the introduction of

O(n2T ) additional flow variables. The resulting increase in the problem size makes it

necessary to develop efficient algorithms.

We formulate the general problem as a large-scale non-linear integer model. The

objective is to maximize the carrier’s net present value over an extended period of

time with constraints on network topology (right-of-way), technology roadmap, and

price-demand relationship. In this model, not only demands and capacities but also

end-to-end demand allocations and prices are determined by period, with price being
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a nonlinear function of the demand following a certain model to be discussed later. In

addition, protection channels are to be allocated according to the specified protection

model. Our task is to determine the amount of traffic for each commodity in the

network at each time period and also the amount of fibers and wavelengths required.

Once the equipment is bought we have an option of maintaining it for any number

of periods at some increasing fraction of its initial cost. Furthermore, it can also be

retired at any time at no additional charge and once retired will no longer be available

at any consecutive period.

The modeling of demand as a nonlinear function of price in the context of telecom-

munication systems was first proposed in [20]. In that work, the solution methodology

could only handle small networks (5− 10 nodes) which in addition had ring topology.

Further, experimentation showed that the methodology in [20] would not scale. In

this thesis we expand that model to general networks and create a more precise model

of the maintenance cost structure and protection capabilities. In [20] the maintenance

cost of any equipment depends only on the current time period. In other words, the

cost of maintaining a mile of fiber during any period will be the same for a year old

fiber and for a ten years old fiber. However, this is not the case in real life. Equipment

tends to wear and hence older fibers will usually require higher maintenance expenses.

In our work we view this expenses not as a function of current period, but rather as

a function of the current service time. In all fairness, [20] deals mainly with build-
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ing a precise economic model and developing accurate parameters. We instead take

these parameters as input constants and concentrate on the optimization techniques,

suitable for large-scale problems.

2.2 Preliminaries

In this section, we discuss several key concepts of the generalized capacity planning

model. The scope of our study is outlined in Figure 2.1 and is explained as follows.

Figure 2.1: Relationship between demands, prices and capacities

Based on the price-demand relationship, a given choice of prices determines cor-

responding amounts of demands and revenues. The routing and protection decisions

then map generated demands to link capacity requirements. These requirements are

satisfied by the deployment of transmission systems, whose availability, cost, and

capacity are specified by the technology roadmap. Pricing decisions and capacity

planning are thus interrelated, as demands generated cannot exceed available capac-
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ity.

These three decisions (pricing, routing/protection, and capacity planning) are

embedded in the overall optimization framework that seeks to maximize the net

present value.

In the following, we discuss each of the three decisions as well as some general

optimization techniques and models used in our work.

2.2.1 Price-demand relationship

A modern telecommunication network is determined by continously changing costs

and a rapid reflection of the changes on the amount of traffic through the network. To

reflect these properties in modeling the demands and prices for the optical networks

we first need to introduce the elasticity notion. Let d be the demand and p be the

price per unit of the demand. The demand elasticity ε for a given time period is

defined as the negative ratio of the relative change in the demand to the relative

change in the price during that period. That is

ε = −∆d/d

∆p/p
(2.2.1)

Here ∆d is the change in demand and ∆p is the relative change in price. Com-

monly, the demand increases as the price decreases and in that case elasticity ε is

positive.
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Writing

∆d/d = −ε∆p
p

(2.2.2)

we can see how different values of ε affect the demand-price relationship. If ε > 1

then any decrease of price gives a larger increase in demand, whereas if ε < 1 the

same reduction in price leads to a smaller increase in demand. For example, if the

price drops by 10% in the first case the demand grows by more than 10% and in the

second case by less than 10%.

Taking the limit of (2.2.2) we get

ε = −d
′/d

p′/p
(2.2.3)

Let revenue be the product of the demand and price, that is Rev = pd, then from

(2.2.3) we get the expression for the change in revenue, that is

Rev′

Rev
= (

ε− 1

ε
)
d′

d
= −(ε− 1)

p′

p
(2.2.4)

This relationship demonstrates the effect of the elasticity value on the price-

demand dependence. In particular, for any value ε > 1 the decrease in price causes

an increase in the revenue, on the other hand for ε < 1 a decrease in price leads to a

reduction of the revenue.
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For this reason in our work we assume that the elasticity is a constant greater

than 1. Then solving (2.2.3) we obtain

d = ap−ε (2.2.5)

where a is a positive constant. Using (2.2.5) the revenue can be written as a function

of demand only, giving

Rev = a1/εd1−1/ε (2.2.6)

Under the assumption that ε > 1, the revenue Rev is a monotonically increasing

and concave function of d. In other words, the network operator derives a higher

revenue by reducing the price and therefore increasing demand, but with diminishing

return to demand size. This price-demand model was originally developed by Lanning,

et. al. for a simplified network model. More details on the demand-price relationship

and the computation of the elasticity can be found in [20].

2.2.2 Routing and Protection

The reliability or survivability of a network has received a considerable amount of at-

tention in the network design research and is a vital feature of virtually any telecom-

munication system.
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Any fiber cut or other hardware failure even at a single point can result in the

malfunction of the whole system, unless a fast and reliable restoration of the traffic is

available. This restoration usually involves rerouting the demands on an alternative

link or node-disjoint path. The routing and protection, which can be implemented in

many different ways, map end-to-end demands to link capacity requirement and can

be implemented in several different ways.

There are two most commonly used restoration strategies – link restoration and

path restoration.

• Path protection/restoration

In path protection each commodity pair has a statically reserved backup path,

that is link- or node-disjoint with all working paths. In path restoration each

commodity dynamically determines a failed end-to-end path and rerouts the

traffic on a backup path.

– Dedicated-path protection

In this approach a set of disjoint paths is specified for each node pair, and

on each of these paths, some amount of bandwidth is allocated exclusively

to the pair. The allocated bandwidth satisfies the requirement that if any

one of these paths is disconnected by a link or node failure, there will still

be enough capacity on remaining paths specified for this pair to carry all

traffic. The scheme provides full protection for every commodity against



CHAPTER 2. BUSINESS PLANNING OF OPTICAL NETWORKS 18

single path failure, is simple for restoring traffic when failure occurs, but

not efficient in bandwidth usage. This model is also referred to as a shared

protection on single demand since the same spare capacity allocated for the

commodity can be used to restore traffic from any of the paths connecting

this pair.

– Shared-path protection

Under this approach, each node pair is assigned a set of working paths

and a set of protection paths. Bandwidth on protection paths can be

shared among different node pairs that do not have common links or nodes

on their working paths. With careful planning, shared protection uses

much less redundant bandwidth, as compared to dedicated protection, to

fully restore traffic in case of single link failure [14]. Nevertheless, rather

than maintaining the same routing during the failure, as is the case with

dedicated protection, shared protection usually requires rerouting of traffic

based on the location of failure. This approach also improves bandwidth

efficiency at the cost of the restoration ability and make the restoration

mechanism more complicated.

– Path restoration:

In this scheme all commodities with traffic on the failed link participate in

a distributed algorithm that dynamically discovers a restoration route for
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each commodity. If for some commodity no feasible route is found, this

connection is blocked.

• Link protection/restoration

Link protection/restoration is the scheme by which traffic is rerouted only

around the failed link, regardless of the particular demand pairs that contribute

to the flow on that link. The corresponding link backup paths are reserved in

advance. The end nodes of the link dynamically determine a failure and reroute

all traffic on the protection path. Similarly, in this approach there are three

protection schemes.

– Dedicated-link protection

Every working link of the network has a predetermined backup path around

this link, on with spare capacity allocated exclusively to the traffic on the

link

– Shared-link protection

The capacity on the restoration path around the link can be used by other

backup path.

– Link restoration

The end nodes of the link discover the restoration path dynamically and

if no feasible path found all connections using the link are blocked.
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Generally, path restoration requires more complicated hardware that maintains

the set of restoration paths for each commodity pair and also the information of the

source and destination of each unit of traffic through every link. On the other hand

it has been empirically shown that path restoration requires less total spare capac-

ity [40]. For this reason in this work we consider only path protection/restoration

technique. In addition, in our design we require a one hundred percent path restora-

tion strategy to provide a high degree of network survivability. Thus in this work

we concentrate on only two approaches, dedicated-path protection and shared-path

protection.

We consider two different ways of incorporating routing and protection into our

model. The status quo approach is to treat the distribution of traffic on different

paths as a lower-level, separate problem from the business optimization carried out

by our model. Using planning tool specialized for routing and protection design [14],

we can obtain the percentages of demand to be carried on each path for every node

pair based on some ”seed demand”. We then apply these fixed percentages to our

model as input parameters. We call this method static traffic distribution. The

second method does not use any pre-processor to specify the demand fractions, and

views traffic distribution as decision variables. Consequently, traffic distribution may

vary with time as different amounts of demands are generated in each period. We

define this method as dynamic traffic distribution.
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In the next section, we first develop a base formulation that assumes dedicated

protection and static traffic distribution. We then present formulations of shared

protection and dynamic traffic distribution as extensions to the base model.

2.2.3 Capacity Planning

Capacity planning involves decisions on installation and retirement of transmission

equipment of different technologies over time. The major decisions to be made in this

setting are the amounts of equipment bought, maintained, and retired at every time

period. In our model we assume that any amount of the existing equipment can be

retired at any time at no additional cost, and once retired it is no longer available at

any consequent time period. The equipment of different technologies is characterized

by different acquisition costs and amount of wavelengths or capacity.

The cost of deploying a technology depends on technology type, and the timing of

installation. Equipment of a later technology type usually has a better capacity/cost

ratio than older equipment. The cost of given technology decreases over time, and for

a given technology, the deployment cost is lower at a later installation date. Further-

more, an optical transmission system includes amplifiers and regenerators that need

to be deployed on the intermediate points on the link between transmission terminals,

and the distance between two adjacent points is approximately the same for all links.

As a result, links of different lengths require different numbers of these components,
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and thus the deployment costs are link-dependent. Likewise, the recurring mainte-

nance costs per period also depends on technology, time, and link. In our models,

we assume that for a given piece of equipment, the deployment cost of a technology

decreases at a fixed rate over time after it becomes available and the maintenance cost

of a system or wavelength is a fraction of its initial installation cost, and increases

over time at a constant rate.

2.2.4 Cutting plane algorithms for constrained nonlinear op-

timization

Let f(x) ∈ C1 be a convex function and consider a problem

min
x∈Q

f(x)

for some convex set Q ∈ Rn. The main idea of the cutting plane method to solve this

problem is to generate a series of hyperplanes which approximate f(x) from below

and provide a piecewise liner approximation to f(x). This approximation is then

optimized over Q, a new approximation point is generated, and the piecewise linear

approximation is updated using a set of rules specific for each particular method.

Let x1, . . . xk ∈ Q be a set of iterates with function values f(xi) and gradient

values ∇f(xi). Then the cutting plane model generates a sequence

fi(x) = max{f(xj) +∇f(xj)
T (x− xj)|j = 1 . . . i}
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Clearly fi(x) ≤ f(x) ∀x ∈ Q. A number of ideas for generating the series of iter-

ates x1, . . . xk ∈ Q have been proposed over the years. Here we review several basic

schemes.

Classical cutting-plane algorithm

This is the simplest algorithm in which the next iterate xi+1 is taken to be argmin{fi(x)|x ∈

Q}. It is known to have a very slow convergence [29].

Line search algorithm

Let x∗i = argmin{fi(x)|x ∈ Q} and set

xi+1 = αixi + (1− αi)x
∗
i

where

αi = argmin{f(λxi + (1− λ)x∗i )|0 ≤ λ < 1}

This method is also rarely used because in a general case the computation of αi

parameter is very computationally costly. However, for a simple f(x) and a small

enough n this method proves to be quite effective.

Bundle algorithm

Different versions of this algorithm are described in [19]. The general idea is to set

xi+1 = argmin{fi(x) + 0.5ui(x− x+
i )2}

where x+
i is chosen among {x1 . . . xi} and ui is the penalty parameter. The idea of

this method is to update x+
i every time there is an adequate decrease in f(xi+1) and
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keep x+
i unchanged otherwise.

Level algorithm

This model was proposed by Lemarechal et al.[21]

At every iteration of the algorithm we define the level parameter li for the current

function value and the next iterate is computed as

xi+1 = argmin{0.5(x− xi)
2|x ∈ Q, fi(x) ≤ li}

Let f∗(i) = minx∈Q fi(x) and f ∗(i) = minj≤ı f(xj). Define the ith gap as ∆(i) =

f ∗(i)− f∗(i), then for some 0 < λ < 1 set

li = λf ∗(i) + (1− λ)f∗(i) = f∗(i) + λ∆(i)

2.2.5 Newton’s method for unconstrained nonlinear optimiza-

tion

In this section we give a brief description of a second-order algorithm for unconstrained

minimization of a general convex function f(x).

This method is based on the Taylor series approximation of f(x). Let f(x) ∈ C2

for some f : Rn → R and x ∈ Rn. Let p ∈ Rn. Then

f(x + p) = f(x) + g(x)Tp+
1

2
pTG(x)p + o(‖p‖2)
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where

g(x) = ∇f(x)

and

G(x) = ∇2f(x)

Denote

Q(p) = g(x)Tp +
1

2
pTG(x)p

Newton’s method proceeds by iteratively optimizing the quadratic approximation

Q(p) to f(x+ p) at f(x). We have

∇Q(p) = g(x) +G(x)Tp

and assuming that f(x) is strictly convex, that is G(x) is nonsingular we get

∇Q(p) = 0 iff p = −G(x)−1g(x) (2.2.7)

Thus the Newton’s method iterates by solving (2.2.7) and updating x← x + p until

‖g(x)‖ ≤ ε for some predefined tolerance ε. Note that in order to solve (2.2.7) we

first need to invert the Hessian matrix G(x). A commonly used method for implicitly

inverting a Hessian is Cholesky factorization. This method is used to represent a

symmetric positive definite matrix A as

A = RTR
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where R is called Cholessky factor and is a nonsingular upper triangular matrix. The

Cholesky factor can for example be computed using elimination. Given the Cholesky

factor R the solution to a system of linear equations Ax = b can be found by solving

two triangular systems

RT y = b and Rx = y

Computation of a Cholesky factor requires approximately half the work needed to

perform Gaussian elimination. Moreover, in practical application there are numerous

methods to further speed up the computations. See [3] and [12] for the discussion of

these methods.

Newton’s method has quadratic convergence when applied to a convex problem.

In fact, it is known that, assuming convexity,

‖xn − x∗‖ ≤ O(‖x0 − x∗‖2n
)

where x∗ is the optimum of f(x), xn is the current iterate and x0 is the starting

point. See [3] for the details of the proof. Thus the actual rate of convergence heavily

depends on the initial error and whence obtaining a good starting point is essential

for this method. The Newton’s Method can also be used for optimizing a linearly

constrained convex function using a set of sequential unconstrained optimizations.

This approach will be described in more details in Sections 2.7 and 2.8.
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2.2.6 Standard network design problem

The network design or minimum-cost capacity installation problem is the problem of

installing an integer amount of capacities on the links of a given graph such that a

given set of demands can be routed simultaneously.

Consider a graph G = (V,A) where V is the set of nodes and A is the set of arcs

and a let d = {dk} be the given set of demands (commodities) between the nodes of

G. Let K be the number of distinct commodities and for every 1 ≤ k ≤ K let ik and

jk be the source and destination of demand dk which in general can be fractional.

The capacity on links can be installed in batches of different size.

Let U be the set of different batch types and M(u) is the size (number of capacity

units) for each type u ∈ U . The cost of installing a batch of capacity of type u on

link l ∈ A is cl(u). The batches are installed in integer amounts and any combination

of batch types is allowed on any link. The goal is to install the batches of capacity

at minimum cost such that all demands are met.

