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Abstract

We consider the problem faced by a procurement agency that runs an auction-type mecha-

nism to construct a menu (assortment of products with posted prices), from a set of differentiated

products offered by strategic suppliers. Heterogeneous consumers then buy their most preferred

alternative from the menu as needed. Framework agreements (FAs), widely used in the public

sector, take this form; the central government runs the initial auction and then the public or-

ganizations (hospitals, schools, etc.) buy from the selected assortment as required. This type

of mechanism is also relevant in other contexts, such as the design of medical formularies and

group buying. When evaluating the bids, the procurement agency must consider the optimal

tradeoff between offering a richer menu of products for consumers versus offering less variety,

hoping to engage the suppliers in a more aggressive price competition. We develop a mechanism

design approach to study this problem, and provide a characterization of the optimal menus.

The optimal mechanism balances the tradeoff between product variety and price competition, in

terms of suppliers’ costs, products’ characteristics, and consumers’ characteristics. We then use

the optimal mechanism as a benchmark to evaluate the performance of the Chilean government

procurement agency’s current implementation of FAs, used to acquire US$2 billion worth of

goods per year. We show how simple modifications to the current mechanism, which increase

price competition among close substitutes, can considerably improve performance.
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1 Introduction

During the last decades, governments and firms alike have opted for procurement mechanisms in

which the purchasing decisions are shared by a central authority and local divisions, who will ulti-

mately consume the goods. Typically, the central authority selects an assortment of differentiated

products through competitive bidding to satisfy the demand arising from the divisions that have

heterogeneous preferences. The rationale behind adopting such a procurement mechanism is to ex-

ploit the purchasing power of a central buyer, while still providing individual consumers with some

flexibility in product selection. These mechanisms are relevant for many real-world applications,

such as medical formularies and group purchasing in the healthcare industry (see, for example,

[26]). Also, framework agreements (FAs), widely used in the public sector, take this form.1

Roughly speaking, a FA works as follows. First, the central government specifies a broad

category (e.g., computers), and a succinct description of products and/or services that are needed

within the category (e.g., laptops of certain size and specifications). Suppliers are allowed to submit

bids for any product fitting the description. Then, an auction-type mechanism is run to select an

assortment of differentiated products with unit prices. Once the government decides on the winning

bids, the public organizations (e.g., hospitals, schools, etc.) buy their most preferred product at

the agreed price as needed, without undergoing any additional public tendering process.

This paper is one of the first in the literature to provide a formal economic analysis of this type of

procurement mechanisms. Our contribution is three-fold: we first introduce a model for the problem

faced by the procurement agency, we then characterize the optimal mechanism for this setting and,

finally, we use these results to study the design of simpler mechanisms that are commonly used in

practice. While our main motivation is to improve our understanding of FAs, these results also

shed light on buying mechanisms that could be used in the other settings mentioned above. We

describe our main contributions in more detail next.

Our first main contribution is introducing a model that incorporates the following fundamental

trade-off faced by a procurement agency buying differentiated products. On one hand, consumers

buying from the assortment usually have heterogeneous preferences; for example, while a public

school may want to buy laptops with attractive graphics features, the department of treasury may

need laptops with high processing power. Therefore, increasing product variety in the assortment

may increase consumer satisfaction, as it becomes more likely they will find a better product for

their needs. On the other hand, price competition in the auction stage may be depressed if too many

products are included in the assortment. Our model extends the classic auction and mechanism

design models to study this trade-off between product variety and price competition.

1For example, in 2010 the European Union awarded e80 billion using FAs, accounting for 15% of the total value
of all public procurement [8].
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In our model, there is a set of risk-neutral suppliers offering differentiated products, which are

imperfect substitutes of each other. In the tradition of the auctions literature, we assume that

suppliers have private information about their costs. The central procurement agency (designer)

uses an auction-type mechanism to determine a menu, that is, an assortment of differentiated

products together with the unit prices. Then, consumers with private heterogeneous preferences

buy their most preferred alternative in the menu, which induces aggregate demands over products.

In the tradition of the assortment literature, we assume that the designer can predict the aggregate

demands for a given menu. Given the demand model, the designer chooses a mechanism with the

objective of maximizing expected consumer surplus.

Our second main contribution is the characterization of the optimal direct-revelation posted-

price mechanism for a broad class of affine demand models. This class includes the classic horizontal

Hotelling demand model and a pure vertical demand model as particular cases, as well as more

general specifications with both horizontal and vertical sources of product differentiation. Affine

demand models are commonly used in competition models (see, e.g., [27]) and we think they provide

a reasonable balance between tractability and generality in our setting. The optimal mechanism

quantifies the optimal tradeoff between variety and price competition in terms of suppliers’ costs,

product characteristics, and substitution patterns. For example, the mechanism may optimally

choose to restrict the entry of some products to the assortment; this decreases expected payments

to suppliers at the expense of reducing variety for consumers.

Relative to a classic mechanism design problem, a distinctive feature of our formulation is that

the auctioneer cannot directly decide how to allocate demand across the products. Instead, the

auctioneer selects the menu and demands are then determined by the underlying preferences of

the organizations, which introduces significant complexities in the analysis. In addition, for the

most part, previous auction and mechanism design work assumes homogeneous products (with

some notable exceptions discussed in Section 2). Our work advances the theory of auctions and

mechanism design by accounting for an endogenous demand system for differentiated products.

Our third main contribution is to improve our understanding of the performance of simple

mechanisms used in practice. The optimal mechanisms previously characterized are rarely imple-

mented in applications due to their complexity. However, they serve as a powerful tool to study

practical mechanisms: optimal mechanisms provide a benchmark on what is achievable and their

structure provide insights on how to improve current practice. We are particularly interested in the

type of FAs run by our collaborator in this project, the Chilean government procurement agency

(Dirección ChileCompra), that bought US$2 billion worth of goods using FAs during 2013.2

An important first observation that arises by looking at the data from ChileCompra’s FAs

2This represented a 21% of the value of all public procurement in Chile [10].
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is that, because product definitions are narrow and auctions for different products are run inde-

pendently, there is a single supplier bidding and winning for many products. Hence, while these

suppliers may compete for demand once in the assortment, there is little to none competition for

the market. Thus motivated, we study whether the current FA performance can be improved by

creating thicker markets, making imperfect substitute products compete to be in the menu.

To this end, we provide an extensive theoretical analysis of the current implementation of

ChileCompra’s FAs in a simple model. Then, using the insights gained from the optimal mechanism,

we explore possible changes to ChileCompra’s first-price auction FA implementation with regards

to the set of suppliers to include in the menu. We show how, in general, using rules that restrict the

entry of close substitute products can significantly increase price competition across suppliers, which

translates into a significant increase in expected consumer surplus. We provide a detailed analysis

that illustrates when is it profitable to restrict the entry, as a function of the market primitives

namely, suppliers’ costs distributions and consumers’ demand characteristics. Using numerical

experiments, we validate the robustness of our results in more general settings. Overall, our results

show that simple modifications to current practice can significantly increase performance.

The rest of the paper is organized as follows. Section 2 describes related literature. In Section 3

we formulate the mechanism design problem faced by the designer. In Section 4, we describe

the general solution approach that we use to solve for the optimal mechanism. In Section 5, we

characterize the optimal mechanism for affine demand models. In Section 6, we discuss the design

of practical mechanisms using ChileCompra as a case study. We conclude and provide extensions

in Section 7. All proofs are deferred to the Appendix.

2 Related literature

Our work is related to several streams of literature in economics and operations. First, as previously

mentioned, our work extends classic work in mechanism design in the tradition of Myerson [22], in

which a mechanism is specified by a payment and an allocation function. In our problem instead,

the designer selects an assortment of products together with their unit prices, and then demands

are allocated according to consumer preferences for the given menu. Hence, the designer does

not have complete freedom to choose the allocations (these must respect the underlying demands

from consumers), adding significant difficulties when solving for the optimal mechanism. Another

difference with the classic framework is that, in our problem, the designer maximizes consumer

surplus (as oppose to just minimizing payments to suppliers), and consumer surplus also depends

on the underlying preferences of consumers.

Our work is also related to oligopoly pricing models that have studied the effects of entry and
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competition in consumer surplus (see, e.g., Tirole [25]). The main difference is that, in our setting,

the decision to enter the market is not freely made by firms, but is decided by the designer based

on the information elicited in the auction. Further, in our setting there is asymmetric information

about firms’ costs.

In that sense, our work is more related to previous papers in procurement and regulation

economics. For example, Dana and Spier [9] that studies how to allocate production rights to

firms that have private cost information. In their paper, however, the auction only determines the

market structure and lump-sum fees, as opposed to our case in which it also determines unit prices.

Similarly, Anton and Gertler [4] and McGuire and Riordan [21] study the optimal mechanism with

an endogenous market structure in a Hotelling model of product differentiation. However, in these

models demand is not endogenously determined like in our case. A general insight of this body of

work is that the designer may single-source more frequently if firms have private cost information,

to be able to exert more pressure on efficient suppliers to reveal their costs; this is similar to some

of our insights.

Closer to our work, Wolinsky [29] studies a spatial duopoly model, where firms firms compete

in both prices and quality. While this paper considers an endogenous demand, the analysis is

restricted to “interior” solutions (i.e. when both firms have positive demands). Instead, we are

particularly interested in “border” solutions, in which some firms may be left out of the assortment.

Overall, to the best of our knowledge, our work is the first to characterize the optimal mechanism

with an endogenous market structure, endogenous demand, and in which prices are determined in

the auction.

Another stream of related work that considers endogenous market structures is that of split-

award auctions or dual sourcing in economics and operations [7, 18, 11, 5]. Split-award auctions

have been studied in a variety of settings. However, these papers do not assume an underlying set

of heterogeneous consumers; instead, purchases are decided by the auctioneer to maximize his own

goal.

Our work is related to the operations literature that studies assortment planning decisions

[15]. In these settings, decisions are made by one retailer that carries all products. In our case

instead, an assortment is built using an auction that elicits private cost information from many

different suppliers. The assortment literature typically assumes some kind of parametric discrete

choice model as a demand system like, for example, the multinomial logit model. In our setting,

this model is not appropriate because of its inability to capture substitution patterns due to the

IIA property. An alternative that resolves this issue is the multinomial logit model with random

coefficients; however, this model is hard to solve even in the standard assortment problem, let alone

in our auction setting. Another option that is typically more tractable is the nested logit model
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(see, e.g., [19]). We are currently exploring whether our framework can be applied to this demand

system.

