
DOCTORAL DISSERTATION

Efficient Information
Dissemination Systems

Anton Riabov

Columbia University

Department of Industrial Engineering

and Operations Research

March 2004

Acknowledgements

I would like to thank my advisors Prof. Daniel Bienstock and Prof. Jay Sethuraman for their help
and support in my studies and research. I am also very grateful to my coauthors and mentors Li
Zhang, Zhen Liu, Sambit Sahu, Joel L. Wolf, and Philip Yu at T.J. Watson IBM Research Center for
their help in finding and understanding exciting practical research problems. This work would not
have been possible without them.

1

Contents

1 Introduction 5

1.1 Information Dissemination Systems . 5

1.2 Internet Infrastructure and Multicast . 6

1.3 Overlay Multicast and Performance Optimization . 8

1.4 Summary of Contributions . 10

1.5 Structure of the Thesis . 11

2 Reliable Overlay Multicast 12

2.1 Introduction . 12

2.2 Architecture of Reliable Overlay Multicast . 13

2.2.1 Reliable Transfer and Forwarding via Back-Pressure 15

2.2.2 End-to-End Reliability and Backup Buffers . 15

2.2.3 Leave and Join Procedures . 16

2.3 End-to-End Reliability . 16

2.3.1 Guarantee of the End-to-End Reliability . 17

2.3.2 Handling Leave and Join and Restoring Connectivity 18

2.4 Simulation and Experimental Results . 19

2.4.1 Scalability and Reliability: Internet Measurements 19

2.4.2 Simulation of Tree Evolution . 22

2.5 Conclusions . 23

3 Minimum Radius Spanning Tree With Degree Constraints 24

3.1 Introduction . 24

3.2 Constant Factor Approximation . 26

2

3.3 Asymptotically Optimal Algorithm . 27

3.3.1 Constructing the polar grid. 28

3.3.2 Connecting the cells. 28

3.3.3 Connecting remaining points within cells. 29

3.3.4 Lemmas. 29

3.3.5 Solution analysis. 30

3.4 Generalization . 32

3.4.1 Out-Degree 2 . 32

3.4.2 Higher Dimensions . 32

3.4.3 General Convex Region . 33

3.5 Experiments . 33

3.6 Conclusion . 37

4 Throughput Maximization in Overlay Multicast 38

4.1 Introduction . 38

4.2 Degree-Constrained Spanning Tree Problem . 39

4.2.1 Witness Set Theorem . 39

4.2.2 Approximation Algorithm for DCST . 41

4.2.3 Analysis of the Algorithm . 42

4.3 Duplex Channel Problem . 42

4.3.1 Complexity Analysis . 43

4.3.2 Approximation Algorithm . 43

4.4 Separate Channel Problem . 44

4.4.1 Complexity Analysis . 45

4.4.2 Approximation Algorithm . 45

4.5 Upper Bounds . 47

4.5.1 Total Degree Bound . 47

4.5.2 Witness Set Bound . 47

4.6 Solving Throughput Maximization Problem Numerically 48

4.6.1 Initial Relaxation . 49

4.6.2 Cutting Inequalities . 50

3

4.6.3 Volume Algorithm . 52

4.7 Experiments . 53

4.8 Conclusion . 55

5 Multicast Group Membership 56

5.1 Introduction . 56

5.2 Problem Notation . 59

5.3 Preliminary Analyses . 59

5.4 Algorithms for Subscription Clustering . 63

5.4.1 Grid-Based Clustering Framework . 63

5.4.2 K-Means and Forgy K-Means Clustering . 65

5.4.3 Pairwise Grouping . 65

5.4.4 Minimum Spanning Tree Clustering . 66

5.4.5 No-Loss Algorithm . 66

5.4.6 Matching Subscriptions To Events . 67

5.5 Experiments . 68

5.5.1 Experiment Model . 68

5.5.2 Experiment Results . 70

5.6 Conclusions and Discussions . 72

6 Conclusions and Future Work 75

6.1 Contributions . 75

6.2 Future Work . 76

4

Chapter 1

Introduction

This thesis presents new models for analysis of overlay-based information dissemination systems and
proposes new algorithms that allow these systems to achieve optimal performance, or performance that
is provably close to optimal. In this work we study optimization problems associated with finding
spanning trees that achieve optimal delay or throughput subject to degree constraints. Although
we formulate these problems and describe algorithms with Internet overlay networks in mind, our
methods can be applied for performance optimization in other types of information networks where
node degrees can not exceed preset maximum, dictated by real-world constraints.

1.1 Information Dissemination Systems

The digital information era has brought incredible advances in computing and communication tech-
nology, the advances that have made possible the advent of new methods of communication, such as
web and email, and their penetration in all spheres of our life. Increasingly accessible electronic com-
munication is changing the way businesses work and people live. The spread of the Internet reaches
almost all parts of the world, and even in space astronauts can read and send email messages.

The most popular applications of these new communication technologies, including email and the
web, are built upon reliable point-to-point connection-based data transmission provided by a family
of network protocols called TCP/IP. Traditionally this communication method is referred to as uni-
cast, to emphasize that each such transmission has only one destination. However, in many practical
communication scenarios the same block or stream of data must be sent to more than one destination.
Such applications as web seminars, video conferences, or online stock trading systems, use the network
to push data streams from a source node to a set of subscribers. Increasingly available and widespread
broadband Internet connections contribute to the growing interest in these new and important appli-
cations that can efficiently support group interaction. These new applications have the potential to
shape the future of the Internet and change the way people communicate once again.

In this work we will use the term Information Dissemination Systems to describe systems that deliver
individual copies of the same data from one source computer or a cluster of computers to client
computers (subscribers) via the Internet. Although we concentrate on developing methods for efficient
delivery of data from one source to multiple receivers, our results can be applied in cases where more
than one group member can be a transmission source. For example, a straightforward extension to
multiple sources is to construct a dissemination system for each source separately, and then use a

5

combination of these systems, assigning each source to the corresponding dissemination system.

The typical applications that use group communication can impose different, and sometimes conflict-
ing, requirements on the information dissemination system. Devising methods for designing efficient
and reliable content dissemination systems that can satisfy these requirements is crucial for the de-
velopment of the future generation of Internet communication.

The requirements typically presented to the content dissemination systems may demand to keep system
performance above a fixed threshold, or may require the system to achieve best possible performance.
Further, the requirements may impose constraints on reliability and other aspects of system behaviour.

Many applications, such as real-time streaming applications, including video-over-Internet broadcasts
and video conferences, require high throughput and low latency of the dissemination system. Typically
in streaming applications group membership changes are relatively infrequent, and transmitted data
size is large, so that configuration time is insignificant when compared to transmission time. This
property allows to use models that assume steady data flow in the network, that is not affected by
configuration traffic and associated computation. Similarly, in cache synchronization applications and
multiplayer video games group membership can be considered static.

Examples where static group membership does not hold can include peer-to-peer networks and news
distribution systems, such as stock price update distribution. In news distribution systems very small
news messages are delivered to large groups of subscribers, however amount of data sent to each
particular user of the system is small.

Reliable delivery is another important requirement, which must be satisfied by the dissemination sys-
tem in most of the described applications. Finally, in addition to throughput and latency requirements,
which can be viewed as performance requirements, there is often also a requirement of scalability : the
system must efficiently support communication within large groups, and small increase in group size
should not lead to sharp decline in system performance.

1.2 Internet Infrastructure and Multicast

The Internet is a composition of a number of connected packet networks (subnets) supporting commu-
nication between host computers via Internet protocols. All protocols used in the Internet are based
on the Internet Protocol (IP), which provides a basic data transport mechanism. The routers (or
gateways) forward IP datagrams between subnets based on IP address specified in the datagram and
a routing table stored in the router. During delivery IP datagrams may be damaged, lost, or arrive out
of order. Applications running on the host computers rely on transport protocols for end-to-end com-
munication. There are two transport layer protocols: Transmission Control Protocol (TCP) and User
Datagram Protocols (UDP). TCP provides reliable connection-based data delivery. It can resequence
packets if needed and adapt to changing network conditions by reducing or increasing transmission
rate. UDP is a connectionless transport protocol, which does not guarantee reliable datagram delivery,
but does not have the overhead associated with reliable communication.

IP address is a 32-bit number, which identifies destination of a datagram. A newer version of the
Internet Protocol (IPv6) can use 48-bit numbers for addressing. Longer addresses allow to address
more hosts uniquely, and therefore to support larger networks. However, these extended addresses are
used in a very similar addressing scheme, and in this discussion we will refer to 32-bit version, which
is commonly used in the current Internet. There are five classes of IP addresses: class A through E.

6

Figure 1.1: IP Multicast Tree.

Class of the IP address is defined by first bits of the address (address prefix). IP addresses of classes
A, B and C identify hosts, and are used to specify targets of unicast communication. The distinction
between classes A, B and C is no longer important. Class E address are reserved for experimental
use. A special address 255.255.255.255 is used for broadcast: a datagram addressed to this address
must be delivered to all hosts. And finally, class D addresses are used for multicast. A datagram sent
to a multicast address must be delivered to all hosts belonging to a group of hosts, called a multicast
group. Multicast group is identified by a 28-bit number encoded in class D address.

Multicast can be viewed as a middle point between unicast and broadcast: it implements one-to-many
communication, as opposed to one-to-one in case of unicast or one-to-all in case of a broadcast. Mul-
ticast provides a more efficient method of group communication, than unicast. If the communication
network is not a complete graph, sending the same data from the same source to several destinations
can involve sending multiple copies of the same packet (but with different destinations) on the same
link. This may not pose a problem for small groups and small transmission sizes, but in many ap-
plications limited bandwidth of the interface link connecting the source to the network may limit the
size of the group. Multicast allows packets to follow a spanning tree reaching all destinations, while
sending only one copy of a packet on each link, and creating a necessary number of copies at branching
nodes.

Figure 1.1 shows an IP multicast tree in a network connecting computers and routers. Routers are
shown as circles, and computers as squares. Distribution tree is shown by arrows, and routers can
forward packets they receive to one or more destinations, as required by multicast routing.

Although a special class of IP addresses had been reserved for multicast from the beginning, multicast
was being adopted very slowly. Up to this day availability of IP multicast in the Internet is limited:
not all routers can interact to provide necessary multicast service. In particular routers must be able
to forward datagrams to more than one destination, and to support required data structures in routing
tables. A number of multicast routing protocols, such as PIM, DVMRP, CBT, MOSPF, have been
developed. A survey of IP multicast methods can be found in [42]. For more details about Internet
protocols and IP multicast see e.g. [22]. For discussions of IP multicast applications and challenges
see [47].

There are several reasons why IP multicast is not currently widely used for information dissemination

7

over the Internet:

1. Limited number of groups. Each multicast group must have a globally unique IP address. As
a consequence, IP address range used by an application must be reserved in advance, and the
number of groups that can coexist in the network is limited. This can result in service being
denied to clients who attempt to establish a group when the allocated range of IP addresses is
exhausted.

2. Scalability. Although multicast resolves the link congestion problem that exists in unicast case,
discovery of group members and maintaining data structures in routing tables still presents
challenges for large networks.

3. Interdomain Routing. Existing multicast routing protocols are deployed within isolated subnets
within the Internet, and for large-scale multicast deployment it is required to connect the sub-
nets via an interdomain multicast routing protocol. However, currently proposed protocols are
considered too complicated and ineffective to be deployed [4].

4. Reliability vs. Scalability. IP multicast by itself does not provide reliable connection, and if
reliability is desired, additional functionality must be implemented. However it has been shown
that in such implementations throughput vanishes when group size increases [53, 16].

5. Security. IP multicast delivers a packet sent to multicast address to all destinations subscribed
to the corresponding multicast group, while reducing traffic leaving the source to only one copy
of the packet. Absence of access control makes IP multicast a target for Denial of Service (DoS)
attacks.

1.3 Overlay Multicast and Performance Optimization

When it became apparent that IP multicast has very limited capacity as a means of information
dissemination over Internet, an alternative called overlay multicast was proposed. This new technology
is also referred to as end-system multicast or application level multicast. In overlay multicast the
multicast distribution tree is formed using point-to-point connections between end systems (hosts).
Standard Internet transport protocols (TCP or UDP) are used to provide transport service between
end systems, and therefore the network routers are not required to support any of the IP multicast
routing protocols. However the end systems are now required not only to receive the data, but to
forward it to other end systems located deeper in the distribution tree. Overlay multicast removes the
burden of multicast routing and packet replication from the routers, which allows to utilize existing
Internet infrastructure for efficient information dissemination.

Figure 1.2 illustrates an implementation of overlay multicast in the network introduced in Figure 1.1.
Arrows indicate unicast flows between end systems. An edge in the overlay network represents the
path between the two nodes that it connects. While this path may traverse several routers in the
physical network, this level of abstraction considers the path as a direct link in the overlay network.

This new technology has become an area of extensive research. Various studies have been conducted
with the primary focus on the protocol development for efficient overlay tree construction and main-
tenance, such as Narada [19], Yoid [25], ALMI [46, 54], Host Multicast [64], NICE [9], Delauney graph
[37], and [55, 56]. Some other work in peer to peer network area is also related to the tree construction
in overlay multicast, see e.g. Chord [59] and CAN [48].

8

Figure 1.2: Overlay Multicast Tree.

Reliable multicast can also be implemented in overlay using point-to-point TCP connections. An
examples of such systems include Overcast [33] and RMX [17]. The main advantage of such approaches
is the ease of deployment. In addition, [17] argues that it is possible to better handle heterogeneity
in receivers because of hop-by-hop congestion control and data recovery provided by TCP. Further, it
has been shown that in contrast to reliable network-supported multicast, TCP-based overlay multicast
is scalable [7, 6].

Performance characteristics of information dissemination system based on overlay multicast may vary
depending on the choice of links that are used to build the multicast tree. Increasing the number
of downstream connections for the source node, for example, may reduce latency of the system by
reducing tree depth, but it may also reduce multicast throughput, since capacity of the link connecting
the source node to the Internet must be shared between all outgoing links. Bandwidth sharing
between point-to-point transmissions comprising the same multicast tree makes overlay multicast
routing problem more difficult than its IP multicast counterpart, and hence wide range of performance
optimization methods and models developed for IP multicast cannot be reused directly for overlay
optimization.

In research papers that describe heuristics for optimal overlay routing, this throughput sharing phe-
nomenon is modeled by imposing degree constraints on the nodes in multicast tree, see e.g. [39, 57, 54].
Degree constraints are also referred to as fanout constraints, due to the fact that multicast trees are
directed, and degree constraints can be replaced by equivalent constraints on out-degree. In other
words, it is assumed that if a certain fixed level of throughput must be achieved, the maximum number
of streams that can be forwarded to downlinks by a node can be determined based on the capacity of
access link connecting the node to the Internet. This model ignores capacity sharing between streams
that may occur on the links inside the Internet, which is usually justified by high capacity of these
links and efficient routing algorithms.

Problems of finding spanning trees that satisfy degree constraints and, optionally, optimize an objective
function were also studied in a few research papers not directly related to overlay multicast. In [15]
a numerical solution approach based on branch-and-bound method is proposed for the problem of
finding minimum spanning tree which is subject to degree constraints. In [34] an approximation
algorithm is proposed for the minimum diameter spanning tree problem. Finally, in [26] and [27]

9

an approximation algorithm for finding a spanning tree of minimum degree is described. However,
existing research of this topic does not provide ready solutions for optimal overlay routing problem,
and further investigation of this class of problems is required.

1.4 Summary of Contributions

The main contribution of this dissertation is a family of efficient methods that can maximize scalability
of an information dissemination system by configuring the system such that it achieves optimal or
close to optimal performance. Our contributions lie in two areas related to large-scale information
dissemination systems. First, we develop models and efficient methods for finding optimal overlay
multicast trees with respect to throughput and latency. Second, we address the issue of forming
multicast groups for the special case of information dissemination systems, where subscribers are
interested in receiving only those messages that correspond to their interests – so called content-based
publish-subscribe systems. We explain our results in more detail below.

Scalable and Reliable Overlay Multicast Architecture. We propose an architecture for reli-
able overlay multicast, which can recover from node failures and provide support for clients joining
and leaving an ongoing multicast session. We evaluate scalability and reliability characteristics of our
prototype implementation in the Internet. We demonstrate that reliable multicast overlays can be
deployed on top of the current TCP/IP by adding a light set of application layer back-pressure mecha-
nisms that guarantee both end-to-end flow control and reliability. We further show that architectures
can be used for group communications of large sizes and still provide a group throughput that is close
to that of a single point to point connection with these minimal guarantees.

Minimum Latency Routing. We describe an algorithm for constructing a multicast tree with the
objective of minimizing the maximum communication delay (i.e. the longest path in the tree), while
satisfying degree constraints at nodes. We show that the algorithm is a constant-factor approximation
algorithm. We further prove that the algorithm is asymptotically optimal if the communicating nodes
can be mapped into Euclidean space such that the nodes are uniformly distributed in a convex region.
We evaluate performance of the algorithm using randomly generated configurations of up to 5,000,000
nodes.

Maximum Throughput Routing. We formulate the optimization problem of maximizing through-
put in overlay multicast, and prove that it NP-hard. We further prove a bound on best achievable
approximation factor. Next, we develop a constant factor approximation algorithm for the problem,
which achieves throughput close to the best possible. Our experiments show that the problem of
finding optimal routing can be very hard even on small networks, and cannot be solved by standard
numerical solvers. We then develop an approach, based on integer programming, volume algorithm
and cutting planes, that allows to find the exact optimal routing numerically, and perform numeric
experiments.

Interest-Based Grouping. We consider efficient communication schemes based on multicast tech-
niques for content-based publication-subscription systems. We propose to use clustering algorithms
to form multicast groups. We devise new algorithms and adapt partitional data clustering algorithms

10

for these content-based publication-subscription systems. These algorithms can be used to determine
multicast groups with as much commonality as possible, based on the totality of subscribers’ inter-
ests. These algorithms perform well in the context of highly heterogeneous subscriptions, and they
also scale well. We demonstrate the quality of our algorithms via a set of simulation experiments.

1.5 Structure of the Thesis

This thesis is organized as follows. In Chapter 2 we introduce reliable overlay multicast architecture,
and investigate scalability and reliability of the proposed system via experiments in the Internet.
Chapter 3 studies minimum latency routing. We describe the model, and formulate an optimization
problem that we call minimum radius spanning tree with degree constraints. We analyze existing work
on mapping Internet delays to Euclidean space, and conclude that to solve the latency minimization
problem it is sufficient to the minimum radius problem for the special case of Euclidean distances.
We then describe a constant factor approximation algorithm. We prove that the algorithm constructs
solutions that are asymptotically close to optimal if nodes are uniformly distributed in convex region.
In Chapter 4 we study maximum throughput routing. We develop a constant factor approximation
algorithm and a method for solving the problem exactly. Chapter 5 studies the problem of grouping
subscribers based on interest, which arises in a special subset of information dissemination systems,
namely content-based publish-subscribe systems. In this chapter approach the problem of grouping
subscribers separately from the multicast routing problem due to its complexity. We propose and
evaluate clustering heuristics for solving this problem. Finally, in Chapter 6 we summarize our results
and propose directions for future work. Results presented in this thesis were published in [49, 50, 51,
7, 6].

11

Chapter 2

Reliable Overlay Multicast

2.1 Introduction

With the proliferation of broadband Internet access, end-system multicast becomes not only a prac-
tically feasible approach, but also an appealing alternative to the IP-supported multicast which has
been experiencing deployment obstacles. In many applications, such as cache synchronization, peer-to-
peer systems, and online learning reliable delivery is very important. In this chapter we will describe
system architecture for reliable overlay multicast, and discuss reliability and scalability of proposed
architecture.

Reliable overlay multicast can be implemented using point-to-point TCP connections. In Overcast
[33], HTTP connections are used in between end-systems. In RMX [17], TCP sessions are directly
used. The main advantage of such approaches is the ease of deployment. In addition, [17] argues that
it is possible to better handle heterogeneity in receivers because of hop-by-hop congestion control and
data recovery.

Two issues arise from this approach. The first one is the end-to-end reliability. In case of failure
of a interior node of the overlay multicast tree, the nodes in the subtree rooted at the failed node
need, on one hand, to be re-attached to the remaining tree and, on the other hand, to get TCP
sessions established from where they are stopped. The former is referred to as the resiliency issue in
the literature, which, in this context, consists in the detection of failures and in the reconstruction of
trees. Very recently resilient architectures have become a hot topic. For example, in [10], a resilient
multicast architecture was proposed using random backup links. While it is relatively easy to find
nodes of re-attachment and thus to reconstruct the tree, it is not guaranteed that the TCP sessions
can be restarted from where they are stopped due to the fact that the forwarding buffers of the
intermediate nodes in the overlay network have finite size. It may happen that the packets needed by
the newly established TCP sessions are no longer in the forwarding buffers.

The second issue that arises in reliable multicast using overlays is the scalability. There is a lack of un-
derstanding of the performance of TCP protocol when used in an overlay based group communication
to provide reliable content delivery. Although studies in [17, 33] have advocated the usage of overlay
networks of TCP connections, they do not address the scalability concerns, in terms of throughput,
buffer requirements and latency of content delivery. In contrast, significant effort has been spent on
the design and evaluation of IP-supported reliable multicast transport protocols in the last decade,
see for example [24, 14, 36] and the references therein. It has been shown in various studies [53, 16]

12

that for such IP-supported reliable multicast schemes, group throughput vanishes when the group size
increases. Thus these schemes suffer from scalability issues.

Some preliminary results have been reported recently on the scalability issue of overlay based reliable
multicast. In [60], the authors investigated this scalability issues while considering a TCP-friendly con-
gestion control mechanism with fixed window-size for the point-to-point reliable transfer. Simulation
results were presented to show the effect of the size of end-system buffers on the group throughput.

In recent work by F. Baccelli and others [7, 6] it was shown using max-plus algebra models that
reliable overlay multicast based on point-to-point connections via TCP has scalable throughput in the
sense that the group throughput is lower bounded by a constant independent of the group size.