For each commodity k let Pk = {ph
k, 1 ≤ h ≤ |Pk|} be the set of all paths from ik

to jk, f(ph
k) be the amount of flow of commodity dk on path ph

k and let yl(u) be the

number of batches of type u installed on link l. The path formulation of the minimum

cost capacity installation problem is then
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min
∑

l,u

cl(u)yl(u) (2.2.8)

s.t.
∑

h

f(ph
k) = dk ∀1 ≤ h ≤ K

∑

k,: l∈ph
k

f(ph
k) ≤

∑

u

M(u)yl(u) ∀l ∈ A

yl(u) ∈ N
+ ∀l ∈ A ∀u ∈ U

It is known that the network design problem is NP-hard even for the case when

|U | = 1 and the generic problem is strongly NP-hard [11] as it contains the set cover

problem. This problem has been studied extensively over many years. Magnanti

and Mirchandani [25] and Magnanti et al. [26] proposed cut-set inequalities for a

single commodity design with multiple batch types where the batch sizes are integer

multiples of some basic capacity unit. Bienstock and Gunluk [6] generalize these

inequalities to flow-cut-set inequalities for multicommodity design with two batch

types, where the size of one batch is a integer multiple of the size of the other batch.

Gunluk [10] considers multicommodity problem with two batch types and existing

capacity. Chopra et al. [9] proposed inequalities for a single commodity problem

on a directed network with two batch types. Pochet and Wolsey [32] analyzed a

single link network with arbitrary many batch types and Bienstock et al. [5] study a

multicommodity design with a single batch type.
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2.3 The core model

Our basic model differs from the standard network design problem in two fundamental

aspects. The first and foremost difference is the way the demand values are defined.

Unlike the basic problem, in our model the demands are not given in advance. Instead

for every pair of nodes we introduce a variable representing the amount of traffic

between these nodes. Thus we not only minimize the cost of the equipment on the

links, but at the same we also maximize the revenue from the traffic based on the price

model defined in the previous section. The second major difference is that we need to

solve the problem in the span of multiple time periods. For every time period in the

span we again wish to optimize the cost and the revenue of the network. Furthermore

at any time period we are allowed to reuse the equipment bought at earlier periods

provided we pay the price of maintaining it. We can also retire all or any part of the

equipment at any time at no additional cost.

Note that even with these changes the complexity of the problem is at least that

of the original network design problem and generally the number of paths in the

formulation (2.2.8) can be very large. However, a common approach to survivable

network design is to assume a precomputed fixed set of paths for every commodity.

This approach can be justified by several reasons. For instance, a set of paths can

be predefined by a specific protocol or service used to operate the network, or by

an outside provider. For example the OSPF protocol [28] currently employed in
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Internet routing assumes a fixed (shortest for some metric) path for every pair of

nodes. Further, in practice there is an extensive and sometimes idiosyncratic set

of requirements on the paths used to carry traffic. Usually those requirements are

non-quantitative and either can not be expressed explicitly as a set of constraints, or

would require a large number of binary and integer variables that would make the

problem practically intractable.

For example, to satisfy certain requirements of quality of service, the carrier needs

to minimize the processing delay incurred at the intermediate nodes. In this case, the

candidate paths may be restricted to those that have no more than a certain number of

hops between the node pair. The length restriction constraint prevents the demands

from taking unacceptably long path in terms of either the number of hops or the actual

path length, thus decreasing the probability of a failure of a path component. In

addition, to guarantee some degree of network survivability an additional set of path

constraints can be imposed. There are several commonly used restrictions utilized in

network modeling. For example, k−connectivity requires the network to contain at

least k node- or link-disjoint path for every commodity pair. Furthermore, concerns

about security and privacy may also limit the carrier’s choice of candidate paths. See

for example [8].

For these reasons in this work we will only look at a given fixed set of paths for

every commodity. The algorithm in [14] is used to generate the paths with the required
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properties, however any other path generating heuristic can also be employed. For the

protection reasons outlined in Section 2.2.2 and specified below the paths for every

commodity pair are link-disjoint.

We are now in position to formulate our core model.

2.3.1 Model description

Let G = (N,A) be a given network with |N | = n and |A| = m and let T be the

number of discrete time periods.

For any pair of nodes (ik, jk) ∈ N and a time period t let dt
k be the amount of traffic

(demand) between ik and jk at t. We will base our model on the path formulation of

the standard network design problem. Let Pk be the given fixed set of link-disjoint

paths for commodity k, |Pk| = Hk.

Thus we also introduce flow variables f t(ph
k) which are the amount of commodity

dt
k routed on path ph

k ∈ Pk, 1 ≤ h ≤ Hk.

For any link l ∈ A and a time period t, let yt
l (u) ∈ N+ be the number of batches

of type u bought at t on l, and for any time period q > t, let yt,q
l (u) be the amount of

batches of type u that were bought at t and kept until q. For the consistency of the

notation we let ytt
l (u) = yt

l(u)

We are also given the following constant parameters
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• Discount factor ht. The discount factor at t is usually computed as the inverse

of the predicted interest rate at t. The discount factor is used to compute the

present value of future income. For a detailed description see [22]. The discount

factor is precomputed and used as an input parameter in our model.

• Buying cost ctl(u). The cost of buying a batch of type u on link l at time period

t. We assume that the buying cost is nonincreasing, that is ct
l(u) ≥ ct+1

l (u) and

that the cost per unit of capacity is decreasing as the batch size increases.

• Maintenance fraction µ < 1 and maintenance rate α > 1. The cost of maintain-

ing a unit of capacity bought at q until t is defined as cq,t
l

.
= ctl ∗µ∗αt−q−1. Thus

the maintenance cost is smaller than the buying cost at the first time period

and increases as t approaches the time horizon T .

• The batch size M(u) is taken to be the same across the network and the time

horizon for every type u.

• Demand-price elasticity εtk > 1.

• Demand scaling constant Ak. This constant is usually taken to be equal to

the value of the demand when the price p = 1; thus Ak can be viewed as the

demand potential. We define the demand (ik, jk) coefficient at t as ctk
.
= A

1/εt
k

k

Using the above constants and the price-demand relationship described in the
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previous section we define the revenue at t as

Revt =
∑

k

gt
k(d

t
k) (2.3.1)

where

gt
k(d) = ctkd

1− 1

εt
k .

The total equipment cost at t is defined as

Costt =
∑

l

(

ctl(u)y
t
l (u) +

∑

q<t

cq,t
l (u)yq,t

l (u)
)

(2.3.2)

which is the cost of buying capacity at t plus the cost of maintaining capacities from

the previous periods.

Our objective is then to maximize the net present value, defined as

NPV =
∑

t

ht(Revt − Costt) ≡ F (d, y). (2.3.3)

We introduce two types of constraints. The first set is the capacity constraints

that are inherited directly from the standard network design problem. We have

∑

k,h:l∈ph
k

f t(ph
k) ≤

∑

u

M(u)

(

yt
l (u) +

∑

q<t

yq,t
l (u)

)

∀l ∈ A, ∀t

dt
k =

∑

P

f t(ph
k)
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In addition we restrict the carry over capacity at t not to exceed the capacity at t− 1

yq,t
l (u) ≤ yq,t−1

l (u) ∀l, ∀q, ∀t ≥ q + 1

Summarizing all of the above we can now give a complete formulation of the core

model.

max F (d, y) (2.3.4)

s.t.

∑

(k,h:l∈ph
k

f t(ph
k) ≤

∑

u

M(u)(yt
l (u) +

∑

q<t

yq,t
l (u)))∀l ∈ A, ∀t

dt
k =

∑

h

f t(ph
k) ∀k, ∀t

yq,t
l (u) ≤ yq,t−1

l (u) ∀ l, ∀q, ∀t ≥ q + 1

yq,t
l (u) ∈ N

+ ∀l, ∀q, ∀t ≥ q

2.4 Algorithm idea

In this section we will describe the main idea of the algorithm used to solve the above

model. The details of the algorithm will be described in Sections 2.7- 2.9.

The optimization problem described in the previous section is a concave maximiza-

tion problem over the demand variables d and an integer program over the capacity
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variables y.

A useful heuristic to handle this type of problems is to relax the integrality con-

straints first and solve the resulting continuous nonlinear program. After the continu-

ous solution is obtained, the continuous variables are fixed at their current values and

the resulting integer problem is solved to optimality using any appropriate method

available.

Generally this approach proves to be inefficient for the small values of the integer

variables since in that case even a fraction of a unit has a significant contribution to

the objective value.

However, in case of telecommunication system the amount of data transmitted

over a network is typically very large due to the recent and continuing advances of

technology. It is not uncommon to have tens of thousands units of demand between

a single node pair. The results of [20] confirm this assumption for ring networks and

we expect it to be the case for our model as well. As a result, in our case even a

straightforward greedy rounding will produce a solution within a fraction of the lower

bound that was obtained by solving the relaxed problem.

In a view of this we adopt the following approach to solve our model:

1. Relax the integrality constraints on the capacity variables and solve the resulting

continuous nonlinear problem.

2. Fix the values of the demand and flow variables found in Step 1 and find the
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corresponding integer values of the capacity variables.

Note that Step 1 deals with the continuous version of problem (2.3.4). Clearly in

that case the optimum solution will only use the capacity batches with the smallest

per unit cost. Thus we can reduce the core problem to use only the cheapest capacity

on any link at any time period. This is possible since the maintenance fraction and

the maintenance rate are the same across all batch types, links and time periods. We

define the integrated capacity cost as

ctl = min
u

ctl(u)

M(u)
,

and the core problem becomes

max
∑

t

ht

(

∑

k

gt
k(d

t
k)−

∑

l

(ctly
t
l +

∑

q<t

cq,t
l y

q,t
l

)

(2.4.1)

s.t.

∑

k,h : l∈ph
k

f t(ph
k) ≤ yt

l +
∑

q<t

yq,t
l ∀l ∈ A, ∀t

dt
k =

∑

h

f t(ph
k) ∀k, ∀t

yq,t
l ≤ yq,t−1

l ∀ l, ∀q, ∀t ≥ q + 1 (2.4.2)

yq,t
l ≥ 0 ∀l, ∀q, ∀t ≥ q (2.4.3)

In what follows we will be looking only at relaxed core problem (2.4.1) and its
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extentions. In the subsequent section we will describe two models based on this

formulation.

2.5 Difficulty of the core model

Having described a core model in the previous section, we will now pause and consider

how one should tackle problems of this sort – a more specific model will be given in

the following section.

In this work we will develop an algorithm approach for optimization problems

derived from the core model. Our algorithms, as we will show, are fast and experi-

mentally scale well. Our algorithms also take advantage of essentially combinatorial

features of the core model. Thus a natural question would be to ask whether stan-

dard, e.g. commercial solvers cannot already tackle our problems. In this Section we

take up this issue, to explain why the answer to this question is a clear ’no’.

Problem 2.4.1 is a hard nonlinear optimization problem with a steep objective

function and a large number of variables even for a moderate size network. For

example a regular network with 50 nodes and 70 links considered over 14 time periods

can result in a formulation with approximately 60000 variables for the complicated

protection model, and a larger network with 150 nodes and 800 links over the same

time horizon will already have over one million of variables for the same model. The

large number of variables is due to the presence of a decision variable for every path
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Set Nodes Links Vars Const Nonz Paths Paths

(min) (max)

snet1 14 22 3584 2310 17472 2 3

snet2 38 48 12782 2940 96222 2 3

snet3 47 55 20909 5775 196623 2 4

snet4 50 64 23870 6720 223272 2 3

snet5 70 94 43680 9870 431382 2 3

Table 2.1: Statistics on real-life models

of every possible commodity, at every time period.

In order to evaluate the difficulty of the problem we conducted experiments with

several commercially available solvers on networks of different size. Table 2.1 shows

the statistics on the first set of problems arising from real-life data sets. Here the last

two columns show the minimum and maximum number of paths per node pair.

Our testing focused on two well-known nonlinear optimizers: LOQO [39] and

SNOPT [13]. Both are excellent general-purpose systems designed to handle any

nonlinearity in both objective and constraints. Table 2.2 shows the performance

comparison of the solvers on the test networks.

The empty cells indicate that the solver was unable to handle the corresponding

instance, which in most cases means no convergence in a reasonable time frame and
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Solver snet1 snet2 snet3 snet4 snet5

LOQO 30 600 720 1000 –

SNOPT 90 – – – –

Table 2.2: Performance comparison (LOQO and SNOPT)- running time (sec)

in some cases insufficient memory for the solver to run, even on a machine with ample

resources. These tests were conducted on 336 Mhz UltraSPARC machine with 1.7Gb

of RAM. What is more, in all of the cases where the solvers were not able to converge

either no feasible solution was found, or the optimality gap was unacceptably large.

This test also indicates that although one of the solvers was able to solve the

problem on the moderate size networks, it still shows a poor performance in terms of

the running time.

Altogether it is evident that the problem cannot be handled by these two com-

mercial optimizers and there is an apparent need for an algorithm that is effective on

our models.

Of course, it is impossible to test every available solver, but the above experiments

lead us to expect that general-purpose solvers will all be ineffective, in particular when

run on much larger problem instances than those in Table 2.1. One of the reasons

underlying our belief concerns the use of Newton’s method (or a similar second-order

method) to handle the highly nonlinear objective. This, in turn, requires a good
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Set Nodes Links Vars Const Nonz Paths Paths

(min) (max)

bnet1 100 500 745500 406000 5299700 3 6

bnet2 150 900 1659000 889350 15340500 3 7

bnet3 200 1500 4336500 1850100 40267500 3 9

bnet4 250 2000 6746250 2852500 69618500 3 10

bnet5 300 4500 18053700 5558700 311100300 4 12

Table 2.3: Larger networks

Cholesky factorization algorithm for large sparse matrices, but may nevertheless ex-

act too high a computational price. To explore this difficulty, we also tested CPLEX

[16] which is one of the most efficient linear, integer and quadratic solver available on

the market. In terms of nonlinear programming, CPLEX can only handle (convex)

quadratic programs – but CPLEX also has one of the fastest Cholesky implemen-

tations. In order to test CPLEX we replaced the original objective with its second

order Taylor series approximation and generated a large set of data described below.

Table 2.3 shows the statistics on the five large networks generated for this test.

In order to build the second order approximation for these tests we replaced the

original objective function 2.4.1 with its piece-wise linear approximation built at t
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Solver bnet1 bnet2 bnet3 bnet4 bnet5

CPLEX 2341 7982 14324 18943 –

Table 2.4: CPLEX performance - running time (sec)

uniformly distributed points. The resulting objective function was then used to solve

the optimization problem over all time periods for each commodity separately using

CPLEX linear solver. We used the solution obtained by this method to evaluate the

Hessian for the second order Taylor series approximation of the objective function.

Note that the purpose of these tests was not to attempt to find a good solution by

optimizing a series of second order approximations, but rather to get an understand-

ing of the nature of problem difficulty and thus we optimized only one quadratic

approximation for each test case.

Table 2.4 shows the performance of CPLEX on the quadratic relaxation of the

problem, when run on the problems in Table 2.3. It is evident that the CPLEX

efficiency deteriorates rapidly as the network size and density increase. Thus clearly

a state-of-the-art implementation of Newton’s method, by itself, is unlikely to improve

the performance of a standard nonlinear optimization procedure.

Consequently, our work focuses on an algorithm that exploits the specific structure

of the problem constraints and the objective function. Our algorithm will essentially

decompose the problem into a set of smaller problems and will project out a subset
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of variables; thus drastically decreasing the size of the matrices tackled in Newton’s

method.

2.6 Protection models

The core model described in the previous section allows us to design a network that

has enough capacity to accommodate the required amount of traffic between different

node pairs. However this design does not take into account the reliability of the

resulting network. Therefore we need to expand this model to accommodate the

protection/restoration techniques outline in Section 2.2.2.