Finally, to the best of our knowledge, only two prior papers study framework agreements (FAs),

which is one of the main objectives of our work. Albano and Sparro [2] consider a Hotelling model

of horizontal differentiation, in which firms are located equidistantly and the subset of potential

suppliers with lowest bids are selected in the assortment. In our case, we consider a richer set

of rules in which the assortment can depend on product characteristic or location. Further, their

analysis assumes complete information about firms’ costs. Gur et al. [13] consider a model of

FAs that studies the cost uncertainty faced by a supplier over the FA time horizon when selling a

single-item, but does not consider differentiated products nor heterogenous consumers.

3 Model and Problem Formulation

In this section, we present our model and a formulation of the auctioneer’s problem as a mechanism

design problem.

3.1 Model

We introduce a model of procurement mechanisms for differentiated products demand systems.

The agents of the model are (i) an auctioneer (or designer); (ii) suppliers; and (iii) consumers.

The designer runs an auction-type mechanism to construct a menu (i.e., an assortment of products

with posted prices) based on the suppliers’ offers. Then, consumers purchase their most preferred

product from this menu at the agreed price. We describe the main elements of the model next.

Suppliers. There is an exogenous set N of n potential suppliers indexed by i. Suppliers offer

differentiated products that are imperfect substitutes to each other; the characteristics of these

products are common-knowledge. To simplify the exposition, we initially assume that each supplier

offers exactly one product. Hence, unless otherwise stated, firms and products share the same

indexes. In Section 7 and Appendix C, we discuss the extension to the multiproduct setting; it is

worth highlighting that our main results also hold under this extension. We assume suppliers are

risk-neutral, so they seek to maximize expected profits.

Following the tradition in the auctions’ literature (see, for example, Krishna [16]), we assume

that suppliers have production costs drawn independently from common-knowledge distributions,

whose realizations are the private information of each supplier. Formally, supplier i has a private

cost θi ∈ Θi, a finite set of strictly positive real numbers. We index the elements of Θi, such that
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θji < θki whenever j < k, for all θji , θ
k
i ∈ Θi. We say that supplier i is of type θi if his cost is θi. Let fi

be a probability mass function over Θi, where fi(θi) represents the probability that supplier i is of

type θi. Let Fi(θ
j
i ) =

∑
k≤j fi(θ

k
i ) be the cumulative probability distribution. Let Θ = ΠiΘi denote

the type space. Because suppliers’ types are independent, the joint probability of θ = (θ1, . . . , θn)

is equal to f(θ) = Πn
i=1fi(θi). We denote the probability that all suppliers other than i have type

θ−i by f−i(θ−i). We use boldfaces to denote vectors and matrices throughout the paper.

Further, we assume that suppliers have constant marginal costs of production and do not face

capacity constraints. Therefore, the products included in the assortment are always available and

their production cost does not depend on the quantity demanded. In the reminder of the paper,

we use agents and suppliers interchangeably.

Consumers. There is a (possible continuum) set J of consumer types, indexed by j. For each

j ∈ J , we denote by h(j) the density of consumers of type j. The total mass of consumers is

normalized to 1. Consumers have quasi-linear utilities that depend on the product characteristics,

the price, and the consumer type. Formally, the utility a consumer of type j obtains by consuming

product i at price pi is given by:

uji(pi) = V + vji − pi, (1)

where V represents the value a consumer has for consuming any good in the set N and vji is the

consumption benefit for a consumer of type j given by product i. Each consumer wants to buy

exactly one unit of the product offered in the menu to maximize her own utility.3 We assume that

V is large enough so that the consumer market is covered.

Suppose that from the set of potential suppliers N , we fix a subset Q ⊆ N of active suppliers.

Let pQ = {pi}i∈Q, be the vector of their unit prices. We define for all i ∈ Q, the set Ai(Q,pQ) =

{j : uji(pi) ≥ ujk(pk), ∀k ∈ Q}. That is, Ai(Q,p) is the set of types of consumers that would buy

from supplier i ∈ Q given assortment Q at prices pQ.4 We define Ai(Q,pQ) = 0 for all i /∈ Q.

Then, the expected demand for product i ∈ Q is given by:

di(Q,pQ) =

∫
j∈Ai(Q,pQ)

h(j)dj, (2)

and di(Q,pQ) = 0, for i /∈ Q.

In the tradition of the assortment literature (see, for example Kök et al. [15]) and the work in

oligopoly pricing (see, for example Tirole [25]), we assume that these demand functions are common

3Many of our results extend to the case in which each product is also offered by an outside supplier at a fixed
cost. In Section 7 and Appendix C.2, we discuss an extension to the case of elastic demand.

4We assume that ties occurred are broken randomly.
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knowledge. This implies that, even though the preferences of a specific consumer may be private

information, the designer can predict the aggregate demand for every fixed set of products and

prices. These aggregate demands can usually be summarized by what is known as a consumer-

choice model or a demand system. The assumption is plausible, in particular in the contexts

discussed in the introduction, because a demand system can typically be estimated using historical

data or consumer surveys (Ackerberg et al. [1]).

Let φ : J → N be a function such that φ(j) denotes the product consumed by type j. Then,

for such function φ and prices p, the consumer surplus is equal to:

CS(φ,p) =

∫
j∈J

ujφ(j)(pφ(j))h(j)dj

=

∫
j∈J

(
vjφ(j) − pφ(j)

)
h(j)dj

=
∑
i∈N

[∫
j∈J

vjφ(j)I[φ(j) = i]h(j)dj −
∫
j∈J

pφ(j)I[φ(j) = i]h(j)dj

]
, (3)

where I[·] denotes the indicator function. To simplify notation, we have omitted the terms associated

to the reservation value V in the previous expressions and will do so throughout the rest of the

paper.

Let xi be the mass of consumers buying product i, and define x = (x1, ..., xn). We make the

following assumption that we keep throughout the paper.

Assumption 3.1. For all i ∈ N , and all functions φ, there exists a function ki(x) of the mass of

consumers buying each product under φ, such that:

ki(x) =

∫
j∈J

vjφ(j)I[φ(j) = i]h(j)dj .

The assumption states that we can write consumer gross surplus associated to each product i as

a function of the demand vector x. We highlight that Assumption 3.1 holds for all demand models

that are considered in the paper. Under this assumption we can re-write consumer surplus as:

CS(x,p) =

n∑
i=1

[ki(x)− pixi] . (4)

Now, note that demands are induced by consumers’ utility maximization decisions. Hence, by
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aggregating these decisions, it is simple to observe that:

(d1(N,p), . . . , dn(N,p)) ∈ argmax
x

CS(x,p) , (5)

s.t.
n∑
i=1

xi = 1, xi ≥ 0 ∀i ∈ N .

That is, the demands derived from Eq. (2) given prices p and when all products are part of

the assortment maximize consumer surplus given those prices. Note that the solution of this

maximization problem may set some of the demands equal to zero. Problem (5) implies that

demands can be also interpreted as the consumption decisions made by a single ‘representative

consumer’ that maximizes consumer surplus.5 We come back to this interpretation in our general

treatment of affine demand models presented in Section 5.3.

To illustrate the concepts defined so far, we present a canonical Hotelling demand model of

horizontal differentiation with two suppliers and linear ‘transportation costs’. A detailed analysis

of our problem using the Hotelling model as the demand model can be found in Section 5.2.

Example 3.1 (Hotelling model with two suppliers). Consider the unit interval as the product

space, with two potential suppliers located at the extremes of the interval. There is a continuum

of consumers uniformly distributed on the product space. Each consumer demands one unit of

good and incurs transportation costs which are linear in the distance between the consumer and the

supplier. Therefore, utility functions are given by:

uj1(p1) = − (δ`j + pi) and uj2(p2) = − (δ(1− `j) + p2) ,

where supplier 1 (resp. 2) is assumed to be located at 0 (resp. 1), δ is the transportation cost, and

`j is the position of consumer j in the unit line. As consumers are uniformly distributed on the

[0, 1] segment, consumer surplus is given by:

CS(x,p) = −
(
δ

2

(
x2

1 + x2
2

)
+ p1x1 + p2x2

)
,

where the first terms represent the transportation costs and the latter terms the monetary costs. Note

that in this example, ki(x) = − δ
2x

2
i , which is equivalent to the total transportation cost incurred by

those consumers buying from i. Further, assuming both firms are active, the demand functions are

given by di(N,p) =
pj−pi+δ

2δ for i, j ∈ {1, 2} and j 6= i. It is simple to observe that these expressions

maximize consumer surplus whenever |p1 − p2| ≤ δ.
5See Chapter 3 in Anderson et al. [3] for a formal discussion on the representative consumer approach.
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Auctioneer. The role of the auctioneer is to select or design an auction-type mechanism to

construct the menu of products based on the suppliers’ offers. As previously mentioned, the menu

consists of a subset of suppliers and prices for their products. Once selected, the rules of the

auction are common-knowledge. The auctioneer is risk-neutral and her objective is to maximize

expected consumer surplus; this objective incorporates both variety considerations and payments

to suppliers. Throughout the rest of the paper, we use auctioneer and designer interchangeably.

3.2 Mechanism Design Problem Formulation

We provide a mechanism design formulation of the auctioneer’s problem. We consider mechanisms

implemented in Bayes Nash equilibria. By invoking the revelation principle, we restrict attention

to direct revelation mechanisms without loss of optimality. Hence, for given cost declarations, the

designer selects a menu which consists of an assortment of products (or suppliers) and their unit

prices. Formally, a direct revelation mechanism can be specified by (a) the ‘assortment’ functions

qi : Θ → {0, 1} that are equal to 1 if and only if supplier i is included in the assortment when

cost declarations are θ; and (b) the price functions pi : Θ → R, where pi(θ) is the unit price for

the item offered by supplier i when cost declarations are θ. Note that this formulation allows for

multiple suppliers to be in the menu. We define q = (q1, ..., qn) and p = (p1, ..., pn). For given cost

declarations θ, the menu is given by (q(θ),p(θ)).

We also define the allocation functions xi : Θ → [0, 1], where xi(θi,θ−i) is the fraction of

demand allocated to bidder i if his cost declaration is θi and his competitors’ declaration are

θ−i. Let x = (x1, . . . , xn). For each realization of θ, given the menu (q(θ),p(θ)), consumer

demand is determined by the underlying demand model. Hence, for given (q,p), the allocation

function x is restricted by the demand constraints in Eq. (2). This is in sharp contrast with classic

mechanism design theory, in which the designer specifies a payment (or transfer) function and an

allocation function. In our case, the designer selects an assortment and unit prices and, given

these, allocations are decided by consumers. As discussed below, these demand constraints on the

allocations introduce significant additional complexities to the mechanism design problem.