In this chapter, we show that end-to-end reliability of multicast using overlays can be achieved with
the native TCP back-pressure mechanism together with backup buffers. We call back-pressure the
ability for the receiver of a TCP connection to stop packets being sent by the source, in case its
receiving buffer is full (see more details in the next section). More specifically, we propose a simple
end-system multicast architecture where the transfers between end-systems are carried out using
TCP. The intermediate nodes have finite size forwarding buffers. There is also a backup buffer
with finite size in each of these intermediate nodes storing copies of packets which are copied out
from the receiver window/buffer to the forwarding buffer. These backup buffers are used when TCP
connections are re-established for the children nodes after their parent node fails. Using theoretical
investigations, experimentations in the Internet, and simulations of large networks, we show that such
an architecture provides end-to-end reliability and can tolerate multiple simultaneous node failures,
provided the backup buffers are sized appropriately. We also confirm via experiments in the Internet
that the theoretical scalability results presented in [6], namely that the throughput of this reliable
group communication is always strictly positive for any group size and any buffer size. The back-
pressure mechanism of TCP allows not only reliable point-to-point transfers, but also scalable end-
system multicast.

In our architecture, we also propose leave and join procedures which guarantee the reliability and
scalability of the group communication. These considerations of leave and join events are particularly
motivated by the increasing interest in using TCP for real time applications, (see studies on multimedia
streaming over TCP [31, 40]). TCP is an appealing alternative of UDP for such applications due to
a number of advantages such as fair bandwidth sharing, in-order delivery and passing through client
imposed firewalls, which may only permit HTTP traffic.

The chapter is organized as follows. Section 2.2 describes the core of the problem and the multicast
overlay architecture. Section 2.3 describes the algorithms ensuring overall reliability and gives a proof
of their end-to-end reliability properties. Simulation results and Planet-Lab experiments aiming at
showing the joint scalability and reliability properties of this kind of architecture are gathered in §2.4.

2.2 Architecture of Reliable Overlay Multicast

We consider the problem of reliable group communication where the same content has to be trans-
ported in an efficient way from a source to a set of users. The broadcasting of this content is made
efficient via the setting of a multicast tree where each node of the tree duplicates the packets it receives
from its parent node and sends them to all its child nodes. In contrast to native reliable IP multicast
where the nodes of the tree are Internet routers and where specific routing and control mechanisms
are needed, overlay multicast uses a tree where the nodes are end-systems and where the currently

13

...

Output
buffer 1

Output
buffer 2

Output
buffer n

buffer
Input

Parent
Child 2

Child n

Child 1

Backup
buffer

Figure 2.1: Reliable Overlay Multicast: Different buffers in a node.

available point to point connections between end-systems are the only requirement.

An edge in the overlay network represents the path between the two nodes that it connects. While
this path may traverse several routers in the physical network, this level of abstraction considers the
path as a direct link in the overlay network. The end-systems participate explicitly in forwarding
data to other nodes in a store-and-forward way. The point-to-point communication between a parent
node and a child node is carried out by TCP. As illustrated in Figure 1.2, after receiving data from
its parent node, a node will replicate the data on each of its outgoing links and forward it to each of
its child nodes in the overlay tree.

In such an overlay network, except for leaf nodes, all the other nodes, which store and forward packets,
need to provision buffers for the packet forwarding purpose. On each node (except for the source node),
there is an input buffer, corresponding to the receiver window of the upstream TCP, and, except for
the leaf nodes, there are several output buffers, also referred to as forwarding buffers, one for each
downstream TCP connections. There is also a backup buffer in each of these intermediate nodes
storing copies of packets which are copied out from the input buffer (receiver window) to the output
(forwarding) buffers. These backup buffers are used when TCP connections are re-established for
the children nodes after their parent node fails. Figure 2.1 illustrates these buffering mechanisms.
Throughout this chapter we shall assume that all these buffers have finite sizes BIN, BOUT, BBACK (for,
respectively, input buffer, output buffer and backup buffer).

Tree topology will have an effect on the performance of the group. If the depth of the tree is too big,
the nodes deep in the tree will receive packets with long delay. On the other hand, if the (out)degree
of the tree is too big, the downstream TCP connections will compete for the bandwidth of the shared
links, especially that of the “last mile”. In this chapter, we will not consider the tree construction
optimization issue, which is studied in Chapters 3 and 4. Rather, we assume that the tree topology
is given, and that the out-degrees (or fan-out) are bounded by a constant D.

From management perspective, the tree topology information needs to be stored and updated by the
end-systems. Each node should at least have a partial view of the tree. Different architectures could
be considered and implemented. In this work, we consider a simple, but not necessarily the most
efficient, structure which consists in allowing each node to know its ancestor nodes and its entire
subtree.

Notation We will consider several tree topologies, for which we introduce the following generic
notation: we number end-systems by a pair (k, l) designing their location in the multicast tree. The
first index k gives their distance to the root of the tree (or level). The second index l allows one to
number end-systems with the same level. For the case of a complete binary tree, the end-systems with

14

the same distance k from the source are labeled by numbers l = 0, . . . , 2k − 1.

The parent node of end-system (k, l) will be denoted (k − 1, m(k, l)). The child nodes of end-system
(k, l) will be labeled (k + 1, l′) with l′ ∈ d(k, l). For a complete binary tree, m(k, l) = b l

2
c and d(k, l)

is {2l, 2l + 1}.

2.2.1 Reliable Transfer and Forwarding via Back-Pressure

There can be three different types of packet losses in the overlay multicast: (1) losses that occur in
the path in-between the nodes (sender and receiver); (2) losses due to input buffer overflow; (3) losses
due to output buffer overflow. The first type of losses are recovered by the TCP acknowledgment and
retransmit mechanisms. The second type of losses will not occur thanks to the back-pressure mecha-
nism of TCP (RENO, New RENO or SACK). Indeed, the available space in the input buffer at the
receiver node is advertised to the sender through the acknowledgments of TCP. The acknowledgment
packet sent by the receiver of the TCP connection contains the space currently available in the receiver
window. The sender will not send a new packet unless the new packet and those “in-fly” packets will
have room in the receiver window. In addition, when the available input buffer space differs from the
last advertised size by two Maximal Segment Size (MSS) or more, which can occur when packets are
copied to the output buffers, the receiver sends a notification to the source via special packet. The
last type is avoided in our architecture. Indeed, a packet will be removed from the input buffer only
when it is copied to all of the output buffers. The copy process is blocked when an output buffer is full
and is resumed once there is room for one packet in that output buffer. Thus, due to this “blocking”
back-pressure mechanism, there will be no overflow at the output buffers.

2.2.2 End-to-End Reliability and Backup Buffers

With end-system multicast scheme, an important issue to address is resiliency, i.e., handling node
failures and/or departures (possibly without prior notice). For this, one first needs to detect failures.
Unfortunately TCP does not provide a reliable and efficient mechanism for detecting nodes that are
not responding. Different methods can however be deployed for this purpose, e.g. heartbeat probes,
keep-alive signals, etc. A heartbeat message is sent using UDP at regular time intervals to all neighbors
of a node, and missing heartbeats from a neighbor indicate a node failure. The keep-alive messaging
system can be established in a similar way. We will assume that one of such mechanisms is deployed.
The comparison of their efficiency is out of the scope of this work.

Once a failure is detected, the tree needs to reconfigure in such a way that the subtrees rooted at
the child nodes of the failed node are re-attached to the original tree. A new TCP connection is
established for each re-attachment. In other words, we need to find “step-fathers” for the child nodes
of the failed node. There is a variety of ways to reconfigure the tree. We shall present some in Section
2.3 and study their impact in Section 2.4. This reconfiguration is completed by propagating the
information of new subtrees up to the root, and by propagating the ancestor chain information down
to the newly reconnected subtrees. This tree topology information update process is initiated by the
parent node and the child nodes of the failed node; whereas the ancestor chain information update
process is initiated by the “step-father” nodes. In order to achieve end-to-end reliability, we need to
ensure the data integrity while providing resiliency. In other words, we need to make sure that when
these child nodes (of the failed node) are attached to the remaining tree, the new parent nodes have
the data that are old enough so that these child nodes, as well as their offspring, receive the entire

15

sequence of packets that the source sends out. For this purpose, we implement the backup buffers in
the end-systems so that whenever a new TCP connection is established, the packets in the backup
buffer of the sender will first be copied to the output buffer corresponding to this new connection. In
this way, the sender starts with these packets that have smaller sequence numbers than those in the
input buffer of the sender.

We will show in Section 2.3 that if the size of the backup buffer is large enough compared to those
of input and output buffers, then the end-to-end reliability is guaranteed even if there are multiple
simultaneous failures. More precisely, Let Bmax

OUT and Bmax
IN be the maximum sizes of output and input

buffers, respectively. Then the backup buffers should be of size

BBACK ≥ m · (Bmax
OUT + Bmax

IN) + Bmax
OUT (2.1)

in order to tolerate m simultaneous failures. Under such a condition, the child nodes of the failed
node can be re-attached to any of the nodes in the subtree rooted at the m-th generation ancestor of
the failed node.

It is worthwhile noticing that this backup buffer architecture for the end-to-end reliability is very
simple. In particular, it can be implemented at the application level and there is no need of searching
for nodes possessing the packets with the right sequence numbers that these child nodes need.

2.2.3 Leave and Join Procedures

While convention wisdom suggests that UDP should be used for real time applications, there has been
increasing interest in multimedia streaming over TCP, see e.g. studies in [31, 40]. TCP is an appealing
alternative of UDP for such applications due to a number of advantages such as fair bandwidth sharing,
in-order delivery. Moreover, TCP could pass through client imposed firewalls, which may only permit
HTTP traffic. We envision that the end-system based reliable multicast architecture described above
can be deployed for broadcast of live events.

Thus, we also consider leave and join procedures. The leave procedure can simply be the notification
of the departure to the parent node and to the child nodes, followed by the disconnect of the corre-
sponding TCP sessions. The tree can then be reconfigured as in the node failure situation. When a
node joins the group, it can first contact the source node which will inform the new node who should
be its parent node. The new node can then establish a TCP connection with the designated parent
node. In order to guarantee the end-to-end reliability in the new tree, the source also notifies the new
node about the constraints on the buffer sizes such that the input and output buffer sizes should not
exceed Bmax

IN and Bmax
OUT , respectively; and the backup buffer size should satisfy inequality (2.1). These

leave and join procedures are completed by the topology information update process as described
previously in the node failure case.

2.3 End-to-End Reliability

In this section we investigate into the end-to-end reliability issue. As we mentioned in Section 2.2, using
TCP for point-to-point connections guarantees reliable transfers between the nodes of the group, but
does not provide uninterrupted transmission in cases when a transit node suddenly stops functioning.
Child nodes of the failing node must restore connection to the multicast group, and they should receive
all stream packets. Throughout this chapter we shall assume that the source node never fails.

16

Avoiding interruption in packet sequence may not be trivial, especially for nodes distant from the
root, since the packets that these nodes were receiving at the time of failure may have been already
processed and discarded by all other group members, except for the failed node. We employ backup
buffers to create copies of stream content which could be otherwise lost during node failure. Figure 2.1
illustrates our approach. While data is moved from the input buffer to the output buffers, a copy of
data leaving input buffer is saved in the backup buffer. The backup buffer can then be used to restore
packets which were lost during node failure.

We will show below that this end-to-end reliability can be achieved through the backup buffers,
provided they are sized appropriately. We will formally derive a formula for the size of the backup
buffer. We shall also present leave/join algorithms so as to keep the group throughput scalable.

2.3.1 Guarantee of the End-to-End Reliability

Definition of End-to-End Reliability. We define overlay multicast system to be end-to-end reli-
able with tolerance to m failures, if after removing simultaneously m nodes from the multicast tree and
restoring connectivity, transmission can be continued, and all remaining nodes receive entire trans-
mission in the same sequence. In other words, failure of m nodes does not lead to any changes in the
sequence or content of the stream received at the remaining nodes. However recovering from failure
may incur a delay, which is required to restore connectivity.

During the time when the system is recovering from m failures, it is not guaranteed to recover correctly
from any additional failures. However if l, for some 1 ≤ l ≤ m, failures occur, the system will be able
to recover from additional (m− l) failures even if the failures happen before the system has completely
recovered. In such situations new failures occurring during recovery will increase total recovery time.

Let Bmax
OUT and Bmax

IN be the maximum sizes of output and input buffers in the system, respectively. A
backup buffer of order r has size (r · (Bmax

OUT + Bmax
IN) + Bmax

OUT).

Failure Recovery Algorithm. We use the following simple algorithm to recover from failures. We
shall call node (k′, l′) surviving ancestor of node (k, l), if the parent of node (k, l) did not survive the
failure, and (k′, l′) is the first surviving node on the path from (k, l) to the source. Each disconnected
end-system (k, l) must be reconnected to a node that belongs to the subtree of the surviving ances-
tor (k′, l′). After connection is restored, the node (k′, l′) retransmits all packets contained in its backup
buffer. Then it continues the transmission, reading from input buffer and writing to output buffer.
Intermediate nodes on the new path from (k′, l′) to (k, l), as well as all nodes in the entire subtree of
(k, l), must be able to ignore the packets that they have already received, and simply forward them
to downstream nodes.

Theorem 2.3.1. An overlay multicast system with backup buffer of size (m · (Bmax
OUT + Bmax

IN) + Bmax
OUT)

is end-to-end reliable with tolerance to m failures.

Proof: To estimate required backup buffer size, we first consider a chain of nodes (k1, l1) →
(k2, l2) → (k3, l3). Let W (ki+1,li+1) be the size of the receiver window on the TCP Connection (ki+1, li+1),
for i=1, 2. Suppose that node (k2, l2) fails. When failure is detected, node (k3, l3) will connect to node
(k1, l1) and request it to re-send packets starting from packet number t+1, where t is the number of
the last packet that node (k3, l3) received. The number of packets stored in input and output buffers
at node (k2, l2), plus the number of packets ‘in-fly’ to and from node (k2, l2), is at most (Bmax

OUT + Bmax
IN).

17

This bound is guaranteed by TCP’s choice of receiver window size: at most W (k2,l2) packets will be
‘in-fly’ to node (k2, l2), and W (k2,l2) does not exceed the amount of free memory in the input buffer
of node (k2, l2). Similarly, at most W (k3,l3) packets will be ‘in-fly’ to node (k3, l3), but they are not
removed from the output buffer of node (k2, l2), until (k3, l3) acknowledges that it has received the
packets. Therefore the difference between the smallest packet number at node (k1, l1) and the highest
packet number at node (k3, l3) does not exceed the sum of buffer sizes at node (k2, l2). During re-
transmission the application at node (k1, l1) does not have access to the output socket buffer, and may
need to re-transmit the contents of this buffer as well. Hence the total number of packets that need to
be re-transmitted is bounded by Bmax

OUT +(Bmax
OUT + Bmax

IN) , which is the size of an order 1 backup buffer.

If (k2, l2) has more than one child node, each of the child nodes will require at most Bmax
OUT +(Bmax

OUT + Bmax
IN)

packets to be re-transmitted, and the same backup buffer of order 1 will provide all necessary packets.

If more than one failure occurs, and there is more than one failing node on the path from disconnected
node (k, l) to it’s surviving ancestor node (k′, l′), the surviving ancestor node will need to re-transmit
the contents of input and output buffers at all failing nodes on the path, plus the contents of output
buffer at (k′, l′). Since the number of failing nodes is bounded by m, we have proven the theorem. ¤

Note that in our definition of tolerance of failures we used standard notion in the fault tolerance
literature. The proof of Theorem 2.3.1 actually proves a much stronger result, which we state it as a
corollary here:

Corollary 2.3.2. An overlay multicast system with backup buffer of size (m · (Bmax
OUT + Bmax

IN) + Bmax
OUT)

is end-to-end reliable with tolerance to m simultaneous and consecutive failures in a chain of the tree.

2.3.2 Handling Leave and Join and Restoring Connectivity

In practice a multicast system should allow nodes to leave and join the group during transmission.
Leaving nodes can be handled by the failure recovery scheme. Several different strategies can be used
for joining the group. A node joining the transmission may want to connect to a distant leaf node,
which is processing packets of the smallest sequence numbers, so that the newly joined node can
capture the most of transmitted data. However, if delay is an important factor, a joining node will try
to connect to a node as close to the root as possible. In practice, the maximum number of down-links
for each node is limited, due in particular to the last-mile effect, and not every node in the multicast
group can accept new connections. Therefore the up-link node for new connection is chosen among
”active” nodes, which have not yet exhausted their capacity.

The procedure for restoring connectivity after a failure is similar to the join procedure, but in this
case the choice of nodes is further limited to the subtree of the surviving ancestor. In applications
where communication delay is to be minimized, the goal is to maintain a tree as balanced as possible,
subject to the degree constraint. We propose to use a greedy heuristic to restore connectivity. Our
heuristic tries to minimize overall tree depth, subject to the degree constraint, by reconnecting longest
subtrees to nodes that are as close to the root as possible. The algorithm description below is given
for the case of one node failure, but the case of several failures can be handled as a sequence of single
failures.

Algorithm GREEDY RECONNECT

1. Suppose node (k, l) fails. Let S be the set of orphaned subtrees, rooted at childs of (k, l). Let
A be the set of active nodes in subtree of (k − 1, m(k, l)), but not in the subtree of (k, l).

18

2. Choose a node (k + 1, l′) ∈ S that has subtree of largest depth.

3. Choose a node (p, q) ∈ A that is closest to the source.

4. Connect (k + 1, l′) to (p, q).

5. Update S ← S \ {(k − 1, l′)} and add active nodes from subtree of (k + 1, l′) to A.

6. If S is not empty, go to Step 2.

Depending on the objective function, other approaches can be considered. For example, if throughput
is to be maximized, and last-mile links have limited bandwidth, then lower fanout allows to achieve
higher throughput, and the optimal topology could be a chain. On the other hand, if delay is to
be minimized, the optimal configuration would likely be the star where all the nodes have direct
connections with the source node. Finally, if no specific goals are set, a random choice of uplink node
(still subject to fanout constraints) is feasible.

2.4 Simulation and Experimental Results

2.4.1 Scalability and Reliability: Internet Measurements

In order to evaluate practicality of our models, we have implemented a prototype of TCP overlay mul-
ticasting system. We used Planet-Lab network, which gives access to computers located in universities
and research centers over the world. Our implementation runs a separate process for each output and
input buffer, which are synchronized via semaphores and pipes. As soon as data is read from input
buffer, it is available for outgoing transmissions. A separate semaphore is used to ensure that data
is not read from input socket, if it can not be sent to output buffers, which creates back-pressure. A
dedicated central node was used to monitor and control progress of experiments.

Scalability Analysis. To analyze scalability of throughput, we constructed a balanced binary tree of
63 nodes (Figure 2.2) connected to the Internet. We started simultaneously transmissions in balanced
sub-trees of sizes 15, 31 and 63 with the same source. Running experiments simultaneously allowed us
to avoid difficulties associated with fluctuation of networking conditions. In this way, link capacities
are always shared between trees of different sizes in roughly equal proportions across the trees. We
measured throughput in packets per second, achieved on each link during transmission of 10MB
of data. Throughput of a link was measured by receiving node. In Table 2.1 we summarize group
throughput measurements for 3 different tree sizes and 3 different settings for output buffer size. Group
throughput is computed as the minimum value of link throughput observed in the tree. Similarly to
our simulations presented above, size of each packet is 200 bytes, size of the input buffer is equal to
50 packets, and size of the output buffer is variable. Output buffer size is given in packets.

One can observe that the group throughput changes very little in the group size. This is consistent
with the simulation results reported above, although as is quite expected, the absolute numbers are
different.

19

inria1_1

umass_1

columbia_1

msu_1

uoregon_1

dartmouth_1

upenn_1

stanford_2

berkeley_2

uoregon_4

upenn_4

stanford_4

columbia_4

uoregon_2

columbia_2

dartmouth_4

berkeley_4

bostonu_4

uga_4

stanford_1

berkeley_1

upenn_2

dartmouth_2

utah_4

caltech_4

inria1_2

umass_4

msu_2

bostonu_2

cmu_4

cornell_4

msu_4

inria1_4

bostonu_1

cmu_1

uga_1

cornell_1

caltech_2

utah_2

uoregon_5

stanford_5

columbia_5

upenn_5

cmu_2

umass_2

dartmouth_5

bostonu_5

berkeley_5

uga_5

caltech_1

utah_1

uga_2

cornell_2

utah_5

cmu_6

umass_5

caltech_5

bostonu_3

berkeley_3

cmu_5

msu_5

cornell_5

inria1_5

Figure 2.2: Multicast tree consisting of 64 PlanetLab nodes.

20

Table 2.1: Scalability Experiments in Planet-Lab: Throughput in Pkts/sec
Group size: 15 31 63

Buffer=50 Pkts 95 86 88
Buffer=100 Pkts 82 88 77
Buffer=1000 Pkts 87 95 93

Reliability Analyses. To verify our approach to recovery after failures, we implemented a failure-
resistant chain of 5 nodes running on Planet-Lab machines. During the transmission of 10 megabytes
of data, two of 5 nodes fail. The failures are not simultaneous, and the system needs only to be
resistant to one failure. In this experiment we limit both input and output buffer size to 50 packets.
As in the previous experiment, size of each packet is 200 bytes (MSS=100 bytes). Our failure recovery
algorithm needs a backup buffer of size 150 in this case. We have performed 10 runs of this experiment
and measured group throughput, reconnection time and the number of redundant packets that are
retransmitted after the connection is restored. Recall that in our architecture, the packet sequence
numbers do not need to be advertised during the re-attachment procedure. Thus the child nodes of the
failed node may receive duplicated packets after the connections are re-established. These redundant
transmissions can impact the group throughput.

In our implementation, the failing node closes all its connections, and failure is detected by detecting
dropped connections. After the failure is detected, the orphaned child node listens for an incoming
connection from the surviving ancestor. We measure the interval between the time when failure is
detected, and the time when connection is restored. This time interval is measured separately at
the two participating nodes: surviving parent (P), and child (C). The results of our measurements
are summarized in Table 2.2. The average reconnection time in seconds and number of retransmitted
packets per one failure are given per one failure. The average group throughput is given per experiment.
In these experiments, the average number of retransmitted packets is about half of the backup buffer
size. The TCP sessions are re-established in a few seconds, in the same order as the TCP timeout.
As the failure detection can be achieved in a few seconds as well, our experiment results show that
the entire procedure of failure detection and reconnection can be completed in a few seconds.