In other words, we need to allocate additional amount of capacity on some alterna-

tive paths for every demand, such that in case of a single or multiple link failure there

is enough slack capacity to restore hundred percent of the affected traffic. In what

follows we provide the detailed description of the two previously described approaches

to reliability requirements.

2.6.1 Shared protection on single demand (SD)

In this model we assume that for any commodity not more than one of the commodity

paths can fail at a time. In case of a failure the affected portion of the demand has to

be rerouted through one or more new paths that are link-disjoint with all other paths.
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In this case the additional capacity allocated on the new paths can be used to restore

flows from any path of the working set. In principle, this condition can be relaxed

to allow the restoration capacity to be also allocated on the remaining (functioning)

paths of the working set. However, in this case this capacity can not be shared across

all the paths of the set and we do not consider this option in our work.

Let Pk be the given fixed set of link-disjoint paths for demand dk andQ ⊂ Pk be the

working subset used to carry the primary flows of dk. Let f(p) be the flow carried on

some path p ∈ Q and let f be the maximum of these flows, that is f = maxp∈Q f(p).

Then the amount of the protection capacity required to restore any primary flow

equals f . This condition can also be viewed as sending an additional f units of

flow on some paths of Pk \ Q. In order to formulate this model exactly, one would

need to consider all possible subsets of P which can result in a very large amount of

variables and constraints even for a moderate size network. Instead, we restrict the

set of restoration paths to be just a singleton. With this additional constraint the

model formulation becomes more compact and much less complicated. We replace

the demand constraint dt
k =

∑

h f
t(ph

k) with a set of constraints

f t
k ≥ f t(ph

k) ∀ph
k ∈ Pk (2.6.1)
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dt
k =

∑

h

f t(ph
k)− f t

k (2.6.2)

2.6.2 Shared protection across demands (MD)

This model is a generalization of the previous formulation to allow sharing of pro-

tection capacities across the multiple demands. Consider a network in Figure 2.2

illustrating shared protection on single demand between nodes i and j. Denote the

set of paths Pij for this demand as P .

Figure 2.2: Protection example

Let f(1) = 2, f(2) = 4, f(3) = 4, and d = dij = 6. Therefore 2 units of

capacity are installed on p1 and 4 units on each p2 and p3. Either p2 or p3 can be

used for restoration, however if either of them is used to restore f(p1) the protection

capacity will not be used completely. Therefore even if this path fails we can use the

existing protection capacity to restore the flow from some other failure. Moreover,
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assuming that only one link can fail at a time the entire set of restoration capacities

can be utilized by another demand. Consider again the example in Figure 2.2. Let

p5 = v − i− p3 − j − w and suppose dvw = f(p4) = 4 with p4 being a primary path.

Then if p3 is the restoration path for dij the existing protection capacity on p3 can

also be used to restore f(p4) in case p4 fails.

The only obstacle here is that it is not known in advance which of the paths will

be used for protection. Consequently, in order to be able to share protection across

the demands we need to specify the restoration capacity explicitly.

In order to do that we again consider the given link-disjoint set path P and for

every pair paths p, s ∈ P introduce a variable f(p, s) representing the part of f(p)

that will be routed on path s in case p fails. In other words, f(p, s) corresponds to

the protection capacity required on s to restore the traffic from p. Note that unlike

the previous model, here we allow the primary flow to be rerouted through more than

one additional path as well as some of the working paths. Thus the assumption that

only one link can fail at a time is crucial for our formulation. With this information

in hand we can now introduce the set of constraints to formulate the model

1. As in the core model again the demand is equal to the sum of the primary flows

dt
k =

∑

h

f t(ph
k) (2.6.3)
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2. Every primary flow has to be restored completely

f t(ph
k) =

∑

h6=h′

f t(ph
k, p

h′

k ) (2.6.4)

3. The capacity on any link l has to be sufficient to meet all primary flows plus

the protection flows, taking into account capacity sharing across the demands.

Let zt
l be the total protection flow on link l at t.

Then the capacity constraint becomes

∑

k,h:l∈ph
k

f t(ph
k) + zt

l ≤ yt
l +

∑

q<t

yq,t
l ∀l ∈ A, ∀t (2.6.5)

Consider a failure of some link e. For any demand that has e in one of its

working paths the flow routed on that path has to be restored. Consequently,

the protection capacity on l has to be at least the sum of all restoration flows

from e on l. Let zt
el represent the protection capacity required on l in case e

fails. Then

zt
el =

∑

k, h:e∈ph
k
, h′: l∈ph′

k

f t(ph
k, p

h′

k ) (2.6.6)

where the summation is taken over all demands which can be affected by the

failure of e and that can use l in one of the restoration paths. In other words,

the summation is taken over all the demands that have disjoint paths using l

and e.
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Therefore, since we assume that only one link can fail at a time and all the

protection capacity can be shared, the total protection capacity required on l is

then the maximum over all possible failures

zt
l = max

e
zt

el (2.6.7)

Our goal is then to maximize the net present value over (2.6.3)-(2.6.7) and (2.4.2).

2.6.3 Flows on the paths

Generally, telecommunication system design has three major components that con-

tribute to maximization of revenue under given capacity and routing constraints.

1. Strategic planning: decide long-term investment in network systems, manage

capital expenditure on strategical deployment of network capacity.

2. Marketing and sales: set price, acquire customers.

3. Network operation: allocation of existing capacity to customers, traffic engineer-

ing and routing. This stage is targeting to make the maximum use of existing

capacity. In other words, at this stage the decisions about network usage are

made. In particular one determines the routing of all the demands, that is the

fraction of each demand routed on each of its paths.
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The design optimization can be made sequentially over each of the stages. In that

case each part is optimized separately based on the solution of the previous stages.

This approach allows a relatively easy solution at the expense of the quality of the

result. On the other hand, integrating all three parts together creates a much harder

optimization problem, but can provide a better overall solution. However, the design

stages are usually performed by different teams and the integration is not always easy,

if possible at all.

Therefore we would like to compare different approaches to determine whether it

is worthwhile to go through the costly integration.

In this work we consider two options. The first option is to optimize the low-level

traffic distribution of stage 3 first and use the solution to solve 1 and 2 together. The

second option is to integrate all three parts of the process.

Note that the models defined in the previous section reflect the second approach.

We now describe the changes to that model that take into account the solution of

stage 2. Recall that stage 3 determines how the demands are routed over the network.

That is, for every demand dk in addition to a fixed set of paths Pk we are given a

fixed fraction or percentage of the demand that has to be routed on this path.

For every ph
k ∈ Pk we are given a percentage constant rh

k representing the fraction

of dk that has to be routed on ph
k. For the SD protection model
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∑

h

rh
k = 1 + max

h
{rh

k}, ∀k

as defined in section (2.6.1). Using the percentage constants we then can represent

the flow variables via the demand variables as

f t(ph
k) = rh

kd
t
k

and the optimization problem in this case becomes

maxF (d, y) (2.6.8)

s.t.

∑

k,h:l∈ph
k

rh
kd

t
k ≤ yt

l +
∑

q<t

yq,t
l ∀l ∈ A, ∀t (2.6.9)

yq,t
l ≤ yq,t−1

l ∀l, ∀q, ∀t ≥ q + 1 (2.6.10)

yq,t
l ≥ 0 ∀l, ∀q, ∀t ≥ q (2.6.11)

For the MD model, in addition to the percentage constant rh
k for each path ph

k ∈ Pk

we are also given a set of constants rh,h′

k for each pair of paths ph
k, p

h′

k ∈ Pk, such that

∑

h

rh
k = 1 ∀k

∑

h6=h′

rhh′

k = rh
k ∀q ∀k
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as defined in Section 2.6.2. Using this constants we rewrite problem 2.4.1 as

max F (d, y)

s.t.

∑

k,h:l∈ph
k

rh
kd

t
k + zt

l ≤ yt
l +

∑

q<t

yq,t
l∀l ∈ A, ∀t (2.6.12)

yq,t
l ≤ yq,t−1

l ∀l, ∀q, ∀t ≥ q + 1 (2.6.13)

zt
el =

∑

k, h:e∈ph
k
, h′:l∈ph′

k

rhh′

k dt
k (2.6.14)

zt
l = max

e
zt

el (2.6.15)

yq,t
l ≥ 0 (2.6.16)

Fixing the percentages of the demands over the paths reduces the size of the

problem and makes the optimization process faster and easier. In addition, this

model allows the network operator to specify his own requirements and constraints

on the distribution of the demands as opposed to choosing the best allocation from

the profit point of view.

In what follows we propose the algorithms and bounds for each of the four resulting

models and evaluate the implications of the integration.



CHAPTER 2. BUSINESS PLANNING OF OPTICAL NETWORKS 51

2.7 Algorithm outline

Recall from the Section (2.4) the two major solution stages:

1. Relax the integrality constraints on the capacity variables and solve the resulting

continuous nonlinear problem

2. Fix the values of the demand and flow variables found in step 1 and find the

appropriate values of the capacity variables.

Before we move to the main algorithm in Step 1 let us first describe the idea

behind step 2. Recall from (2.3.3) that the objective is a concave function of the

demand variables and a linear function of the capacity variables. Therefore after the

demand values are fixed the objective becomes linear. Moreover, since the set of paths

is given and fixed for every demand pair, the values of the flow variables provide the

total load on every link. The problem in step 2 becomes
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max
∑

t

ht(−Costt) ≡ min
∑

t

∑

l

∑

u

ht(c
t
l(u)y

t
l(u) +

∑

q<t

cq,t
l (u)yq,t

l (u))

(2.7.1)

s.t.

∑

u

M(u)(yt
l (u) +

∑

q<t

yq,t
l (u))) ≥ Lt

l ∀l ∈ A, ∀t (2.7.2)

yq,t
l (u) ≤ yq,t−1

l (u) ∀l, ∀q, ∀t ≥ q + 1 (2.7.3)

yq,t
l (u) ∈ N

+ ∀l, ∀q, ∀t ≥ q (2.7.4)

Where Lt
l is the load on link l at t computed as

Lt
l =

∑

k,h:l∈ph
k

f t(ph
k)

for the SD protection model and as

Lt
l =

∑

k,h:l∈ph
k

f t(ph
k) + zt

l

for the MD model.



CHAPTER 2. BUSINESS PLANNING OF OPTICAL NETWORKS 53

It is easy to see that problem (2.7.1) is a combination of separate optimization

problems for every link, of a form

min
∑

u

∑

t

ht(c
t(u)yt(u) +

∑

<t

cqt(u)yqt(u)) (2.7.5)

s.t.

∑

u

M(u)(yt(u) +
∑

q<t

yqt(u)) ≥ Lt ∀t (2.7.6)

yqt(u) ≤ yq,t−1(u) ∀q, ∀t ≥ q + 1 (2.7.7)

yqt(u) ∈ N
+ ∀q, ∀t ≥ q (2.7.8)

Note that for t = 1 the problem 2.7.5 is a regular knapsack problem. For t > 1

it becomes a multiperiod knapsack problem and can be readily solved by a standard

integer programming solver. The size of each problem depends on the number of

time periods different batch types and usually does not exceed 300 − 400 variables

and constraints. Note that in addition the constraint matrix is sparse, thus allowing

to obtain an optimal solution in a matter of seconds.
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2.7.1 The nonlinear optimization algorithm

The algorithm in Step 1 is primarily based on the well-known active set method [3].

Consider a general nonlinear problem

min f(x)

s.t. Ax ≤ b

1. The active set algorithm starts with a feasible solution which provides a set A

of tight or active constraints.

2. Ignore the rest of the constraints and optimize the problem only over the current

set of active constraints.

3. If the new solution violates any of the remaining constraints, compute the step

length to the constraint boundary and update the set of active constraints. Oth-

erwise, check the Lagrange multipliers and drop the corresponding constraint

from the set.

4. If no constraints can be dropped, stop. Otherwise, goto Step 2.

Under an appropriate nondegeneracy assumption, this algorithm terminates in a

final number of steps ([3], [23]). In order to carry out Step 2 we usually have to invert

the submatrix corresponding to the active constraints. Let BA be a basis of A and

NA be the remaining columns.
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Set

xB = (BA)−1(b−NAxN ) ≡ BxN + d

and optimize

f̄ ≡ f(x̄)

where x̄ ≡ BxN + d, xN .

In general, it is not known in advance which variables will be projected out;

each time Steps 2 and 3 are performed the subset of the projected variables and

therefore f̄ may change significantly. This property requires a general optimization

algorithm in Step 2 that can turn out to be both inefficient and hard to implement.

In our algorithm we explore the specific structure of the constraints and the objective

function with the result that the same set of variables is projected at each step. Thus,

only minor changes to the structure of f̄ occur at any step of the algorithm. More

specifically, the values of the demand and flow variables are chosen such that the entire

set of capacity variables can be projected out every time Step 2 of the algorithm is

carried out. Further, since the objective function (2.3.3) is a linear function of the

capacity variables, the nonlinear structure of f̄ remains unaffected throughout the

algorithm. In addition we utilize the properties of f̄ to obtain a tight upper bound

at no additional computational expense.
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2.8 The algorithm

In this section we will describe the optimization algorithm in detail for the SD model

with fixed percentages and then discuss the adjustments and extensions of the algo-

rithm necessary to apply it to the other three models.

2.8.1 Shared protection on single demand with fixed percent-

ages (SDP)

Let d = {dt
k} ∈ Rnd and y = {yq,t

l } ∈ Rny , where nd = Tn(n−1)
2

and ny = mT (T+1)
2

Then the constraints can be rewritten as

Ad+By ≤ 0 (2.8.1)

where the entries of A are the corresponding values of the percentages for the link

capacity constraints (2.6.9) and 0 for the maintenance (2.6.10) and nonnegativity

(2.6.11) constraints and the entries of B are accordingly 1 in (2.6.9) and 0 − 1 in

(2.6.10) and (2.6.11).

Let d0 be some given values of the demand variables. Then the corresponding

optimal values of the capacity variables y0 can be easily determined by solving a set

of linear programs. Let E0 be the resulting subset of constraints (2.8.1) that are

satisfied as equalities at (d0, y0) and I0 be the remaining constraints. Thus E0 is the

set of all tight or active constraints.
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Definition 1 A region is the set of all values of d that induce the same subset of

active constraints.

Let BE0 be the submatrix of B consisting of the tight constraints. Assume that d0 is

such that it produces a unique optimum set of y0 , that is BE0 is a square nonsingular

matrix. This can always be achieved by a small perturbation of d0.

Any such d0 then belongs to the interior of the unique corresponding region. Let

d̄0 be some other set of demand values such that there are exactly two constraints

i and j such that i ∈ E0, i 6∈ Ē0 and j ∈ Ē0, j 6∈ E0. Then d0 and d̄0 induce

two neighboring regions and their common boundary is defined as E0 ∪ {j}. The

dimension of this boundary is then nd − 1.

More generally

Definition 2 For any region R defined by a set E of tight constraints, and for any

S ⊆ I, E ∪ S is a boundary of R of dimension nd − |S|

Consider the following example. Let G be a single link network, i.e. n = 2, m = 1,

with t = 2. Let ε1 = ε2 = 1.5, a = 1, c1 = 10, c2 = 9, µ = 0.3

Then the problem formulation is
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max(d1)
1/3

+ (d2)
1/3 − 10y1 − 9y2 − 3y1,2

s.t.

d1 ≤ y1

d2 ≤ y1,2 + y2

y1,2 ≤ y1

y1, y2, y1,2 ≥ 0

and nd = 2, ny = 3.

Clearly for any values of d1, d2 such that d1 < d2 the active constraints are

d1 = y1

d2 = y1,2 + y2 (E1)

y1,2 = y1

(2.8.2)

and for any values of d1, d2 such that d1 > d2 the active constraints are

d1 = y1

d2 = y1,2 + y2 (E2)

y2 = 0
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These two sets of demand values define two regions E1 and E2. Let S = {y2 = 0}.