In the optimal mechanism design problem, the designer maximizes its objective (in our case,

expected consumer surplus) subject to the usual constraints in mechanism design theory: incentive

compatibility (IC), individual rationality (IR), and feasibility of allocations (Feas). To write these

constraints, we define the interim expected utility for a supplier of type θi and report θ′i as:

Ui(θ
′
i|θi) =

∑
θ−i∈Θ−i

f−i(θ−i)
((
pi(θ

′
i,θ−i)− θi

)
xi(θ

′
i,θ−i)

)
(6)

In addition, the problem must also have constraints to ensure that the allocations are consistent
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with the underlying demand system (Demand 1 and 2). Using the above definitions, the optimal

mechanism design problem can be formulated as follows:

[P0] max
q,p,x

Eθ[CS(x(θ),p(θ))]

s.t. Ui(θi|θi) ≥ Ui(θ′i|θi) ∀i ∈ N, ∀θi, θ′i ∈ Θi (IC)

Ui(θi|θi) ≥ 0 ∀i ∈ N, ∀θi ∈ Θi (IR)∑
i∈N

xi(θ) = 1 ∀θ ∈ Θ, xi(θ) ≥ 0 ∀i ∈ N, ∀θ ∈ Θ (Feas)

xi(θ) = di(q(θ),p(θ)) ∀i ∈ N, ∀θ ∈ Θ (Demand 1)

di(q(θ),p(θ)) is given by equation (2) ∀i ∈ N, ∀θ ∈ Θ (Demand 2)

In the next section we discuss our approach to solve the optimal mechanism problem P0.

4 General Solution Approach

Problem P0 is a mixed integer mathematical program. More specifically, demand equations can be

typically written as complementarity conditions, and therefore, even if one relaxes the integrality

of the variables q, the program is typically non-convex. Our solution approach relies on relaxing

these demand constraints and solving the relaxed problem. The advantage of doing this is that the

relaxed problem admits an analytical solution by extending standard mechanism design arguments

based on the envelope theorem [22] adapted for the setting of discrete distributions [28]. Then,

we provide conditions that guarantee the existence of unit prices p that are consistent with the

optimal solution of the relaxed problem and satisfy the demand constraints. If such prices p exist,

the optimal solution to the relaxed problem can be achieved by the original problem P0. We

formalize this argument next.

To do so, we introduce a new set of variables ti : Θ → R, where ti(θ) = pi(θ)xi(θ) represents

the total transfer (or payment) to supplier i for a given cost declaration θ. Recall that p(θ) is the

vector of unit prices for reported costs θ. Relaxing the demand constraints from [P0] and noting

that interim utilities (Eq. (6)) can be written in terms of total transfers t, we obtain the relaxed

problem:
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[P1] max
x,t

Eθ

[
n∑
i=1

[ki(x(θ))− ti(θ)]

]
s.t. Ui(θi|θi) ≥ Ui(θ′i|θi) ∀i ∈ N, ∀θi, θ′i ∈ Θi (IC)

Ui(θi|θi) ≥ 0 ∀i ∈ N, ∀θi ∈ Θi (IR)∑
i∈N

xi(θ) = 1 ∀θ ∈ Θ, xi(θ) ≥ 0 ∀i ∈ N, θ ∈ Θ. (Feas)

Problem [P1] only differs from the classic mechanism design formulation in the objective func-

tion; while the traditional objective is to minimize transfers, we aim to maximize consumer surplus

here. The objective, therefore, contains the ki terms associated to gross consumer surplus. Sim-

ilarly to the setting of continuous cost distributions, we introduce the following definition of the

virtual cost function for cost distributions with discrete support.6

Definition 4.1 (Virtual costs). For θi ∈ Θi, let ρi(θi) = max{θ′ ∈ Θi : θ′ < θi}, that is, ρi(θi) is

the predecessor of θi in Θi.
7 Let vi(θi) = θi + Fi(ρi(θi))

fi(θi)
(θi − ρi(θi)) be the virtual cost of supplier i

when he has type θi.

We make the standard regularity assumption in mechanism design that we keep throughout the

paper:

Assumption 4.1 (Increasing virtual costs). The function vi(θi) is strictly increasing for all i ∈ N .

Finally, we also define the interim expected allocations and interim expected transfers as follows:

Xi(θi) ≡
∑

θ−i∈Θ−i

f−i(θ−i)xi(θi,θ−i),

Ti(θi) ≡
∑

θ−i∈Θ−i

f−i(θ−i)ti(θi,θ−i).

The advantage of solving the relaxed problem [P1] is that we can extend standard mechanism

design arguments to characterize its optimal solution, as we formalize next.

Proposition 4.1. Suppose that (x, t) satisfy the following conditions:

6Note that, in the limit, this definition of the virtual cost agrees with the well-known definition of virtual costs
for a continuous support, i.e., vi(θi) = θi + Fi(θi)

fi(θi)
.

7If θi is the lowest in the support, we define ρi(θi) = θi.
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1. The allocation function satisfies for all θ ∈ Θ,

x(θ) ∈ argmax

n∑
i=1

(ki(x(θ))− xi(θ)vi(θi)) (7)

s.t.

n∑
i=1

xi(θ) = 1, xi(θ) ≥ 0 ∀i ∈ N .

2. Interim expected allocations are monotonically decreasing for all i ∈ N , that is, Xi(θ) ≥ Xi(θ
′)

for all θ, θ′ ∈ Θi such that θ ≤ θ′.

3. Interim expected transfers satisfy for all i ∈ N and θji ∈ Θi:

Ti(θ
j
i ) = θjiXi(θ

j
i ) +

|Θi|∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i ) (8)

Then, (x, t) is an optimal mechanism for problem P1.

The proof can be found in Appendix A. Condition (1) in Proposition 4.1 states that, for each

θ ∈ Θ, the optimal vector of allocations x(θ) must be a maximizer of the consumer surplus when

prices are set to be the virtual costs, subject to the feasibility constraints (see Eq. (4)). Further,

by Eq. (5), the optimal solution is of the form xi(θ) = di(N, v(θ)). Therefore, optimal allocations

in [P1] have an intuitive form: they coincide with the demand functions given in Eq. (2) when the

unit price of each supplier is exactly his virtual cost. This follows because, like in classic mechanism

design, the equilibrium ex-ante expected payment that the auctioneer makes to a bidder is equal

to the ex-ante expectation of the virtual cost times the allocation.

It is important to note that, while the optimal demands are completely characterized, the

optimal transfers are not. The only constraint imposed on transfers by the optimal solution is over

interim expected transfers. As transfers are equal to unit price times demand, this implies that the

optimal prices in the relaxed problem are underspecified. This freedom in the definition of optimal

prices becomes useful later on, when we characterize the optimal solution to the original problem.

To illustrate the result, consider Example 3.1 and suppose both suppliers have the same cost

distribution. Let θ1 and θ2 be the cost realizations of supplier 1 and 2 respectively. In this case,

the relaxed problem P1 yields an optimal allocation characterized by: (1) if δ > |v(θ1) − v(θ2)|,
the demand is splitted between the two suppliers with x1 = (v(θ2) − v(θ1) + δ)/(2δ) and x2 =

(v(θ1)−v(θ2)+δ)/(2δ); and (2) if δ < |v(θ2)−v(θ1)|, all the demand is awarded to the supplier with

the lowest cost realization. Note that the decision of whether to split or not the demand depends

on the cost realizations. The optimal solution single-awards if and only if the transportation cost is
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small relative to the differences in virtual costs. In this case, it is worth paying the cost of having

less variety in the assortment with the upside of decreasing the expected payments to bidders. By

single-awarding in some scenarios, the auctioneer can reduce these expected payments while still

providing incentives for truthful cost revelation.

Because problem P1 is a relaxation of P0, the optimal objective of the former is an upper

bound on the optimal objective of the latter. The next corollary provides necessary and sufficient

conditions under which P0 indeed attains the optimal objective of P1.

Corollary 4.1. Let (x, t) be the unique optimal solution to the relaxed problem P1.8 Define

qi(θ) = 1 if and only if xi(θ) > 0, ∀i ∈ N, θ ∈ Θ. (9)

Suppose that for all θ ∈ Θ, there exists prices p(θ) such that

xi(θ) = di(q(θ),p(θ)) ∀i ∈ N, ∀θ ∈ Θ (10)

where di(p) is given by Eq. (2), and∑
θ−i∈Θ−i

pi(θi,θ−i)xi(θi,θ−i)f−i(θ−i) = Ti(θi), ∀i ∈ N, ∀θi ∈ Θi , (11)

where, for all i ∈ N , Ti(·) is the expected interim transfer function given ti(·). Then, the optimal

objective of P0 is equal to the optimal objective of P1. Moreover, an optimal solution of P0 is given

by (q,p) characterized by Eqs. (9), (10), and (11), and the corresponding optimal allocation x of

P0. Furthermore, the optimal objective of P0 is equal to the optimal objective of P1 if and only if

such solution (q,p) exists.

The corollary suggests the following approach to solving the optimal mechanism design problem.

First, solve the relaxed problem, the solution of which has an appealing structure. Then, find unit

prices that support the optimal relaxed solution.

5 Affine Demand Models

The optimal mechanism design problem takes an underlying consumer demand model as an input.

To obtain analytical solutions we will restrict attention to a general class of affine demand models,

that is, models in which for every set Q, demands d as given by Eq. (2) are (piece-wise) affine

functions of prices. The advantage of these models is that they admit a convex and closed-form

expression for consumer surplus. Even under affine demand models, the demand constraints are

8Problem P1 admits a unique optimal solution for all demand systems considered in the paper. If P1 admits more
than one solution, our arguments can easily be extended accordingly.
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piece-wise linear, and problem P0 remains non-convex.9 However, the approach described above

of relaxing these constraints will allow solving the problem. Further, affine demand models cap-

ture a vast array of substitution patterns including both horizontal and vertical dimensions of

differentiation.

In the remainder of this section, we discuss the solution to the optimal mechanism problem

when we assume affine demand models. We first explain how to apply the general solution approach

introduced in Section 4 to affine demand models. Next, we characterize the optimal mechanisms

for specific linear consumer-choice models. We start by analyzing a popular affine-demand model:

the Hotelling model of horizontal differentiation. Then, we provide the analysis of a general affine

demand model that includes the Hotelling model (and a pure vertical model) as particular cases.

5.1 Applying the Solution Approach to Affine Demand Models

We now discuss how to adapt the general solution approach described in Section 4 to affine demand

models. Equations (10) require that unit prices p induce the optimal allocations x of P1 through

the demand system. If the demand function is affine prices, these equations yield linear constraints

in prices. Note that the equations are linear because they require to find prices to generate a given

vector of demands x. Equations (11) require that unit prices p induce the expected interim transfers

Ti in the optimal solution of P1. Given an optimal mechanism for P1, (x, t), these equations are

also linear in prices. Therefore, when an affine demand system is assumed, showing that P0 attains

the optimal objective of P1 amounts to proving that a system of linear equations is consistent and

admits a solution. We formalize this next.