Table 2.2: End-to-End Reliability Experiments in Planet-Lab
min average max

Throughput (Pkts/sec) 49.05 55.24 57.65
of Retransmitted Packets 34 80.5 122

Reconnection time (C) 0.12 3.53 5.2
Reconnection time (P) 0.27 3.81 5.37

Scalability vs. Reliability. Simulation results presented above have shown that when there are
no failures, the larger the buffers the more scalable the group throughput is. However, with larger
buffers, the backup buffer size has to be increased proportionally in order to guarantee the end-to-end
reliability. The above experiment showed that when failures do occur, the redundant transmissions
will be increased as a consequence of larger backup buffers. These redundant transmissions will in turn
reduce the group throughput. We here investigate into this issue. We consider a chain of 10 nodes and
we generate 2, 4 and 6 failures (in a sequential way, so that the system just need to tolerate 1 failure).
Table 2.3 reports the throughput measurements obtained with these settings and with different output

21

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100 1000 10000 100000

T
re

e
D

ep
th

Number of Fail-Join Iterations

greedy
random

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 1 10 100 1000 10000 100000

A
ve

ra
ge

 N
on

-L
ea

f F
an

ou
t

Number of Fail-Join Iterations

greedy
random

Figure 2.3: Evolution of tree depth (left) and evolution of average degree of non-leaf nodes (right).

buffer sizes. The backup buffer size is set to the input buffer size and twice the output buffer size. It
is interesting to see that when the buffer sizes increase, the group throughput can actually decrease.
While we cannot make general claims based on these observations alone, these experiments do show
that the throughput monotonicity in buffer size no longer holds in the presence of failures. The more
frequent the failures are, the more severe (negative) impact large buffers would have on the group
throughput.

Table 2.3: Scalability vs. End-to-End Reliability. Throughput in KB/s
buf=50 buf=200 buf=500 buf=1000

2 failures 25.6 26.8 45.2 31.5
4 failures 29.2 28.8 36.4 27.2
6 failures 30.9 28.8 30.8 24.0

2.4.2 Simulation of Tree Evolution

To complement the simulations and experiments presented above, we further developed a discrete-
event simulator to simulate the evolution of tree topology with failures and recovery under different
algorithms. In particular, we evaluate the heuristics presented in Section 2.3 for the tree reconstruc-
tion.

Starting with a balanced binary tree of 1023 nodes, we uniformly choose a failing node, apply random
or greedy heuristic to restore connectivity, and add the node back using best-join. The tree must
remain binary, joins are only allowed at nodes with out-degree less than 2. We measure the length of
longest path and average degree of non-leaf nodes. The two methods used for restoring connectivity
are GREEDY RECONNECT and a randomized procedure, that reconnects orphaned subtrees to
randomly chosen nodes with out-degree less than 2.

The results are presented in Figure 2.3. The plots show average tree depth and inner node fanout over
500 runs. We observe that GREEDY RECONNECT helps to maintain significantly lower tree depth,
and higher inner node degree, compared to the trivial approach that chooses active nodes randomly.

22

2.5 Conclusions

Our first conclusion is that reliable multicast overlays can be deployed on top of the current TCP/IP
by adding a light set of application layer back-pressure mechanisms that guarantee both end-to-end
flow control and reliability. A second important observation concerns the fear that as more and more
TCP connections get interconnected in such a multicast overlay, some slow down experienced by
distant connections might propagate to the root via back-pressure, leading the group throughput to
vanish as the number of end-system grows. We have shown that such a fear has no grounds, provided
all point to point connections that are used within the overlay offer minimal quality guarantees. Such
architectures can be used for group communications of arbitrarily large sizes and still provide a group
throughput that is close to that of a single point to point connection with these minimal guarantees.

Surprisingly, this conclusion holds true even in the case of moderate input and output buffers. Mod-
erate buffers even seem to be a good tradeoff within this context: they allow more efficient recovery
mechanisms in case of failures and, according to our simulation results, they do not affect too severely
the group throughput if not too small. An optimal buffer size offering a good compromise between
throughput and reliability could in principle be advertised to the group.

The next steps will consist in a more complete specification of the overlay architecture parameters.

23

Chapter 3

Minimum Radius Spanning Tree With
Degree Constraints

3.1 Introduction

In simplest multicast scenario, a dedicated source host delivers information to a group of receiving
hosts. Overlay multicast is implemented in application layer, and all the data is transmitted via unicast
delivery supported in underlying network. Because of bandwidth limitations, it may not be possible to
simultaneously send data from source to each receiving host via unicast. An implementation of overlay
multicast uses receiving hosts to forward information to other receivers. If the data stream intensity
does not change, it is natural to assume that each participating host has a fixed bound on the number
of hosts it can communicate to. This kind of bandwidth capacity constraints translate into degree
constraints on the nodes of the multicast tree. In this case, to initiate overlay multicast, one needs to
construct a degree-constrained spanning tree in a complete graph, where the nodes correspond to the
hosts, and the edges correspond to the unicast communication paths.

An important practical problem in this context is to construct a multicast tree, which minimizes the
largest communication delay observed by receiving hosts during multicast. Various studies have been
conducted with the primary focus on the protocol development for efficient overlay tree construction
and maintenance, such as Narada [19], Yoid [25], ALMI [46], Host Multicast [64], NICE [9], Delauney
graph [37]. Some other work in peer to peer network is also related to the tree construction in
application level multicast, see e.g. Chord [59] and CAN [48]. Most of such studies have been
experimental in nature, see e.g. [18, 19, 17, 33, 46, 20]. In particular, Chu et al [18] use a heuristic
called Bandwidth-Latency to build the multicast overlay tree. This heuristic, described in more detail
in [61], selects paths by choosing those with the greatest available bandwidth (i.e., maximum possible
fanout).

We note that this tree construction problem corresponds to a graph-theoretic problem of constructing a
rooted spanning tree of minimum radius with degree constraints. This problem is known in literature.
The famous Travelling Salesman Problem [5] is a special case, but in general the degree-constrained
spanning tree problem is harder than the TSP.

In [58], and later [57] and [54], the authors describe an NP-hard minimum diameter, degree-limited
spanning tree problem (MDDL), and propose heuristics for solving it. In the minimum-diameter
version they consider, the objective is to minimize largest communication delay between any pair of

24

participating nodes. However, the quality of heuristic solution observed in simulations described in
[58] decreases, as the number of nodes increases.

In [39], Malouch et al. introduce the radius minimization version, where the distance to the root is
minimized. The authors prove that the problem in general is NP-hard, and show that in the special
case of unit node-to-node delays the problem can be solved optimally in polynomial time. For the
case of general distances a set of heuristics is described.

Another approximation algorithm for the radius minimization problem was proposed in a recent work
by Könemann, Levin and Singha [34]. The algorithm produces a spanning tree with diameter within
factor of O(

√
log n) for a graph of n nodes, if distances between nodes satisfy triangle inequality.

However this worst-case bound, similarly to that derived in [58], increases with the size of the network.

In this chapter we assume that each node can be mapped to a point in Euclidean space, and node-to-
node delays can be approximated by Euclidean distances between these points. Under this assumption,
we describe an algorithm for constructing a degree-constrained spanning tree, and show that it arrives
at asymptotically optimal solution. The asymptotic optimality result holds if points are uniformly
distributed inside a convex region in Euclidean space, and at least 2 outgoing links are allowed at
each node. This result easily extends to non-uniform distribution case, with the only requirement
that density function is strictly more than some constant ε > 0 inside the convex region, and is zero
everywhere else.

The method of mapping hosts to points in Euclidean space, and delays to Euclidean distances, is
often used in analysis of overlay networks. For example, [57] and [37] use geographical locations of
computers to create a mapping of hosts to the two-dimensional plane. The advantage of this method
is that no actual network delays need to be measured to construct the mapping, and subsequently
the multicast tree. Another approach, proposed in work by Global Network Positioning group [44],
achieves higher accuracy by measuring some of the delays, and mapping hosts into Euclidean spaces
of dimension 3 and above. In our work, we assume that the mapping has already been done, for
example, using one of the methods above. We will concentrate on constructing degree-constrained
spanning tree with minimal radius.

Our approach to the problem is similar in spirit to that used for other routing problems in Euclidean
space, for example vehicle routing and traveling salesman problem [5]. The region covering destination
points is divided in smaller sub-regions (cells) with a regular grid, and then the problem is solved within
these small sub-regions. The size of grid cell is then used to estimate worst-case length of the path
contained in the cell. However, in our algorithm we are constructing a routing tree that satisfies degree
constraints, rather than a path connecting the end points. Therefore, we use a grid and connection
methods significantly different from those used in previously studied geometric problems.

We organize our presentation in four parts. First, we present a simple constant-factor approximation
algorithm for solving the problem in Euclidean space. We use constant-factor algorithm as a subroutine
of the asymptotically optimal algorithm, to connect points inside cells of a polar grid. Next, we describe
our asymptotically optimal algorithm for the special case of out-degree at least 6 at each node, and
points uniformly distributed in a two-dimensional disk, and prove asymptotic optimality. We follow by
describing how to extend the algorithm to work in higher dimensions, with general degree constraints,
and with general convex regions. Finally, we analyze algorithm performance using simulation.

25

a)

a

r

R

b)

(r+R)/2

a/2

Figure 3.1: Constant factor approximation algorithm.

3.2 Constant Factor Approximation

Before we can describe the asymptotically optimal algorithm, which is the main focus of this chapter,
we need to introduce a subroutine for connecting points within cells of a polar grid. This subroutine
in itself is an approximation algorithm. It creates a valid degree-constrained spanning tree for a given
set of points in Euclidean space. The length of the longest path in the tree is within a constant
factor of the best solution among all the possible degree-constrained spanning trees. This constant
approximation factor is independent of the number of points in the region. Although it is easy to
describe a version of the algorithm for a square, we will describe a polar version, which is more suitable
for this setting.

Consider ring segment shown on Figure 3.1 a), with inner radius r, outer radius R, and angle a.
Suppose all the points are contained within this segment. Assume that the source point, which is the
root of the tree, is also specified. The algorithm proceeds recursively as following:

Bisection Algorithm

1. Divide the segment into 4 sub-segments, by splitting it with an arc of radius (R + r)/2 and a
ray dividing angle a into two halves.

2. Pick a representative point in each non-empty sub-segment, such that its’ radius in polar coor-
dinates is closest to the radius of the source node. Connect the source to all the representatives.
See Figure 3.1 b).

3. Repeat the procedure within each non-empty sub-segment, to connect the points inside the
sub-segment, using the representative point as a local source.

The algorithm constructs a spanning tree, in which each node has at most 4 children. We observe
that each path always moves monotonously along the radius axis. The steps along the angle axis at
each level can be bounded by the angle of the sub-segment. Therefore, the length of each path lp can
be bounded from above using the triangle inequality as follows:

lp ≤ max(R− q, q − r) + Ra + Ra/2 + Ra/4 + ... ≤
≤ max(R− q, q − r) + 2Ra, (3.1)

where q is the radius of the source node.

We will now show that this algorithm can be used to construct a constant factor approximation for a
given set of nodes. We first construct a ring segment to cover all these points. We pick the center of

26

the ring to be very far, so that the angle a is small, (sin a > 5/6a), and both R and r are large, such
that r > 0.6R. Pick R and r such that R− r can not be reduced, without leaving some nodes out of
the ring segment. Similarly, assume that a can not be reduced. Then, since any path must connect to
extreme nodes, and using triangle inequality, it is easy to see, that for the optimal longest path OPT
the following holds:

OPT ≥ max(R− q, q − r),

OPT ≥ r sin a ≥ 1/2Ra.

Combining this with (3.1), for any tree path p, we obtain:

lp ≤ 5 ·OPT,

and therefore this algorithm can be used to produce solutions within constant factor of the best
possible.

It is not difficult to modify the algorithm to produce a spanning tree with out-degree 2. To do this,
during each recursive call, connect the source to two points from the same segment. Points should be
chosen to have radius closest to the source. Then each of the two points can be used to connect 2 of
the 4 sub-segments, so that all sub-segments are connected. In this case, upper bound on the solution
doubles the angle term, since on each level of the path we now use 2 links instead of one:

lp ≤ max(R− q, q − r) + 4Ra. (3.2)

Theorem 3.2.1. The Bisection Algorithm provides a solution within a factor of 5 optimal for the
minimum radius problem when maximum out-degree is restricted to be 4. The approximation factor
becomes 9 if the maximum out-degree is restricted to be 2.

3.3 Asymptotically Optimal Algorithm

In this section we describe our hierarchical algorithm to recursively build multicast trees. We will
prove that it is asymptotically optimal. To simplify the presentation, we will make several assumptions.
These assumptions will be lifted in the next section.

We assume that the n points corresponding to the communicating hosts are uniformly distributed
inside a disk of radius 1 and the source is located at the center of the disk. We assume each node
can forward transmission to at least 6 down-stream links. The main idea of the algorithm is to divide
the disk into a hierarchy of smaller and smaller grid cells. The algorithm builds a tree based on
the hierarchy to connect the points in the grid cells. At high level, our grid partitioning algorithm
proceeds in three stages:

Algorithm Polar Grid

1. Creates a grid of equal area cells, covering the disk.

2. Connects the cells, using cell representatives, and forming a core network.

3. Connects points within the cells, using the constant factor approximation algorithm.

We next describe the details of each step of the algorithm in the following subsections. We then
evaluate the performance of the algorithm and prove the asymptotic optimality results.

27

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Figure 3.2: Dividing the disk into ring segments of equal area.

3.3.1 Constructing the polar grid.

First, the algorithm creates a polar grid covering the unit disk. This grid must have the following
properties:

1. All cells of the grid have the same area.

2. Cells are organized in rings. Each containing ring has twice more cells than the ring immediately
inside it.

3. There is at least one point in each cell of the grid, except for the cells in the outermost ring.

For a fixed number of rings k, we construct the grid by dividing the unit disk using k circles with the
same center, and radius

ri = 1/
√

2
k−i

, 0 ≤ i ≤ k − 1. (3.3)

We further divide each ring i into 2i equal segments, such that each cell segment on level i is aligned
with 2 segments on level i + 1 (see Figure 3.2).

Since the radius of ring i is chosen such that ri =
√

2ri−1, the area of disk bounded by circle i is twice
the area of disk bounded by circle (i− 1). If we imagine that there are two cells inside circle 0, then
it is easy to see that for each i, circle i contains twice more cells than circle (i − 1), and therefore
property 1) holds.

Given a set of points, we can choose the number of rings k as large as possible, such that property 3)
is satisfied. In the analysis section we will show that k increases as the number of points n increases.

3.3.2 Connecting the cells.

According to property 3) of the grid, each ring segment contains at least one point (except for the
outermost segments). We can choose a point within each segment to be the representative of the

28

segment. If there is more than one point in a segment, choose the point that is closest to the center
on the inner arc of the segment. Cell representatives are connected in a binary tree, rooted at the
source node in the center of the unit disk. Each representative is connected to two representatives of
next ring cells, aligned with its cell. The outermost ring cells that do not have any points are ignored.

3.3.3 Connecting remaining points within cells.

Finally, in each cell that contains more than one point, we run the constant factor algorithm described
in the previous section. The algorithm connects all the remaining points, and the distribution tree is
completely constructed.

The constant factor algorithm requires out-degree 4, and additional out-degree 2 can be used at the
representative node to connect to next level cells, and therefore the resulting spanning tree will have
maximum out-degree 6. We will improve on this estimate in the next section.

3.3.4 Lemmas.

In order to prove asymptotic optimality of the solution, we need to show that k increases as a function
of number of nodes n. To do this, we need to introduce the following two lemmas.

Lemma 3.3.1. If each of n balls is uniformly and independently assigned to one of nα buckets (for
some fixed α), the probability pα(n) of having at least one empty bucket, after assignment is complete,
satisfies

pα(n) ≤ nαe−n1−α

. (3.4)

Proof. The probability of having at least one bucket empty is bounded from above by the sum of
probabilities of having each of the buckets empty. Therefore,

pα(n) ≤ nα

(
1− 1

nα

)n

.

Note that 1− x ≤ e−x for any x, and inequality (3.4) follows.

Corollary below immediately follows from the lemma.

Corollary 3.3.2. If α < 1, then pα(n) → 0 as n →∞.

Since we are interested in deriving an asymptotic result, Corollary 3.3.2 would suffice for our analysis.
However we would like to know the value of α that can gives meaningful results even for small n. The
following lemma gives insight into possible values of of α.

Lemma 3.3.3. If α ≤ 1/2, then pα(n) ≤ e−1 for all n ≥ 1.

29

$� %�

&�

G�

H�

I�

Figure 3.3: Proof of upper bound on longest path.

Proof. Consider fα(x) = xαe−x1−α
. Assume that 0 < α < 1 and x ≥ 0. Observe that in this case

fα(x) is a concave function of x. By taking derivative, we can show that it reaches its maximum at

x∗α =

(
α

1− α

)1/(1−α)

.

Notice that x∗α is increasing in α and x∗1/2 = 1. Therefore if α ≤ 1/2, the maximum is attained at some

x∗α ≤ 1, and hence for x ≥ 1 function fα(x) is non-increasing. Furthermore, for any α, fα(1) = e−1.
The lemma follows from equation (3.4), i.e. pα(n) ≤ fα(n).

Therefore, since in k-ring grid there are 2k+1 cells, with high probability we can say that if we require
at least one point in each cell, √

n ≤ 2k+1,

and therefore,
k ≥ 1/2 log2 n. (3.5)

In our analysis we will assume that n is sufficiently large, and k ≥ 1.

3.3.5 Solution analysis.

We can now evaluate solution quality based on the uniform distribution assumptions. It’s easy to see
that, as the number of nodes n increases, the lower bound of the optimal solution cost (the longest
distance from disk center to any point) approaches 1 from below. To complete the proof, we need to
show that an upper bound on solution obtained by the algorithm approaches 1 from above.

Any path P in the constructed spanning tree consists of two parts: the sub-path p connecting cell
representatives, and the sub-path q between the points in the last cell, constructed by the constant
factor approximation algorithm:

lP = lp + lq.

30

Making use of (3.1), we can write

lq ≤ max(R− q, q − r) + 2Ra,

for some R, r, a, q, defined by the last cell of path P .

Using polar version of the triangle inequality, the length of the path can be bounded from above by
computing radius and arc components separately. The upper bound path follows cell boundaries. For
example, in Figure 3.3, the length of AB is less than Ad + dB, and arc Ad can be upper-bounded
by arc ef . The total length of all the ray segments (similar to dB) is at most 1 – the radius of the
disk. The max(R − q, q − r) component of lq can be included in this estimate as well, since we pick
least-radius point to be cell representative.

Thus,
lP ≤ 1 + 2Ra + Sk, (3.6)

where Sk is the sum of arc lengths for inner (k − 1) circles of k-ring grid.

Let ∆i be the length of an cell-side arc of circle i:

∆i = 2π
1√
2

k−i
· 1

2i
=

2π√
2

k+i
, 0 ≤ i ≤ k.

In our estimate of Sk only the inner arcs are involved, i.e. arcs 1 through k-1. Hence,

Sk =
k−1∑
i=1

∆i =
2π√
2

k+1
· 1− 1/

√
2

k−1

1− 1/
√

2
.

Recall that Ra in (3.6) is an arc length as well, for some ring j:

Ra ≤ ∆j.

We can rewrite (3.6) as following:

lP ≤ 1 + 2Ra + Sk ≤ 1 + 2∆j + Sk. (3.7)

We can show that the right-hand side of inequality (3.7) approaches 1 from above, as n approaches
infinity. Here’s the precise argument. Both ∆j and Sk are infinitesimal as k goes to infinity. For any
arbitrary small ε > 0, there exists a K such that when k > K, the quality of the solution lp is less
than 1 + ε/2. Based on Corollary 3.3.2, for any arbitrary small δ > 0, there exists an N1, such that
when n > N1, the probability of having at least one point in each cell is larger than 1− δ/2. It is also
easy to show that there exists an N2, such that when n > N2, the probability of having a point in the
ring between the circle of radius 1 − ε/2 and the unit circle is larger than 1 − δ/2. This implies the
minimum radius is at least 1− ε/2. Therefore, with probability at least 1−δ, when n > max{N1, N2},
the minimum radius is at least 1 − ε/2, and at the same time there is at least one point in each of
the grid cells, which implies lp < 1 + ε/2. Under this condition, the length of the longest path in this
tree is within ε plus the value of the optimal solution. This completes the proof for the asymptotic
optimality of Algorithm Polar Grid:

Theorem 3.3.4. For any small ε, δ > 0, there exists an N such that when the number of points n is
larger than N , with probability greater than 1 − δ, the length of the longest path in the tree produced
by Algorithm Polar Grid is within ε plus the optimal solution.

31

3.4 Generalization

In the previous section, in order to simplify presentation, we assumed that points are uniformly
distributed inside a disk, the out-degree of at least 6 is allowed, and the points belong to a two-
dimensional space. All these assumptions are not essential for the end result. The algorithm can be
adjusted accordingly to remove these constraints. We describe the necessary changes in this section.

3.4.1 Out-Degree 2

There is a version of the asymptotically optimal algorithm, in which at least out-degree 2 must be
allowed at every node. In other words, it is possible to construct a binary tree with the same asymptotic
optimality property.

We have discussed how to adjust the constant factor approximation algorithm in Section 3.2. A few
changes have to be made to the algorithm that chooses and connects cell representatives. In each cell,
three cases are possible:

1. There is only one point in the cell. Make it a cell representative, and use it to connect to the
two cells in the next ring.

2. There are two points in the cell. Choose a point closest to the center of the disk as the cell
representative. Connect the representative directly to the other point. Then connect the second
point to the two cells in the next ring.

3. There are three or more points in the cell. Choose the closest to center point as the cell
representative. Pick one of the remaining cells to be the center for connecting other points in
the cell. Choose another point for connecting cells in the next ring. The two special points are
connected directly to the representative point.

The asymptotic analysis and the constant factor approximation analysis are very similar. The only
difference is that the contributions from the arcs need to be doubled. This is because now, two links
are used in each cell, instead of one link. Since this contribution is infinitesimal for large n, the
constant multiplier can be ignored, and the same proof holds.

3.4.2 Higher Dimensions

The algorithm can be adjusted to work in dimensions higher than two. The most important com-
ponent of the proof is the creation of the polar grid, which satisfies properties 1)-3). The grid can
be created similarly, in polar coordinates, by splitting d-dimensional sphere into segments. Radius of
each subsequent ring should equal to previous ring radius, multiplied by d

√
2 (so it has double volume),

and each cell is split into two, with alternating splitting axis. Although details of equal volume split
become tedious, a similar proof can be constructed.