Then E1 ∪ S is the boundary of E1 and E2. Thus, the set of demands is split into

two regions by the line d1 = d2. Note that adding a different constraint to E1 or E2

will define the d1 = 0 or d2 = 0 boundaries. See Figure 2.3

Figure 2.3: An example of the region set

In the interior of the region the values of y can be represented as

y = −B−1
E0Ad (2.8.3)

Thus in the interior of a region the values of the capacity variables are uniquely

defined by the values of the demand variables, therefore in every region we can project

the space of all variables onto the space of the demand variables. The projected
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objective function then becomes

f 0(d) ≡
∑

k

ht

(

gt
k(d

t
k)

)

− CTB−1
E0Ad (2.8.4)

where C = {cq,t
l }

Region Projection (RP) Algorithm Outline

1. Let d0 be a starting point in the interior of some region R0 and f 0(d) be the

projected objective function. Let i = 0.

2. Region Optimization. Find maxd∈Ri f i(d)

(a) Let A = ∅

(b) Find d∗ - the maximum of f i(d) subject to the constraints in A

(c) If d∗ ∈ Ri stop, maxd∈Ri f i(d) is obtained. Otherwise determine the

steplength α to the region boundary. Let C be the constraints defining

the boundary. Reset A ← A∪ C and goto step (b).

3. Using (2.8.3) find the values of the capacity variables y∗ corresponding to d∗.

4. Let g = ∇F (d∗, y∗) and let (d̄, ȳ) be the optimum of g subject to the original

constraints (2.6.9)-(2.6.11)
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5. Obtain the optimum steplength β and set (di+1, yi+1) = β(d∗, y∗)+(1−β)(d̄, ȳ)

6. If the improvement F (d∗, y∗) − F (di+1, yi+1) is less than εF (d∗, y∗) for some

tolerance ε stop. Otherwise, goto step 2.

It is easy to draw a parallel between the above algorithm and the general active set

method described in the previous section. In particular, step 2 of the RP algorithm

corresponds to the optimization of f̄ in the general active set method in case the

current solution violates the constraint boundary, whereas step 5 of the RP algorithm

is associated with dropping a constraint from the active set. Note however that in our

algorithm we allow to remove more than one constraint from A, in fact the entire set

of active constraints may change after step 5 of the RP algorithm is performed. This

in turn may affect the convergence rate of the algorithm if an exact solution is desired.

Nevertheless this algorithm proves to be effective when a reasonable optimality gap

is acceptable.

The constant ε in the stopping criterion in step 6 is usually taken to be a fraction

of percent. We introduce this criterion in order to prevent tailing off when the solution

is close to the optimum.
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Region Optimization

We will now describe our implementation of step 2 of the RP algorithm.

1. Using (2.8.3) we project the original set of constraints (2.8.1) onto the space of

the demand variables. Thus the constraints become

Apd ≤ 0

where Ap = A− BB−1
E0Ad

0

2. Note that when A = ∅, f i(d) is a separable function and hence can be easily

optimized. Let d∗ be the optimum solution. Set d̂← d0.

3. Find the steplength α to the region boundary as

α = min
i
{1, −a

p
i
T
d∗

ap
i
T
(d∗ − d̂)

|ap
i
T (d∗ − d̂) < 0}

4. If α = 1 exit. The optimum value d∗ does not violate the region boundary and

the region maximum is found.

5. Set d̂← d̂+ α(d∗ − d̂)

6. Let C be the set of new tight constraints. Set A ← A∪ C. Note that C might

contain more than one constraint in case of a tie in step 3.
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7. Optimize f i(d) subject to the constraints in A. For this step we use an opti-

mization method based on the null space representation of A. Recall that the

our constraint set is

Ad = 0

Let Z be a basis of the nullspace of A. Recall that A ∈ R
ndx k where k is the

number of the active constraints. Hence Z ∈ Rndx(nd−k). Then any vector d

in the nullspace of A can be represented as a linear combination of the basis

vectors as d = Zv where v ∈ Rnd−k.

We then proceed by optimizing f i(Zv) using standard Newton’s method.

8. Let v∗ be the optimum solution. Set d∗ ← Zv∗ and goto 3.

Bounds

We can now describe the process of obtaining a tight upper bound for the problem

(2.6.8)

Recall from the description of the RP that every time step 2 with A = ∅ is carried

out, the global optimum of a region function is found. We show that this optimum,

which may actually be located outside the given region, can be used as an upper

bound on F (d, y), using the fact that F (d, y) is a continuous concave function and so
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are all f i(d).

Let F (d) be the projection of F (d, y) onto the space of the demand variables.

Then

F (d) = {f i(d)|d ∈ Ri}

is a continuous and concave function of d. Recall from (2.8.4) that all region functions

f i(d) have the same nonlinear part. Thus, F (d) can be defined as the sum of a smooth

concave nonlinear function and a piece-wise linear function. Since F (d) is also smooth

and concave, the piece-wise linear function is concave as well. This also follows from

the fact that the values of the capacity variables in every region are determined as

an optimal solution to a minimum cost LP, which takes the demand values as input

right-hand-side parameters. It is well known that in this case the objective function

of the LP is a convex function of these parameters. Recall that in the original profit

function and therefore in all the projected functions the cost of the capacities is

subtracted from the revenue. Thus, the piece-wise linear function resulting from the

capacity cost is concave.

Therefore, for any region its region function is dominated by the function of any

neighboring region, and since the functions of any two regions intersect only along

the regions’ common boundary we have proved
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Theorem 1 For any two regions Ri and Rj

f j(d) ≤ f i(d) ∀d ∈ Rj

Therefore the global optimum of any region function obtained at step 2 of the RP

algorithm provides a valid upper bound on the optimum value of F (d, y). Note that

this bound is obtained at no additional computational expense and we will show in

Section 2.10 that this is in fact a tight bound.

2.8.2 Shared protection across demands with fixed percent-

ages (MDP)

In this model we have a set of supplementary variables {zl
t} representing the maximum

protection load on link l and a set of constraints linking these variables with the

demands. Clearly the values of {zl
t} are uniquely defined by the values of {dt

k},

moreover these auxiliary variables do not affect the objective value and used only to

determine the set of demands that defines the protection capacity on the given link.

Thus we can again project the space of all variables onto the space of the demand

variables and use the algorithm described in the previous section.
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2.8.3 Shared protection on single demand without percent-

ages (SDN)

In this model in addition to the demand and capacity variables we also have flow vari-

ables and the constraints reflecting the flow-demand dependence. As in the previous

model the values of the capacity variables are uniquely defined by the flow on the

link. Furthermore, we have an additional set of constraints linking demand and flow

variables. Note that the values of the flow variables uniquely define the values of the

demand variables. Thus we redefine the region concept to capture the flow-demand

relationship. Let f = {f t(ph
k)} ∈ Rnf where nf = nd

∑

k |Pk|

Definition 3 A region is the set of all values of f that induce the same subset of

active constraints.

The nonlinear optimization algorithm then proceed in the same manner by pro-

jecting out the capacity and demand variables and sequentially optimizing the regions

defined by the flow variables.

2.8.4 Shared protection across demands without percentages

(MDN)

For this model we utilize the ideas described in the previous subsection. Using

(2.6.3)-(2.6.4) we can immediately project out {dt
k} and {f t(ph

k)} variables. Let
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f = {f t(ph
k, p

h′

k )} ∈ R
nfp where nfp

= nd

∑

k
|Pk|(|Pk|−1)

2
and redefine regions using

Definition 3 The optimization algorithm then proceeds in the same manner as for the

previous model.

2.8.5 Bounds

Recall that the bound for the SDP model is based on the properties of the original

and projected objective functions, specifically the fact that all these functions are

concave and any two projected functions intersect along a single hyperplane. It is

easy to see that these properties are maintained in the other three models as well and

hence the same approach to obtaining a valid bound can be utilized. fi

2.9 Starting point

Recall from section (2.2.5) that the actual convergence rate of the Newton method

and therefore that of the RP algorithm relies on the quality of the starting point.

On order to obtain a good initial point we start with a first order heuristic. The

central idea of the heuristic is optimize each commodity separately, thus replacing

the large problem with O(n2) smaller problems. Clearly, for T = 1, that is for

a single time period, optimizing one commodity at a time will provide an overall

optimal solution. On the other hand, in the multi-period problem we have a certain
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amount of capacity maintained from the previous period, that has to be shared by

different commodities. One way to resolve the sharing problem would be to split the

existing capacity in the same proportion it was originally used. However, recall that

the parameters of nonlinear terms of the objective function differ not only between

different commodities, but also between different periods of the same commodity.

Thus in general, this approach will not provide an optimal solution, nevertheless it

turns out to be a reasonable starting point in our experiments.

2.9.1 Fixed percentages

We again start with the description of the algorithm for the simplest model, namely

the SD model with fixed percentages. The single commodity problem for this instance

is

max
∑

t

ht

(

gt
k(d

t
k)−

∑

l

(

ctly
t
l +

∑

q<t

cq,t
l y

q,t
l

)

)

s.t.

∑

q:l∈pq

rqdt
k ≤ yt

l +
∑

q<t

yq,t
l ∀l ∈ A, ∀t

yq,t
l ≤ yq,t−1

l ∀l, ∀q, ∀t ≥ q + 1

yq,t
l ≥ 0 ∀l, ∀q, ∀t ≥ q

Consider the example in Figure 2.4. Let d be the commodity i, j with three given
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Figure 2.4: Original network for SDP model

paths and the requirement of 50% of d over each path. Again denote the set of paths

Pij as P . Note that the capacity on every path at every time period is uniquely

defined by the value of d at that period. Moreover, the capacity is the same on every

link of a path. Then our problem is equivalent to solving the same problem over the

compressed network Ḡ in Figure 2.5 with the cost of the accumulated link

c̄ t =
∑

h

rh
(

∑

l : l∈ph

ctl
)

(2.9.1)

and the percentage requirement

r̄ =
∑

h

rh (2.9.2)

Figure 2.5: Compressed network Ḡ for SDP model
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We can now simplify the single commodity instance as

max
∑

t

ht

(

gt
k(d

t
k)− c̄ tyt +

∑

q<t

c̄ q ty q t

)

s.t.

r̄dt
k ≤ M(yt +

∑

q<t

y q t) ∀t (2.9.3)

y q t ≤ y q,t−1 ∀q, ∀t ≥ q + 1 (2.9.4)

y q t ≥ 0 ∀q, ∀t ≥ q (2.9.5)

This is a much smaller problem with only O(T 2) variables and can be easily solved

by any of the cutting plane methods described in section (2.2.4).

For the MD model we utilize the same approach of reducing the set of paths to a

single link. However the cost model in this instance is more complicated due to the

structure of the capacity usage.

In order to formulate this model we introduce an additional constant.

Consider the example in Figure 2.6

We are given three commodities

1. d34 with 100% on primary path c and 100% on protection path d− e

2. d12 with 100% on primary path a and 100% on protection path b− e

3. d13 with 100% on primary path a− b and 100% on protection path e
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Figure 2.6: Original graph for the MD model

The protection capacity on link e can be shared by demands d34 and d12 or d34

and d13, but not d13 and d12 since they share link a on their primary paths. Thus

the protection capacity on link e will be defined by the maximum of d34 and d12 +d13

since in case link a fails both d12 and d13 will be rerouted through link e. In other

words we can divide the set of the commodities into two groups {d12, d13} and {d34}

that share the capacity on link e.

Denote gl the number of groups on link l. In our example gl = 2, gb = gd = 1.

The number of groups can be easily precomputed. Using this constant we then define

the cost c̄t as

c̄ t =
∑

l

∑

h : l∈ph

(

rhctl +

∑

h′ : l∈ph′ rhh′ctl
gl

)

(2.9.6)

Thus the cost of the protection capacity is equally split between the groups that
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share the protection capacity on this link.

2.9.2 No percentages

If the percentages are not given, then the proportion of the demand on each path is

not known, however the load on each link of any path is still the same and the network

in Figure 2.6 becomes a compressed network with 2 nodes (the demand nodes) and

Hk links.

Figure 2.7: Compressed network Ḡ for SDN model

Then the SD model can be formulated as
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max
∑

t

ht

(

gt
k(d

t
k)−

Hk
∑

h=1

(

c̄ t
hy

t
h +

∑

q<t

c̄ q t
h y q t

h

)

)

(2.9.7)

s.t.

f t(ph) ≤ M(yt
h +

∑

q<t

yqt
h )) 1 ≤ h ≤ Hk, ∀t

yqt
h ≤ yq,t−1

h 1 ≤ h ≤ Hk, ∀q, ∀t ≥ q + 1

f t(ph) ≤ f t 1 ≤ h ≤ Hk

dt
k =

∑

ph∈P (d)

f t(ph)− f t ∀t

yqt
h ≥ 0 ∀1 ≤ h ≤ Hk, ∀q, ∀t ≥ q

where

c̄ t
h =

∑

l : l∈ph

ctl

This problem is slightly larger than the instance with percentages, nevertheless

since the number of paths is usually small (< 10) it remains an easy problem for the

first-order method.

Note that for the single commodity case there is no essential difference between

the SD and MD models. Thus we can use model (2.9.7) with costs

c̄ t
h =

∑

l : l∈ph

(

rhctl +

∑

h′ : l∈ph′ rhh′
ctl

gl

)
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The solution to model (2.9.7) provides the values of the demand and flows on each

path for the given commodity. Recall that for the MD model we in addition require

to specify the values of the protection flows explicitly, that is for each path pk we

need the values of the protection flows f t(ph, ph′
) for every path ph′

, h 6= h′ and the

values of the primary flows f t(ph) for every path ph such that

f t(ph) + max
h′ 6=h

f t(ph, ph′

) = f t∗(ph) ∀t, 1 ≤ h ≤ Hk (2.9.8)

where f t∗(ph) is the optimal solution to (2.9.7)

Note, however, that any values of f t(ph, ph′
) and f t(ph) that satisfy (2.9.8) will

provide a solution of the same cost. More precisely, let f t∗ = maxh f
t∗(ph). Clearly

there are always at least two paths that carry the flow of value f t∗. Let ph(t) be one

of these paths and let

f t(ph) = f t∗(ph)∀h 6= h(t) (2.9.9)

f t(ph(t)) = 0 (2.9.10)

f t(ph, ph′

) = 0 ∀h′ 6= h, h(t) (2.9.11)

f t(ph, ph(t)) = f t(ph) (2.9.12)

Obviously these values of f t(ph, ph′
) and f t(ph) satisfy (2.9.8).
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2.10 Implementation and numerical results

In order to evaluate our algorithm and the bound we generated 5 data sets based on

different real-life networks. In addition a set of larger networks was created to test the

boundaries of our method. Before we proceed with the descriptions of the data sets

and the computational results let us first give some details on the implementation of

some parts of the algorithm. The Newton method in step 7 of the RP algorithm was

implemented using the CLAPACK [15] library for sparce matrix operations including

Cholesky factorization. Recall from Section 2.7 that the second part of the algorithm

involves solving a series of a multiperiod knapsack problems. We use CPLEX integer

solver to solve these problems to optimality within a fraction of time required by

the nonlinear optimization algorithm. The resulting integer solution was in all cases

within a fraction of a percent of the nonlinear solution due to the reasons described

in Section 2.4. For this reason we do not provide these results here.

The real-world problems were solved on a 336 Mhz UltraSPARC machine with

1.7Gb of RAM and the test with larger networks were conducted on 1.89Ghz Xeon

with 3Gb of RAM.

2.10.1 Real-world problems

Table 2.5 shows the statistics of the first set of data. Here the last two columns show

the minimum and maximum number of paths per node pair. The small number of
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paths used is due to the sparsity of the real-life networks. The paths were generated

using the SPIDER code[14]. The time horizon T was taken to be 14 in all test sets.