Let (x, t) be an optimal solution to the relaxed problem P1. By Proposition 4.1 and the

discussion that follows the proposition, we have xi(θ) = di(N,v(θ)) where v(θ) is defined as

the vector of virtual costs, i.e., v(θ) = (v1(θ1), . . . , vn(θn)). We denote Q(θ) as the set of active

suppliers with strictly positive demands in the optimal solution under cost realizations θ. To satisfy

the conditions of Corollary 4.1 we need to find unit prices such that di(N, v(θ)) = di(q(θ),p(θ))

for all i ∈ Q(θ) and θ ∈ Θ. This imposes |Q(θ)| constraints over the prices p(θ), corresponding

to firms with strictly positive demands. However, as the allocations must add up to one, one of

these constraints is redundant; the demands for |Q(θ)| − 1 suppliers determines the demand for

the remaining active supplier. Therefore, the equations in (10) impose |Q(θ)| − 1 constraints over

prices p(θ). The redundancy of one constraint plays an important role because it induces degrees

of freedom that can be used to satisfy the constraints on expected interim transfers.

9For instance, consider the simple Hotelling model described in Example 3.1. There, the demand constraints for

agent i ∈ {1, 2} should be expressed as xi(θ) = max{0,min{1, pj(θ)−pi(θ)+δ
2δ

}} with j ∈ {1, 2}, j 6= i, which yield a
non-convex problem.
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Let Aij(θ) denote the coefficient of vj(θj) in the equation di(N, v(θ)). In all demand models

considered in the paper, Aij(θ) = 0 for every i ∈ Q(θ) and j /∈ Q(θ). This property is natural:

if a supplier has zero demand, then its price does not play a role in the demand equations of

competitors. Let ι(Q(θ)) = max{i ∈ N : i ∈ Q(θ)}. For a given θ and a given i ∈ Q(θ) with

i 6= ι(Q(θ), the constraints imposed by Eqs. (10) can be expressed as:

∑
j∈Q(θ)

Aij(θ)pj(θ) =
∑

j∈Q(θ)

Aij(θ)vj(θ) (Mi(θ))

We refer to the constraint associated with costs θ and supplier i ∈ Q(θ) (i 6= ι(Q(θ)) as Mi(θ).

Note that any set of prices p(θ) (for all θ ∈ Θ) that satisfy all constraints in the set {Mi(θ) : θ ∈
Θ, i ∈ Q(θ), i 6= ι(Q(θ)} implement the optimal allocations given by the solution of P1.

In addition, by Corollary 4.1, we need to guarantee that the expected interim transfers coincide

with the optimal ones from P1. We abuse notation and refer to the equality constraint on the

expected transfers corresponding to supplier i and cost θji ∈ Θi by Ti(θ
j
i ). This constraint can be

expressed as:

∑
θ−i∈Θ−i

f−i(θ−i)xi(θ
j
i ,θ−i)pi(θ

j
i ,θ−i) = Ti(θ

j
i ) ∀i ∈ N, ∀θji ∈ Θi, (Ti(θ

j
i ))

where the right hand side corresponds to the optimal expected interim transfer of P1 (given by

Eq. (8)). Observe that, if in the optimal solution we have xi(θ
j
i ,θ−i) = 0 for all θ−i ∈ Θ−i, then

it must be that Ti(θ
j
i ) = 0. This follows by conditions (2) and (3) in Proposition 4.1. Hence,

the previous equation imposes
∑

i∈N
∑

θi∈Θi
I[∃ θ−i : i ∈ Q(θi,θ−i)] constraints. Note that these

number of constraints is less than or equal to
∑

i∈N |Θi|.
By imposing the constraints in Eqs. (Mi(θ)), the allocations xi(θ

j
i ,θ−i) are fixed and equal to

the optimal allocations of P1; therefore, the equations described in (Ti(θ
j
i )) are linear in unit prices.

Hence, verifying whether OPT (P0) = OPT (P1) is equivalent to establishing whether the linear

system of equations defined by Eqs. (Mi(θ)) (for all θ ∈ Θ and all i ∈ Q(θ) with i 6= ι(Q(θ) ) and

Eqs. (Ti(θ
j
i )) (for all i ∈ N and θji ∈ Θi) admits a solution.

Let M and m be the coefficient matrix and the corresponding RHS respectively defined by

the linear equations in (Mi(θ)) and (Ti(θ
j
i )), where each column is associated with a price pi(θ).

We can safely discard the columns corresponding to prices pi(θ) such that i /∈ Q(θ), as all the

coefficients of such columns are zero. The resulting matrix M will have
∑

θ∈Θ |Q(θ)| columns as

we have one price variable per active supplier and per profile of costs. In addition, for each θ ∈ Θ,

there will be |Q(θ)|−1 rows given by the constraints in Eqs. (Mi(θ)) and
∑

i∈N
∑

θi∈Θi
I[∃ θ−i : i ∈

Q(θi,θ−i)] ≤ |Θ| rows given by Eqs. (Ti(θ
j
i )). The preceding observations are summarized by the
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following remark:

Remark 5.1 (Dimension of the coefficient matrix). The coefficient matrix M has
∑

θ∈Θ |Q(θ)|
columns and

∑
θ∈Θ |Q(θ)| −Θ +

∑
i∈N

∑
θi∈Θi

I[∃ θ−i : i ∈ Q(θi,θ−i)] rows. Further, the number

of columns is greater or equal than the number of rows.

By the Rouché-Frobenius theorem, a system of linear equations Mp = m is consistent (has a

solution) if and only if the rank of its coefficient matrix M is equal to the rank of its augmented

matrix [M |m]. Note that whenever the rows of M are linearly independent the system is trivially

consistent.

In the remainder of this section we show that (under additional conditions) we can guarantee

that the associated system of equations is consistent. Hence, we can characterize the optimal

mechanism.

5.2 Optimal Mechanism for Hotelling Demand Model

Having described the general solution approach, we now discuss the structure of the optimal mech-

anism when the consumer demand is given by a Hotelling model. Recall that a simple version of

the Hotelling model was introduced in Example 3.1. We now briefly discuss a general Hotelling

demand model with an arbitrary number n of suppliers in the unitary segment. The n potential

suppliers are located at 0 ≤ `1 < `2 < . . . < `n ≤ 1 respectively; the location represents the hori-

zontal characteristic of the product offered relative to the product space. The closer two suppliers

are in the product space, the closer substitutes the products they offer are. The locations of the

suppliers are assumed to be common-knowledge. A continuum of consumers, all of whom must buy

one unit of product, are distributed on the product space. To simplify the exposition, we assume

that consumers are uniformly distributed. However, our results can be easily extended to arbitrary

distributions.

The utility consumer j obtains from buying the product offered by i is given by:

uji(pi) = − (δ|`i − `j |+ pi) , (12)

where δ is the transportation cost and `j is the position of j in the unit line.

Suppose that suppliers have fixed unit prices p = {pi}i∈N . Then, the set of active suppliers

with strictly positive demand is given by Q(p) = {i ∈ N : pi ≤ mink 6=i {pk + δ|`k − `i|}}. If this

condition is satisfied for a supplier i, then the consumers located in a neighborhood of `i prefer to

buy from him than from any other supplier; hence, supplier i will be active.

For unit prices p and supplier i ∈ Q(p), let %p(i) (resp. ϑp(i)) denote the supplier preceding

(resp. following) i in Q(p), that is, %p(i) = max {j ∈ Q(p) : j < i} and ϑp(i) = min {j ∈
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Q(p) : j > i}. Also, let ι(Q(p)) (resp. η(Q(p))) denote the rightmost (resp. leftmost) supplier in

Q(p). Then, the aggregate demand for product i is given by:

di(p) =



0 if i /∈ Q(p)

`i + 1
2δ

(
pϑp(i) − pi + δ(`ϑp(i) − `i)

)
if i = η(Q(p))

1
2δ

(
p%p(i) − pi + δ(`i − `%p(i))

)
+ if i ∈ Q(p), i 6= η(Q(p)), ι(Q(p))

1
2δ

(
pϑp(i) − pi + δ(`ϑp(i) − `i)

)
1
2δ

(
p%p(i) − pi + δ(`i − `%p(i))

)
+ (1− `i) if i = ι(Q(p))

(13)

Note that by Proposition 4.1 and the discussion that follows, the optimal allocations in the

relaxed problem P1 for a cost realization θ are given by the demand characterization (13) with

prices equal to the vector of virtual costs v(θ). Similarly to the Hotelling example with 2 suppliers,

the auctioneer may optimally restrict participation of bidders in the assortment to decrease expected

payments.

We now study in which cases it is possible to achieve the same optimal objective in both the

original problem and the relaxed problem, that is, in which cases OPT (P0) = OPT (P1). Consider

the optimal solution of the relaxed problem as described by Proposition 4.1. Let q be defined as

Corollary 4.1 as follows:

qi(θ) =

{
1 if i ∈ Q(θ)

0 otherwise

By comparing the Hotelling demands as described by Eq. (13) with the optimal allocations of

P1 as defined in Proposition 4.1, it should be clear that the constraints given by Eqs. (Mi(θ)) can

be summarized as:

pϑθ(i)(θ)− pi(θ) = vϑθ(i)(θϑθ(i))− vi(θi) ∀θ ∈ Θ, i ∈ Q(θ), i 6= ι(θ). (14)

These constraints will implement the optimal allocations of P1 using prices p(θ). In words, the

difference in prices between adjacent active suppliers must be equal to the difference in virtual

costs. By Corollary 4.1, we must also guarantee that the expected transfers agree with the optimal

ones, that is, unit prices should satisfy constraints Ti(θ
j
i ), for all θji ∈ Θi and all i ∈ N . Hence, if we

can find a feasible pair (q,p) for P0 such that the optimal allocations for P1 can be supported and

the constraints on the expected interim transfers are maintained, then we have found an optimal

solution for the original problem. To show that the system of linear equations is consistent, we

exploit the fact that Eq. (14) imposes a very particular structure on the coefficient matrix of the

system.

We start by analyzing the setting in which suppliers have IID costs and are located at equidistant
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intervals. Even in this context, the problem is asymmetric whenever we have three or more suppliers,

as the most central agent has an advantage to capture demand. We have the following result.

Theorem 5.1 (IID costs). Consider the setting in which for all i ∈ N we have `i = i−1
n−1 (agents

are located at equidistant intervals), Θi = Θ̃ and fi = f for some support Θ̃ and pdf f . Then,

OPT (P0) = OPT (P1).