32

Nodes Rings Core Delay Dev Bound CPU Sec
100 3.61 1.53 1.852 0.20 7.18 0.002
500 5.26 1.22 1.420 0.08 4.92 0.01

1,000 6.06 1.13 1.302 0.05 4.09 0.02
5,000 8.01 1.00 1.142 0.02 2.65 0.08

10,000 8.97 0.99 1.102 0.02 2.20 0.17
50,000 11.00 0.94 1.049 0.01 1.61 0.96

100,000 11.98 0.95 1.034 0.00 1.43 2.01
500,000 14.00 0.92 1.016 0.00 1.22 11.06

1,000,000 15.00 0.93 1.012 0.00 1.15 22.99
5,000,000 17.00 0.91 1.005 0.00 1.08 132.34

Table 3.1: Experiment Results: Trees of Out-Degree 6.

Nodes Rings Core Delay Dev Bound CPU Sec
100 3.61 2.21 2.634 0.31 10.74 0.0015
500 5.26 1.61 1.876 0.15 6.96 0.01

1,000 6.06 1.40 1.622 0.11 5.66 0.02
5,000 8.01 1.12 1.285 0.04 3.44 0.08

10,000 8.97 1.06 1.202 0.03 2.76 0.17
50,000 11.00 0.98 1.095 0.01 1.88 1.02

100,000 11.98 0.97 1.067 0.01 1.63 2.13
500,000 14.00 0.93 1.031 0.00 1.32 11.84

1,000,000 15.00 0.94 1.022 0.00 1.22 24.52
5,000,000 17.00 0.91 1.009 0.00 1.11 142.08

Table 3.2: Experiment Results: Trees of Out-Degree 2.

3.4.3 General Convex Region

Proving asymptotic optimality for a circle (sphere), with source in the center, implies asymptotic
optimality in any convex region with arbitrary source placement inside the region. The algorithm
constructs the smallest ring covering all points and centered at the source, and proceeds similarly as
the circle case. The analysis is very similar. In this case, the lower bound on longest path approaches
the outer ring radius from below.

3.5 Experiments

In this section, we provide some experimental results to illustrate the quality, running time and other
properties of our heuristic algorithms, for problems of different sizes. For each size of the problem, we
have generated 200 random sets of points, uniformly distributed inside the unit disk. We computed the
average maximum delay and other parameters of solution trees. We have tested both the out-degree 6
and out-degree 2 versions of the algorithm. We have also evaluated performance of three-dimensional
version of the algorithm for connecting points uniformly distributed inside unit sphere. We used an
Intel Pentium II 400 Mhz computer with 128 megabytes of RAM to run our experiments.

33

All the data obtained in our experiments on unit disk is shown in Tables 3.5 and 3.5. Column one
contains n, the number of nodes to be connected. The Second column, “Rings”, is the average value
of k – the number of rings for this problem size. Column 3, “Core”, contains the average core delay
– the longest portion of the path between cell representative nodes. Column 4, “Delay”, shows the
average longest delay observed in the solution tree. Column 5, “Dev”, displays the standard deviation
of the longest delay. The lower bound on the delay is close to 1, so the closer delay is to 1, the better.
“Bound” columns show the value of the upper bound given by equation (3.7), evaluated at j = 0. The
reason to pick j = 0 is because ∆0 ≥ ∆j for all j. In the formula for upper bound, the coefficient of ∆j

should be doubled for out-degree 2 trees. Finally, the “CPU Sec” column contains the computation
times.

To illustrate our results, we have included a set of plots, based on data shown in Tables 3.5,3.5. The
results demonstrate that the algorithm converges very quickly.

Figure 3.4 shows the maximum sender-to-receiver delay, together with the delay bound and the core
delay. The horizontal axis representing the number of nodes, is in logarithmic scale. This is the
case for this plot, as well as for plots 3.5 and 3.6. The bound used in the analysis of the algorithms
significantly over-estimates the delay for problems with a small number of nodes. This bound becomes
better and better as the number of nodes increases. The difference between the core and the total
delay is not reducing. This is because the difference depends on the radius of the outermost ring,
which remains constant as the number of nodes increases.

Figure 3.5 combines the plots on Figure 3.4, and compares the maximum delay for degree 2 and
degree 6. The delay overhead of degree 2 trees is almost 2 times the overhead of degree 6 trees. This
is intuitive, since there is the same relationship between the bounds on the lengths of the paths. As
the number of nodes increases, the degree of each particular node becomes less and less important,
and the two curves all converge to the best possible delay of one.

Figure 3.6 shows how the number of rings, k, in the grid created by the algorithm changes with the
number of nodes, n. The node axis is again in logarithmic scale. The points follow almost a straight
line. This indicates that there is a logarithmic dependence, which is implied by (3.5).

Figure 3.7 shows how running time of the program increases with the increase in the number of nodes.
The small insert plot shows the details for problems with nodes between 100 and 10,000. Although
most likely our straightforward implementation of the algorithm can be improved, and in practice
running time will depend on hardware and software environment used, the plot allows us to evaluate
the general trend. In our experiments we observed that running time increases almost linearly, which
makes it possible to run the algorithm for networks with very large sizes.

Indeed, during the assignment of points to cells of the grid our algorithm inspects each point only
once, which requires O(n) operations. Then, the bisection algorithm has to divide ring segments, and
enumerate points within each segment. For m points submitted to the bisection algorithm, it will
create at most m non-empty segments, and in the worst case the number of operations at this stage
can be estimated as O(m2), since each point may be inspected during processing of each segment. But
since the distribution of points is uniform, with high probability total running time of our algorithm
will be linear in n, which can be intuitively explained by the following argument. Since points are
distributed uniformly between cells, the average number of points in each cell is 1/2k. Our experiments
confirm that the relationship between k and n stated in (3.5) holds, and k is a logarithmic function
of n (see Figure 3.6). Because of this relationship, the number of points per cell on average remains
constant, independent of n, and running time of bisection in each cell is also a constant. Since we
require at least one point to be contained in each cell, the total number of cells, and therefore the

34

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000 10000 100000 1e+06 1e+07

Lo
ng

es
t D

el
ay

Number of Nodes

Trees of Out-Degree 2

total delay
core delay

upper bound

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000 10000 100000 1e+06 1e+07

Lo
ng

es
t D

el
ay

Number of Nodes

Trees of Out-Degree 6

total delay
core delay

upper bound

Figure 3.4: Average maximum delay compared to bounds.

total number of calls to bisection procedure is at most O(n), leading to overall number of operations
O(n).

Finally, on Figure 3.8 we demonstrate algorithm convergence results in three-dimensional unit sphere.
Similarly to unit disk case, we run 200 experiments for each problem size, and computed average
longest path length. In three dimensions, straightforward extension of our algorithm builds a tree of
out-degree 10, in which each cell representative node uses 2 links to connect to cells in the next ring,
and at most 8 links are used to connect to points inside the cell, using bisection algorithm. As in two
dimensions, we modify the algorithm to construct trees of out-degree no more than 2. In both cases,
the longest path length converges to the lower bound of 1.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 10 100 1000 10000 100000 1e+06 1e+07

Lo
ng

es
t D

el
ay

Number of Nodes

out-degree 6
out-degree 2

Figure 3.5: Comparison of average maximum delay for out-degrees 2 and 6.

35

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 R

in
gs

Number of Nodes

Figure 3.6: Average number of rings in polar grid.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
un

ni
ng

 T
im

e
(m

ill
is

ec
on

ds
)

Number of Nodes (thousands)

out-degree 6
out-degree 2

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 2 3 4 5 6 7 8 9 10

Figure 3.7: Algorithm running time.

1

1.5

2

2.5

3

3.5

4

100 1000 10000 100000 1e+06 1e+07

Lo
ng

es
t D

el
ay

Number of Nodes

out-degree 10
out-degree 2

Figure 3.8: Average maximum delay in three-dimensional unit sphere.

36

Similarly to longest path results on unit disk, shown on Figure 3.5, in three dimensions the difference
between out-degree 2 and out-degree 10 trees becomes less noticeable as the number of nodes increases.
Although asymptotic optimality holds in any multi-dimensional Euclidean space, Figure 3.8 shows
that for the same number of nodes largest delay in 3 dimensions is higher, than in 2 dimensions. This
can be explained by the increase in the average distance between uniformly distributed points, as
dimensionality of unit sphere increases and number of points remains constant.

3.6 Conclusion

We investigate the problem of constructing an overlay multicast tree, that minimizes largest sender-
to-receiver delay, and satisfies bandwidth constraints by limiting out-degree of nodes in the tree.
We approach the problem by creating a mapping of communicating hosts to points multi-dimensional
Euclidean space, that approximates unicast communication delays between hosts to distances between
points, using methods described in [44] or [57] and [37].

In this setting, we describe a simple bisection algorithm, that constructs a tree with maximum delay
within a constant factor of optimal for any set of nodes. Next, we assume that communicating
points are randomly distributed inside two-dimensional disk, centered around the sender. We describe
another approximation algorithm, which uses the bisection method as a subroutine in each cell of
a polar grid, and prove that it creates a tree with maximum delay that asymptotically approaches
the best possible, as the number of nodes increases, and with maximum out-degree 6. This result
implies that as the number of communicating hosts grows, it becomes possible to construct better and
better overlay multicast trees. In particular, for many remote leaf nodes communication delay from
the source will decrease.

Next, we describe how to extend our grid-based algorithm to construct trees of out-degree no more
than two, to work with points in more than two dimensions, and to work with general convex regions,
not limited to spheres. We show that asymptotic optimality is preserved during all modifications we
make.

Finally, we implement the algorithm, and perform simulation experiments to analyze its performance.
Experiment results show that in practice the algorithm converges even faster, than it is predicted the
theoretic bound we derived. Further, the experiments confirm that running time of the algorithm
grows almost linearly with the number of nodes, and the algorithm is reasonably scalable.

Our algorithm can also be applied to the minimum diameter version of the problem, described in [58]
and other papers. The bisection algorithm provides a larger factor approximation for the minimum
diameter problem. But asymptotic optimality of our algorithm can not be guaranteed for any convex
region in Euclidean space, although the result still holds for points uniformly distributed in a sphere.
To construct an optimal solution in a sphere, an artificial root node should be chosen among nodes
closest to the sphere center. In general convex regions the algorithm will only find a tree with delay
within factor of 2 of the optimal as the number of nodes becomes large.

Since for all mapping methods there is usually a discrepancy between Euclidean distances and actual
transmission delays, it is interesting to see how well the algorithm performs in practice. We leave this
for future work. Also we note that in practice there is an interest in a decentralized version of the
algorithm.

37

Chapter 4

Throughput Maximization in Overlay
Multicast

4.1 Introduction

In many applications it is necessary to construct an overlay multicast network which allows to send a
stream of data from a specified source node to all other participating nodes with maximum throughput.
Any node can send data to any other node, but throughput for each pair of nodes is limited by the
throughput of the path in the network connecting the two nodes. In many cases, however, the structure
of the network is unknown. There are several strategies for simplifying the constraints. In our model
we assume there are two main factors affecting throughput between nodes of the system. There is
a network link throughput for each pair of nodes, that constitutes a bound on any communication
between these nodes. There is also an uplink throughput bound for each node, imposed by last-mile
connection of the node to the network. We will also refer to it as node capacity. Uplink throughput is
shared by all outgoing, and possible incoming transmissions. We assume that there is no bandwidth
sharing network links, and the maximum capacity of the link can be achieved by any stream using the
link. Maximizing throughput in this model is an NP-hard problem. We derive approximability bounds,
develop approximation algorithms and numerical methods for solving this problem. The model and
outline of one of approximation algorithms are also described in paper by Baccelli, Chaintreau, Liu,
Riabov and Sahu [7].

Our results on approximability bounds and approximation algorithms are summarized in the following
table (where ce denotes link capacity, and cv denotes node capacity):

Problem Approximability Approximation
Bound Factor

Duplex Channel 1/2 2/3
Separate Channel 1/2 min

{
1/2, (minv cv) /

(
minu maxe∈δ(u) ce

)}
Restricted Separate Channel 1/2 1/2

The rest of this chapter is organized as follows. We start our analysis in Section 4.2 by developing an
approach for solving a sub-problem of finding a degree-constrained spanning tree with non-uniform
degree constraints. In Sections 4.3 and 4.4 we describe duplex channel and separate channel variants
of throughput maximization problem, derive approximability bounds and describe approximation

38

algorithms. In Section 4.5 we describe methods for computing upper bounds on achievable throughput.
In Section 4.6 we describe methods for solving the separate channel version of problem numerically
using integer programming and a modification of volume algorithm. We present results of our numeric
experiments in Section 4.7. Finally, we summarize our results and outline directions for future work
in Section 4.8.

4.2 Degree-Constrained Spanning Tree Problem

We will start our analysis of maximum throughput problem by describing methods for solving the
problem of finding a spanning tree satisfying degree constraints in a general graph. More formally,
given an undirected graph G = (V, E) one must find a spanning tree T such that for each vertex
v ∈ V degree of v in T is at most bv, or prove that such a tree does not exist. Degree bounds bv

are positive integers, which are given as a part of problem instance. We will refer to this problem
as Degree-Constrained Spanning Tree (DCST). Note that if we have a method for solving DCST, we
can use it to verify whether a fixed throughput value θ can be achieved in our multicast system, and
to build a tree that achieves this throughput. We will see in the following sections that there are
only polynomially many possible boundary throughput values, and therefore an efficient algorithm for
DSCT can easily be used for solving throughput maximization problem.

DCST is NP-hard (Hamiltonian Path is a special case), and therefore finding an approximate solution
is the best one could hope for. We are not aware of any literature that tackles this problem in its pure
form. However, the problem of finding a minimum spanning tree, which satisfies degree constraints
(Degree-Constrained Minimum Spanning Tree, DCMST), has been analyzed by Caccetta and Hill
[15]. Naturally, minimizing sum of edge weights in a tree subject to degree constraints is a harder
problem than simply finding any tree which satisfies the constraints. Caccetta and Hill propose a set
of heuristics and branch-and-cut algorithm for solving DCMST. We will return to their results in the
section dedicated to solving the problem numerically.

The problem of finding Minimum Degree Spanning Tree (MDST) is closely related to DCST. In
particular, if the degree constraints are uniform, i.e. all bv = b for some fixed positive integer b ≥ 2,
it is enough to solve MDST in graph G and compare maximum degree of the solution to uniform
bound b to decide whether there exist a solution satisfying this bound or not. The same solution tree
represents the solution to DCST if the bound is satisfied, otherwise DCST is infeasible. Fürer and
Raghavachari developed the classic ∆∗+1 approximation algorithm for MDST [26, 30]. The algorithm
finds a tree which has largest degree at most one more than largest degree in optimal tree ∆∗.

In this section we extend analysis by Fürer and Raghavachari and describe an algorithm for approx-
imately solving DCST with non-uniform degree constraints. Our algorithm either constructs a tree
which violates degree constraint at each node by at most 1, or proves that it is not possible to satisfy
the constraints.

4.2.1 Witness Set Theorem

To assist the analysis of algorithm performance, we prove the following theorem that allows us to
establish a bound maximum difference of node degree in a spanning tree from optimal under special
conditions. This theorem is based on a generalization of the witness set analysis developed in [26].

39

Suppose we are given a graph G = (V, E). Further suppose there exists a spanning tree T ∗ in G,
satisfying degree constraints {bv}. Assume we have constructed another spanning tree T . Let dv be
the degree of node v in T . Under these conditions, the following theorem holds:

Theorem 4.2.1. Let S and B be two subsets of V , S ∩B = ∅, S 6= ∅, such that for some k ≥ 0:

∀v ∈ S : dv = bv + k + 1,

∀v ∈ B : dv = bv + k.

Let F be the forest generated from T by removing all nodes in S ∪ B. Then, if there are no edges of
G between different trees in F , it follows that the only possible value of k is k = 0.

Proof. The theorem requires that k ≥ 0, we will prove that k ≤ 0. The total degree of nodes S ∪B in
T is ∑

v∈S∪B

dv =
∑

v∈S∪B

bv + |S|(k + 1) + |B|k.

Since T is acyclic, it has at most |S ∪B|− 1 edges with both endpoints in |S ∪B|. Therefore the total
number of edges of T with at least one end in S ∪B is at least

∑
v∈S∪B

bv + |S|(k) + |B|(k − 1) + 1.

Each tree of F must be connected with exactly one edge to |S∪B|, and therefore the number of edges
with only one endpoint in S ∪B gives us a lower bound on the number of trees |F| :

|F| ≥
∑

v∈S∪B

bv + |S|(k − 1) + |B|(k − 2) + 2.

The total number of edges in any spanning tree connecting |F| sets of nodes and each node in |S ∪B|
is at least |F| + |S ∪ B| − 1. Each of these edges has to have at least one endpoint in S ∪ B, since
there are no edges between nodes in different trees of F . Therefore, in any spanning tree the sum of
degrees of nodes in S ∪B has to be at least

|F|+ |S ∪B| − 1 ≥
∑

v∈S∪B

bv + |S|k + |B|(k − 1) + 1.

This includes the tree T ∗, and therefore the following inequality must hold:

∑
v∈S∪B

bv + |S|k + |B|(k − 1) + 1 ≤
∑

v∈S∪B

bv

Since S 6= ∅ this inequality can only be satisfied if k ≤ 0.

Note that if all conditions of the theorem are satisfied for some k ≥ 1, node set S ∪ B can be
used to prove that there does not exist a spanning tree satisfying degree constraints {bv}. Following
terminology used in [26], we will call set S ∪B a witness set.

40

Algorithm DCST APPROX

1. Input: Graph G = (V,E), spanning tree T , degree constraints {bv}v∈V .

Let h(v) = ∅ for every vertex v.
Let dv be the degree of vertex v in tree T .
Let k = maxv∈V (dv − bv)− 1. If k < 0, output T and exit (T solves DCST problem exactly).

Color vertices of graph G according to the amount of constraint violation:

• v is colored red, if (dv − bv) = k + 1;

• v is colored yellow, if (dv − bv) = k;

• v is colored green otherwise.

Let F be the set of connected components formed from T by removing red and yellow nodes.

2. Find an edge e = (i, j) ∈ E between green nodes i and j belonging to different components
of F .

If no such edge exists, output T and exit. If k > 0, The set S of red nodes and the set B of
yellow nodes and Theorem 4.2.1 can be used to prove that the DCST problem is infeasible.

3. Consider the unique path P between i and j in T . If there is a red node v on path P , run
EDGE EXCHANGE(T, h, v, e). End of iteration: repeat starting from Step 1.

4. Else, for every yellow node v on path P change color to green and assign h(v) ← {e}. Combine
components corresponding to i and j in F . Go to Step 2.

Figure 4.1: DCST APPROX: 2-approximation algorithm.

4.2.2 Approximation Algorithm for DCST

Out approximation algorithm (DCST APPROX, Figure 4.1) is very similar to the algorithm in [26].
It starts with any spanning tree T in graph G. Any simple algorithm, such as Kruskal’s algorithm
for constructing minimum spanning tree [35] with unit weights can be used. Algorithm proceeds in
iterations. Each iteration produces a valid spanning tree. During each iteration the tree is modified
such that the number of nodes with maximum degree constraint violation is reduced by one. The
algorithm stops, when the number of nodes with maximum violation can not be reduced, and either
produces a witness set proving that the degree constraints cannot be satisfied, or Theorem 4.2.1 can
be used to prove that the tree produced by the algorithm violates degree constraint at each node by
at most one.

During each iteration the algorithm makes one or more edge exchange operations, adding a new edge
to tree T and removing one of the edges to break the loop. If new edge and the edge being removed
do not share a vertex, as a result degree of two nodes increases by one, and degree of two other nodes
decreases by one. If the two edges have a common vertex, degree of that vertex is not changed, two
other edge endpoints change their degree. This procedure is used to decrease the number of vertices
with maximum degree violation, by reducing degree of one such vertex by one.

41

Subroutine EDGE EXCHANGE(T, h(·), v, (i, j))

1. Remove from T one of the two edges of the path connecting i and j in T , and incident to v.

2. Introduce edge (i, j) in T to restore connectivity.

3. If h(i) 6= ∅, run EDGE EXCHANGE(T, h, i, h(i));
If h(j) 6= ∅, run EDGE EXCHANGE(T, h, j, h(j)).

Figure 4.2: EDGE EXCHANGE subroutine.

4.2.3 Analysis of the Algorithm

We need to prove that the algorithm terminates in polynomial time, and when it terminates the
solution it outputs violates degree constraints by at most one.

At each iteration, the algorithm reduces the number of nodes with maximum violation. Maximum
violation of a degree constraint can not be more than n = |V |, and therefore total number of iterations
is bounded by n2. At each iteration, the algorithm processes an edge between two different compo-
nents, merging the components. Therefore no edge can be processed twice, and each edge processing
procedure involves polynomially many operations, which implies that algorithm termination time is
bounded by a polynomial in n.

It is easy to see that when the algorithm terminates, the set of red nodes S and the set of yellow
nodes B satisfy the conditions of Theorem 4.2.1, and can be used to either prove that the DCST
problem is infeasible or that k = 0. If k = 0 degree constraints are violated by at most one at each
vertex.

To complete the proof, we need to show that edge exchange procedure in Step 3 reduces the number
of nodes with violation k + 1 by one. The edge exchange is organized so that it decreases degree of
the red node on last path P by one, and it may only increase by at most one the degrees of nodes
with violation no more than k − 1 .

4.3 Duplex Channel Problem

In duplex channel configuration the bandwidth of uplink channels is shared between incoming and
outgoing streams. Therefore node capacity is shared between the incoming stream and all outgoing
streams.

Definition 4.3.1. Formally, the duplex channel throughput maximization problem (DCTMP) is de-
fined as following. Let G = (V,E) be a complete undirected graph. We are given capacity constraints:
node capacity cv ≥ 0 for each node v ∈ V , edge capacity ce ≥ 0 for each edge e ∈ E. Find a spanning
tree T = (V, ET) in graph G which maximizes throughput function θ(T) :

θ(T) = min

{
min
e∈ET

ce, min
v∈V

cv

|δT (v)|
}

,

where |δT (v)| is the degree of node v in tree T .