Note that this set is identical to the set used in Section 2.5

Recall from Section 2.3 that there are six main data parameters defining the

problem data for every model, whose values we describe next.

The maintenance fraction µ and the maintenance rate α were taken to be equal

to 0.05 and 1.01 correspondingly.

The number of batch types u, the size of each batch M(u) and the initial cost

per unit of capacity are reflected in Table 2.7. The discount factor ht was taken to

be 0.86 for every time period t ≥ 2. The parameters were chosen to approximate the

real data patterns and behavior as closely as possible.

The initial buying costs c1l (u) were also picked to reflect the real cost structure of

the networks based on the installation and mileage costs of the equipment. The buying

costs for all the subsequent time periods t = 2 . . . T were computed as ct
l(u) = γct−1

l (u)

for a given constant γ < 1.

Table 2.6 shows the range of the remaining parameters.

All possible combinations of these parameters were considered (a total of 27) and

50 random sets were generated for each combination. The data corresponding to each

parameter was independently and uniformly distributed with mean shown in table

2.6. Here we take A =
∑

k Ak. In all runs the code was terminated when the total
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Set #Nodes #Links #Paths (min) #Paths(max)

snet1 14 22 2 3

snet2 38 48 2 3

snet3 47 55 2 4

snet4 50 64 2 3

snet5 70 94 2 3

Table 2.5: Statistics on real-life networks

Ā γ̄ ε̄

50000 0.95 1.3

500000 0.9 1.4

5000000 0.85 1.5

Table 2.6: Data parameters

improvement in the last 10-20 steps did not exceed 0.05%.

In what follows we present the detailed numerical analysis of the first algorithm

and the summary of the results for the other three models. In our experiments the

behavior of all models follows the same patterns with only slight variations due to

the different size of the models.

Table 2.8 illustrates the average and boundary values of the performance of the
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u 1 2 3 4 5 6 7

M(u) 198 198 198 762 762 1536 1536

c1(u)
M(u)

0.65 0.625 0.42 0.17 0.16 0.1 0.08

Table 2.7: Capacity costs

algorithm on different parameter groups. Table 2.9 shows the comparison of the

running time. In order to single out the pattern for each group of parameters, the

data was averaged on the other two groups.

Table 2.8 clearly shows that the problem becomes easier to solve as the elasticity

ε and the yearly reduction rate γ parameters decrease. On the other hand the scaling

constant A does not affect the performance. This observation supports the natural

assumption that the problem becomes harder to solve as the demand-price curve that

is essentially defined by the elasticity becomes steeper. In addition, smaller values

of γ induce large decrease in cost from one year to another and helps to reduce the

problem degeneracy, thus allowing a faster convergence.

Table 2.10 compares the average optimality gap and the running time for the so-

lution obtained by the starting heuristic with the final solution. The data is averaged

over all parameter groups. This table illustrates the quality of the heuristic which

in most cases provides a good starting solution. The running time of the heuristic is

approximately half of the overall running time. Thus for a case where only a rough
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net Gap Ā γ̄ ε̄

(%) 50000 500000 5000000 0.9 0.8 0.7 1.3 1.4 1.5

Ave 0.00081 0.00077 0.00082 0.001 0.00078 0.00062 0.00098 0.00075 0.00065

snet1 Max 0.0085 0.0082 0.0088 0.0098 0.0081 0.0068 0.0096 0.0082 0.0071

Min 0 0 0 0 0 0 0 0 0

Ave 0.006 0.0061 0.0061 0.008 0.006 0.0041 0.0086 0.0062 0.004

snet2 Max 0.051 0.052 0.051 0.063 0.051 0.039 0.071 0.053 0.04

Min 0 0 0 0 0 0 0 0 0

Ave 0.019 0.018 0.016 0.044 0.017 0.009 0.039 0.018 0.01

snet3 Max 0.078 0.076 0.075 0.088 0.076 0.064 0.089 0.075 0.065

Min 0 0 0 0 0 0 0 0 0

Ave 0.019 0.023 0.021 0.031 0.021 0.011 0.033 0.021 0.012

snet4 Max 0.11 0.125 0.14 0.25 0.13 0.1 0.21 0.12 0.096

Min 0 0 0 0 0 0 0 0 0

Ave 0.021 0.024 0.025 0.041 0.023 0.012 0.033 0.022 0.013

snet5 Max 0.193 0.198 0.21 0.29 0.2 0.176 0.28 0.196 0.18

Min 0.011 0.014 0.009 0.018 0.013 0.007 0.019 0.014 0.007

Table 2.8: Performance comparison - SDP model
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net Ā γ̄ ε̄

50000 500000 5000000 0.95 0.9 0.85 1.3 1.4 1.5

snet1 15 15 14 16 15 15 16 16 14

snet2 45 47 45 47 46 44 46 46 44

snet3 100 100 99 102 99 99 100 100 98

snet4 150 152 151 153 151 148 153 152 148

snet5 213 212 214 215 213 213 214 214 212

Table 2.9: Average running time (sec) - SDP model

snet1 snet2 snet3 snet4 snet5

Heur. gap (%) 0.0017 0.016 0.041 0.049 0.056

Final gap (%) 0.00079 0.006 0.018 0.021 0.023

Heur. time (sec) 7 26 47 77 103

Final time (sec) 15 46 100 152 213

Table 2.10: Heuristic performance - SDP model
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Model Gap(%) snet1 snet2 snet3 snet4 snet5

Ave 0.32 0.35 0.48 0.47 0.65

SDN Min 0.22 0.17 0.2 0.21 0.4

Max 0.44 0.61 0.88 0.85 1.13

Ave 0.27 0.29 0.33 0.33 0.41

MDP Min 0.16 0.18 0.16 0.18 0.2

Max 0.39 0.43 0.52 0.59 0.64

Ave 1.19 1.77 2.01 2.2 2.3

MDN Min 0.82 1.16 1.29 1.56 1.45

Max 1.56 2.47 2.89 3.08 3.89

Table 2.11: Performance summary - SDN, MDP, MDN models

estimate of the solution is required, it can be obtained much faster and improved

later if needed.

The summary performance of the other three models on the same data sets is

reflected in tables 2.11 and 2.12. Table 2.11 shows the average and boundary opti-

mality gaps for SD model without percentages (SDN) and MD model with (MDP)

and without (MDN) percentages. Table 2.12 shows the average running time for the

models.

Generally the problems become harder to solve as the problem size grows. Nev-
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Model snet1 snet2 snet3 snet4 snet5

SDN 10 79 119 108 284

MDP 11 80 126 130 304

MDN 13 93 142 158 332

Table 2.12: Running time (sec) summary - SDN, MDP, MDN models

Model snet1 snet2 snet3 snet4 snet5

SD 1.5 1.7 1.6 1.8 1.85

MD 1.6 1.9 1.86 1.91 1.9

Table 2.13: The effect of fixing percentages

Model snet1 snet2 snet3 snet4 snet5

SDP/MDP 1.92 1.79 1.98 2.01 2.02

SDN/MDN 2.4 2.34 2.22 2.3 2.19

Table 2.14: Model comparison (%)
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ertheless it is evident that the algorithm can handle large instances of the models

without substantial loss of the solution quality. The additional numerical results

supporting this claim will be shown in the following subsection. However before we

move to the more detailed exploration of the scalability of our algorithm let us first

compare the performance of the different models from the business solution perspec-

tive. Recall that the goal of the optimization algorithm is to create a reliable and

survivable network. SD and MD models were designed to provide a different degree

of survivability, with higher level available at the expense of receiving a lower overall

profit. In addition a different solution technique, precomputing the demand routing

was proposed, allowing to simplify the model and the algorithm once more at the

expense of the profit. Table 2.13 shows the decrease in the objective value when fixed

percentages are used and Table 2.14 demonstrates the average increase in total profit

when the MD model is used instead of the SD model. The average improvement is

about 2% of the entire business profit for all cases considered. Thus a weaker surviv-

ability model offers a considerable increase in company profit consequently providing

the grounds for a serious analysis of the survivability and profit tradeoff. On the

other hand the decrease in the profit from using fixed percentages is also about 2%

on average. However it is evident from tables 2.11 and 2.12 that reducing the size of

the problem by using fixed percentages does not provide a considerable decrease in

the running time or noticeable improvement of the algorithm performance. This in
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Solver snet1 snet2 snet3 snet4 snet5

LOQO 0 0 0 0 –

SNOPT 0 – – – –

Our Code 0.0008 0.006 0.018 0.021 0.023

Table 2.15: Performance comparison (LOQO and SNOPT) - Average optimality gap (%)

Solver snet1 snet2 snet3 snet4 snet5

LOQO 30 600 720 900 –

SNOPT 90 – – – –

Our Code 15 46 100 152 213

Table 2.16: Performance comparison (LOQO and SNOPT)- running time (sec)

turn implies that it is most likely not worthwhile to utilize this technique.

In order to evaluate our algorithm we compared it against LOQO [39] and SNOPT

[13] Table 2.15 and 2.16 show the performance comparison of our algorithm and

solvers on the real-life networks. Note that some of these results were also presented

and analysed in Section 2.5.

It is evident that even though the comparison is biased toward our code as it is

tuned up specifically to solve this problem, the existing solvers are still not able to

handle even a reasonable size network and in cases where LOQO was able to solve
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Set #Nodes #Links #Paths (min) #Paths(max)

bnet1 100 500 3 6

bnet2 150 900 3 7

bnet3 200 1500 3 9

bnet4 250 2000 3 10

bnet5 300 4500 4 12

Table 2.17: Statistics on the generated networks

the problem, our algorithm significantly outperforms it in terms of running time with

only a slight increase of the optimality gap.

2.10.2 Generated problems

In this section we analyze the performance of our algorithm on the generated set of

large dense networks. Table 2.17 shows the statistics on the five networks generated

to test the scalability of the algorithm.

Since these cases were generated to test the quality of the algorithm on the large

data set only one set of parameters was chosen for trials. Namely, Ā = 50000, ε̄ = 1.5,

γ̄ = 0.95. Recall that these values of the parameters proved to be the hardest for

the optimization algorithm. For the same reason the performance was tested on the

largest model, i.e. MD without percentages.
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Solver bnet1 bnet2 bnet3 bnet4 bnet5

CPLEX 2341 7982 14324 18943 –

Our Code 1943 2457 2691 2893 3103

Table 2.18: Performance comparison (CPLEX) - running time (sec)

The remaining parameters were taken the same as in the previous section. Simi-

larly to the previous section, 50 random data sets were generated for each network.

We compared our algorithm with CPLEX [16] which is on of the most efficient

linear, integer and quadratic solver available on the market. CPLEX also has one

of the best Cholesky factorization algorithms built in it. In order to compare our

algorithm with CPLEX we replace the original objective with its second order Taylor

series approximation. The idea here is to ensure that our implementation of the

Newton method is not the bottleneck of the performance, and that the active set

method considerably reduces the complexity of the problem.

Table 2.18 shows the comparison of our algorithm with the performance of CPLEX

on the quadratic relaxation of the problem. It is evident that the CPLEX efficiency

deteriorates rapidly as the network size and density increase, while our algorithm

shows stable and scalable performance.

Finally, tables 2.19 and 2.20 illustrate the optimality gap and the running time

on all the networks.
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Gap (%) bnet1 bnet2 bnet3 bnet4 bnet5

Ave 2.91 2.99 3.15 3.26 3.51

Max 4.56 4.87 4.91 5.1 5.08

Min 1.71 1.82 1.83 1.93 1.96

Table 2.19: Performance summary - Optimality gap (%)

bnet1 bnet2 bnet3 bnet4 bnet5

1943 2457 2691 2893 3103

Table 2.20: Average running time (sec) summary

2.11 Discussion

The previous section demonstrates several important conclusions which we will sum-

marize in this section.

• Algorithmic inferences

The numerical results indicate that the approach proposed in this work leads

to a viable algorithm that provides a high quality solution within a reasonable

timeframe and scales well with the problem size. Note that the specific form

of the objective function is not essential for the course of the algorithm. The

idea of projecting out the capacity variables and working only with the demand

or flow variables can thus be extended to different pricing and cost models
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as long as the resulting objective can be formulated as a separable concave

function. Further, this approach might prove efficient for other network design

problems with liner or concave objective functions. The essential detail of the

approach is the unique dependency of the link capacity and flows (demands),

thus many network design problem that poses this characteristic might benefit

from a similar algorithm.

• Network Planning inferences

From the design point of view we confirmed our initial assumption that a higher

level of protection will result in a lower profit value. The shared protection on

the other hand leads to a more complicated model and as a result requires

longer running time to achieve the similar solution quality. In addition we have

demonstrated that the integration the routing problem into the optimization

model can result in a higher profits as opposed to sequential solution. Thus

even though the integration is not currently employed in existent schemes due

to its complexity and difficulty, it is definitely worthwhile to explore this option

as it is evident that an adequate algorithm can be developed.

Overall we conclude that our results provide justification for further, more exten-

sive study of different protection and integration approaches as well as the expansion

of our technique to more general planning, design and pricing problems.
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Chapter 3

Maximum Concurrent Flow

Problem

3.1 Introduction

The maximum concurrent flow problem frequently arises in practical applications and

has received much attention due to its difficulty.

The input to the problem is a graph with capacities on its edges and a set of multi-

commodity demands to be routed. The objective is to find a largest value Γ∗ > 0 such

that a fraction Γ∗ of every demand can be simultaneously routed without exceeding

the available capacities (possibly Γ∗ > 1). In other words, we want to find a feasi-

ble flow with maximum throughput. A precise definition is given in Section 3.2. An
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equivalent problem is the minimum congestion problem: here we must simultaneously

route 100% of every demand so that the maximum load of any edge – the ratio of

total flow to capacity – is minimized. In the literature both problems are sometimes

regarded as one and the same and are jointly referred to as the “maximum concurrent

flow problem”, but in this paper we will work with the maximum throughput version.

Despite large advances in computer technology and optimization software, even

state-of-the-art linear optimizers are often proven ineffective on very large problems.

Furthermore, the scalability of these codes comes into question. As an example, a

concurrent flow problem on 400 nodes, 1740 arcs and 5000 commodity pairs which

yields a model with 160143 rows, 689056 columns and 2067177 nonzeros is solved

by CPLEX in 9434 sec. on a modern computer, whereas the same problem on 700

nodes, 3120 arcs and 5000 comodity pairs yields a model with 481326 rows, 2131038

columns and 6393176 nonzeros. This larger model already requires 455541 seconds

(see [4]). With more extensive experiments it can be shown that the running time

using CPLEX (dual) grows cubically with the number of columns (on concurrent flow

models). Moreover, during a very large fraction of the running time the optimality

error is rather large (more than one percent, say).

This situation has prompted a long line of research on alternative algorithms

for the maximum concurrent flow problem, in particular, approximation algorithms.

Given the nature of the problem, in a sense an ideal approximation algorithm would
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be one whose precision can be controlled. Given ε > 0, a fully polynomial polynomial-

time approximation scheme is one that estimates Γ∗ within relative error ε, and whose

worst-case complexity grows polynomially in ε−1 and on the size of the graph.

The first such algorithm was given by Shahrokhi and Matula [60] in the late 80’s,

and it applied to the minimum congestion problem. [60] introduced a “potential”

function that exponentially penalizes the load on any edge, so that the approximate

minimization of the potential function yields a flow whose maximum load is provably

near-optimal. To carry out the approximate optimization of the potential function

[60] used what amounts to a Frank-Wolfe scheme (see [44], [46], [47]). The overall

algorithm was proved to have a worst-case complexity bound that grows proportional

to ε−7 (as well as polynomially on the size of the graph). The Sharokhi-Matula

algorithm can also be viewed as a Lagrangian relaxation approach, where the capacity

constraints are relaxed, and the violation of these constraints is penalized using very

special multipliers. These are exponential multipliers, which, roughly stated, arise in

the Frank-Wolfe scheme as the gradient of the potential function.