The proof of Theorem 5.1 can be found in the companion appendix. We show that there is

no gap between the optima of the original and the relaxed problem by showing that the system

of linear equations Mp = m is consistent. Ideally, one would like to show that the rows of the

coefficient matrix are linearly independent. However, this need not be the case. Indeed, the reader

can verify that in the simple case of n = 2, Θ̃ = {θL, θH} and δ ≥ 1
f(θH)(θH − θL) the rows of the

associated matrix of coefficients are linearly dependent.

We now turn our attention to the more general case in which the cost functions are not IID

and locations are arbitrary. Unfortunately, as opposed to our result in Theorem 5.1, the optima of

both problems might not agree in the general case. This situation is illustrated by the following

example.

Example 5.1 (OPT (P0) > OPT (P1)). Consider an instance with only two players located at the

extremes of the unit segment. Let δ = 1 be the transportation cost. Let Θ1 = {1, 2.5}, Θ2 =

{1, 2, 2.3}. The probability functions f1, f2, and v1, v2 are described in the following tables.

Θ1 1 2.5

f1 1/2 1/2

v1 1 4

Θ2 1 2 2.3

f2 1/2 1/3 1/6

v2 1 3.5 3.8

To show that a gap exists between both problems, we show that it is not possible to find item

prices satisfying the conditions in Corollary 4.1. To that end, note that the set of possible outcomes

is Θ = {(1, 1), (1, 2), (1, 2.3), (2.5, 1), (2.5, 2), (2.5, 2.3)}. Whenever θ1 = 1 or θ2 = 1 (but not both),

only the agent with cost 1 will be active in the optimal solution. Therefore, whenever agent 2 has

cost θ2 = 2 he is only active in one profile, that is, in profile (2.5, 2). By Eq. (11), the price p2(2.5, 2)

is completely determined. In addition, Eq. (10) now complete determines price p1(2.5, 2). Similarly,

when agent 2 has cost θ2 = 2.3 he is also active only in profile (2.5, 2.3). Using the same arguments

as before, Eq. (11) pins-down p2(2.5, 2.3) and hence Eq. (10) fixes price p1(2.5, 2.3). However, once

the values of p1(2.5, 2) and p1(2.5, 2.3) are fixed as explained above, the expected transfer constraint

for T1(2.5) fails to hold and a gap between both problems must exist. In the case, the optimal

objective value of the relaxed and orginal problems are 2.0638 and 2.0645 respectively.

Given that, in general, the optima of the relaxed problem and the original problem may not

agree, we next focus on providing sufficient conditions under which OPT (P0) = OPT (P1). In
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particular, we provide sufficient conditions for the associated system of linear equations to be

consistent. This is summarized by the following theorem.

Theorem 5.2. Consider the general setting in which agents have arbitrary locations and costs dis-

tributions. Let c∗ = min1≤i≤n−1(`i+1−`i). Suppose that the following conditions are simultaneously

satisfied:

1. There is at least one profile θ ∈ Θ such that |vi+1(θi+1)−vi(θi)| ≤ δ(`i+1−`i)/2 for all i ∈ N ;

and

2. |Θi| ≥ 3 for all i ∈ N , and for every i ∈ N and every θj ∈ Θi, we have vi(θ
j+1
i )−vi(θji ) ≤

δc∗

4 .

Then, we have OPT (P0) = OPT (P1).

The second condition essentially requires the difference in the virtual costs between adjacent

points in the support to be bounded by a function of δ. The smaller the δ, the closer the virtual

costs should be. If we think of the discrete distribution as an approximation of an underlying

continuous distribution, then this is equivalent to require the discretization to be thin enough with

respect to δ. The intuition behind the first condition is to require the existence of an ‘interior

solution’. First, note that every agent is active in profile θ. Further, using the second condition, it

is simple to observe that all agents are active in a neighborhood of θ.

The complete proof of Theorem 5.2 can be found in Appendix E.10 In the proof, we show

that the rows of the associated coefficient matrix M are linearly independent and, therefore, there

must exist prices that support the optimal allocation and satisfy the expected interim transfer

constraints.

It is easy to verify that condition (2) in the theorem is violated in Example 5.1. In particular,

|Θ1| = 2 and, furthermore, the difference between consecutive virtual costs in general exceeds
δc∗

4 = 1
4 . Intuitively, the support of the cost distributions in the example are coarse and, therefore,

the dimensionality of the price vectors is low. As a result, there are not enough degrees of freedom to

find prices that simultaneously satisfy the demand and the expected interim transfers constraints.

The second condition of the theorem guarantees this is always the case. In particular, by requiring

adjacent virtual costs to be “close”, the optimal allocations do not vary much if we replace the cost

of an agent by one of his adjacent costs. Then, for a pair θji , θ
j+1
i ∈ Θi, there exists at least some

profile θ−i for which we have i ∈ Q(θji ,θ−i) and i ∈ Q(θj+1
i ,θ−i). This is crucial, as it guarantees

a structural relationship between the expected transfers constraints (Eq. (Ti(θ
j
i ))) of adjacent costs

(e.g., (Ti(θ
j
i )) and (Ti(θ

j+1
i ))). Further, by imposing conditions (1) and (2), we guarantee the

existence of several cost profiles for which all agents are active, which translates into a structural

10In Appendix E we prove a more general theorem. Then, we explain how the general theorem implies Theorem 5.2.
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relationship between the expected transfers constraints (Eq. (Ti(θ
j
i ))) of all the agents. As the

prices become more related with each other, there are more degrees of freedom to find prices that

satisfy both the optimal demand constraints and the expected transfer constraints.

In Appendix B, we provide a related characterization and result for a classic model of pure

vertical differentiation.

5.3 Optimal mechanisms for general Affine Demand models

So far we considered the classic models of demand for products that are horizontally (or vertically)

differentiated. We now study more general affine demand models, that allow us to combine both

vertical and horizontal sources of differentiation. An affine demand function is one where the

relation d(p) = α − Γp holds for all p ∈ {p ∈ R : α − Γp ≥ 0}. Here, α ≥ 0 represents a quality

(or vertical) component; Γij represents the variation in the demand of product i as a result of a

unit change in the price of product j, when all other prices remain constant. We assume that the

products are gross substitutes, hence, Γij ≤ 0 for i 6= j. Note that the Hotelling model presented

in the previous section and the vertical model studied in the appendix are both particular cases of

affine demand models.

For our purposes, it is important to consider the extension of this specification to price vectors

under which some products get zero demand as introduced by Shubik and Levitan [23] and further

analyzed by Soon et al. [24]. We formalize this extension in our setting in which demands must add

up to one using a representative consumer approach (Farahat and Perakis [12] also use this approach

to study oligopolistic pricing models under affine demand functions).11 We consider a representative

consumer with a strictly concave gross utility function given by u(x) = c′x− 1
2x
′Dx, where D is a

positive definite matrix andD−1 is symmetric positive definite. The vector c′ denotes the transpose

of vector c. Here, D = Γ−1 and c = Γ−1α have been renamed to avoid burdensome notation. The

demand function is defined as the solution of the representative consumer’s maximization problem,

whose utility also corresponds to consumer surplus. That is, for any p ∈ Rn, let d(p) be defined as

the solution of the following maximization problem:

max
x

c′x− 1

2
x′Dx− p′x

s.t 1′x = 1

x ≥ 0

(LD(p))

Clearly, Problem (LD(p)) has a unique solution for very p ∈ Rn, and thus the demand function

11Alternatively, a general affine demand model can be micro-founded considering consumers’ individual utilities
like in the Hotelling and vertical models [20]. However, we think the representative consumer approach provides a
cleaner analysis.
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d(p) is well defined. To illustrate, we consider the following example:

Example 5.2. We consider a duopoly where c = (α1, α2) and D =
( β1 γ
γ β2

)
, with all the parameters

positive except possibly γ and with β1 + β2 ≥ 2γ. For any given p, the demand function d(p) is

defined as:

d1(p) = max

{
0, min

{
α1 − α2 − γ + β2 − p1 + p2

β1 + β2 − 2γ
, 1

}}
and

d2(p) = max

{
0, min

{
α2 − α1 − γ + β1 − p2 + p1

β1 + β2 − 2γ
, 1

}}
.

These demand functions exhibit natural properties; they are decreasing in a firm’s own price

and increasing in the competitor’s price. Also, depending on the price vector, there could be one

or two firms active. As before, we note that the optimal allocations in the relaxed problem P1 for

a cost realization θ are given by the demand characterization above with prices equal to the vector

of virtual costs v(θ). Again, the auctioneer may optimally restrict participation of bidders in the

assortment when the difference in virtual costs is large enough to decrease expected payments. We

generalize the demand specification for a larger number of firms next.

Through the rest of the section, given a matrix A, we denote the ith row of A by Ai,∗. Similarly,

the jth column is denoted by A∗,j . For a subset of indices Q ⊂ N , AQ denotes the principal

submatrix of A obtained by selecting only the rows and columns in Q. Similarly, cQ denotes

the vector obtained by selecting only the components in Q and 1Q denotes the vector of ones of

dimension |Q|. We have the following result that characterizes an affine demand function for the

set of active suppliers.

Lemma 5.1. Given a price vector p and the associated demand d(p), we denote by Q = Q(p) =

{i ∈ N : di(p) > 0}. Then, demand d(p) can be expressed as:

dQ(pQ) = (DQ)−1

(
cQ − pQ +

(
1− 1′Q(DQ)−1

(
cQ − pQ

)
1′Q(DQ)−11Q

)
1Q

)
. (15)

The proof is presented in Appendix D. The above demand specification exhibits a natural

regularity property: if there is no demand for a particular product, the price of that product does

not affect the demand for other products. In addition, it is simple to observe that any increase in

price of a product with zero demand will not have an impact on the demand function either.

From Eq. (15), it should be clear that whenever two vector of prices pQ and p̂Q satisfy

(DQ)−1

(
pQ −

1′Q(DQ)−1pQ

1′Q(DQ)−11Q
1Q

)
= (DQ)−1

(
p̂Q −

1′Q(DQ)−1p̂Q

1′Q(DQ)−11Q
1Q

)
, (16)
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we must have that dQ(pQ) = dQ(p̂Q). This observation is useful because it states that demands

only depend on price differences. This freedom in setting unit prices is essential to our proof

technique, as we will find unit prices that satisfy the same differences induced by the virtual costs

and that simultaneously satisfy the expected interim transfer constraints.

Hence, the coefficient matrix M as described in Section 4 will consist, for θ ∈ Θ and each

i ∈ Q(θ) of at most Q(θ) non-zero rows: Q(θ)− 1 correspond to the demand equations12 and the

remaining one corresponding to the expected transfer constraint. Note that for given θ ∈ Θ, the

demand equations are given by Eq. (16) where we replace Q by Q(θ) and pQ by pQ(θ)(θ) in the

left hand side. In the right hand side we replace prices p̂Q by virtual costs vQ(θ)(θ).