42

It can be shown that DCTMP is NP-hard, and it is NP-hard to find a tree which achieves more than
2/3 of the optimal throughput. The approximation algorithm for degree-constrained spanning tree
problem can be used to find a tree which achieves throughput at least 1/2 of optimal. We prove these
results in the following subsections.

4.3.1 Complexity Analysis

NP-hardness of DCTMP can be proven by constructing a reduction from Hamiltonian Path problem.

Theorem 4.3.1. Approximating DCTMP within more than 2/3 of optimal is NP-hard.

Proof. Suppose there exists an algorithm A that constructs a solution with value more than 2/3θ∗ for
any DCTMP instance with optimal value θ∗. We will show that this algorithm can be used to solve
Hamiltonian Path problem to optimality. Suppose we are given an undirected graph G = (V, E), and
a pair of vertices i ∈ V and j ∈ V . A solution to the Hamiltonian Path problem Ph is a path that
starts at i, visits each vertex of G and terminates at j. The algorithm should determine whether such
a path exists, and if it exists, output it.

To specify throughput maximization problem Pt we construct a complete graph G′ = (V, E ′) by adding
to G edges as necessary to make it complete. The newly added edges are assigned capacity 0, and the
original edges are assigned capacity 1:

ce =

{
0, e ∈ E ′ \ E;

1, e ∈ E.

Node capacities for all nodes v in V are set to be cv = 2 except i and j, and ci = cj = 1.

By construction, Pt has optimal solution with value 1 if and only if Ph has a solution, i.e. there exists
a Hamiltonian path in G. Since θ(T) is equal to either capacity of one of graph edges or to a fraction
of node capacity. Therefore for any spanning tree T in G′ throughput value θ(T) can only be one of
the following values:

{
1, 2

3
, 2

4
, 2

5
, . . . , 2

n−1
, 0

} ∪ {
1, 1

2
, 1

3
, 1

4
, . . . , 1

n−1

}
. Therefore algorithm A, which by

our assumption can find a solution with value more than 2/3 if there exists a solution with value 1,
will in fact find a solution with value 1 in that case. Thus, A can find a solution to Hamiltonian Path
problem, and hence it is NP-hard to find a solution for DCTMP which is guaranteed to be within
more than 2/3 of optimal.

4.3.2 Approximation Algorithm

Since there are polynomially many values that θ(T) can assume, it is possible to search for the
best value, for example enumerating all possibilities. Once throughput value is fixed, the problem
of maximizing throughput reduces to a degree-constrained spanning tree problem: edges that do
not have enough capacity can be removed, and node capacities translate into degree constraints.
DCST APPROX algorithm can be used to find an approximate solution. By analyzing resulting
approximation factor we obtain the following theorem.

Theorem 4.3.2. There exists a polynomial time algorithm which, given an instance of duplex channel
throughput maximization problem, constructs a spanning tree with throughput at least 1/2 of optimal.

43

Proof. Let θ∗ be the optimal throughput value for DCTMP on graph G = (V, E) and capacities
{cv} , {ce}. Also let G′ = (V,E ′) be the graph obtained from G by removing edges with capacity less
than θ∗: E ′ = E \ {e : ce < θ∗} . Degree of vertex v in the optimal tree can not exceed bv = bcv/θ

∗c.
Running DCST APPROX on graph G′ with degree constraints {bv} will find a spanning tree T , in
which degree constraints are violated by at most one. Let θ be the throughput of tree T : θ = θ(T),
and let dv be the degree of vertex v in T . If throughput of T is bounded by capacity of an edge, it
immediately follows that θ = θ∗, and the proof is complete.

We only need to show that θ ≥ θ∗/2, if throughput of T is bounded by capacity of some node v:

dv = cv/θ.

Node capacity constraint at v must hold for θ∗, hence bv ≤ c/θ∗. Therefore,

cv/θ = dv ≤ bv + 1 ≤ c/θ∗ + 1.

Since in any feasible tree c/θ∗ ≥ 1, the following inequality holds:

cv/θ ≤ 2cv/θ
∗.

Therefore, θ ≥ θ∗/2.

Proposition below, which can be proven similarly to the theorem above, gives insight into the reasons
behind the gap between best possible approximation factor and approximation factor achieved by our
algorithm.

Proposition 4.3.3. For the class of DCTMP problems in which for all nodes cv ≥ 2θ∗ (i.e. uplink
throughput does not force a node to become a leaf), the algorithm described in Theorem 4.3.2 finds a
solution with throughput at least 2/3 of the optimal.

This factor remains the best possible for the restricted class of problems (since Hamiltonian Path
construction remains valid). We do not know whether it is possible to improve our algorithm or to
prove a tighter bound on approximation factor, but the latter seems more likely.

4.4 Separate Channel Problem

The difference between the separate channel and duplex channel variants of the problem lies in the
bandwidth sharing scheme implemented in uplink channels. If there is no bandwidth sharing between
incoming and outgoing streams, capacity constraint at the node only limits the outgoing bandwidth.
This variant of the problem will be studied in more detail in the following sections.

Definition 4.4.1. The separate channel throughput maximization problem (SCTMP) is defined as
following. Let G = (V, E) be a complete undirected graph. Node s ∈ V is a source node, which
does not receive incoming transmissions. All nodes except s receive one incoming stream, and may
send several outgoing streams. We are given capacity constraints: node capacity cv ≥ 0 for each node
v ∈ V , edge capacity ce ≥ 0 for each edge e ∈ E. The problem is to find a spanning tree T = (V, ET)
in graph G which maximizes throughput function θ(T) :

θ(T) = min

{
min
e∈ET

ce, min
v∈V \{s}

cv

|δT (v)| − 1
,

cs

|δT (s)|
}

,

where |δT (v)| is the degree of node v in tree T .

44

We also define a modification of SCTMP, which introduces an additional assumption that makes the
problem more tractable.

Definition 4.4.2. A restricted SCTMP (RSCTMP) is a SCTMP in which capacity bounds for all
vertices v and all edges e incident to v satisfy maxe∈δ(v) ce ≤ 2cv.

This assumption is equivalent to assuming that incoming bandwidth of each node does not exceed
two times the bandwidth of outgoing channel.

Similarly to the duplex channel variant, both SCTMP and RSCTMP are NP-hard, and it is NP-
hard to find a tree which achieves more than 1/2 of the optimal throughput for either problem. The
approximation algorithm for degree-constrained spanning tree problem can be used to find a tree
which achieves throughput at least 1/2 of optimal solution of RSCTMP, which is the best possible.
The approximation factor that can be guaranteed by the same algorithm for SCTMP depends on edge
and node capacities and equals to min

{
1/2, (minv cv) /

(
minu maxe∈δ(u) ce

)}
. We prove these results

in the following subsections.

4.4.1 Complexity Analysis

Using a construction very similar to one used in duplex channel formulation, we can use reduction
from Hamiltonian Path problem to prove NP-hardness of SCTMP and RSCTMP, and derive a bound
on approximation factor.

Theorem 4.4.1. Approximating RSCTMP within more than 1/2 of optimal is NP-hard.

Corollary 4.4.2. Approximating SCTMP within more than 1/2 of optimal is NP-hard.

Proof of Theorem 4.4.1 is similar to the proof of Theorem 4.3.1, and we omit it. Corollary follows
since RSCTMP is a special case of SCTMP problem.

4.4.2 Approximation Algorithm

The approximation algorithm for SCTMP (and RSCTMP) can be constructed based on DCST APPROX,
using the search technique used in duplex channel case. However analysis of algorithm performance
differs, since it can happen that the node that was bounding in approximate solution had out-degree 1,
and out-degree 0 in the optimal solution. If that is the case, the same bound on optimal solution
can not be used, since the capacity constraint no longer applies at this node. Therefore we provide a
complete proof for the following theorem.

Theorem 4.4.3. There exists a polynomial time algorithm which, given an instance of SCTMP,
constructs a spanning tree with throughput at least

min

{
1

2
,

minv∈V cv

minu∈V maxe∈δ(u) ce

}
·OPT,

where OPT is the optimal throughput value.

45

Proof. Let θ∗ be the optimal throughput value for SCTMP on graph G = (V, E), with source node
s ∈ V and capacities {cv} , {ce}. Also let G′ = (V, E ′) be the graph obtained from G by removing
edges with capacity less than θ∗: E ′ = E \ {e : ce < θ∗} . Degree of non-source vertex v 6= s in the
optimal tree can not exceed bv = bcv/θ

∗c+ 1. Degree of source node s is bounded by bs = bcv/θ
∗c.

Algorithm DCST APPROX given graph G′ with degree constraints {bv} finds a spanning tree T , in
which degree constraints are violated by at most one. Let θ be the throughput of tree T : θ = θ(T),
and let dv be the degree of vertex v in T . If throughput of T is bounded by capacity of an edge, it
immediately follows that θ = θ∗, and the proof is complete.

If θ = cs/ds, i.e. the capacity constraint is tight at the source node, it follows that θ ≥ θ∗/2, as it is
shown in Theorem 4.3.2.

Therefore we only need to show that θ ≥ θ∗/2, if throughput of T is bounded by capacity of some
non-source node v 6= s:

dv = cv/θ + 1.

There are two possibilities: dv ≥ 3 and dv = 2. It can not happen that dv = 1, since leaf nodes are
not affected by constraints on outgoing bandwidth.

If dv ≥ 3, it must be that bv ≥ 2 and capacity constraint at v must hold for θ∗, hence bv ≤ c/θ∗ + 1.
Therefore,

cv/θ = dv − 1 ≤ bv ≤ c/θ∗ + 1.

Since we assumed that bv ≥ 2, we have that c/θ∗ ≥ bv − 1 ≥ 1, and it follows that cv/θ ≤ 2cv/θ
∗.

Therefore, θ ≥ θ∗/2.

Suppose dv = 2. If bv = 2, the argument above still goes through, and θ ≥ θ∗/2.

So far we have proven that our algorithm achieves approximation factor of 1/2. However, the remaining
case may cause us to reduce the approximation factor. Let dv = 2, and bv = 1. Node v is no longer
subject to capacity constraint at the optimal solution, and it can not be used to obtain the bound.
Nevertheless optimal tree must traverse at least one edge leading to every node u, since optimal tree
T ∗ is connected, and therefore

θ∗ ≤ min
u∈V

max
e∈δ(u)

ce. (4.1)

Since dv = 2 and node constraint at v is tight for θ, we have that θ = cv ≥ 0. Hence inequality (4.1)
is equivalent to

cvθ
∗ ≤ θ min

u∈V
max
e∈δ(u)

ce,

and therefore

θ ≥ cv

minu∈V maxe∈δ(u) ce

· θ∗ ≥ minv cv

minu∈V maxe∈δ(u) ce

· θ∗.

Corollary 4.4.4. There exists a polynomial time algorithm which, given an instance of RSCTMP
with optimal throughput value OPT , constructs a spanning tree with throughput at least OPT/2.

Proof. The following inequalities, which are valid for the restricted problem, together with Theo-
rem 4.4.3 prove this Corollary:

minv∈V cv

minu∈V maxe∈δ(u) ce

≥ min
v∈V

cv

maxe∈δ(v) ce

≥ 1

2
.

46

4.5 Upper Bounds

To evaluate quality of solution produced by approximation algorithms and to narrow search range for
the cutting algorithm described in the next section we use two methods, that allow us to compute an
upper bound on maximum achievable throughput. Both methods operate with the graph Gθ = (V, Eθ)
obtained from G = (V,E) by fixing throughput value θ and removing edges that have capacity less
than θ. Capacity constraints at nodes of G translate into degree constraints in Gθ. Let dθ

v be maximum
allowed degree of vertex v in spanning tree of graph Gθ. Now the problem is to find whether there
is a spanning tree of Gθ that satisfies these degree constraints. If Gθ is not connected, the answer is
trivial, but in general this problem is NP-hard. In the following subsections we propose two heuristics
that prove negative answer to this question. Before heuristics are applied, we assume that values dθ

v

are adjusted such that dθ
v ≤ |δθ(v)| for all v ∈ V , where |δθ(v)| is the degree of vertex v in graph Gθ.

4.5.1 Total Degree Bound

The total degree bound is based on the following condition.

Proposition 4.5.1. If
∑

v∈V dθ
v < 2(|V | − 1), there does not exist a degree-constrained spanning tree

in Gθ with degree constraints
{
dθ

v

}
.

Proof. The total number of edges in any spanning tree of Gθ has to be |V |− 1, and each edge has two
endpoints. Hence, for any spanning tree total degree of vertices should be at least twice the number
of edges: ∑

v∈V

dθ
v ≥ 2(|V | − 1).

4.5.2 Witness Set Bound

In computing the witness set bound we use the witness sets we used earlier in proving constant factor
for our approximation algorithm. Definition of witness sets was introduced in [26] and used for deriving
lower bound for minimum degree spanning tree problem.

Definition 4.5.1. Subset of vertices S ⊆ V is called a witness set for degree constraints
{
dθ

v

}
and graph Gθ, if removing S and adjacent edges from Gθ separates the graph into NS connected
components, and ∑

v∈S

dθ
v < NS + |S| − 1.

Proposition 4.5.2. If there exists a witness set S for degree constraints
{
dθ

v

}
and graph Gθ, a degree-

constrained spanning tree in this graph can not be constructed.

Proof. Since removing S from V decomposes the graph into NS components that have no edges
between them, the only way to connect the components is with edges adjacent to nodes of S. Therefore
at least NS + |S|− 1 edges are needed for connecting nodes of |S| and the remaining components, and

47

each of these edges has to have at least one endpoint in S. Hence the following condition must hold
for the spanning tree to exist: ∑

v∈S

dθ
v ≥ NS + |S| − 1,

which contradicts definition of the witness set.

We do not have an efficient way of discovering witness sets, and it is probably NP-hard to do. Therefore
we use a heuristic to discover witness sets. We sort the nodes by degree constraints in increasing order,
and verify witness set condition for all combinations of first 10 nodes in this list. As experiment results
show, this approach can help discover witness sets in cases where total degree bound is not tight.

4.6 Solving Throughput Maximization Problem Numerically

In this section we develop a method for solving separate channel version of throughput maximization
problem (SCTMP) numerically using integer programming and the Volume Algorithm. We analyze
performance of our method in the following section dedicated to numerical experiments.

Since throughput in the system can always be increased until it is bounded by capacity constraint at
either a node or an edge, there is a finite number of possible solution values. More precisely, the optimal
throughput value is selected from the set of threshold values H = {cv/k : v ∈ V, k ∈ Z ∩ [1, n]} ∪
{ce : e ∈ E} ; therefore, |H| ≤ (n2 + n(n − 1)/2). We can use approximation algorithm described in
section 4.4 to obtain a lower bound on throughput θ. Upper bound θ can be computed by relaxing
constraints on throughput of individual nodes and solving the problem, which becomes equivalent to
the minimum spanning tree, using one of polynomial time algorithms, for example the classic Kruskal’s
algorithm [35, 3].

We evaluate threshold values one by one, either using binary search or linear enumeration. For each
threshold value we formulate an integer problem, solution to which gives us the routing tree. Using an
integer programming solver, we determine whether a solution exists for given fixed throughput value.
However, complete formulation of the integer program is too large to be solved by generic IP solver.
In our experiments even an LP relaxation of complete formulation for a problem with 96 nodes could
not be solved by CPLEX [21], which failed after working on the problem 2 days. We have developed
an incremental approach based on cutting planes. Starting with a relaxation that has a small number
of constraints, we detect and add violated constraints, and resolve the modified problem, until no
violations can be detected. This method allows us to obtain an integer solution for the same problem
instance with 96 nodes in less than 10 seconds.

Our algorithm starts with a very loose relaxation of the integer program. On each iteration current
LP formulation is solved, and if violated cuts can be detected, at cuts of one type is added to the
formulation, and the problem is solved again. On the next iteration the algorithm will attempt to
discover violations starting with the next cut type first. When no new violated cutting inequalities
can be added, the algorithm switches problem type to integer program, requiring xe ∈ {0, 1}, and
proceeds with iterations, but now invoking IP solver instead of LP solver.

48

4.6.1 Initial Relaxation

For each edge e of the complete undirected graph G we define a zero-one variable xe, which indicates
whether the edge will be used in the multicast tree. Let θ be throughput of the tree. For every
nonempty subset of nodes S ⊆ V , let E(S) be subset of edges in E that have both endpoints in S:
E(S) = {e = (i, j) : e ∈ E, i, j ∈ S} . Then, the problem can be formulated as the following non-linear
integer program:

max θ

Subject to

xeθ ≤ ce ∀e ∈ E(∑

∀e∈δ(v)

xe − 1
)
θ ≤ cv ∀v ∈ V

∑
e∈E

xe = n− 1

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V

xe ∈ {0, 1} ∀e ∈ E

The last set of inequalities (subtour elimination constraints) together with the equality constraint
guarantee that {xe} define a spanning tree [38], and the first two inequalities enforce capacity con-
straints. The problem can easily be rewritten as an equivalent linear integer program, if we divide
capacity constraints by θ and introduce new variable y = θ−1:

min y

Subject to (4.2)

xe − cey ≤ 0 ∀e ∈ E∑

e∈δ(v)

xe − cvy ≤ 1 ∀v ∈ V

∑
e∈E

xe = n− 1

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V

xe ∈ {0, 1} ∀e ∈ E

To start solving the problem, we relax integrality and subtour elimination constraints, keeping the

49

first three, and obtain the following LP relaxation:

min y

Subject to

xe − cey ≤ 0 ∀e ∈ E∑

e∈δ(v)

xe − cvy ≤ 1 ∀v ∈ V

∑
e∈E

xe = n− 1

0 ≤ xe ≤ 1 ∀e ∈ E

This LP has 2|E|+ |V |+1 constraints, and can be quickly solved by most linear programming solvers.

4.6.2 Cutting Inequalities

Since optimal solution to the relaxed formulation is not necessarily a feasible solution to the original
problem, we employ cut generation to get our bound closer to the optimal solution. In this section
we define inequality classes used for avoiding infeasible solutions, and describe separation procedures
for each class of constraints.

Subtour Elimination Constraints

The inequalities used in (4.2) represent the usual subtour elimination constraints. Subtour elimination
inequality can be written for every subset of nodes:

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V (4.3)

To find violated constraints, we use the following search procedure. Using the current solution x0 we
construct a maximum spanning tree. Then for every edge not in the tree, we check whether adding
this edge to the tree forms a cycle that violates the subtour elimination constraint.

Minimum Cut Inequalities

Minimum cut inequalities do not make use of degree constraints, and are valid for any spanning tree.
If x defines spanning tree in G, then for any cut C of graph G at least one tree edge must cross the
cut:

∑

e∈δC

xe ≥ 1 ∀C ⊂ V (4.4)

To find a violated inequality given a solution x0 to the relaxation, for every non-source node t :
{t ∈ V, t 6= s} we solve maximum s-t flow problem in graph G, where capacity of each edge e is

50

defined by x0
e. If maximum flow for some node t is below 1, we find minimum s-t cut C. By minimum

cut - maximum flow theorem x0 violates (4.4) for cut C, and we can add this inequality to current
LP. If for all t maximum flow is at least 1, none of the minimum cut inequalities are violated.

Similar approach was used in [41] for solving a similar the problem of finding an optimal connected
subgraph with fixed degree constraints at nodes. The authors further propose the use of multicut
inequalities, studied in [28], to strengthen the formulation. Multicut inequalities can be defined for
any partition of vertex set V =

⋃p
i=1 Wi, Wj ∩Wi = ∅ for i 6= j:

1

2

p∑
i=1

∑

e∈δ(Wi)

xe ≥ p− 1 (4.5)

Inequalities (4.4) are multicut inequalities with p−1. It can be shown that in our formulation multicut
inequalities are linear combinations of subtour elimination constraints and and the constraint on the
sum of all x variables,

∑
e xe = n − 1. Multicut inequalities also express the witness set constraints,

used in the proof of constant factor approximation.

Node Capacity Cuts

The node capacity inequality

∑

e∈δ(v)

xe − cvy ≤ 1 ∀v ∈ V

often can be strengthened by adding a copy, in which constant 1 is replaced with bey, where be =
maxe∈δ(v) ce. The inequality is valid, since if at least one link can be connected to v, it must be that
bey ≥ 1 due to edge capacity constraints. Inequality can be checked for every node and added to the
formulation if necessary.

Bound Cuts

An upper bound on the objective allows us to round the capacity constraints. Suppose we are given an
upper bound on y: y ≤ ȳ. It can be obtained, for example, from the lower bound on the throughput,
ȳ = 1/θ. Then, since cy ≤ cȳ for any positive constant c, the following equations are valid for all
integral solutions:

xe = 0 ∀e ∈ E : ceȳ < 1∑

e∈δ(v)

xe ≤ min {1 + bcvȳc , |{e ∈ δ(v) : ceȳ < 1}|} ∀v ∈ V

Leaf Cuts

In addition to the bound cuts, if we have an upper bound on the objective value ȳ = 1/θ, we can add
disable a set of edges based on the following observation. Node v must a leaf in the optimal solution if

51

cvȳ < 1. In a network with more than two nodes an edge connecting two leaf nodes can never be used,
and therefore corresponding variable should be forced to 0. Violations are detected by enumerating
edges connecting leaf nodes. Naturally, for this class of cuts, as well as for bound cuts, quality of the
cut depends on the quality of the upper bound.

Degree Constraint Rounding

To define stronger degree constraints we will introduce new variables for node degrees. Let zi be
degree of node i, i = 1..n. Given a solution x to our relaxation, we can compute corresponding zi as
a sum of edge variables for adjacent edges: zi =

∑
j 6=i xij. Note that if x is integral, then z is integral

as well, and for solution to be valid zi ≥ 1 for all i. Further, based on our initial LP relaxation, we
have the following constraints on zi:

zi − ciy ≤ 1 1 ≤ i ≤ n
n∑

i=1

zi = n− 1

Adding the inequalities we obtain that for every i the following two inequalities must hold:

zi − ciy ≤ 1

zi +
∑

j 6=i

cjy ≥ 0

Assuming that we have a lower bound on y, y ≥ y, we can make use of mixed integer rounding to
improve one of these two inequalities. Note that we can use current LP solution as a lower bound.

4.6.3 Volume Algorithm

In order to obtain strong bounds on maximum achievable throughput, we have implemented a version
of the volume algorithm, proposed in [11]. Volume algorithm is a modification of sub-gradient method
which allows to construct both primal feasible solution and Lagrangian dual solutions.