The Sharokhi-Matula results catalyzed an intense and still active research effort.

[54] has improved the running time of Sharokhi-Matula algorithm. The work in [54]

was later extended ([56]) and improved ([59]). See also [50], [51], [57], [58], [53].

This research primarily showed how to better use an exponential potential function,

still in the Frank-Wolfe Lagrangian relaxation framework, to obtain faster algorithms
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for the minimum congestion problem, and generalizations. A logarithmic “sliding

barrier” function, applied to the minimum congestion problem, is discussed in [61].

The analysis in [62] shows how the exponential potential function naturally arises

in the derandomization of probabilistic algorithms; the algorithms for the maximum

concurrent flow problem described in [52] and [45] are related to the ideas in [62].

The fastest of these algorithms have running time bounded by ε−2 times a low-

order polynomial on the size of the graph and number of commodities. Altogether, the

algorithms in [59], [52] and [45] yield the best bounds for the maximum concurrent

flow problem, but precisely which is “best” depends in a complex manner on the

number of vertices, edges and commodities. Experimental testing of these algorithms

has yielded implementations that are substantially more effective than commercial

linear programming codes, see [41], [49].

The Sharokhi-Matula algorithm was for a long time considered the first ε−approximation

algorithm to exploit the idea of a potential function that penalizes the edge load. How-

ever, in 1971, Fratta, Gerla and Kleinrock [48] proposed a general algorithmic scheme

towards the solution of various optimization problems arising in telecommunications,

among them that of finding a feasible multicommodity flow, which is tantamount to

solving a maximum concurrent flow problem. The approach in [48], which is quite

different from those found in the references cited above, involves a simple idea for

increasing the throughput of a feasible flow while using a rational barrier function
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to prevent flows from exceeding capacities, together with a Frank-Wolfe procedure

that reduces the barrier function. A partial convergence proof was presented in [48].

Although the flow deviation method is well-known and frequently used in the telecom-

munications community, it is poorly known in the algorithms community.

In this work we show that the flow deviation method, properly implemented,

yields an algorithm that solves the maximum concurrent flow problem to relative

error ε by solving O(ε−2m3k2 +m3k2 logm) minimum-cost flow computations, where

m and k are, respectively, the number of edges and commodities. The algorithm we

describe contains the critical algorithmic ideas in [48] together with some refinements

designed to achieve the ε−2 performance. Without these refinements, the algorithm

in [48] can be shown to converge in O(ρ2m4ε−2k2) shortest path computations, where

ρ is the width, which is defined as follows. Given a convex set P ∈ Rn and the

set of m inequalities Ax ≤ b, the width of P relative to Ax ≤ b is defined by ρ =

maxi maxx∈P aix/bi [58].

3.2 Definitions

Consider a graph G with n vertices, and a capacity ue > 0 for each edge e. Suppose

we are given a set of k commodities, where for 1 ≤ j ≤ k, commodity j consists of

a pair sj, tj of vertices and a demand amount dj > 0. For 1 ≤ j ≤ k, let Pj denote

the set of paths between sj and tj, and for any edge e let Pe,j denote the subset of
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Pj consisting of those paths that contain e. The maximum concurrent flow problem

is the linear program

Γ∗ = max γ

(TF) s.t.

k
∑

j=1

∑

p∈Pe,j

xp ≤ ue ∀ e, (3.2.1)

∑

p∈Pj

xp = γdj, 1 ≤ j ≤ k, (3.2.2)

0 ≤ xp ∀p. (3.2.3)

This definition and formulation apply whether the graph is directed or not. From

the point of view of linear programming, this path-based formulation is not the most

efficient – a flow formulation is more compact. Note that for any commodity j a

linear program over the constraints (3.2.2), (3.2.3) reduces to a shortest path problem.

Given ε > 0, an ε-approximate solution to TF is a flow x̂ with throughput γ̂, feasible

for TF, such that γ̂ ≥ (1− ε)Γ∗, i.e. γ̂ approximates Γ∗ within relative error at most

ε.

We will say that a flow vector x is feasible if there exists a nonnegative value

γ = γ(x) such that (x, γ) is satisfies (3.2.1 - 3.2.3), in which case we will also say that

x has throughput γ. Given a flow vector x, we will say x has load

λ(x)
.
= max

e
λe(x) (3.2.4)
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where for an edge e,

λe(x)
.
=

∑k
j=1

∑

p∈Pe,j
xp

ue
(3.2.5)

is called the load of x on e. Thus x is feasible iff λ(x) ≤ 1, and we will say x is

strictly feasible if λ(x) < 1.

Consider a problem of the form

min {F (x) : x ∈ Q} (3.2.6)

where Q ⊆ Rn is convex and F () is convex and differentiable over Q. The classical

Frank-Wolfe procedure solves this problem by generating a sequence {xt}, t = 1, 2, · · ·

contained in Q. At iteration t, the procedure solves the linear program

min
{

[∇F (xt)]Tv : v ∈ Q
}

(3.2.7)

with solution yt ∈ Q, and sets xt+1 = (1 − σt)xt + σtyt = xt + σt(yt − xt) where

0 ≤ σt ≤ 1 is chosen so as to minimize F ((1− σt)xt + σtyt). σt is called the stepsize.

The Frank-Wolfe method is closely related to Danzig-Wolfe decomposition, and to

steepest-descent methods for unconstrained optimization.

For completeness, we state the minimum congestion problem. Given a graph and

multicommodity demands as in the maximum concurrent flow problem, the minimum

congestion problem is the linear program

Λ∗ = min λ
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s.t.

k
∑

j=1

∑

p∈Pe,j

xp − ueλ ≤ 0 ∀ e, (3.2.8)

∑

p∈Pj

xp = dj 1 ≤ j ≤ k, (3.2.9)

0 ≤ xp ∀p. (3.2.10)

A simple analysis shows that Λ∗ = 1/Γ∗. In what follows, we will deal exclusively

with the maximum concurrent flow problem.

3.3 The central idea

In this section we describe the main idea in [48].

Consider an instance of the maximum concurrent flow problem, and let x̂ be

strictly feasible with throughput γ̂. To fix ideas, suppose that λ(x̂) = 1/2. Then 2x̂

is feasible and has throughput 2γ̂. In general, y = 1
λ(x̂)

x̂ is feasible and has throughput

1
λ(x̂)

γ̂ > γ̂ (but also λ(y) = 1). Suppose that by using an appropriate algorithmic

construct we obtain, from y, a feasible vector z, still with throughput 1
λ(x̂)

γ̂ but with

loads that are singnificantly lower than those of y. Then we would have a skeletal

outline for an algorithm:



CHAPTER 3. MAXIMUM CONCURRENT FLOW PROBLEM 97

OUTLINE

A1. Let x̂ be strictly feasible, with throughput γ̂.

B1. Let y = 1
λ(x̂)

x̂.

C1. Find a feasible z with throughput 1
λ(x̂)

γ̂ and λ(z) substantially smaller than λ(y).

Reset x̂← z and γ̂ ← 1
λ(x̂)

γ̂, and go to B1.

Thus, each execution of B1 increases throughput while C1 “spreads out” the flow.

Next we describe a concrete implementation of C1.

Let ψ : [0, 1)→ [0,+∞) satisfy the properties

(i) In the range 0 ≤ t < 1, ψ(t) is increasing, continuous and convex,

(ii) ψ(t) → +∞ as t→ 1−.

Then one way to accomplish C1 is to define, for any strictly feasible x,

Ψ(x) =
∑

e

ψ(λe(x)) (3.3.1)

and to choose z as the solution to

min

{

Ψ(x) : x a feasible flow with γ(x) =
γ̂

λ(x̂)

}

(3.3.2)

In fact, by property (ii) of ψ the optimal solution to the optimization problem (3.3.2)

“should” have maximum load smaller than λ(x̂). Note, however, that in view of our
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construction of y in step B1, Ψ(y) is undefined (because λ(y) = 1), and in general,

it may be the case that Ψ(x) is undefined for any x ∈ 1
λ(x̂)

γ̂P . Thus, we must amend

Step B1 slightly: to obtain y, we scale up x̂ by a factor slightly smaller than 1
λ(x̂)

.

Further, it may not be strictly necessary to minimize Ψ – rather, we should decrease

it from the value Ψ(y). Our algorithmic scheme is now:

Basic Algorithm

A2. Initialization. Let x̂ be strictly feasible with throughput γ̂.

B2. Magnification. Set y = µx̂, where 1 < µ < 1
λ(x̂)

is a parameter.

C2. Barrier reduction. Find a feasible z with throughput µγ̂ such that Ψ(z) is

sufficiently smaller than Ψ(y). If no such z exists, STOP. Otherwise, reset x̂← z and

γ̂ ← µγ̂, and go to B2.

The algorithm implicit in Steps A2 - C2 is the main contribution in [48]; found in

pp. 112(bott.)–114. It significantly differs from algorithms found in the references

cited above. Other ingredients in [48] are:

1. The barrier function ψ(x) = x
1−x

,

2. A Frank-Wolfe procedure to carry out the barrier reduction step C2,

3. A choice for the parameter µ in B2 that provides a sufficiently rapid increase

in throughput, and
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4. A provably good choice for the starting point x̂ in A2.

The particular implementation we describe below differs from that in [48] in two

aspects:

• Our Frank-Wolfe iterations are minimum-cost flow problems, as opposed to

shortest path computations, and

• In C2 we may carry out several Frank-Wolfe iterations (i.e. several gradient

steps) whereas [48] uses a single iteration.

If A2 - C2 is implemented using shortest path computations only and single Frank-

Wolfe iterations in C2, the resulting algorithm can be shown to converge to an ε-

approximate solution in O(ρ2m5ε−3k) shortest paths computations, where ρ is the

width parameter [58]. Finally, we note that in [48] the term “flow deviation method”

appears to refer to the Frank-Wolfe procedure itself; however it has since become

synonymous with the entire scheme A2 - C2.

3.4 The algorithm

In this section we describe our implementation of A2 - C2. We will use the same

notation as in Section 3.2. We let q be the smallest positive integer such that 2−q ≤ ε.
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Algorithm FD

Step 0. (Initialization.) To each edge e of the graph assign the length u−1
e . For

1 ≤ j ≤ k, let zj denote the flow that carries dj units along the shortest path between

st and tj under this metric, and let z denote the multicommodity flow (z1, z2, · · · , zk).

Set x0 = 1
2λ(z)

z and t = 0.

Step 1. Set yt =
(

1
2λ(xt)

+ 1
2

)

xt.

Step 2. (Frank-Wolfe procedure.) Write v0 = yt and γ = γ(yt).

For h = 0, 1, · · · Do:

A.h For 1 ≤ j ≤ k, let wh,j denote the solution to the minimum-cost flow problem

where we send γdj units of flow from sj to tj and each edge e has cost

[∇Ψ(vh)]e and capacity ue. Let wh = (wh,1, · · · , wh,k) denote the resulting

multicommodity flow.

B.h Set vh+1 = (1− σh)v
h + σhw

h where 0 ≤ σh ≤ 1 is chosen so as to minimize

Ψ((1− σh)v
h + σhw

h).

C.h If Ψ(vh)− Ψ(vh+1) < Ψ(vh)2

128(Ψ(vh)3+m)k2 , exit loop: set t← t+ 1, xt ← vh+1 and

go to Step 3.

End

Step 3. If λ(xt) ≥ 1− ε
2m

, or if Ψ(xt) ≥ m2q+2, terminate algorithm.

Otherwise to Step 1.

End.
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3.4.1 Analysis of Algorithm FD

Given γ > 0 denote

Ψ∗(γ) = min {Ψ(x) : x feasible with γ(x) = γ} . (3.4.1)

In order to show the correctness of the algorithm, we first state the following

theorem whose proof is deferred:

Theorem 2 Consider an execution of the For loop in Step 2, with input yt. Suppose

the loop exits at iteration h. Then

Ψ(vh) ≤ 2Ψ∗(γ(yt)). (3.4.2)

Pending the proof of Theorem 2, the following sequence of lemmas establish the

correctness and workload of the algorithm.

Lemma 3.4.1 Let r be a nonnegative integer. (i) Suppose γ < (1−2−(r+1))Γ∗. Then

Ψ∗(γ) < 2r+1m. (ii) Suppose (1− 2−r)Γ∗ ≤ γ. Then 2r − 1 ≤ Ψ∗(γ).

Proof. (i) Consider x∗ feasible with throughput Γ∗. Then u = γ
Γ∗x

∗ has throughput

γ and satisfies Ψ(u) ≤ mΨ( γ
Γ∗ ) < 2r+1m. (ii) is proved in a similar way.

Lemma 3.4.2 Let 0 < τ < 1, and suppose that an iterate xt in Step 3 satisfies

λ(xt) ≥ 1− τ
2m

. Then

γ(xt) ≥ (1− τ)Γ∗ (3.4.3)
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Proof. Assume by contradiction that (3.4.3) does not hold. Let x∗ be feasible with

throughput Γ∗. Then u = γ(xt)
Γ∗ x∗ has throughput γ(xt), and satisfies

λ(u) < 1− τ. (3.4.4)

As a result

Ψ(u) < m(τ−1 − 1). (3.4.5)

Given the value of λ(xt), we also have

Ψ(xt) ≥ 2m

τ
− 1, (3.4.6)

which together with (3.4.5) contradicts Theorem 2.

Lemmas 3.4.1(i) and 3.4.2 imply:

Corollary 3.4.3 Upon termination of Algorithm FD, we have a feasible flow with

ε-optimal throughput.

Now we turn to the complexity of Algorithm FD. First we have:

Lemma 3.4.4 The vector x0 has throughput at least Γ∗

2m
.

Proof. This result is implied by weak linear programming duality, but a direct proof

follows. Denote by L∗ the sum, over all commodities, of the shortest path lengths in

Step 0. If x is any multicommodity flow we have

mλ(x) ≥ L∗. (3.4.7)
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Clearly λ(z) ≤ L∗. Consequently,

1

λ(z)
≥ 1

mλ(x)
. (3.4.8)

Thus 1
λ(z)
≥ Γ∗

m
, and by construction of x0, the result follows.

In what follows, for integral 0 ≤ r we will denote by Phase r of the algorithm the set

of those iterations t with (1 − 2−r)Γ∗ ≤ γ(xt) < (1 − 2−(r+1))Γ∗. Note that a given

Phase r might be empty, and that the algorithm might perform iterations of Phase r

with r > q.

Lemma 3.4.5 (i) For 0 < r ≤ q, the number of iterations t in Phase r is O(m).

(ii) The number of iterations in Phase 0 is O(m logm). (iii) The total number of

iterations in Phases q + 1, q + 2, · · · is O(m).

Proof. By Lemma 3.4.2, for r ≥ 0 if γ(xt) < (1− 2−(r+1))Γ∗ we have λ(xt) < 1− 2−r

4m
.

Consequently,

γ(xt+1) = γ(yt) =
1− 1/2(1− λ(xt))

λ(xt)
γ(xt) (3.4.9)

=
1

2
(1 +

1

λ(xt)
)γ(xt) (3.4.10)

> (1 +
2−r

8m
)γ(xt). (3.4.11)

(i) Suppose 0 < r. By definition we started Phase r with throughput at least

(1 − 2−r)Γ∗. Thus, (3.4.11) implies that this Phase will perform O(m) iterations,

as desired.
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(ii)This follows as (i), using Lemma 3.4.4.

(iii) Consider an iteration t during Phase r with r > q. Since the algorithm has not yet

terminated, we can replace (3.4.11) with the stronger condition γ(yt) > (1+ 2−q

8m
)γ(xt),

and again we obtain that there are altogether at most O(m) iterations in Phases

q + 1, q + 2, · · · .

The next lemmas analyze the complexity of each execution of Step 2.