Similarly to what we have previously done for the vertical and the horizontal differentiation

models, we show that, under sufficient conditions, we can guarantee OPT (P0) = OPT (P1), by

showing that the rows of the associated matrix of coefficients of the system of linear equations M

are linearly independent.

Theorem 5.3. Consider the general setting in which agents have arbitrary costs distributions.

Suppose that the following conditions are simultaneously satisfied:

1. There exists a profile θ ∈ Θ such that Q(θ) = N , and there exists a d∗ ∈ R such that, for all

θ′ ∈ Θ with |θ − θ′|∞ ≤ d∗ we have Q(θ′) = N .

2. |Θi| ≥ 3 for all i ∈ N , and for every i ∈ N and every θj ∈ Θi, we have vi(θ
j+1
i )−vi(θji ) ≤ d∗/3.

we have OPT (P0) = OPT (P1).

We highlight that d∗ depends on the primitives of the problem. However, the intuition agrees

with that of the Hotelling and vertical models: we must guarantee the existence of an ‘interior

solution’ and impose a ‘thin enough’ cost discretization. To provide more intuition, consider a

duopoly where c = (α, α) and D =
( β γ
γ β

)
. Note that this is a particular case of Example 5.2. In

this case, the result will follow for any market satisfying the conditions with d∗ = β−γ
2 .13

6 Case Study: ChileCompra-Style Framework Agreements

In the previous section, we characterized the optimal directed-revelation posted-price mechanism.

Procurement mechanisms used in the real-world, however, typically take simpler forms. In par-

ticular, FAs are usually implemented as first-price auctions with rules to decide the assortment

12Note that if we can find prices pQ satisfying the constraints imposed by x1, . . . , x|Q|−1, then the last constraint

will also be satisfied as xQ = 1−
∑|Q|−1
j=1 xj .

13Note that the choice of d∗ imposes conditions on the cost distributions.
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based on both the suppliers’ bids and characteristics. Simple mechanisms are generally preferred in

practice, because they are easier to explain to potential suppliers and require simpler management

from the procurement agency.

In this section, we evaluate the type of framework agreements run by ChileCompra and pro-

vide concrete recommendations for their improvement. The optimal mechanism is crucial for this

purpose, because it serves as a benchmark of what is achievable, and its structure also provides

insights on how to modify the current practice to enhance performance.

In Section 6.1 we describe the FAs run by ChileCompra. Then, in Section 6.2 we provide

analytical results in a simple model of horizontal differentiation evaluating the performance of the

type of FAs run by ChileCompra and improvements thereof. Finally, in Section 6.3 we provide

a large set of numerical experiments showing the robustness of the conclusions drawn from the

analytical results in the simple model. Overall, our analysis shows that ChileCompra FAs creates

thin markets and that, by emulating the optimal mechanism to make close-substitute products

compete, consumer surplus can be significantly increased.

6.1 ChileCompra’s Framework Agreements

Framework agreements have been playing an increasingly important role in the procurement strat-

egy of the Chilean government since their introduction in 2004. To illustrate, in 2013 ChileCompra

spent slightly more than US$ 2 billion in FAs, which corresponded to 21% of the total public expen-

diture in procurement and was twice the amount spent in 2010. Currently, more than 95 thousand

products and services ranging from food to office supplies and computers, dialysis services and

medicines can be acquired through FAs.

To award the FAs in a given category (e.g., food), ChileCompra runs a first-price-auction-type

mechanism. Each supplier submits a bid for each item, which stands for a completely specified

product. To illustrate, a box of Kellogg’s Corn Flakes containing 15oz. and a box of Kellogg’s

Corn Flakes containing 17oz. are two different items. Suppliers can offer any subset of items they

want, as long as the type of these products are among those required by the government. As an

example, if “pasta” is among the types of products required, a bid for any type of pasta is allowed,

regardless the brand, size, and so on.

Bids are evaluated using a scoring rule; all products whose scores are above a threshold are

offered in the menu at the price specified by the supplier in his bid. Each item gets a score in the

0−100 scale. All items for which the score is at least 75 points will be in the menu. Usually, around

70 points correspond to price and this is typically the main variable that influences the allocation

rule.14 Prices are compared only across identical items. The price-score for an item-supplier pair

14The remaining points correspond to supplier characteristics, such as certifications or transportation facilities.

24



is assigned by comparing his price to the minimum price of an identical item. If there is a unique

supplier offering the item, he automatically obtains the maximum score regardless of the price.

The current FA implementation creates thin markets and fails to generate price competition to

be included in the menu. Indeed, because auctions are run independently for each product and the

product definitions are narrow, there is a single supplier bidding for many products. To illustrate

we consider the FA for food products.15 There, a total of 8091 products where offered by 116

suppliers. Out of those items, 4549 were offered by a unique supplier who got the maximum score

for price in these item. The price score accounted for 72 points out of the minimum of 75 needed.

As a result, all items with a single supplier were added to the menu. Hence, in these case bidders

have hardly any incentives to aggressively compete in prices to be inside the menu. This issue

notwithstanding, note that prices will affect competition inside the menu. In other words, there is

competition “in the market”, but not “for the market”.

These observations motivated the following question: can the performance of the current FAs

be improved if thicker markets are created by making imperfect substitute products compete to be

in the menu? In other words, can competition for the market improve performance?

We highlight that other FAs, such as office supplies, prosthesis supplies, cleaning products,

and personal care, among others, are similar to the FA for food products in that they create thin

markets. In these agreements, it is typically important for the government to account for the

heterogeneous preferences of agencies, by optimizing consumer surplus when deciding the menu.

For example, some patients might find a prosthesis of a certain brand to be more comfortable than

that of a competing brand, while for other patients it might work the other way around. Different

organizations buying from the food FA might also have different needs, such as dietary constraints

(e.g., hospitals and environments with kids). In addition, requirements for computers from schools

may be very different to those from, say, the central bank. In all these cases, the government has

a direct interest on providing variety to its agencies and our results provide insights into how to

achieve it in a cost efficient way.16

6.2 Analytical Evaluation of ChileCompra-Style FAs in Simple Model

Supported both by the description of ChileCompra’s mechanism and the analysis of their data, we

propose the following first order approximation to their current FAs: we consider a procurement

15This FA corresponds to the public auction number 2239 − 20 − LP09, titled “ALIMENTOS PERECIBLES Y
NO PERECIBLES”, which was valid 2010 through 2014.

16In other contexts, it may not be the government’s responsibility to provide variety. For example, suppose agencies
have idiosyncratic preferences for different types of soft drinks. In this case, our results provide a way of evaluating
the cost of providing variety considering agencies idiosyncratic preferences, when perhaps it is not in the government’s
best interest to do it. Either way, in the rest of the section we assume the government’s objective is to maximize
consumer surplus.
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mechanism in which there is no competition to be in the menu, but suppliers must compete for

demand inside the menu. Every supplier whose price does not exceed the reserve price is added to

the menu, and the bids of those suppliers are taken as posted prices. After, the demand is split

amongst the agents in the menu according to the demand model.

Following the auction theory tradition, we assume that for a given mechanism bidders play

a pure strategy Bayesian Nash equilibrium (BNE). Hence, to evaluate the performance of the FA

we need to derive such equilibrium bidding strategies. Unfortunately, deriving such strategies

analytically under general model primitives is challenging, because demands, and therefore profits,

are a function of all bids. Therefore, to compute expected profits a bidder needs to integrate out

over all possible demand realizations given competitors’ bid functions.

Hence, to be able to derive analytical results we restrict our attention to a simple pure horizontal

differentiation Hotelling model. We consider a problem with two IID potential sellers located at 0

and 1 respectively in the unit line and with two cost realizations. Let Θi = {θL, θH} for i = 1, 2

and let fL and fH denote f(θL) and f(θH), respectively. This simple model will provide essential

insights. Then, we test the robustness of these insights with numerical experiments. All proofs in

this section can be found in the companion appendix.

6.2.1 Analysis of ChileCompra-Style FAs

In this section we provide a theoretical analysis of the equilibrium bid functions and the performance

of ChileCompra FA’s in the two-by-two Hotelling model just described. In this setting, we say that

the outcome of the mechanism is single-award if, whenever agents have different types, the low-

cost agent obtains all the demand. Otherwise, we say that the outcome of the mechanism is

split-award.17

We now analyze the performance of ChileCompra’s mechanism in this setting. A full descrip-

tion of the mechanism is provided in Table 1. We can analytically calculate the optimal bidding

strategies for the agents under the ChileCompra mechanism with reserve price θH . Using standard

arguments, it is straightforward to verify that the equilibrium bid for a high-type agent is θH . The

following proposition characterizes the bid for the low type.

Proposition 6.1. The equilibrium bidding strategy for an agent of type θL in the unique BNE is

as specified in Table 2 for different values of δ.

17We highlight that the terms single-award and split-award have been used in the literature with a different meaning.
In auctions where production is awarded, the outcome can be a sole-source (single) award, in which a single producer
provides all of the required production, or in a split award, in which production is divided between two or more
firms [5]. In the FA we are analyzing instead, the auctioneer cannot award demand but we can still think about the
outcome of the mechanism as a single or split award, depending on how the final demand is distributed.
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ChileCompra’s mechanism Restricted-entry (RE) mechanism
Parameters R: reserve price R: reserve price

C: split
b1, b2: agents’ bids b1, b2: agents’ bids

Entry rule If bi ≤ R, add i to the menu. Only consider suppliers with bids at
most R. If |b1 − b2| < C, add both to
the menu. Otherwise, just add the one
with lowest bid.

Demand allocation Split the demand among the suppliers
in the menu according to the Hotelling
demand with transportation cost δ

Split the demand among the suppliers
in the menu according to the Hotelling
demand with transportation cost δ.

Table 1: Description of the mechanisms considered: ChileCompra’s mechanism and the restricted-
enty mechanism

Value of δ
Optimal ChileCompra

award avg. low price award eq. strat. low[
1
fH

(θH − θL),∞
)

split
(fH/2+fL(1−x))θH+(x−1/2)θL

fL/2+fHx

where x =
1/fH (θH−θL)+δ

2δ

split
θH

[
(θH − θL), 1

fH
(θH − θL)

]
single

θL+fHθH
1+fH

[
(θH−θL)
2+fH

, (θH − θL)
]

θL+fHθH+δ
1+fH[

fL
2

(θH − θL),
(θH−θL)
2+fH

)
single

θH − δ[
fHfL(θH−θL)

1
2
(1+fH )2+fHfL

, fL
2

(θH − θL)

]
θL + δ 1+fH

fL[
0,

fHfL(θH−θL)
1
2
(1+fH )2+fHfL

]
no BNE -

Table 2: Comparison Optimal mechanism and ChileCompra mechanism with reserve price θH . In
all cases, the expected price for an item of cost θH is θH .