We introduce Lagrangian multipliers λv for node capacity constraints, and consider the following
Lagrangian relaxation of integer program formulation (4.2) for the throughput maximization problem:

min y +
∑
v∈V


 ∑

e∈δ(v)

xe − cvy − 1


 λv

Subject to

xe − cey ≤ 0 ∀e ∈ E

{xe} defines a spanning tree in G

52

Or equivalently, simplifying the objective:

min
∑
uv∈E

(λu + λv) xuv +

(
1−

∑
v∈V

cvλv

)
y −

∑
v∈V

λv (4.6)

Subject to

xe − cey ≤ 0 ∀e ∈ E

{xe} defines a spanning tree in G

Given fixed λ, optimization problem (4.6) can be solved in polynomial time. If
(
1−∑

v∈V cvλv

)
< 0

the problem is unbounded. Otherwise, optimal value of y is y∗ = 1/ce for some edge e. If both y
and λ are fixed, the problem reduces to Minimum Spanning Tree (MST) in a graph formed of edges
with sufficient capacity, and is easily solvable. Therefore we can enumerate all possible values for y,
solving MST for each one, and compare the results to find the optimal solution.

Since we know have an oracle that can find integral optimal solutions to the Lagrangian relaxation, we
can apply the volume algorithm [11] by Barahona and Anbil. Here we briefly describe the algorithm,
and refer the reader to [11] for more details. We will write capacity constraints of (4.2) in general
form Ax ≤ b. Our version of volume algorithm proceeds as follows.

Algorithm INT VOLUME ALGORITHM

1. Start with λ = 0 and x, y corresponding to a spanning tree. Let t = 1.

2. Compute vt = (b− Ax)+ and λt = λ + svt for

s = f
ȳ − y

||v||2 ,

where f is a number between 0 and 2. Solve the Lagrangian relaxation to obtain solutions λt, xt

and yt.

3. If yt > y update λ ← λt and y ← yt.
Let t ← t + 1 and go to Step 2.

In the volume algorithm primal feasible solution is a convex combination of xt obtained during several
past iterations, with weights exponentially increasing with age of the iteration, such that most recent
iteration has largest weight. In our case xt are integer variables. Therefore every 100 iterations we
run a search for a solution that achieves highest throughput and only uses edges that were used in at
least one of xt during K previous iterations. In our experiments K = 16. Also, during each iteration
when solution xt is obtained, we run our approximation algorithms starting with the tree given by xt,
trying to find a better solution.

4.7 Experiments

We evaluate our algorithms on several randomly generated instances. We generated random network
topologies of up to 500 nodes using GT-ITM package (see [63] for more details). We add client nodes
to each of the stub nodes of generated topology. Client nodes are connected to the uplink with a

53

Nodes Volume Cut Extended Cut
12 0.02s 0.07s 0.08s
24 4.89s 0.37s 0.22s
37 (3.3% gap) 1.86s 0.47s
48 31.67s 0.02s 0.02s
57 (8% gap) 120.98s 2.59s
77 (13% gap) 11m:47s 7.87s
96 (10% gap) (35% gap) 9.60s

389 (9% gap) (43% gap) (43% gap)

Table 4.1: Numerical Results: Running Time

Nodes Heuristic Witness Set Total Degree
Bound Bound

12 83.59% 100% 100%
24 83.59% 100% 100%
37 66.94% 100% 100%
48 100.00% 100% 145.95%
57 69.17% 100% 100%
77 66.94% 100% 100%
96 74.26% 100% 100%

Table 4.2: Numerical Results: Quality of Bounds at Root

single edge. For each edge capacity bound was randomly generated. Finally, we randomly chose n
client nodes that are participating in application-level multicast. For each such node v capacity cv is
determined by capacity of connecting edge. We further need to define capacities of edges cuv, which
are determined as minimum capacity on shortest path between u and v in the generated network.

The results of our experiments are summarized in Tables 4.1 and 4.2. First column of both tables
contains number of nodes in each problem instance.

In Table 4.1 we compare performance of the volume algorithm and two modifications of cutting
algorithm. For those experiments in which optimal solution was found in less than an hour, time used
for solving the problem is shown. If the problem still was not solved after 1 hour, table entry contains
the best proven gap between lower and upper bound. First modification of cutting algorithm (“Cut”
column) only uses subtour elimination and minimum cut inequalities, which makes it similar to the
set of cuts used in branch-and-cut algorithm proposed in [15]. In the second modification (“Extended
Cut”) we enable leaf and degree cuts.

Table 4.2 shows upper and lower bounds obtained at the startup of the algorithm on the same problem
instances that are shown in Table 4.1. In columns 2 to 4 upper and lower bound throughput value
is shown in percents of optimal throughput. Heuristic solution typically achieves less than 100% of
optimal throughput, except for the instance with 48 nodes, which was solved to optimality.

In all our experiments networks were constructed such that a tight bound can be obtained by comput-
ing the sum of node degrees in the graph for each possible threshold value. The only instance in which
a tight bound is not obtained this way, a 48-node network, is solved to optimality by our heuristic. In
that case a one-node witness set can prove a tight bound. This suggests that the cases that are not

54

determined by node constraints are more easily solved by the heuristic, but further experiments are
required to support this conjecture.

4.8 Conclusion

In this chapter we describe approximation algorithms, for which we prove worst-case performance
guarantee, and a numerical method for finding exact optimal solution for the NP-hard problem of
maximum throughput multicast routing. Experiments on simulated data show that the exact solution
can be found in problems of reasonable size.

From the practical perspective, future work must include modifications that bring our model closer
to implementation, and performance evaluation of a prototype implementation. In particular, our
approximation algorithm can adapt to changing network conditions by performing several edge ex-
change iterations. Each iteration of the approximation algorithm can start with any valid spanning
tree, and improve throughput incrementally via edge exchanges. Edge exchange can be performed
without interrupting multicast session, and backup buffer mechanism described Chapter 2 can be used
to prevent losses during edge exchange.

From theoretical perspective, it is of interest to attempt to close the gap between the approxima-
bility bound and worst-case bound achieved by our approximation algorithm. We believe that the
approximability bound can be improved, but we leave that for future research.

55

Chapter 5

Multicast Group Membership

5.1 Introduction

Publication-Subscription systems (pub-sub for short) provide information on specific real-time events
from publishers to interested subscribers. The subscribers express their interest in the form of multiple
subscriptions. The publishers and subscribers may be located at arbitrary nodes in a distributed
network.

Pub-sub systems can be characterized into two broad types based on the degree of generality, usability
and personalization allowed to the subscribers. We focus in this chapter on the more sophisticated of
these, namely content-based pub-sub. See, for example, the pioneering work of the Gryphon project
[2, 8, 45], as well as NEONet [43] and READY [29]. Such systems differ from the more mature
subject-based pub-sub systems in their generality, usability and flexibility. Borrowing extensively from
the classic stock market example used by Gryphon, a subject-based pub-sub system would allow
subscriptions based on broad criteria only. A subscriber might request all events related to IBM,
for instance. Such a system is powerful but relatively inflexible. The subscriber might receive many
publications involving IBM stock market events of little interest. On the other hand, a content-based
pub-sub system would allow subscriptions which were based on the conjunction of potentially multiple
predicates related to different attributes.

Expanding on the stock market scenario originally discussed by Gryphon, a content-based pub-sub
system would allow subscriptions which are based on the conjunction of potentially multiple predicates
concerning different attributes. The motivating Gryphon subscription example was based on three
distinct attributes:

• The first was an equality predicate based on a character string referring to the stock name.
name=IBM would be an example, though one could also imagine categories (“blue chip”, for
instance) being specified instead.

• The second could be one or two inequality predicates based on a two decimal numerical attribute
referring to the stock price, such as 90.00 < price ≤ 110.00. Alternatively one could normalize
these by the price of the stock at the start of the day, so that a subscription might look for
changes in price within 10 percent in a day.

• The third could be one or two inequality predicates based on an integer attribute referring to
the volume: volume > 10,000 might be an example. One could easily imagine translating these

56

volumes into dollars to ensure a common basis amongst differing stocks, so that one might look
for volume whose monetary equivalent exceeds one million dollars.

A client with this (expanded) subscription would receive information about all trades of “blue chip”
stocks whose price stays within a 10 percent range during the day and involves more than a million
dollars in start-of-day units.

So content-based pub-sub is more general and much more personalizable than subject-based pub-sub.
In general, we can assume that content-based pub-sub systems allow each predicate to be range-
based, composed of intervals in the underlying domain of the predicate. (Because computers can
handle only inherently finite and discrete attribute values, one can assume without loss of generality
that all possible intervals are actually open on the left and closed on the right. This assumption
allows the intervals to ‘fit together’ more cleanly.) By decomposing a subscription with multiple
such ranges into multiple subscriptions consisting of single ranges we can see that it is sufficient only
to consider intervals, albeit at a cost of more subscriptions. And even attributes such as name, not
typically thought of as numerical, can be indexed and therefore linearized in some fashion. A predicate
involving “blue chip”s can thus be decomposed into the union of several conjunctions.

This perspective allows us to think of a subscription as a half-open, half-closed aligned rectangle
in space, each dimension corresponding to a different attribute. (The term aligned means that the
rectangle is parallel to the various axes.) A published event becomes a point in the underlying space.

Clearly, the extra function involved with pub-sub systems comes at a price. It is technically chal-
lenging for a content-based pub-sub system to efficiently distribute the many publication events to
the interested subscribers over the network. And it is technically challenging to do so in a manner
which scales with the dimensionality of the underlying event space, the number of publishers and the
number of subscriptions.

Due to complexity of optimization problems arising in pub-sub context, in this chapter we assume
that multicast routing problem is solved independently, for example using one of the approaches we
describe in Chapters 3 and 4. Hence, are two key dynamic problems that a content-based pub-sub
system needs to solve:

1. One must match a given real-time event quickly to determine the set of relevant subscribers.
This is the so-called matching problem.

2. One must decide to unicast, multicast and/or broadcast information about the event over the
network efficiently to the matched subscribers (or possibly to a superset of those subscribers, if
that is more algorithmically reasonable, to be filtered out as necessary). We shall call this the
distribution method problem.

Both of these problems must be solved in real time as new events are published. However, there
is a related, static “preprossessing” problem that should be solved in order to enable the real-time
algorithms to function efficiently. Basically we must precompute a set of high quality multicast groups
having as much commonality as possible, based on the totality of subscribers’ interests. We shall call
this the subscription clustering problem. This chapter will be focused on the clustering problem,
whereas the matching problem is analyzed in more detail in a companion paper [50].

The Gryphon papers do tackle these problems in elegant ways. In [2] and [8], for instance, the authors
consider the matching problem. The interested reader is referred to [23] for a detailed description of

57

the matching algorithm, a performance analysis and a comparison with existing matching algorithms.
In [8] and [45] the authors consider multicasting techniques. It seems fair to say, however, that the
authors base their algorithms primarily on subscriptions in which each dimension is based on either
equality or wild-card predicates. (A wild-card (*) indicates that the subscriber does not care about
the value in that dimension.) While their algorithms will certainly work in full generality, we believe
that they are optimized for their motivating predicate types.

However, the above mentioned earlier work of Gryphon project (see, for example, [45]) concluded
that multicast mechanism does not provide substantial benefits in many pub-sub systems, and that
given the multicast overhead, unicast and broadcast are sufficient for these systems. We believe
that the conclusions would be very different depending on the network configurations, distribution
of publications and subscriptions. In this work we consider larger networks with fewer number of
subscriptions from each node. We think this setting could be closer to the real world environments.
This leads to the potentially large advantage of forming multicast groups. We will evaluate the benefits
of employing (both network-supported and application-level) multicast mechanisms. We shall show
that the communication costs depends crucially on how to form the multicast groups.

Specifically, in this chapter:

• We examine the various assumptions in the Gryphon framework and investigate quantitatively
different impacts from several aspects of the pub-sub frame work.

• We introduce a general framework that allows to adapt partitional data clustering algorithms for
pub-sub systems in which subscriber preferences are described more generally than in previous
work.

• We devise a number of new clustering algorithms and enhanced some others. Among the algo-
rithms we now consider are K-means, an important variant called Forgy K-means, a hierarchical
clustering algorithm based on Minimum Spanning Trees (MST), the Pairwise Grouping algo-
rithm and a variant called Approximate Pairwise Grouping, and finally a so-called No-Loss
algorithm. (The no-loss strategy implies that a publication never needs to be filtered out in the
dynamic stage: Every subscriber that receives a publication is indeed interested in that message.
The other algorithms described in this paper do not have this property.) Our comparisons show
new leaders among these algorithms, and our results are more robust and realistic.

• We evaluate our algorithms on a large network model. Our subscriptions are based on three
different models of interest, and the same is true for our publication model. We analyze the
effects of regional subscriber preferences relative to the network topology. We show that the
conclusions in this paper depend dramatically on assumptions about the size and structure of
the network.

We will consider two flavors of multicasting in this paper, network supported and application level
multicast schemes. The interested reader is referred to [4] for a description of the various tradeoffs,
see also [46] for a description of application level multicasting.

The remainder of this chapter is organized as follows. We introduce some notation in Section 5.2. In
Section 5.3, we describe some preliminary investigations which illustrate potential impacts of commu-
nication algorithms on the communication costs. We then in Section 5.4 describe the algorithms for
solving common interest clustering problems. In Section 5.5 we present the results of our experiments
and comment on the relative performance of the algorithms. Finally, in Section 5.6 we summarize the

58

results and discuss about future work. We believe that the many ideas for future work are indicative
of the newness and importance of this area of research.

5.2 Problem Notation

In this section we define some key parameters we will use in our problem descriptions. Let Ω denote
the publication event space. Each event being published within the system can be uniquely described
with a single value ω such that ω ∈ Ω. Let N denote the number of dimensions (or attributes) in Ω,
so that Ω ⊆ RN . Let pp(x) be the probability that publications events are within set x ⊆ Ω. Define
the underlying network topology as an undirected graph G = (V, E). Define the communication costs
to be ce ≥ 0 for each edge e ∈ E. Let VP ⊆ V be the set of nodes containing publishers. Let VS ⊆ V
be the set of nodes containing subscribers. Let NS be the number of subscribers. In this chapter we
shall assume that each subscriber vi ∈ VS, i = 1, ..., NS, has a set of subscription preference expressed
by (possibly infinite) rectangles Ii = {bij}ri

j=1 associated with it. Each bij ⊆ Ω is an aligned rectangle
in space Ω. We define I :=

⋃
v∈VS

Iv to be the set including all subscription rectangles. We define
k := |I| to be the number of subscriptions.

The size of the clustering problem is essentially determined by the dimension of the event space N
and the number of subscriptions k. We are interested in algorithms that scale well with respect to
these values.

Typically the number K of multicast groups available to the clustering algorithm is known in advance.
In the case of network-supported multicast, this is the number of multicast IP addresses purchased. In
the case of application level multicast this number is limited by the amount of memory and processing
power of participating computers.

5.3 Preliminary Analyses

Earlier work from the Gryphon project (see, for example, [45]) has demonstrated that multicast
mechanism does not provide substantial benefits in many pub-sub systems. Given the well-known
structural and performance overhead for applying multicast, unicast and broadcast are sufficient for
these systems, having little or no overhead and insignificant increase in the delivery cost. We examine
the various assumptions in the Gryphon framework and investigate quantitatively different impacts
from several aspects of the pub-sub frame work. The conclusions are very different depending on the
network configurations, distribution of publications and subscriptions.

In our model, events are generated in 4 dimensions, with the first one corresponds to “regional at-
tribute”. When a publication event occurs, the publication is always set to the identification number
of originating subnet (“stub”) for this message. The degree of regionalism parameter is the probability
that in a subscription this attribute equals to corresponding subnet number. Zero degree of region-
alism corresponds to no regionalism, and degree 1 to absolute regionalism. Regional subscriptions in
this table are generated with this parameter set to 0.4. Non-regional subscriptions have this parameter
set to 0 during generation of subscriptions.

The other 3 attributes of events can take on integer values between 0 and 20, according to either
uniform or Gaussian distribution. Preference on each parameter can be either a “don’t care” pa-
rameter, denoted “*”, which means that all values of this parameter are of interest, or the interval

59

can be specified. In the uniform case, the probabilities of not having “*” in position 2 is 0.98, and
then decreases with the rate of 0.78 for subsequent parameters, so parameter 3 preference is specified
with probability 0.98 · 0.78, and parameter 4 with probability 0.98 · 0.782. If parameter preference is
specified, then two random numbers between 0 and 20 are generated, sorted if needed, and assigned
to the ends of the preference interval. For Gaussian distribution each of the 3 parameters preference
can have value of “*” with probability q1, can be a left-ended interval with probability q2, a right-
ended interval with probability q3 and an interval with both ends with probability (1− q1 − q2 − q3).
If both ends of the interval are specified, the center of the interval follows a Gaussian distribution
with parameters (µ3, σ3) and the length of the interval follows a Pareto-like distribution with a given
mean. If the interval is one-ended, then the end of the interval is chosen from Gaussian distribution
with parameters (µ1, σ1) and (µ2, σ2) for left-ended and right-ended intervals. The parameters in the
experiment were chosen from the following table, to simulate stock name, price and trading volume:

Para q1 q2 q3 µ1, σ1 µ2, σ2 µ3, σ3 mean
2 0.1 0 0 8,2 10,2 9,6 1
2 0.15 0.1 0.1 8,1 10,1 9,2 4
2 0.35 0.1 0.1 8,1 10,1 9,2 4

The networks were generated by GT-ITM package (see [63] for more details) using transit-stub model
with one transit block and the following parameters:

Node Trans node Stubs/trans node Nodes in a stub
100 4 3 8
300 5 3 20
600 4 3 50

Figure 5.1 illustrates the topology of the network with 100 nodes. More details about the simulation
framework can be found in section 5.5.1.

Tables 5.3 and 5.2 show the communication costs for broadcast, unicast and ideal multicast, where ideal
multicast stands for the distribution scheme where a multicast group is formed for each publication
event and is composed only of the subscribers interested in this event. The ideal multicast could thus
use all the possible 2NS groups. We observe that for the same network, the difference in cost between
the broadcast and ideal multicast is small for cases with a large number of subscriptions, and becomes
larger as the number of subscriptions decreases. This gap can be as large as 4 times the ideal solution.
Therefore, there is need to further investigate more sophisticated content delivery mechanisms.

The Gryphon framework has a 100 node network, with an average of 125 subscriptions for each of
the 80 nodes. For such types of networks with a small number of nodes, each node having many
subscriptions per publication, there is a very high probability that at least one of the subscriptions
at this node includes this publication. Therefore, the number of nodes interested in this publication
is either very high or very low. This means that the system needs to deliver the publication either to
almost every node or to a very small set of nodes. We believe that this fact results in the conclusion
by Gryphon that broadcast is sufficient for such systems. For larger networks with relatively fewer
subscriptions, on the other hand, it is unlikely that publications need to be delivered to almost every
node in the network. Multicast is most beneficial in this kind of setting which messages need to be
delivered to only part of the network.

60

Figure 5.1: Network topology with 100 nodes.

Node Sub’n Dist’n Unicast Broadcast Ideal
100 5000 uniform 31351 1430 1334
100 5000 gaussian 48805 1430 1415
100 1000 uniform 5846 1430 867
100 1000 gaussian 9513 1430 1134
100 80 uniform 750 1430 310
100 80 gaussian 548 1430 287
300 5000 uniform 38612 5079 3453
300 1000 uniform 8181 5079 867
300 350 uniform 3638 3880 1065
600 10000 uniform 92178 10235 6720
600 10000 gaussian 139020 10235 8212
600 5000 uniform 45320 10235 4820
600 5000 gaussian 69179 10235 6431
600 1000 uniform 5477 10235 1350
600 1000 gaussian 9408 10235 1823

Table 5.1: Potential advantage of multicast for case with degree 0.4 regionalism

61

Table 5.2: Potential advantage of multicast for case with no regionalism
Node Sub’n Dist’n Unicast Broadcast Ideal

100 5000 uniform 50737 1430 1377
100 5000 gaussian 81779 1430 1428
100 1000 uniform 9409 1430 1039
100 1000 gaussian 16314 1430 1301
100 80 uniform 816 1430 328
100 80 gaussian 1580 1430 545
300 5000 uniform 61513 5079 4019
300 5000 gaussian 98735 5079 4751
300 1000 uniform 13384 5079 2026
300 1000 gaussian 21167 5079 2918
300 80 uniform 61513 5079 1113
300 80 gaussian 6113 5079 1598
600 10000 uniform 151270 10235 7993
600 10000 gaussian 232405 10235 9382
600 5000 uniform 73830 10235 6184
600 5000 gaussian 116952 10235 8000
600 1000 uniform 8276 10235 1791
600 1000 gaussian 14428 10235 2502

In Tables 5.3 and 5.2 the unicast and ideal multicasts are in general larger for the gaussian distributions
than for the uniform. This is due to the fact that more nodes are likely to be interested in the
publication events for the gaussian case, hence results in more communication cost. This shows that
the publication distributions also affects the multicast benefits.

Furthermore, Tables 5.3 and 5.2 show that the communication costs for regional-specific subscriptions
are smaller than the costs for non-regional subscriptions. More generally, the dependence of the sub-
scriptions by different nodes can have a big impact on the multicast benefits. Consider independent
subscriptions by the nodes for a particular publication. The nodes that are interested in this publica-
tion would be scattered around the network evenly with very high probability. The multicast benefit
for delivering messages to such a scattered network would not be significant. On the other hand, if the
subscriptions have a regional concentration, the interested nodes of a publication would very likely be
more localized. It would not be surprising to observe substantial benefits from employing multicasts.

In addition, if the probability that each node subscribes to a given message is independent of other
nodes, and there is no concentration of common interest in the event space, then it is difficult to form
only a few number of groups and greatly improve communication efficiency – each of (2NS−1) possible
multicast groups will be needed with equal probability.

The rest of this chapter considers larger networks with fewer number of subscriptions from each node.
We think this setting is closer to the real world environments. This leads to the potentially large
advantage of forming multicast groups. For such pub-sub systems, using broadcast to deliver messages
would not be appropriate due to its large communication overhead. We will evaluate the benefits of
employing multicast mechanisms. The communication benefits of multicast depends crucially on how
to form the multicast groups. Due to the overhead of managing a large number of multicast groups, we
need to consider forming a limited number of groups. We develop several algorithms for constructing
multicast groups and evaluate their performance benefits. Algorithmic complexity is also a key factor
for these real-time applications. We further study the cost benefit and running time trade-offs of these
algorithm and discover good algorithms for practical applications.