Lemma 3.4.6 Consider an iteration t of Step 1, and let e be any edge. Then

1− λe(y
t) ≥ 1−λe(xt)

2
.

Proof. We have that λe(y
t) = 1+λ(xt)

2λ(xt)
λe(x

t). Since by definition λe(x
t) ≤ λ(xt), the

result follows.

Lemma 3.4.7 Consider an iteration t of Step 1 during Phase r. Then Ψ(yt) ≤

O(m2min{r,q}).

Proof. Suppose first that r > 0. Then by Theorem 2 and respectively, Lemma 3.4.1

(for the case r ≤ q) and the second termination criterion in Step 3 (for the case

r > q) we have that Ψ(xt) ≤ O(m2min{r,q}). To obtain the desired result, we will

show Ψ(yt) = O(Ψ(xt)). To see this, consider the contributions of an edge e to

Ψ(xt) and to Ψ(yt). These are, respectively, λe(xt)
1−λe(xt)

and λe(yt)
1−λe(yt)

. By Lemma 3.4.6,

the denominator in the second expression is at least half of that in the first. To

compare the numerators, note that since this is an iteration during Phase r > 0,
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λ(xt) ≥ 1 − 2−r ≥ 1/2 and consequently λe(y
t) = 1+λ(xt)

2λ(xt)
λe(x

t) ≤ 3
2
λe(x

t). Hence

Ψ(yt) = O(Ψ(xt)), as desired.

Suppose instead that r = 0. We always have (again by Theorem 2 and by the

choice of x0) that Ψ(xt) = O(m). If λ(xt) ≥ 1/2 the Lemma follows as in the previous

paragraph. If instead λ(xt) < 1/2, then each edge e will satisfy λe(y
t) ≤ 3/4 and thus

Ψ(yt) = O(m).

Lemma 3.4.8 Let 0 ≤ r. The number of iterations of A.h-C.h in an execution of

Step 2 during Phase r is O(22min{r,q}m2k2).

Proof. We will show that if more than O(22min{r,q}m2k2) iterations h achieve

Ψ(vh+1)− Ψ(vh) < − Ψ(vh)2

128(Ψ(vh)3 +m)k2
, (3.4.12)

then we will reach a value of Ψ smaller than Ψ∗, a contradiction. Thus, consider an

iteration h where (3.4.12) holds. Suppose first that

Ψ(vh)3 ≥ m. (3.4.13)

In this case, the recursion (3.4.12) can be abstracted as

zh+1 − zh ≤ −c 1

zhk2
,

where c > 0 is a constant. This recursion has the property that it reduces zh by a

factor of 2 in O(z2
hk

2) iterations. Thus, using Lemma 3.4.7, we obtain that there are

at most O(22min{r,q}m2k2) iterations of A.h-C.h where (3.4.13) holds.
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In the remainder of the proof we handle the iterations with Ψ(vh)3 < m. If

r > 0 then using Lemma 3.4.1(ii) we conclude that each iteration satisfying (3.4.12)

decreases Ψ by Ω(1/(mk2)), and consequently there are at most O(m5/3k2) such

iterations (a tighter analysis is possible but not needed). This concludes the proof

if r > 0. Finally, if r = 0 then just as in the previous line we conclude that in

at most O(m5/3k2) iterations we obtain Ψ(vh) ≤ 1. By Lemma 3.4.4, γ(x0) ≥ Γ∗

2m
,

and a variation of the analysis in Lemma 3.4.1 shows that any time during Phase 0,

Ψ∗ ≥ 1
2m

. We conclude that there are at most O( 1
1/2m

) = O(m) iterations h with

Ψ(vh) < 1.

Corollary 3.4.9 The total number of Frank-Wolfe iterations A.h over the course of

Algorithm FD is O(k2m3ε−2 +m3 logm).

In the next section we prove Theorem 2. In Section 3.4.3 we show how to replace

the line-search in step B.h with a provably good stepsize rule that requires O(1) time.

3.4.2 Proof of Theorem 2

Consider an iteration h of the Frank-Wolfe procedure, corresponding to input vector

yt. For simplicity, write γ = γ(yt). For 0 ≤ σ ≤ 1, write

g(σ)
.
= Ψ( (1− σ)vh + σwh) = Ψ( vh + σ(wh − vh)). (3.4.14)
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Then g is convex, g(0) = Ψ(vh),

g′(0) = [∇Ψ(vh)]T · (wh − vh), and (3.4.15)

g(σ) = g(0) + g′(0)σ +
1

2
g′′(α)σ2, (3.4.16)

where 0 < α < σ (2nd order Taylor expansion). By choice of wh in A.h, the right-

hand side of (3.4.15) cannot decrease if we replace wh with any other feasible flow

with throughput γ. In particular, if we use a flow w∗ with throughput γ and such

that Ψ(w∗) = Ψ∗(γ), we obtain

g(σ)− g(0) ≤ [∇Ψ(vh)]T · (w∗ − vh)σ + 1
2
g′′(α)σ2. (3.4.17)

which, since Ψ is convex, implies:

g(σ)− g(0) ≤ (Ψ∗(γ)−Ψ(vh))σ +
1

2
g′′(α)σ2. (3.4.18)

Next we will bound the quadratic term in (3.4.18). We have

g(α) =
∑

e

ψ(λe(v
h) + σ[λe(w

h)− λe(v
h)]), (3.4.19)

and consequently

g′′(α) =
∑

e

(λe(w
h)− λe(v

h))2

(1− λe(vh)− α[λe(wh)− λe(vh)])3
(3.4.20)

Since both vh and wh are feasible, (λe(w
h)−λe(v

h))2 ≤ k2. Further, 1
(1−x)3

< 8( x
1−x

)3+

8 for all 0 ≤ x < 1. Thus, from (3.4.20) we get that

g′′(α) ≤ 8(k2[Ψ(vh + α(wh − vh)]3 +m). (3.4.21)
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If σ is chosen so that

Ψ(vh + σ(wh − vh)) ≤ Ψ(vh), (3.4.22)

then (3.4.21) and the convexity of Ψ imply g′′(α) ≤ 8k2(Ψ(vh)3+m), and substituting

in (3.4.18) we obtain:

g(σ)− g(0) =

Ψ(vh + σ(wh − vh))−Ψ(vh) ≤ (Ψ∗(γ)− Ψ(vh))σ + 8k2(Ψ3(vh) +m)σ2.(3.4.23)

Inequality (3.4.23) holds for any 0 ≤ σ ≤ 1 that satisfies (3.4.22). In Step B.h

we choose σ = σh so that the left-hand side of (3.4.23) is minimized. Instead, let

0 ≤ µ < 1 be the argument that minimizes the quadratic Q on the right-hand side

of (3.4.23) (note: a simple check verifies the stated bounds on µ). We would like to

argue that Ψ(vh + σh(w
h − vh)) − Ψ(vh) ≤ Q(µ). This will follow if we can argue

that µ is such that (3.4.23) holds at σ = µ; or, in other words, that σ = µ satisfies

(3.4.22).

But note that for 0 ≤ σ small enough (3.4.22) holds by choice of wh (wh − vh is

a descent direction). If (3.4.23) holds for all 0 ≤ σ we are done. Otherwise (3.4.22)

holds for some closed interval [0, σ̃] and does not hold outside the interval. Since

(3.4.23) holds with equality at 0, and Q′(0) < 0, clearly µ < σ̃, as desired.
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Thus, from (3.4.23) we get (after a calculation to minimize the quadratic)

Ψ(vh+1)− Ψ(vh) =

Ψ(vh + σh(w
h − vh))− Ψ(vh) ≤ − (Ψ∗(γ)− Ψ(vh))2

32k2(Ψ3(vh) +m)
. (3.4.24)

If Ψ(vh) > 2Ψ∗(γ) we therefore obtain

Ψ(vh+1)− Ψ(vh) ≤ − Ψ2(vh)

128k2(Ψ3(vh) +m)
. (3.4.25)

The theorem is proved.

3.4.3 Choosing the stepsize

A key step in Algorithm FD is the choice of the stepsize σh in Step B.h. We expect

that from the point of view of computational effectiveness, it will be best to actually

carry out a numerical line-search to estimate σh. In the rest of this section, we show

how to instead choose a value for σh in O(1) time which nevertheless preserves the

theoretical properties of the algorithm.

One way to choose σ so as to minimize the quadratic Q(σ) introduced in the proof

of Theorem 2, while assuming Ψ(vh) > 2Ψ∗(γ), or in other words, to minimize

Q̂(σ)
.
= −Ψ(vh)

2
σ + 8k2(Ψ3(vh) +m)σ2 (3.4.26)

whose decrease was used in the proof of Theorem 2 to bound the decrease in Ψ itself.
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We have to show that if we alter Algorithm FD to use this stepsize (= Ψ(vh)
32k2(Ψ3(vh)+m)

)

we still have a correct algorithm with the same complexity bound.

In fact, we proved that as long as Ψ(vh) > 2Ψ∗(γ), choosing σ so as to minimize

Q̂(σ) guarantees a decrease in Ψ of at least Ψ2(vh)
128k2(Ψ3(vh)+m)

. Thus the validity of the

algorithm is preserved. Further, Lemma 3.4.8 still applies (consider the first line in

its proof). This shows that the complexity bound for Algorithm FD still applies.

3.4.4 Comments on Algorithm FD

In [48], the procedures and analysis are not pitched towards provably good approxi-

mation – this field existed only in embryonic form in 1971. This is the primary cause

for the differences between Algorithm FD and that in [48]. Nevertheless, the critical

idea in [48] is the key ingredient in Algorithm FD.

(i) The fact that the Frank-Wolfe iterations are minimum-cost flow problems is

only needed in the paragraph immediately following (3.4.20) so that we can

guarantee λ(wh) ≤ 1. If we were to replace the minimum-cost flow calls with

shortest path calls, then instead we could only claim λ(wh) ≤ ρ, where ρ is the

width ([58] – in the context of this paper, the width of the problem is upper

bounded by the ratio of the largest demand dj to the smallest capacity ue).

This results in an increase in our complexity estimate by a factor of ρ2. The

“trick” of using minimum-cost flow calls to avoid the dependence on ρ is not
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new: it is used in [58] and [50]. Recent algorithms for the maximum concurrent

flow problem avoid the dependence on ρ while only resorting to shortest path

calls ([52], [45]). We conjecture that a more refined version of our algorithm

will achieve the same behavior.

(ii) The algorithmic outline in [48] uses a single Frank-Wolfe iteration in each Step

2. The algorithm described above can be adapted so as to use single Frank-Wolfe

iterations in each Step 2; it will be shown in Section 3.5 that the dependence

on ε of the adapted algorithm also grows as O(ε−2). This adaptation entails a

finer tuning of the multiplier in Step 1.

(iii) The magnification factor 1−1/2(1−λ(xt))
λ(xt)

used in Step 1 is as in [48], except that

the choice of the parameter 1/2 is ours ([48] only states that “a proper tolerance”

should be used). In Step 0 our choice for flow z is precisely the same as the

choice in the initialization step in [48]. We start with x0 = 1
2λ(z)

z, rather than

with z
λ(z)

, so that we can guarantee that Ψ(x0) = O(m) (as opposed to O(m2)).

(iv) Our proof of Theorem 2, up to inequality (3.4.18), follows fairly closely a similar

analysis in [48](pp. 128 - 130). The latter part of our proof follows [48] somewhat

less closely. In particular, [48] does not analyze the quadratic term in (3.4.18),

which is key to the overall complexity estimate. Finally, our analysis prior to

the proof of Theorem 2 is new.
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(v) Algorithm FD is easily generalized to general packing linear programs [58].

(vi) [48] points out that [43] contains some ideas similar to those in the Flow Devi-

ation method, although in less developed form. Courant [42] has been credited

with one of the earliest uses of “potential” functions in the solution of systems

of equations.

(vii) Some pointers for the reader who decides to tackle [48]. Here we use the notation

from [48]. (a) The algorithm in pp. 113-114 is geared towards finding a feasible

flow with throughput 1. This includes the exit condition in Step 1. (b) Step

2, and the definition of the FD operator in page 110 inductively show the for

n > 0 we always have σn < 1 and consequently REn+1 > REn. (c) There is an

error in the paper for the case n = 0: the exit condition should be σ0/RE0 ≤ 1.

3.5 Single Frank-Wolfe iterate analysis

In this section we provide the analysis of the original version of the algorithm that

uses a single Frank-Wolfe iteration in each Step 2. First we will show how to tune

the coefficient in Step 1 and the termination criteria in Step 3 and then adjust the

corresponding lemmas to adopt these modifications. The updated FD algorithm now

takes form
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Algorithm FD’

Step 0. (Initialization.) To each edge e of the graph assign the length u−1
e . For

1 ≤ j ≤ k, let zj denote the flow that carries dj units along the shortest path between

st and tj under this metric, and let z denote the multicommodity flow (z1, z2, · · · , zk).

Set x0 = 1
2λ(z)

z and t = 0.

Step 1. Set yt = α̂xt,where α̂ = 1−α(1−λ(xt))
λ(xt)

xt and α = am2k2

((1−λ(xt))2− min{r,q}+m2)
.

Step 2. (Frank-Wolfe iteration.) Write v = yt and γ = γ(yt).

A For 1 ≤ j ≤ k, let wj denote the solution to the minimum-cost flow problem

where we send γdj units of flow from sj to tj and each edge e has cost [∇Ψ(v)]e

and capacity ue. Let w = (w1, · · · , wk) denote the resulting multicommodity

flow.

B Set v̄ = (1− σ)v + σhw where 0 ≤ σ ≤ 1 is chosen so as to minimize

Ψ((1− σ)v + σw).

C Set t← t + 1, xt ← v̄.

Step 3. If t > am2

ε
k2, where a > 0 is some constant, and either λ(xt) ≥ 1− ε

2m
, or

Ψ(xt) ≥ m2q+2, terminate algorithm. Otherwise go to Step 1.

Note that the only change in Step 2 is a single application of Frank-Wolfe iteration

and that Step 3 is adjusted to accommodate this modification. The rest of the

FD algorithm remains unaffected. We know describe the necessary changes to several

lemmas in our analysis. We should specifically emphasize that the termination criteria
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in Step 3 is chosen such that the result and the proof of Theorem 2 are not affected.

We however will need to modify lemmas 4.6 - 4.9 to analyze the new complexity

results and link the termination criteria of FD and FD’ algorithms.

Lemma 3.5.1 (4.6′) (i) For 0 < r ≤ q, the number of iterations t in Phase r is

O(22min{r,q}m4k2). (ii) The number of iterations in Phase 0 is O(m logm). (iii) The

total number of iterations in Phases q + 1, q + 2, · · · is O(22min{r,q}m4k2).

Proof. Write εr = 2−r. By Lemma 3.4.2, for r ≥ 0 if γ(xt) < (1− 2−(r+1))Γ∗ we have

λ(xt) < 1− εr

4m
. Consequently,

γ(xt+1) > γ(yt) >
1− α(1− λ(xt))

λ(xt)
γ(xt) (3.5.1)

> (1 +
(1− α)(1− λ(xt))

λ(xt)
)γ(xt) (3.5.2)

> (1 +
(1− α)(1− λ(xt))

λ(xt)
)γ(xt) (3.5.3)

> (1 +
2−3r

4m4k2
)γ(xt). (3.5.4)

(i) Suppose 0 < r. By definition we started Phase r with throughput at least (1 −

2−r)Γ∗. Thus, (3.5.4) implies that this Phase will perform O(22rm4k2) iterations, as

desired. (ii)This follows as (i), using Lemma 3.4.4. (iii) Consider an iteration t during

Phase r with r > q. Since the algorithm has not yet terminated, we can replace (3.5.4)

with the stronger condition γ(yt) > (1 + 2−q

8mk2 )γ(x
t), and again we obtain that there

are altogether at most O(22qm4k2) iterations in Phases q + 1, q + 2, · · · .