In Table 2, we compare the equilibrium bidding strategy for the low-type agent in ChileCompra

with reserve price θH to the average price per unit payed to a supplier of type θL in the optimal

mechanism.18 Note that for low-values of δ a BNE does not exist for the same reasons a BNE does

not typically exist in first-price auctions with discrete types [16]. The bidding strategy of a bidder

of type θL in the ChileCompra FA is continuous as a function of δ. Intuitively, one would expect

the bidding strategy to be increasing in δ; as the differentiation increases, demands are less affected

by prices and therefore incentives to bid aggressively decrease. This intuition is correct for most

values of δ except for the interval
[
fL
2 (θH − θL), (θH−θL)

2+fH

)
, in which equilibrium bids are decreasing

in δ. There, it is optimal to bid θH − δ; the low-type has incentives to submit this bid to gather

demand against a high-type. In addition, for values of δ ≥ θH − θL the equilibrium bid reaches the

maximum allowed bid of θH .

Using the equilibrium bids, we can compute the expected consumer surplus (corresponding to

the negative of expected supplier payments plus transportation cost) of the ChileCompra mecha-

18The prices given by the optimal mechanism are not unique. Therefore, we calculate the average price per unit
payed to a supplier of type low as T (θL)/X(θL).
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nism and compare it to that of the optimal mechanism for different parameter values. To compare

performance in this section, for a given a mechanism M , we define the optimality gap between the

optimal mechanism and mechanism M as (M/OPT −1)∗100, where we abuse notation and denote

by M and OPT the total expected consumer surplus in mechanism M and the optimal mechanism,

respectively. Optimality gaps are shown in Table 3 as a function of both fL and δ.

A key difference between ChileCompra mechanism and the optimal mechanism is that the

split-award outcome occurs more frequently in the former one, especially for higher values of fL.

In particular, whenever δ ≥ (θH−θL)
2+fH

, ChileCompra will split-award between both suppliers. In

contrast, the optimal mechanism only split-awards once δ ≥ 1
fH

(θH − θL). As previously observed,

the optimal mechanism single-awards to reduce expected payments to bidders. It is also interesting

to observe that, in this setting, the full-information solution splits-award whenever δ ≥ θH − θL.

Relative to this solution, ChileCompra mechanism split-awards for a wider range of differentiation

costs, while the optimal mechanism does it for a smaller range.19

δ
fL = 0.1 fL = 0.25 fL = 0.5 fL = 0.75 fL = 0.9

Chile BRE Chile BRE Chile BRE Chile BRE Chile BRE
0.5 0.88 0.88 2.41 2.41 5.59 5.58 4.02 3.94 4.30 4.30
1 0.74 0.27 1.98 0.93 4.34 2.73 7.02 5.62 8.40 7.91

1.5 0.86 0.11 2.36 0.55 5.45 2.23 9.41 5.36 12.18 8.55
2 0.89 0.10 2.55 0.55 6.36 2.38 11.62 6.04 15.70 9.97

2.5 0.71 0.12 2.15 0.64 5.74 2.72 11.12 6.93 15.40 15.40
3 0.58 0.18 1.77 0.74 5.15 2.99 10.55 7.55 14.99 14.99

3.5 0.50 0.28 1.50 0.88 4.57 3.12 10.01 7.93 14.60 14.60
4 0.43 0.40 1.30 1.09 4.00 3.20 9.47 8.05 14.24 14.24

4.5 0.38 0.38 1.14 1.14 3.50 3.27 8.95 8.17 13.86 13.86
5 0.34 0.34 1.02 1.02 3.11 3.11 8.44 8.06 13.49 13.49

5.5 0.30 0.30 0.91 0.91 2.79 2.79 7.94 7.94 13.13 13.13
6 0.27 0.27 0.83 0.83 2.53 2.53 7.46 7.46 12.78 12.78

Table 3: Optimality gaps as a function of both the differentiation cost δ and fL. The parameters
are θL = 10, θH = 12. The horizontal lines indicate the point up to which restricting the entry
outperforms ChileCompra’s policy.

In the next section we explore how a simple change of the rules of ChileCompra mechanism that

restricts entry can improve performance. This change emulates the optimal mechanism, in that it

makes the single-award outcome more likely by inducing competition to be in the market.

6.2.2 Analysis of Mechanisms that Restrict Entry

Following ChileCompra’s original design, we focus on first-price auction-type of mechanisms. We

consider two possible changes in the auctions’ rules. In the first case, entry is restricted ex-ante,

that is, before observing the bids. In the second case, entry is restricted ex-post as a function of

19[9] also observe that by making a monopoly outcome more likely, the auctioneer is able to exert more pressure
on low-cost suppliers to reveal their private information and therefore reduce the total expected procurement cost.
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the observed bids.

Ex-Ante Restricted-Entry Mechanism. We start by analyzing what happens if we restrict

entry before bids are placed. In particular, suppose that we decide how many agents will be in the

menu before observing the bids and then run a first-price auction (FPA) type mechanism to decide

the prices.

In our simple model, this amounts to deciding when does choosing a single winner using a

FPA outperforms ChileCompra’s mechanism. Recall that, in general, the FPA does not have

an equilibrium in pure strategies when types are discrete. However, by allowing equilibria in

mixed strategies, expected payments in the FPA are given by θH − f2
L(θH − θL).20 By adding

the transportation cost, the total expected cost faced by a designer who chooses to run a FPA is

θH − f2
L(θH − θL) + δ

2 .

Using these analytical expressions, we can characterize the set of parameters for which the FPA

outperforms ChileCompra. To illustrate, for fixed θL = 10 and θH = 12, the relative performance

of ChileCompra and FPA as a function of parameters (fL, δ) can be seen in Figure 2. The black

area is omitted from the analysis, as no equilibrium in pure strategies exists in ChileCompra’s

mechanism. As it can be observed, ChileCompra outperforms the FPA mechanisms when both fL

and the differentiation cost δ are relatively small (the white area).

As the differentiation cost increases beyond θH−θL but fL remains small, the FPA is still worse

than ChileCompra. In that region (light gray area), the equilibrium strategy for the low-type in

ChileCompra mechanism is to bid θH , which agrees with the bid a low-type agent will place if there

was no competition. However, the designer cannot improve by switching to a FPA; in the light gray

area, the reduction in purchasing costs that results from the price competition cannot compensate

for the large transportation cost, even when bids in the ChileCompra mechanism are as high as

possible.

On the other hand, as fL increases, it is profitable to restrict the entry using a FPA even if that

implies a higher transportation cost (gray area).21 Overall, even a simple FPA where the number

of winners is decided before observing the bids can sometimes improve over the current mechanism.

However, there is still a large set of parameters for which this is not the case. We discuss the

performance of more sophisticated mechanisms next.

Ex-Post Restricted-Entry Mechanism. The main issue with restricting entry ex-ante is that

such mechanisms do not split-award when suppliers share the same cost. This causes an increase

20This follows from standard arguments. For completeness, the proof is provided in the companion appendix.
21We note that the non-convexity of the areas FPA and ChileCompra is due to the fact that, in ChileCompra, the

equilibrium bidding strategy as a function of δ is decreasing in the interval
[
fL
2

(θH − θL), 1
2+fH

(θH − θL)
]
.
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Figure 2: For θL = 10, θH = 12, we show when it is profitable to restrict the entry using a FPA
as a function of fL and δ. The black area is omitted from the analysis, as no equilibrium in pure
strategies exists in the ChileCompra mechanism. ChileCompra outperfoms the FPA mechanisms
only in the white area. The single-winner FPA is better in dark gray area. In the light-gray area,
ChileCompra has the highest possible low-type bid, but it is still better than a single-winner FPA.

in the transportation cost. Therefore, we now study a class of mechanisms for which the decision

on whom will be in the menu is contingent on the bids received by the auctioneer.

Using the intuition from the optimal mechanism, we propose the restricted-entry (RE) mecha-

nism described in Table 1. This simple mechanism has two parameters: the reserve price R and the

split parameter C. The only difference with ChileCompra’s mechanism is that we restrict the entry

to the menu by requiring the difference between bids to be at most C. The split parameter allow

us to quantify how restrictive the entry to the market should be; whenever C = δ, our mechanism

coincides with ChileCompra’s.22 We assume R = θH .

For the set of parameters in which ChileCompra single-awards, it can be shown that the per-

formance of the mechanism cannot be improved by restricting entry.23 Therefore, our focus is in

the settings in which ChileCompra split-awards. For these cases, we find values of C for which the

equilibrium bid of the low-type induces single-award. A candidate for such equilibrium bid for the

low-type is θH −C, because it is the highest bid that results in single-award. We have the following

result.

22Whenever C = 0, our mechanism agrees with a FPA. However, in this section we are only going to consider split
parameters C for which a BNE exists.

23The proof can be found in the companion appendix.
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Proposition 6.2. For every set of parameters fL, θH , θL and δ, there exists a (possibly empty)

interval I such that, for all C ∈ I, we have that θH − C is the unique equilibrium bid for the low

type in the RE mechanism with reserve price θH and split parameter C.

In the companion appendix, we characterize the intervals referred to in the previous proposition

as a function of fL, θH , θL, and δ. Intuitively, if C is too small, the mechanism is similar to a FPA

in which bidders have incentives to undercut each other and a BNE may not exist. On the other

hand, if C is too big, an agent of type θL might prefer to place a bid greater that θH − C even if

that implies splitting the demand with a high-type agent.

For given model primitives, the designer is interested in maximizing consumer surplus. If

restricting entry is a helpful device to achieve this objective, then the auctioneer will choose the

largest C for which a single-award equilibrium exists, because that induces the lowest bid for the

low type. Hence, we define the “best low-type bid” to be θH − C∗, where C∗ is the highest C for

which θH − C is an equilibrium. The characterization of the best low-type bids can be found in

the companion appendix, but we briefly discuss the intuition. Whenever fL ≤ 2
3 , for every δ there

exists (at least) one C for which θH − C is an equilibrium. As fL increases beyond that point,

the length of the interval for which we can guarantee this equilibrium decreases. Intuitively, the

advantage of bidding at θH − C is to capture the whole demand when the other agent has a high

cost. As fL becomes close to one, this advantage vanishes. Furthermore, the best low-type bid is

increasing in fL and δ.

As previously pointed out, the RE mechanism may improve upon the ChileCompra mechanism

in cases in which the latter split-awards and the former single-awards. However, the performance

of a RE mechanism that single-awards can be worse than that of ChileCompra because single-

award increases the transportation cost. We define the best restricted-entry mechanism (BRE) as

the mechanism obtained by choosing the value of the split parameter C that maximizes consumer

surplus. We obtain the following straightforward result.