62

Before going into details on the algorithms, it is important to describe the assumptions of our studies
for the aforementioned reasons. First, we assume that the peaks in density of subscriptions follow peaks
in density of the messages. It seems likely that multicast will not provide comparable improvements
in communication cost without this assumption.

We further assume that the subscriber preferences are regional in the network topology. In our
experiments, for example, stock name preference (mean of the distribution) was assigned according
to the transit block in the network. In addition we assume subscriptions themselves are unevenly
distributed in the network, with higher concentrations of interest in some areas, and lower in others.

Under these assumptions forming a limited number of groups using subscription clustering algorithms
can potentially lead to large reduction of communication costs when compared to unicast and broad-
cast. While relatively restrictive, the assumptions still seem to be practical. Indeed, in many real-life
pub-sub systems we would expect that events, in which more people are interested, are typically pub-
lished more often, than the less interesting events. Also, we can expect the regionalism of subscriptions,
with more concentration of users in certain parts of the network, and regionalism of interest, with
interest distribution being different in different parts of the network. The model formally presented
in section 5.5.1 follows the above assumptions.

5.4 Algorithms for Subscription Clustering

There are two distinct categories of subscription clustering algorithms that we present in the chapter.
First category, the Grid-Based clustering algorithms, extends earlier work on subscription clustering
in content-based pub-sub systems for the case of rectangular preference sets. Work by the Gryphon
group [8] and by Katz et al [62] employ similar data algorithms for clustering of point subscriptions.
In the following subsection we describe the framework that allow us to use data clustering algorithms
for clustering subscriptions. In the following subsections we illustrate our approach by describing how
four clustering algorithms: K-means, Forgy K-means, MST, and Pairwise Grouping can be used for
subscription clustering.

The second category of subscription clustering algorithms presented in this section includes just one
algorithm – the No-Loss algorithm. While grid-based algorithms sometimes can “lose” messages,
sending them to subscribers who are not interested in the particular message, but only happen to
have close interests, the No-Loss algorithm guarantees that all subscribers receiving a message are
interested in it, thus avoiding redundant communication in the network.

Subscription clustering algorithms form multicast groups, as well as produce data structures that are
used for matching events to multicast groups. The last subsection describes matching algorithms for
the two categories of clustering algorithms.

5.4.1 Grid-Based Clustering Framework

Grid-based subscription clustering algorithms (or cell clustering algorithms) apply data clustering
heuristics to the cells of a regular grid in event space Ω. Data clustering algorithms are widely used
for grouping “similar” objects. Similarity of objects is determined based on the value of a distance
function. In this subsection we define feature vectors and distance function for clustering, and describe
the application of several data clustering algorithms to our model in the following subsections.

63

Feature Vectors. Each cell a ⊂ Ω has a subscriber membership vector s(a) ∈ {0, 1}NS associated
with it. By definition,

s(a)i :=

{
1 if there exists index j s.t. bij ∩ a 6= ∅,
0 otherwise.

(5.1)

In this vector non-zero elements correspond to subscribers interested in the cell.

The most commonly used strategy for partitional clustering is square-error minimization criterion,
which amounts to minimizing sum of the squared Euclidean distances between feature vectors corre-
sponding to objects over the entire set of objects. We use membership vectors as feature vectors of
cells instead of using, for example, the coordinates of the cell center in event space Ω. Using coordi-
nates in Ω for this purpose would lead to poorer solutions, since our goal is to create groups based on
common interest, as opposed to similar interest. Grouping based on similar interest is considered, for
example, in the work by Katz et al [62]. In our model, however, we assume that subscribers are only
interested in events for which they have directly expressed interest, and there is a performance penalty
to be paid when a message is delivered to a subscriber who not interested in it. On the other hand,
when several subscribers are interested in the same events, possibly scattered over Ω, it is still logical
to assign these subscribers to the same multicast group. Therefore we conclude that the comparison
of sets of interested subscribers is more suitable for identifying common interest than comparison of
coordinates in the event space.

Distance Function. Squared Euclidean distance between cells a and b can be computed as d2
e(a, b) =∑

i

(
s(a)i − s(b)i

)2
=

∑
i

(
s(a)i ⊕ s(b)i

)
, where “⊕” denotes a binary operator of exclusive or. In our

model, the probability density function of publications can be taken into account in order to better
characterize our objective. We define the distance function d as: d(a, b) := pp(a)

∑
i∈VS

max
{
[s(a)i −

s(b)i], 0
}
+ pp(b)

∑
i∈VS

max
{
[s(b)i−s(a)i], 0

}
. The value of d(a, b) is the expected number of messages

sent to subscribers, who are not interested in them, if the cells a and b are combined in one group.
Note that we can similarly define membership vectors and distance functions for sets of cells, simply
replacing cells a and b with sets of cells instead.

The function d characterizes expected waste, the notion first introduced in work by Gryphon group [8].
The objective of clustering in this formulation is to form groups in a way that minimizes expected
waste. It is known that the heuristics used for clustering are not guaranteed to achieve a global
optimum, but in practice the quality of the solution may be sufficient.

Implementation Notes. If for cells a and b it is true that s(a) = s(b), then the cells can be
combined in one group inducing zero expected waste. Our implementation during preprocessing stage
scans continuous blocks of cells searching for repeating sets of subscribers, and joining the cells into
hyper-cells, in other words sets of cells having the same membership vector.

Since the number of cells might become too high for the algorithm to handle, it would be helpful if
we could somehow select the “most popular” cells for clustering, leaving the rest for unicast. Our
implementation sorts hyper-cells (after the grouping step described above) by “popularity rating” r(.)
defined by r(a) := pp(a)

∑
i∈VS

s(a)i and keeping only a fixed number of cells, having the largest values
of popularity rating.

Our experiments show that after some number of cells, the improvement gained from feeding more
cells to the algorithm becomes negligible. In fact, the more cells are given to clustering algorithm,
the worse the quality of solution becomes. This justifies the need for some implementation of outliers
removal algorithms for detection of cells that have rather unique combination of subscribers. On the

64

other hand, even without the outlier removal algorithm, clustering a large enough fraction of cells can
lead to sufficiently good results.

5.4.2 K-Means and Forgy K-Means Clustering

The use of k-means clustering algorithm in pub-sub systems (with different objective, and therefore
different feature vectors and distance functions) was proposed by Katz et al in [62]. We have studied
the performance of original algorithm by McQueen and as well as the one of its variants by Forgy, see
details in [32].

0. Form initial K groups.
1. Re-assign each cell to a closest group.
2. Repeat step 1 until no cell can be moved.

Figure 5.2: K-Means Clustering.

Figure 5.2 shows generic pseudo-code for a k-means clustering algorithm for forming K multicast
groups. In step 0, the initial partition is formed. For this purpose, K hyper-cells with the highest
popularity rating r(a) are chosen to be centroids of groups, and the rest of hyper-cells is assigned
to closest groups, based on the expected waste distance function. In step 1 each of the hyper-cells
is examined, and assigned to the “closest” cluster. The distance to the cluster is determined using
the distance function, measuring the distance between the membership vector of the hyper-cell and
the membership vector of the cluster. The K-means algorithm updates the membership vector of
the cluster each time a hyper-cell is moved. The algorithm by Forgy updates membership vectors of
all clusters after step 1 is finished. A hyper-cell cannot be moved to another cluster if it is the last
hyper-cell in its current cluster.

K-means type algorithms are proven to converge to a local optimum in a number of iterations, and
in practice they converge quickly. Nevertheless, the processing can be stopped after any iteration,
resulting in a feasible partition into K groups. This also provides an easy way to accommodate changes
in cell membership, simply running a number of re-balancing iterations, when new subscribers arrive
or subscription rectangles are changed in some other way.

5.4.3 Pairwise Grouping

Pairwise grouping for clustering point interest (or pairs for short) was proposed in the work by
Gryphon group [8], and we have extended these ideas to the case of interest rectangles. It is a top-
down clustering algorithm, which starts with each hyper-cell assigned to its own cluster. If the total
number of clusters is larger than the required number K, the two groups with the minimum distance
to each other are chosen, and combined. The membership vector for this group becomes a combination
of vectors of the joined groups. The process is repeated until no more than K groups are left. The
algorithm is summarized on Figure 5.3.

An approximate version of this algorithm inspects a fraction 1/e of the total number of the group
combinations during the search for best distance, stores the pair with the shortest distance from this
fraction of groups, and terminates the search after that, if a smaller distance is found. This heuristic
derives from a well-known solution to secretary problem ([52, p. 114]) for maximizing the chance of

65

0. Given l cells, form l groups, one cell in each.
Group gi = {ai}, for each cell ai, and s(gi) = s(ai).

1. Find i and j such that i 6= j and d(gi, gj) is minimized.
Reset gi ← gi ∪ gj , update s(gi), and remove gj .

2. Repeat step 1 until there are only K groups left.

Figure 5.3: Pairwise Grouping.

choosing the maximum value, if the decision must be done immediately. The algorithm modified in
this way works faster, but it may obtain a poorer solution.

5.4.4 Minimum Spanning Tree Clustering

The use of the minimum spanning tree (MST) for clustering was proposed by Zahn (1971). Suppose
we have a graph G, in which nodes correspond to hypercells, and there is an edge between each pair
of nodes i and j of length d(i, j). We will say that each node in itself is a component. Processing
the edges in non-decreasing order of length, if the edge connects different components, combine the
components into one, and proceed to the next edge. Continue until there are K components left.

0. Given l cells, form l groups, one cell in each.
1. For each pair in the order of increasing distance:
2. If the hyper-cells of the pair are not in same group,

combine the groups corresponding to cells.
Repeat step 2 (for next pair) until
there are only K groups left.

Figure 5.4: Minimum Spanning Tree Clustering.

This algorithm is similar to Kruskal’s algorithm [35] for finding MST in graph G, except that this
version stops when exactly K connected components are formed. Pairwise grouping proceeds in the
similar fashion as the MST algorithm, but in the pairwise grouping case the distances are calculated
between groups, not between cells. Therefore it is impossible to sort pairs by distance in advance,
which in effect leads to greater running time of the pairs algorithm, compared to MST on the same
data.

5.4.5 No-Loss Algorithm

The grid-based family of cell clustering algorithms works with cells of a regular grid, and each cell
of the grid can be associated with one of the multicast groups. As a result, each subscriber whose
interest overlaps with the cell, is assigned to the multicast group. Since interest rectangles are not
aligned on cell borders, it is possible that an event sent to a multicast group will reach subscribers
that are not interested in this particular event, as well as the ones for which this event was intended.
The idea behind the No-Loss algorithm is to avoid this kind of wasted communication completely,
forming multicast groups corresponding to areas aligned to interest rectangles borders. The algorithm
(Figure 5.5) tries to find the “most popular” intersections of interest rectangles. The popularity (or
weight) of an area in event space is measured by the number |u(s)| of subscribers interested in this
area multiplied by the probability of publication in the area: w(s) = pp(s)|u(s)|.

66

0. Set of rectangles: S := I;
Rectangle weights w(bij) := pp(bij) for each bij ∈ S;
Subscriber node lists: u(bij) := {i} for each bij ∈ S.

1. Sort elements of S by w, such that:
if sl, sm ∈ S and l < m, then w(sl) > w(sm).

2. Retain only first T elements
in sets S, w and u, discarding the rest.

3. For each bij ∈ I and s ∈ S, such that t := s ∩ bij 6= ∅,
and i 6∈ u(s) do:

if ∃ r ∈ S such that r ≡ t,
u(r) ← u(r) ∪ u(t); w(r) ← pp(r)|u(r)|.

else S←S ∪ t; u(t)←u(t) ∪ {i}; w(t)←pp(t)|u(t)|.
4. Repeat from step 2 at most k times.
5. Sort S as in step 1.
6. Form K multicast groups corresponding to

first K elements of S, grouping subscribers
according to u(sl) lists, l = 1..K.

Figure 5.5: No-Loss Algorithm

1. Given an event ω, find the corresponding cell
of the grid in the event space Ω.

2. If the event is matched to a cell:
2.1. Denote the associated multicast group G.

Find the number (or proportion) of members of G,
interested in ω.

2.2. If the number is above a predefined threshold:
2.2.1. Send the message to group G.

Else
2.2.2. Send it only to interested subscribers.
3. Else (if the event is not matched)

Send it to the list of interested subscribers.

Figure 5.6: Matching for Grid-Based Algorithms

5.4.6 Matching Subscriptions To Events

Each time an event arrives in the system, it has to be matched to multicast groups formed by a
clustering algorithm in order to find out how to deliver the message. Matching must done efficiently,
since the delay caused by the matching algorithm directly affects the maximum throughput of the
system. In this subsection we briefly introduce matching algorithms to illustrate how the data struc-
tures produced by subscription clustering algorithms is used in real-time, and refer the reader to our
paper [50] for more detailed discussions.

Each group produced by a clustering algorithm can be described as a set of aligned rectangles in the
event space Ω. Therefore the problem of matching an event ω to multicast groups can be reduced to
the problem of searching among aligned rectangles in event space Ω for the rectangles that contain a
given point ω. This general problem is most commonly solved using a special pre-built data structure
called R∗-tree (see [12]). In order to achieve better performance a modification of R∗-tree algorithm,
the S-tree algorithm described in [1] can be used instead.

67

Matching in Grid-Based Algorithms. Multicast groups formed by a grid-based algorithm are
associated with cells of the grid in the event space. Each cell of the grid is either associated with one
group or is not associated with any group. Therefore matching algorithm should find which cell the
event falls into, and take different actions according to whether the cell is associated with a group
or not. If there is no group associated with the cell, the message must be delivered using unicast. If
there is an associated multicast group is found, the message is usually delivered via multicasting to
this group. However, if we can determine how many of subscribers included in the matched group are
actually interested in the message, we may be able to avoid unnecessary communication by sending
the message via unicast only to those interested in it. This optimization can help to noticeably reduce
communication. We further discuss the effects of this optimization, as well as present experiment
results, in a paper [50]. Figure 5.6 summarizes the matching algorithm in pseudo-code.

Matching in No-Loss Algorithm. No-Loss interest clustering stage forms a list A ⊆ S, consisting
of the first n elements of S in the order of decreasing density w. When an event e arrives, the matching
algorithm in Figure 5.7 is applied. The algorithm (using an S-tree, for example) finds multicast groups,
as well as individual subscribers that are not included in the groups, whose interest rectangle includes
the message.

1. If e ∈ s where s is a rectangle, s ∈ A
let s be such that ∀t ∈ A : e ∈ t, w(t) ≤ w(s)
(i.e. it is the rectangle with greatest density).
Send message to multicast group formed of u(s).
Send message via unicast to subscribers in
(VS \ u(s)) that are interested in e.

2. Otherwise send message via unicast
to subscribers interested in e.

Figure 5.7: Matching for No-Loss Algorithm

5.5 Experiments

5.5.1 Experiment Model

These results have been obtained on 3 different models of subscription interest and message distribu-
tion, but on the same network consisting of 600 nodes and the same distribution of subscribers on
this network. In all three models 1000 subscription rectangles were generated.

We adopted the GT-ITM package from Georgia Institute of Technology [63] to generate a network
with six hundred nodes according to a hierarchical scheme. This tool generates a hierarchical topology
with transit blocks on top, stubs in the middle and nodes at the bottom. In our experiments, we first
generate three transit blocks, with an average of five transit nodes in each block. Each transit node
is connected on average to two stubs, and each stub has an average of twenty nodes.

For a given network topology, we generate subscriptions for each node. We first generate one thousand
subscriptions with a {40%, 30%, 30%} breakdown for the three transit blocks. Within each transit
block, there is a Zipf-like distribution for the number of subscriptions between all the stubs con-
nected to this transit block. Subscriptions are distributed according to another (common) Zipf-like
distribution within each stub.

68

The generated interval subscriptions are of the form {bst, name, quote, volume}. The first field bst,
which could stand for buy, sell, and transaction, takes value B, S and T with probabilities 0.4, 0.4, and
0.2, respectively. The center of the interval for the name field follows a normal distribution, with mean
centered around the points specific to transit block number (3, 10 and 17), and standard deviation of
4. The length of this interval also follows a Zipf distribution. The intervals for the quote and volume
fields are generated according to the same parametric distribution with different parameters. This
parametric distribution takes values as follows:
(−∞, +∞), with probability q0,

[n, +∞), with probability q1, and n ∼ N(µ1, σ1),
(−∞, n], with probability q2, and n ∼ N(µ2, σ2),
[n1, n2], otherwise, center of interval ∼ N(µ3, σ3),

interval length follows a Pareto distribution.

The parameters are given in the follow-

ing table:
q0 q1 q2 µ1, σ1 µ2, σ2 µ3, σ3 c, α

price 0.15 0.1 0.1 9, 1 9, 1 9, 2 4, 1
vol 0.35 0.1 0.1 9, 1 9, 1 9, 2 4, 1

The generation of the subscriptions are intended to mimic the real life scenario that people’s interests
in stocks are centered around the current prices, the popularity of the information for different stocks
have a Zipf-like distribution, and the popularity of the participants also have a Zipf-like distribution.

The publications are the points in the subscription space, which are generated according to a mixture
of multivariate normal distributions. The different peaks in the multivariate normal distributions rep-
resent the multiple hot spots where events are published more frequently. We studied three scenarios,
which are mixtures of one, four and nine multivariate normal distributions. The means and standard
deviations for the single mode multivariate normal distribution are (1, 1), (10, 6), (9, 2), (9, 6) for each
of the four dimensions. The four mode distribution is constructed by sampling independent mixtures
of multivariate normal distributions in each dimension. The mean and standard deviations for the first
and fourth dimensions are (1, 1) and (9, 6), respectively. The second dimension is a normal random
variable with parameters (12, 3) with probability 0.5, and with parameters (6, 2) with probability 0.5.
The third dimension is a normal random variable with parameters (4, 2) with probability 0.5, and with
parameters (16, 2) with probability 0.5. Similarly, for the nine mode distribution, the parameters for
the first and fourth dimensions remain the same. The third dimension is N(4,3) with probability 0.3,
N(11,3) with probability 0.4 and N(18,3) with probability 0.3. The fourth dimension is N(4,3) with
probability 0.3, N(9,3) with probability 0.4 and N(16,3) with probability 0.3.

It should be noted that this experimental framework is flexible enough to accommodate other proba-
bility distributions for the subscriptions and publications. In the following study, we constructed 1000
subscriptions for the network with 600 nodes generated by the GT-ITM package.

We performed experiments on the generated testbed to evaluate the performance of the different
schemes for forming multicast groups under two multicast frameworks: network supported and application-
level multicast schemes. Network supported multicast requires the network routers to have the multi-
cast capabilities, to be able to recognize multicast groups, and forward the information to the proper
members of the group. There are two types of multicast algorithms currently used in routers: dense
mode and sparse mode multicast. The implementations differ in the amount of state information and
in the structure of the routing tree. We assume the dense mode multicast where the routing tree is a
shortest path tree rooted at publisher. The amount of state information is proportional to both the
number of publishers and the number of groups. In recent years, the study of multicast mechanisms
has focused on the application level multicast, which does not require full support at the network
routers. The members of a multicast group communicates through unicasts. They form a minimum

69

-20

0

20

40

60

80

0 20 40 60 80 100 120

% I
mp

rov
em

ent

Number of Multicast Groups

One-Mode Gaussian Interest/Messages (Network Multicast)

-20

0

20

40

60

80

0 20 40 60 80 100 120

% I
mp

rov
em

ent

Number of Multicast Groups

2x2-Mode Gaussian Interest/Messages (Network Multicast)

-20

0

20

40

60

80

0 20 40 60 80 100 120

% I
mp

rov
em

ent

Number of Multicast Groups

3x3-Mode Gaussian Interest/Messages (Network Multicast)

K-Means
Forgy K-Means

Approximate Pairs

MST
No Loss

-20

0

20

40

60

80

0 20 40 60 80 100 120

% I
mp

rov
em

ent

Number of Multicast Groups

One-Mode Gaussian Interest/Messages (Application Multicast)

-20

0

20

40

60

80

0 20 40 60 80 100 120

% I
mp

rov
em

ent

Number of Multicast Groups

2x2-Mode Gaussian Interest/Messages (Application Multicast)

-20

0

20

40

60

80

0 20 40 60 80 100 120

% I
mp

rov
em

ent

Number of Multicast Groups

3x3-Mode Gaussian Interest/Messages (Application Multicast)

K-Means
Forgy K-Means

Approximate Pairs

MST
No Loss

Figure 5.8: Algorithms Comparison.

spanning tree and forward the messages from one member to another through the minimum spanning
tree. We also evaluated the impacts of the application level multicasts for the different algorithms.

5.5.2 Experiment Results

The following plots summarize simulation results, in which cost of communication was computed by
summing up the edge costs (generated by GT-ITM package) on links on which communication takes
place. Since absolute values of costs differ for different networks, we normalize the costs to make
comparison easier. Thus the vertical axis in most plots shows “improvement percentage” over unicast.
In other words, 0% communication cost improvement is achieved by using unicast to deliver each
message. 100% cost improvement corresponds to the cost of delivering each message to a multicast
group specially formed only of clients interested in this particular message, which is the best possible,
and in the worst case requires as many as O(2NS) multicast groups. The goal of clustering algorithms
is to get as close to this performance bound as possible, while using no more than K groups.

The absolute communication costs depend on different parameters. For the case of one-mode Gaussian
subscription distribution, the unicast is 7139, the broadcast is 8536, and the ideal solution of network
supported multicast is 1763.

Figure 5.8 shows how the communication cost changes as more groups become available for different
algorithms. We are interested in algorithms that demonstrate monotone improvement, since intuitively
when more groups can be formed we expect the algorithms to do a better job. Each plot is shown
for network-level multicast and application level multicast. While application-level multicast results
in slightly higher costs, the trend remains the same, and the algorithms that perform better under
network multicast maintain their leadership under application-level multicast.

Performance of k-means is almost the same as one of Forgy k-means. Approximate pairs curve closely
follows the curve of the pairs algorithm, as one can see in figure 5.11, so the latter is not shown in
order to make plots readable.