The next lemmas analyze the complexity of each execution of Step 2.
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Lemma 3.5.2 (4.7′) Ψ(yt) ≤ Ψ(xt) + 2−min{r,q}

amk2

Proof. The increase of the potential on an edge e is

λe(α̂x
t)

1− λe(α̂xt)
− λe(x

t)

1− λe(xt)
=

λe(x
t)(1− α̂)

(1− λe(xt))(1− α̂λe(xt))
≤ λ(xt)(1− α̂)

(1− λ(xt))(1− α̂λ(xt))
.

Therefore

Ψ(α̂xt)− Ψ(xt) ≤ m
λ(xt)(1− α̂)

(1− λ(xt))(1− α̂λ(xt))
= m

1− α
α(1− λ(xt))

=
2−min{r,q}

mk2

Lemma 3.5.3 (4.8′) Consider an iteration t of Step 1 during Phase r. Then

Ψ(yt) ≤ O(m2min{r,q}).

Proof. Suppose first that r > 0. Then by Theorem 2 and respectively, Lemma 3.4.1

(for the case r ≤ q) and the second termination criterion in Step 3 (for the case

r > q) we have that Ψ(xt) ≤ O(m2min{r,q}). By Lemma 3.5.2 Ψ(yt) ≤ Ψ(xt) + ε
m

and

the result follows.

Suppose instead that r = 0. We always have (again by Theorem 2 and by the

choice of x0) that Ψ(xt) = O(m) and the proof follows in the same manner as in

Lemma 3.4.7

Lemma 3.5.4 (4.9′) For any t > am2

ε
k2, where a > 0 is some constant, Ψ(v̄) ≤

2Ψ∗(γ(yt)).
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Proof. First we will show that if more than O(22min{r,q}m2) iterations achieve

Ψ(v̄)− Ψ(v) < − Ψ(v)2

128(Ψ(v)3 +m)k2
, (3.5.5)

then we will reach a value of Ψ smaller than Ψ∗, a contradiction. Thus, consider an

iteration where (3.5.5) holds. Suppose first that

Ψ(v)3 ≥ m. (3.5.6)

In this case, using Lemma 3.4.1 and Lemma 3.5.2 and with the appropriate choice of

parameter a the recursion (3.5.5) can be abstracted as

zt+1 − zt ≤ −c 1

ztk2
,

where c is a constant. This recursion has the property that it reduces zt by a factor of

2 in O(k2z2
t ) iterations. Thus, using Lemma 3.5.3, we obtain that there are at most

O(22min{r,q}m2k2) iterations of Step 1 – Step 3 where (3.5.6) holds.

Next we handle the iterations with Ψ(v)3 < m. If r > 0 then using Lemma 3.4.1(ii)

we conclude that each iteration satisfying (3.5.5) decreases Ψ by Ω(1/(mk2)), and

consequently there are at most O(m5/3k2) such iterations. This concludes the proof if

r > 0. If r = 0 then just as in the previous line we conclude that in at most O(m5/3k2)

iterations we obtain Ψ(v) ≤ 1. By Lemma 3.4.4, γ(x0) ≥ Γ∗

2m
, and a variation of the

analysis in Lemma 3.4.1 shows that any time during Phase 0, Ψ∗ ≥ 1
2m

. We conclude

that there are at most O( 1
1/2m

) = O(m) iterations with Ψ(v) < 1.
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Thus, after at most am2

ε
k2 iterations of Step 1 – Step 3 we will achieve Ψ(v̄)−

Ψ(v) < − Ψ(v)2

128k2(Ψ(v)3+m)
and therefore by Theorem 2 Ψ(v̄) ≤ 2Ψ∗(γ(yt)). In the

remainder of the proof we will handle iterations with t > am2

ε
k2. Let t be the first

iteration such that after execution of Step 1 Ψ(yt) ≥ 2Ψ∗(γ(yt)). Then

Ψ(v̄)−Ψ(v) < − Ψ(v)2

128(Ψ(v)3+m)k2 and by Lemma 3.5.2 every iteration increases Ψ(xt)

by at most 2−min{r,q}

mk2 . Therefore Ψ(yt) ≤ 2Ψ∗(γ(yt)) + 2−min{r,q}

mk2 and one execution of

Step 2 will achieve Ψ(v̄) ≤ 2Ψ∗(γ(yt)).

Corollary 3.5.5 (4.10′) The total number of Frank-Wolfe iterations A over the

course of Algorithm FD is O(k2m4ε−2 +m4k2 logm).

Thus we have demonstrated that using a single Frank-Wolfe iteration in Step 2

we can achieve the same degree of convergence by tuning the magnification factor in

Step 1

3.6 Future research

In this section we propose some ideas for further enhancement of the algorithm. [55]

demonstrated that any Dantzig-Wolf type algorithm for a general fractional packing

problem with high probablity will requier at least Ω(ε−2) iterations. Therefore, in

order to improve the dependency on ε we need to move away from the Dantzig-Wolf

framework and develop a different approach to generating a sequience of approximate
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solutions. In what follows we present an approach that can potentially lead to a

decrease in the running time dependency on ε.

Recall that the central operation of the algorithm is to sequentially minimize the

first-order approximation of the potential function over the set of multicommodity

constraints. The length of the step taken towards the optimum of the gradient essen-

tially reflects the ”quality” of the approximation and produces a new vector within

the neighborhood where the approximation is accurate. The natural modification of

this scheme would be to replace the first order approximation with a tighter one,

thereby expanding the neighborhood and allowing for longer steps. This in turn will

require a smaller number of iterations and thus will lead to a faster convergence of

the algorithm. The obvious drawback of this approach is the requirement to optimize

a more complex, nonlinear function over the same set of multicommodity constraints.

Further, the nonlinearity of the function will no longer allow for a simple decom-

position of the resulting optimization problem. However, if a method to solve this

problem efficiently is developed, this approach will lead to an overall improvement of

the algorithm performance.

In what follows we consider the second order Taylor approximation of the potential

function and offer the analysis of the complexity of the resulting algorithm provided

an efficient method to solve the quadratic multicommodity flow problem is known.
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3.6.1 Notations

For some flow f and some constant θ > 0 let fθ be any feasible flow such that

λe(fθ) = λe(f) + θte, for some vector t = {te}e with |te| ≤ 1. In other words, fθ

belongs to θ-neighborhood of f with respect to λe(f).

Let g = f + θt where t is as defined above for some θ-neighborhood of f . Then

Ψ(g) = Ψ(f) + θ∇Ψ(f)t+ 0.5θ2tH(Ψ(f))t+
θ3

6
Ψ

′′′

(f + αt)t3

where α < θ.

Denote

Q(t)
.
= Ψ(f) + θ∇Ψ(f)t+ 0.5θ2tH(Ψ(f))t

and

E(t)
.
=
θ3

6
Ψ

′′′

(f + αt)t3

Then the quadratic multicommodity flow problem in θ-neighborhood of f is de-

fined as

min {Q(t) : g a feasible flow such that g = f + θt} (3.6.1)

Here we define a feasible flow as a flow that satisfies all the constraints except for the

joint capacity constraint. Note that the form of Q(t) does not allow us to decompose

(3.6.1) into single-commodity problems.

Let f be a flow such that Ψ(f)� Ψ∗, then there is a point f̄ in the θ-neighborhood

of f such that Ψ(f̄) � Ψ(f). Moreover, if the approximation error E(t) in this
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neighborhood does not exceed the possible decrease in the potential function, we can

conclude that there is a vector t, such that Q(t)� Q(0).

3.6.2 Algorithm

We can now state the new algorithm

Algorithm FDQ

Step 0. (Initialization.)

Step 1. Set yt = 1−1/2(1−λ(xt))
λ(xt)

xt. Step 2. Write v0 = yt and γ = γ(yt).

For h = 0, 1, · · · Do:

A.h Let wh denote the solution to (3.6.1) with f ≡ vh for some θ to be defined

later.

B.h Set vh+1 = wh.

C.h If Ψ(vh)− Ψ(vh+1) < 2
7k1.5(4

√
Ψ+

√
m)

, exit loop: set t← t+ 1,

xt ← vh+1 and go to Step 3.

End

Step 3. If λ(xt) ≥ 1− ε
2m

, or if Ψ(xt) ≥ m2q+2, terminate algorithm.

Otherwise go to Step 1.

End.
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Note that the only difference of FD and FDQ algorithms is the optimization

problem in Step B.h and the termination criteria in C.h. Thus the only additional

analysis required for the FDQ algorithm is the number of iterations in Step 2 and

the validity of its termination criteria.

3.6.3 Analysis

Denote δ = 1
k1.5(4

√
Ψ+

√
m)

and let f ∗ be such that Ψ(f ∗) = Ψ∗(γ) and Ψ(f) > 2Ψ∗.

Let Ψ(f)− Ψ(fθ) = δ.

Consider the example in Figure 3.1. This example illustrates the main idea of our

approach, which is the dependence of the decrease in the potential function on the

length of the step θ.

Figure 3.1: Potential function decrease in θ-neighborhood
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More precisely, for every edge e

θ

|λe(f)− λe(f ∗)| =
δ

Ψ(f)− Ψ∗

Since both f and f ∗ are feasible flows,|λe(f)− λe(f
∗)| ≤ k, hence

θ ≤ δ

k0.5(Ψ(f)−Ψ∗)
≤ 2δ

k0.5Ψ(f)

or

θ ≤ 1

10k0.5Ψ(f)1.5

if Ψ(f) > 2m and

θ ≤ 1

10k0.5m1.5

otherwise.

Lemma 3.6.1 Let f be a feasible flow and g be a flow such that λ(f) ≥ 3/5 and

|λe(g) − λe(f)| = θ for every edge e, where θ = 1
10k0.5Ψ(f)1.5 if Ψ(f) > 2m and

θ = 1
10k0.5m1.5 otherwise. Then

Ψ(g) ≤ 3Ψ(f)

Proof: Denote xe ≡ λe(f), ye ≡ λe(g), x ≡ λ(f), y ≡ λ(g), then for any edge e

such that λe(g) > λe(f)

ψ(λe(g))

ψ(λe(f))
=
ye(1− xe)

xe(1− ye)
=

(xe + θ)(1− xe)

xe(1− xe − θ)
=
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= 1 +
θ

xe(1− xe − θ)

which is clearly an increasing function of xe for any xe > 3/5. Then for any edge e

ψ(λe(g))

ψ(λe(e))
≤ ψ(λ(g))

ψ(λ(f))
.

Hence

1. If Ψ(f) > 2m, we have θ = 1
10k0.5Ψ(f)1.5 ≤ (1−x

10x
)1.5. For any x ≥ 3/5

(
1− x
10x

)1.5 ≤ (1− x)/2.

Hence we get

1 +
θ

x(1− x− θ) ≤ 1 +
(1− x)/2

x((1− x)− (1− x)/2)
= 1 +

1

x
≤ 3

2. If Ψ ≤ 2m, then x
1−x
≤ 2m, or x ≤ 1− 1

2m
. Then

1 +
θ

x(1− x− θ) ≤ 1 +
1

10m1.5

x( 1
2m
− 1

10m1.5 )
≤ 1 +

1

3/5(2m0.5 − 1)
≤ 1 +

5

5m0.5
≤ 3

Then

Ψ(g) =
∑

e

λe(g)

1− λe(g)
≤

∑

e

3
λe(f)

1− λe(f)
= 3Ψ(f)

�

Observation 1 If at some point of the algorithm we achieve λ(f) ≤ 3/5 then we can

terminate Step 2 without disrupting the course of the algorithm. This follows from

the fact that in this case the termination criteria in Step 3 is not met, and hence the

proof of Lemma 3.4.2 is not affected.
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We can now bound the error term E(t) for the quadratic approximation of Ψ(f).

Lemma 3.6.2 For θ = 1
10k0.5Ψ(f)1.5 if Ψ(f) > 2m and θ = 1

10k0.5m1.5 otherwise, we

have

E(t) ≤ 5

7
δ

where δ = 1

k1.5(4
√

Ψ(f)+
√

m
)

Proof: Let v = f + αp. We have

Ψ
′′′

(v)t3 =
∑

e

t3e
(1− λe(v))4

≤
∑

e

1

(1− λe(v))4
(3.6.2)

1
(1−x)4

≤ 8( x
1−x

)4 + 8 for all 0 ≤ x < 1. Thus, we get

Ψ
′′′

(v) ≤ 8([Ψ(v)]4 +m). (3.6.3)

Using Lemma 3.6.1 we obtain

1/6Ψ
′′′

(λ(v))t3 ≤ θ3 ∗ 8/6([Ψ(v)]4 +m) (3.6.4)

≤ θ3 ∗ 8/6([3Ψ(f)]4 +m)

= 108θ3Ψ(f)4 + 8/6θ3m

Then if Ψ(f) > 2m,

108θ3Ψ(f)4 + 8/6θ3m ≤ 108Ψ(f)4

1000k1.5Ψ(f)4.5
+

8m

1000k1.5Ψ(f)4.5
≤≤ 1

7k1.5Ψ(f)0.5
≤ 5/7δ

If Ψ(f) < 2m then

108θ3Ψ(f)4 + 8/6θ3m ≤ 108m4

1000k1.5m4.5
+

8m

1000k1.5m4.5
≤ 1

7k1.5m0.5
≤ 5/7δ
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�

Thus we have also proved the following result.

Theorem 3 Consider an execution of the For loop in Step 2, with input yt. Suppose

the loop exits at iteration h. Then

Ψ(vh) ≤ 2Ψ∗(γ(yt)). (3.6.5)

We now analyze the complexity of Step 2 of the new algorithm.

Lemma 3.6.3 Let 0 ≤ r. The number of iterations of A.h-C.h in an execution of

Step 2 during Phase r of the algorithm FDQ is O(21.5min{r,q}m1.5k1.5).

Proof. We will show that if more than O(21.5min{r,q}m1.5k1.5) iterations h achieve

Ψ(vh+1)− Ψ(vh) < −2/7δ, (3.6.6)

then we will reach a value of Ψ smaller than Ψ∗, a contradiction.

Thus, consider an iteration h where (3.6.6) holds. Suppose first that

2Ψ(vh) ≥ m. (3.6.7)

In this case, the recursion (3.6.6) can be abstracted as

zh+1 − zh ≤ −c 1

z0.5
h k1.5

,

where c > 0 is a constant. This recursion has the property that it reduces zh by a

factor of 2 in O(z1.5
h k1.5) iterations. Thus, using Lemma 3.4.7, we obtain that there

are at most O(21.5min{r,q}m1.5k1.5) iterations of A.h-C.h where (3.6.7) holds.
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In the remainder of the proof we handle the iterations with 2Ψ(vh) < m. If r > 0

then using Lemma 3.4.1(ii) we conclude that each iteration satisfying (3.6.6) decreases

Ψ by Ω(1/m0.5k1.5), and consequently there are at most O(m1.5k1.5) such iterations.

This concludes the proof if r > 0. Finally, if r = 0 then just as in the previous line

we conclude that in at most O(m1.5k1.5) iterations we obtain Ψ(vh) ≤ 1. By Lemma

3.4.4, γ(x0) ≥ Γ∗

2m
, and a variation of the analysis in Lemma 3.4.1 shows that any

time during Phase 0, Ψ∗ ≥ 1
2m

. We conclude that there are at most O( 1
1/2m

) = O(m)

iterations h with Ψ(vh) < 1.

Corollary 3.6.4 The total number of iterations A.h over the course of Algorithm

FD is O(m2.5k1.5ε−1.5T ) where T is the complexity to optimize the quadratic multi-

commodity flow problem in θ-neighborhood of f .

Thus it is evident that the algorithm developed in 1971 by Fratta, Gerla and

Kleinrock not only shows a performance comparable with the most recent algorithms,

but also has a strong potential for further improvement.
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