70

0
5

10
15
20
25
30

0 2 4 6 8 10 12 14 16 18 20

%
 Im

pr
ov

em
en

t
Rectangles Kept After Intersection (Thousands)

One-Mode Gaussian Interest/Messages, 60 groups

0
5

10
15
20
25
30

0 2 4 6 8 10 12 14 16 18 20

%
 Im

pr
ov

em
en

t

Rectangles Kept After Intersection (Thousands)

2x2-Mode Gaussian Interest/Messages, 60 groups

0
5

10
15
20
25
30

0 2 4 6 8 10 12 14 16 18 20

%
 Im

pr
ov

em
en

t

Rectangles Kept After Intersection (Thousands)

3x3-Mode Gaussian Interest/Messages, 60 groups

0
5

10
15
20
25
30

0 2 4 6 8 10 12 14 16

%
 Im

pr
ov

em
en

t

Number Of Iterations

One-Mode Gaussian Interest/Messages, 60 groups

0
5

10
15
20
25
30

0 2 4 6 8 10 12 14 16

%
 Im

pr
ov

em
en

t

Number Of Iterations

2x2-Mode Gaussian Interest/Messages, 60 groups

0
5

10
15
20
25
30

0 2 4 6 8 10 12 14 16

%
 Im

pr
ov

em
en

t

Number Of Iterations

3x3-Mode Gaussian Interest/Messages, 60 groups

Figure 5.9: Effect of number of rectangles kept after intersecting and of number of iterations on no-loss
algorithm.

The algorithms were run with the following parameters. K-means and Forgy used 6000 rectangles and
maximum of 100 iterations (usually the number of actual iterations was less than 20). Approximate
pairs algorithm was using only 2000 rectangles. The time complexity graph in figure 5.11 shows that
in this case time complexity is almost the same as the one of K-means. No-Loss algorithm was run
with 5000 rectangles kept after intersection and 8 iterations. Figure 5.9 shows how the algorithm
depends on these parameters. MST was run with 6000 rectangles.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

%
 Im

pr
ov

em
en

t

Number of Multicast Groups

Network 1, One-Mode Gaussian, Network Multicast

K-Means
Forgy K-Means

MST

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

%
 Im

pr
ov

em
en

t

Number of Multicast Groups

Network 2, One-Mode Gaussian, Network Multicast

K-Means
Forgy K-Means

MST

Figure 5.10: Performance of K-Means, Forgy and MST on 2 networks generated according to 1st
model (one-mode Gaussian distribution).

Figure 5.10 shows that the trend of the algorithm performance does not depend greatly on the network
topology. The left plot is taken from figure 5.8, and the right plot is obtained from simulation on a
different network and subscription assignment generated according to the same parameters, but with
different random seeds. While the grid-based clustering algorithms achieve local optimal solutions at
best, in practice the solutions usually are good enough, reaching to 60% in this case.

71

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000 12000 14000

% I
mp

rov
em

ent

Number of Hyper-Cells

One-Mode Gaussian Interest/Messages, 60 groups

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000

% I
mp

rov
em

ent

Number of Hyper-Cells

2x2-Mode Gaussian Interest/Messages, 60 groups

5

10

15

20

25

30

35

40

45

50

55

60

0 2000 4000 6000 8000 10000 12000 14000

% I
mp

rov
em

ent

Number of Hyper-Cells

3x3-Mode Gaussian Interest/Messages, 60 groups

Forgy K-Means
K-means

Pairs

Approximate Pairs
MST

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000

Tim
e

Number of Hyper-Cells

One-Mode Gaussian Interest/Messages, 61 group

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000 14000

Tim
e

Number of Hyper-Cells

One-Mode Gaussian Interest/Messages, 61 group

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000

Tim
e

Number of Hyper-Cells

One-Mode Gaussian Interest/Messages, 61 group

Forgy K-Means
K-means

Pairs

Approximate Pairs
MST

Figure 5.11: Effect of input data size on performance and running time of cell clustering algorithms.

Figure 5.12 combines the left and right plots of figure 5.11. Notice that Forgy and K-Means per-
formance plots go down, when given more time. This only means that when more data is given to
the algorithms. It consumes time without improving performance, It can even worsen the quality of
solution, because the number of wasted messages becomes large. Data clustering algorithms usually
make use of outlier removal techniques to avoid these problems. We leave the study of outlier removal
effects for future work, simply noting here that the parameter that regulates the number of cells given
to the clustering algorithm regulates its performance, as well as the time it takes to produce a solution,
as shown in figure 5.11.

The results in figures 5.12 and 5.11 indicate that Forgy clustering should be preferred over k-means,
since it gives better or comparable results faster. Cell-based clustering works well when the dimen-
sionality of the event space is not too high, and the granularity of subscription interest is not too
high. In this case these clustering methods should be preferred over No-Loss algorithm. We leave
high-dimensional case for future study.

5.6 Conclusions and Discussions

We have considered the issue of efficient communication schemes based on multicast techniques for
content-based publication-subscription systems. We have proposed and adapted clustering algorithms
to form multicast groups for these content-based publication-subscription systems. These algorithms
perform well in the context of highly heterogeneous subscriptions, and they also scale well. An
efficiency of 60% to 80% with respect to the ideal solution can be achieved with a small number of
multicast groups (less than 100 groups in our experiments).

Our experiments indicate that under several assumptions, which include high degree of regionalism
of interest, and distribution of the interest close to the distribution of message parameters, the Forgy
algorithm should be preferred for most purposes. Iterative clustering algorithms (K-means and Forgy)
seem to be better suited for subscription dynamics, although other algorithms can be adapted as well.
Hierarchical clustering algorithms (MST and Pairs) have worse performance than iterative clustering,

72

but have the advantage of monotone improvement: when more multicast groups become available
for the system to form, the new groups are formed by sub-division of existing ones. The analysis of
influence of algorithm parameters on algorithm performance presented in this chapter must be helpful
in practical implementation of the algorithms.

There are still many open issues to be addressed in the future. In what follows, we briefly describe a
few of them.

1). Proposed algorithms can be adapted to make use of non-rectangular subscription interest sets by
rounding the sets to appropriate shapes. While the no-loss algorithm relies on the rectangular interest
set assumption, it is not very important to the other (grid-based) algorithms. The same grid data
structures can be created without requiring the sets to be rectangles.

2). In many real-world scenarios each client is connected to an ISP via a single last-mile link. One
simple variant of extending the transit-stub network topology [63] is the one in which higher costs are
assigned to the last-mile links, since usually the last-mile links are the slowest and the most congested
ones.

3). Evaluation of the algorithms on the real-world data would be very helpful for making decisions
about implementation of the algorithms. For example, stock trading data can be used to simulate a
stream of events coming into the system. However, information about the real structure of subscrip-
tions is much harder to obtain.

4). In our experiments we did not simulate real network packets, implicitly assuming that there are
no delays caused by congestion of network links. This is a reasonable assumption to make when the
message size is small (1K or less). If the messages are of large sizes, a different type of communication
cost evaluation must be used.

5). In reality clustering groups need to be constantly updated, since subscribers change their prefer-
ences, join and leave the network. Katz et al show that iterative clustering algorithms are well suited
for dynamic changes in subscription structure [62]. Although a different type of distance measure-
ment is used in that paper, the same iterative improvement strategy can be used to update the data
structures of k-means and Forgy cell clustering algorithms.

6). In our model we have assumed that the matching of messages to groups or individual subscribers
is done once: the first “intelligent” node that receives the message decides how to route it. In an alter-
native approach, described in several Gryphon project papers [2, 45], each intermediate node knows
about the preferences of its neighbors, and matches each event against its specific data structures to
find the neighbors to which the event must be forwarded next. This approach may save communication
and matching time. However in practice dynamics of subscriptions require subscription changes to
propagate quickly in the network, which makes this approach difficult to implement. Another related
extension of pub-sub model requires the system to store messages at intermediate nodes, allowing
off-line clients to retrieve information of interest when they connect to the system [13].

73

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600 1800

%
 Im

pr
ov

em
en

t

Time (seconds)

One-Mode Gaussian Interest/Messages, 61 group

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400 1600

%
 Im

pr
ov

em
en

t

Time (seconds)

2x2-Mode Gaussian Interest/Messages, 61 group

5

10

15

20

25

30

35

40

45

50

55

60

0 200 400 600 800 1000 1200 1400 1600 1800

%
 Im

pr
ov

em
en

t

Time (seconds)

3x3-Mode Gaussian Interest/Messages, 61 group

Forgy K-Means
K-means

Pairs

Approximate Pairs
MST

Figure 5.12: Quality of solution as a function of time.

74

Chapter 6

Conclusions and Future Work

With increasing capacity and availability of Internet connections inevitably grows interest in bandwidth-
intensive applications, enabled by these changes. However due to the enormous size and the complex
structure of the Internet, which consists of multiple interconnected sub-networks that are indepen-
dently managed by different organizations, existing routing equipment cannot be updated quickly
enough to provide most efficient use of existing resources. Multicast is an example of an efficient
transport service, which cannot be implemented in existing infrastructure. Overlay multicast has
emerged as universal solution. In addition to providing efficient transport for group communication,
implementing multicast on application level allows to incorporate complex routing logic and sophisti-
cated optimization algorithms, which require computational resources significantly beyond computing
capacity of routers.

This dissertation describes methods that enable construction of reliable and scalable multicast systems.
The main goal of our work was to achieve high scalability and efficiency of information dissemination
using resources and technology currently available in the Internet.

6.1 Contributions

In this dissertation we addressed problems of finding optimal overlay routing, reliability and resiliency
of overlay multicast systems, and grouping subscribers based on their interests.

Reliable Multicast Architecture. We show that reliable multicast overlays can be deployed on
top of the current TCP/IP by adding a light set of application layer back-pressure mechanisms that
guarantee both end-to-end flow control and reliability. We further show that such architectures are
scalable, and can be used for group communications of large sizes and still provide a group throughput
that is close to that of a single point-to-point connection.

Multicast Routing. We find that solving the problems of minimizing latency or maximizing
throughput of overlay multicast routing is NP-hard. However, we develop approximation algorithms
that allow to construct overlay multicast routing with throughput or latency within constant factor
of optimal. Our algorithm for latency minimization requires that node-to-node delays are mapped
to Euclidean space. With some mapping schemes described in literature this allows the algorithm

75

to work without measuring delays for all pairs of participating nodes, which can be an important
advantage in practice. For throughput minimization we develop methods based on volume algorithm
and cutting planes that allow to solve the problem numerically.

Subscription Grouping. In a variant of information dissemination systems, called content-based
publish-subscribe systems, multicast groups are not specified explicitly. Rather, group membership
depends on the content of the message and on preferences specified at subscribing nodes. We propose
algorithms that pre-configure multicast groups such that network congestion during message delivery
is minimized.

6.2 Future Work

In our work we have addressed some of the important problems arising in overlay multicast applica-
tions. However, due to the complexity of these problems, there still are questions, answers to which
will help to further improve performance of information dissemination systems. In the end of each
chapter of this dissertation we discuss possible extensions of algorithms and analysis discussed in the
chapter. Below we have selected research directions, that arise in connection with our work, and that
we believe are most important for future development of efficient information dissemination systems.

1. The approximation algorithm for throughput maximization, described in Chapter 4, can be
modified to adapt to changing network conditions. The algorithm proceeds in iterations, per-
forming several edge exchange operations in each iteration. Edge exchange can be performed
on a live system during broadcast, using techniques described in Chapter 2 to ensure uninter-
rupted transmission. This modification will allow the system to efficiently adapt to changing
environment.

2. Trees are the simplest routing structures used for information dissemination. In particular,
trees make it easy to ensure that transmissions are received in the same sequence by all nodes.
Furthermore, each node in a multicast tree simply forwards several copies of the stream that
it receives. However, more sophisticated structures spanning the overlay network may achieve
better performance by utilizing network capacity more efficiently. In these networks end nodes
must perform more complicated operations, forwarding only parts of the stream to downlinks.

3. Due to the fact that subscriber grouping problem is very complex by itself, we have analyzed it
separately from the optimal routing problem. However, to achieve better performance it is nec-
essary to consider the routing and grouping problems together, with the objective of minimizing
network utilization, or with bandwidth constraints on edges. Given that both problems are NP-
hard, when considered separately, the combined problem which has high practical importance
for performance of publish-subscribe systems, is also very challenging.

4. The overlay multicast routing algorithms that we are proposing are centralized. In practice,
however, some applications may require decentralized versions. Hence, it is of interest to develop
decentralized algorithms for overlay routing.

5. Finally, in our analysis of approximation algorithms in several cases there is a gap between the
best possible approximation factor and the approximation factor achieved by the algorithms.
We believe that the approximability bounds can be improved, and, as usual with approximation
algorithms, it poses an interesting and nontrivial question for future research.

76

Bibliography

[1] C. Aggarwal, J. Wolf, P. Yu, and M. Epelman. Using unbalanced trees for indexing multidimen-
sional objects. Knowledge and Information Systems, 1:309–336, 1999.

[2] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra. Matching events in a content-
based subscription system. In Proceedings of the 18th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’99), Atlanta, USA, May 1999.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall, 1993.

[4] K. Almeroth. The evolution of multicast: From the mbone to inter-domain multicast to Internet2
deployment. IEEE Network, January/February 2000.

[5] S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other geometric prob-
lems. Journal of the ACM, 45(5):753–782, 1998.

[6] F. Baccelli, A. Chaintreau, Z. Liu, and A. Riabov. Achieving scalable and reliable multicast via
back-pressured overlay networks. Submitted to SIGCOMM 2004, 2004.

[7] F. Baccelli, A. Chaintreau, Z. Liu, A. Riabov, and S. Sahu. Scalability of reliable group commu-
nication using overlays. In Proc. of IEEE Infocom 2004, 2004.

[8] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and D. Sturman. An effi-
cient multicast protocol for content-based publish-subscribe systems. In Proceedings of the 19th
International Conference on Distributed Computing Systems, May 1999.

[9] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast. In
Proceedings of ACM Sigcomm, 2002.

[10] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient multicast using overlays. In
Sigmetrics, 2003.

[11] F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a subgradient
method. Technical Report RC21103, IBM Research, New York, October 1997.

[12] N. Beckman, H. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An efficient and robust
method for points and rectangles. In Proceedings of the ACM SIGMOD Conference, pages 322–
331, May 1990.

[13] C. Binding, S. G. Hild, R. Hermann, and A. Schade. Intelligent messaging for the enterprise.
Report RZ 3353 (#93399), IBM Research, 2001.

[14] C. Bormann, J. Ott, H.-C. Gehrcke, T. Kerschat, and N. Seifert. Mtp-2: Towards achieving the
s.e.r.o. properties for multicast transport. In Proc. of ICCCN 1994, 1994.

77

[15] L. Caccetta and S.P. Hill. A branch and cut method for the degree-constrained minimum spanning
tree problem. Networks, 37(2):74–83, March 2001.

[16] A. Chaintreau, F. Baccelli, and C. Diot. Impact of TCP-like congestion control on the throughput
of multicast group. IEEE/ACM Transactions on Networking, 10:500–512, August 2002.

[17] Y. Chawathe, S. McCanne, and E. A. Brewer. Rmx: Reliable multicast for heterogeneous net-
works. In Proceedings of IEEE Infocom, 2000.

[18] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling conferencing applications on the internet
using an overlay multicast architecture. In Proceedings of ACM SIGCOMM’01, San Diego, CA,
August 2001.

[19] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. In Proceedings of ACM
Sigmetrics, June 2000.

[20] Akamai Corporation. Internet bottlenecks: The case for edge delivery services. Akamai whitepa-
per, 2000.

[21] ILOG CPLEX. http://www.ilog.com/products/cplex/.

[22] F. Baker et al. Requirements for IP version 4 routers. Request for Comments 1812, Internet
Engineering Task Force, June 1995.

[23] F. Fabret, F. Llirbat, J. Pereira, and D. Shasha. Efficient match-
ing for content-based publish/subscribe systems. Technical report, INRIA,
http://rodin.inria.fr/ pereira/matching.ps, 2000.

[24] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable multicast framework for
light-weight sessions and application level framing. in IEEE/ACM ToN, 5(6):784–803, December
1997.

[25] P. Francis. Yoid: Extending the internet multicast architecture.
http://www.icir.org/yoid/docs/yoidArch.ps.gz, April 2000.

[26] M. Fürer and B. Raghavachari. Approximating the minimum degree spanning tree to within one
from the optimal degree. In Proc. of 3rd ACM-SIAM Symp. on Disc. Algorithms, pages 317–324,
1992.

[27] M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within one
of optimal. J. Algorithms, 12:409–423, 1994.

[28] M. Groetschel and C. L. Monma. Integer polyhedra associated with certain network design
problems with connectivity constraints. SIAM Journal on Discrete Mathematics, 3:502–523,
1990.

[29] R. E. Gruber, B. Krishnamurthy, and Panagos. The architecture of the ready event notification
service. In Proceedings of the 19th IEEE International Conference on Distributed Computing
Systems Middleware Workshop, 1999.

[30] D. S. Hochbaum (editor). Approximation Algorithms for NP-Hard Problems, B. Raghavachari.
Chapter 7. Algorithms for Finding Low Degree Structures, pages 272–276. PWS Publishing
Company, Boston, 1995.

78

[31] P. H. Hsiao, H. T. Kung, and K. S. Tan. Active delay control for tcp. In Proc. of Globecom 2001,
San Antonio, TX, November 2001.

[32] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, Engelwood Cliffs,
New Jersey, 1988.

[33] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoe, and J. O’Toole. Overcast: Reliable multicasting
with an overlay network. In Proceedings of the 4th Symposium on Operating Systems Design and
Implementation, October 2000.

[34] J. Könemann, A. Levin, and A. Sinha. Approximating the degree-bounded minimum diameter
spanning tree problem. In Proc. of APPROX 2003, August 2003.

[35] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
In Proceedings of the American Mathematical Society, volume 7, pages 48–50, 1956.

[36] B.N. Levine and J.J. Garcia-Luna-Aceves. A comparison of reliable multicast protocols. ACM
Multimedia Systems, 6(5):334–348, September 1998.

[37] J. Liebeherr and M. Nahas. Application-layer multicast with Delaunay triangulations. In Global
Internet Symposium, IEEE Globecom 2001, November 2001.

[38] T. Magnanti and L. Wolsey. Network Models, volume 7 of Handbooks in Operations Research and
Management Science, chapter Optimal Trees, pages 503–615. North-Holland, Amsterdam, 1995.

[39] N. M. Malouch, Z. Liu, D. Rubenstein, and S. Sahu. A graph theoretic approach to bounding
delay in proxy-assisted, end-system multicast. In Tenth International Workshop on Quality of
Service (IWQoS 2002), 2002.

[40] P. Mehra, A. Zakhor, and C. D. Vleeschouwer. Receiver-driven bandwidth sharing for tcp. In
Proc. of IEEE INFOCOM 2003, 2003.

[41] C. N. Meneses, E. M. Macambira, and E. Uchoa. A branch-and-cut for the maximum degree-
constrained connected subgraph problem. In Proc. of the X Latin Iberian American Symposium
of Operations Research and Systems (CLAIO), Mexico City, 2000.

[42] C. K. Miller. Multicast Networking and Applications. Addison-Wesley Pub Co, 1st edition,
October 1998.

[43] NEONet. New era of networks. http://www.neonsoft.com/products/NEONet.html.

[44] T. S. E. Ng and H. Zhang. Predicting internet network distance with coordinates-based ap-
proaches. In INFOCOM’02, New York, NY, June 2002.

[45] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman. Exploiting ip
multicast in content-based publish-subscribe systems. In IFIP/ACM International Conference
on Distributed Systems Platforms, New York, April 2000.

[46] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. Almi: An application level multicast
infrastructure. In Symposium on Internet Technologies, March 2001.

[47] B. Quinn and K. Almeroth. IP multicast applications: Challenges and solutions. Request for
Comments 3170, Internet Engineering Task Force, September 2001.

79

[48] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable
network. In Proceedings of ACM SIGCOMM, August 2001.

[49] A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang. Clustering algorithms for content-based
publication-subscription systems. In Proc. of ICDCS 2002, Vienna, Austria, 2002.

[50] A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang. New algorithms for content-based
publication-subscription systems. In Proc. of ICDCS 2003, Providence, Rhode Island, 2003.

[51] A. Riabov, Z. Liu, and L. Zhang. Overlay multicast trees of minimal delay. In Proc. of ICDCS
2004, Tokyo, Japan, 2004.

[52] S.M. Ross. Introduction to Probability Models. Academic Press, San Diego, sixth edition edition,
1997.

[53] E. M. Schooler. Why Multicast Protocols (Don’t) Scale: An Analysis of Multipoint Algorithms
for Scalable Group Communication. Ph.d. dissertation, computer science department, California
Institute of Technology, September 2000.

[54] S. Shi. Design of Overlay Networks for Internet Multicast. Ph.D. Thesis, Washington University
in St. Louis, August 2002.

[55] S. Shi and J. Turner. Placing servers in overlay networks. Technical Report WUCS-02-05,
Washington University, 2002.

[56] S. Shi and J. S. Turner. Multicast routing and bandwidth dimensioning in overlay networks.
IEEE JSAC, 2002.

[57] S. Shi and J. S. Turner. Routing in overlay multicast networks. In IEEE INFOCOM, New York
City, June 2002.

[58] S. Shi, J. S. Turner, and M. Waldvogel. Dimensioning server access bandwidth and multicast
routing in overlay networks. In The 11th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV 2001), Port Jefferson, New York, June
2001.

[59] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the 2001 conference on
applications, technologies, architectures, and protocols for computer communications, pages 149–
160, Diego, California, United States, 2001.

[60] G. Urvoy-Keller and E. W. Biersack. A multicast congestion control model for overlay networks
and its performance. In NGC, October 2002.

[61] Z. Wang and J. Crowcroft. Bandwidth-delay based routing algorithms. In IEEE Globecom’95,
November 1995.

[62] T. Wong, R. Katz, and S. McCanne. An evaluation of preference clustering in large-scale multicast
applications. In Proceedings of IEEE Infocom 2000, Tel Aviv, March 2000.

[63] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In Proceedings of
IEEE Infocom 1996, San Francisco, 1996.

[64] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for delivering multicast to end
users. In Proceedings of IEEE Infocom, 2002.

80