Proposition 6.3. For a given set of parameters, the BRE has one of two possible forms: (1)

coincides with the ChileCompra mechanism; or (2) uses the value C∗ associated to the best low-type

bid.

For a given set of parameters, if BRE improves over ChileCompra it must be by restricting

entry. Then, case (2) above is optimal as the best low-type bids maximize the consumer surplus

for the single-award case. If restricting entry does not improve over ChileCompra because of the

increase in transportation cost, then (1) above is optimal. Note that the latter is equivalent to

setting C = δ.

To illustrate, in Figure 3 we plot the outcome of the optimal, ChileCompra and BRE mechanisms
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Figure 3: (Top) Expected purchasing and total (purchasing plus transportation) costs for opti-
mal, ChileCompra and best restricted-entry (BRE) mechanisms as a function of the differentiation
(transportation) cost δ. The parameters are θL = 10, θH = 12, fL = fH = 1/2. (Bottom) Single-
award vs. split-award in optimal, ChileCompra’s, and our best mechanism.

as a function of the differentiation (transportation) cost δ for parameters θL = 10, θH = 12,

fL = fH = 1/2. As it can be observed, the BRE mechanism restricts the entry whenever δ ≤ 4.675.

By doing so, an expected purchasing cost which is much closer to the optimal one can be obtained.

However, when δ exceeds 4.675, the savings obtained in the purchases cannot compensate for the

increase in transportation cost and, therefore, BRE and ChileCompra coincide beyond that point.

More generally, we study when RE outperforms ChileCompra as a function of the parame-

ters. Recall that restricting entry achieves a substantial decrease in the low-type equilibrium bid.

However, restricting entry also increases the transportation cost. Using the analytical expressions

for ChileCompra’s equilibrium bid and the best low-type bid, we characterize the boundary be-

tween when does restricting entry improves overall consumer surplus. We find that, for relatively

small values of δ and regardless of the value of other parameters, restricting entry improves over

ChileCompra’s mechanism. Intuitively, the decrease in the low-type equilibrium bid results in a

considerable decrease in the expected purchasing cost without a major increase in the expected
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Figure 4: For θL = 10, θH = 12, we show when it is profitable to restrict the entry as a function
of the differentiation cost δ and fL. The dashed line represents the cutoff between single and split
award in the optimal mechanism (i.e., δ = 1

fH
(θH − θL)).

transportation cost. In addition, as it can be observed in Table 3, restricting entry performs better

for the middle-values of fL. If fL is too low, the savings are less likely to occur and therefore the

potential impact is smaller. On the other hand, if fL is too high, the best-low-type-bid tends to

increase and the single-award becomes less profitable.

This is illustrated by Figure 4, where we fix θL = 10, θH = 12, and show when it is profitable to

restrict entry as a function of δ and fL. The graph is divided in three regions. In the white region,

ChileCompra’s mechanism cannot be improved upon by only restricting entry and, therefore, BRE

and ChileCompra performances coincide. Similarly, whenever δ ≤ 1
2+fH

(θH − θL), the entry is

also restricted in ChileCompra’s mechanism; hence BRE and ChileCompra coincide again. The

most relevant case corresponds to those combinations of (fL, δ) which lie in the dark-gray colored

area, for which the consumer surplus generated by ChileCompra can be increased by restricting

entry. Finally, recall that the optimal mechanism will split award only if δ ≥ 1
fH

(θH − θL). This is

represented by the dashed-line.24

We conclude this section with a note on the practical implementability of the restricted entry

mechanisms. The BRE mechanism uses the best split-parameter C that depends on the problem

primitives, and therefore, it may be hard to estimate in practice. However, we argue that even

24We note that these results are by just considering split parameters for which BNE exists. If we are also allowed
to consider split parameters for which only equilibria in mixed strategies exist, then restricting the entry can improve
upon ChileCompra for a wider range of parameters.
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implementing the BRE mechanism with a rough estimate of the best C (but not the exact one)

typically improves performance. In particular, for values of fL ≤ 2/3, the best C as a function of

δ asymptotically converges to fH(θH−θL)
1+fH

. Furthermore, any smaller C will induce the equilibrium

bid θH − C as long as C ≥ fL
2+fL

(θH − θL).25 Hence, by choosing a conservative C the auctioneer

should be able to increase consumer surplus for values of δ that are not too close to the boundary

between the areas in which restricting entry improves performance (the boundary between gray and

white regions in Figure 4). As the benefits of restricting entry are smaller close to that boundary,

one should make sure that the C used is large enough as to guarantee a low-type bid that can

compensate for the extra transportation cost. Therefore, in such areas, it is better to overestimate

C (recall that any C larger than the best C yields the same outcome as the current mechanism, so

it will not damage the worst-case performance).

6.3 Robustness Results: Numerical Experiments

To test the robustness of our intuition, in this section we numerically solve for the equilibrium

strategies for ChileCompra and the restricted-entry mechanism and compare the total procurement

cost of these mechanism with that of the optimal. We replicate this simulation exercise for a range

of environments by varying the cost support, the cost distribution, the number of bidders and some

of the other parameters of the model. The results are summarized next.

More General Cost Distributions. We first consider adding more points to the support of

the cost distributions. To that end, we consider an initial interval and discretize it evenly into k

costs, for k = 2, 3, 5, 7. We consider 4 types of distributions: uniform, left-skewed, right-skewed,

and symmetric-unimodular (normal-like). We highlight that, even though now we have multiple

costs in the support, the auctioneer still must pick a unique split-parameter that remains fixed

throughout the mechanism.

The results of our simulation show that the intuition for the multiple-costs case coincides with

that of the two-by-two simple model. Notably, restricting entry improves the performance of the

current mechanism. In general, the optimality gap decreases by at least 40% for relatively small

values of δ, and the differences in gap shrinks as δ increases. Similarly to the two-by-two case,

the benefits are greater when the distribution is left-skewed or normal-like. There, restricting

entry achieves greater reduction in the bids of the low-type. In addition, as the number of values

in the support increases, restricting entry improves performance for even higher values of cost-

differentiation, because the auctioneer can use a more refined splitting rule.

25Again, this is formally shown in the companion appendix.
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Larger Number of Bidders. We now consider models with more than two agents. To that

end, we consider n agents at equidistant locations with agent i located at `i = (i− 1)/(n− 1). We

test our results for n ∈ {2, 3, 4, 5}. The costs are still assumed to be IID across agents; however,

agents are not ex-ante symmetric due to their locations.

Regarding ChileCompra’s performance, two conclusions can be drawn. First, the distribution

of costs has the same impact in the performance as in the two-agent case; ChileCompra performs

close to optimal for small values of fL but, as fL increases, the performance of ChileCompra quickly

deteriorates. Second, the optimality gap increases with the number of agents. The intuition seems

to be the same as in the two-agent case; ChileCompra fails to obtain competitive bids for the low-

type (relative to the optimum), and this lack of competition has a higher impact as the number of

suppliers increases. These results also generalize to more general supports.26

Whenever there are more than two agents, the auctioneer can choose whether to restrict entry

as a function of bids or as a joint function of both bids and product characteristics. We discuss

these two options next.

We first consider restricting the entry as a function of both the bids and product characteristics.

The mechanism we consider is the restricted-entry mechanism with the following modification: for

split parameter C and bids b1, . . . , bn, supplier i will be in the menu only if bi− bj < C ∗ |`i− `j | for

every j ∈ N with j 6= i. This rule is intuitive: it induces more price competition for agents that are

close-by in the product space. In accordance to what is observed in the two-agent case, restricting

the entry is more efficient for the sets of parameters in which ChileCompra split-awards. However,

the advantage of restricting the entry can only be observed for higher values of δ as the number

of agents increases; this is due to the fact that, for a fixed δ, the expected demand for a high-type

supplier deceases (and non-linearly) as the number of agents increases and therefore the role of the

high-type suppliers becomes less significant. For the values of δ in which ChileCompra split-awards,

restricting the entry performs better (with respect to the optimum) than in the two agent case. This

intuition also generalizes for more general supports; the benefits are greater when the distribution

is left-skewed or normal-like. In general, for fixed number of agents and cost distributions, the

optimality gap decreases by at least 40%.

Next, we consider restricting the entry solely as a function of bids. Similarly to the case of two

agents, for split parameter C and bids b1, . . . , bn, supplier i will be in the menu only if bi − bj < C

for every j ∈ N with j 6= i. As this rule is less sophisticated than the previous one, a poorer

performance is to be expected. However, when suppliers can only be of one of two types, the

performance is almost the same as that of the previous mechanism. However, as the number of

26In particular, ChileCompra’s performance is closer to that of the optimal mechanism for right-skewed distributions
in comparison to left-skewed distributions, and the performance in normal-like distributions is worse than in the
uniform case but better than in the left-skewed case.
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costs in the support increases, the advantage of taking into account the product characteristics also

increases.

7 Conclusions and Extensions

In this paper we study procurement mechanisms for differentiated products demanded by hetero-

geneous consumers. First, we characterize the optimal mechanism for important classes of demand

models. Second, we use these results to shed light on the FAs run by the Chilean government. Our

results are useful to improve our understanding of FAs and, more generally, of buying mechanisms

in similar contexts.

Our basic model can be extended in several interesting directions. First, to simplify the exposi-

tion, we assumed that each supplier offers one product. In Appendix C.1, we provide an extension

to our model in which we allow for multi-product suppliers. We show that our main results extend

to this setting, so we are able to characterize the optimal mechanism for the multi-product case.

In our basic model we assume an inelastic total demand, which may be reasonable for some

products, like medicines, but perhaps less so for others. In Appendix C.2, we consider a model with

an elastic total demand. We show that, in general, our main result fails to hold and a gap between

the optima of the original and the relaxed problem exists. However, preliminary computational

results show that this gap is typically small and that the assortments are usually similar in both

the relaxed and the original problems.

We are currently further exploring the impact of demand elasticity in our results, as well as of

assuming other demand systems, such as a nested logit model. Also, we plan to use econometric

techniques to estimate important parameters of the model, such as those related to the underlying

preferences of the agencies in the Chilean procurement setting, with the objective of sharpening

our design recommendations. Overall, we hope that these extensions and our current results will

help improve how FAs and other related mechanisms work in practice.
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A Proof of Proposition 4.1

Proof of Proposition 4.1. This proof uses the standard arguments from mechanism design theory

introduced in Myerson’s seminal paper [22]. Since the supports of our cost distributions are discrete,

we follow the version of these arguments presented by Vohra [28]. Throughout this proof, we define

mi to be the number of costs in the support of agent i, that is, mi = |Θi|.
We start by re-stating the IC and IR constraints in P1 in terms of the expected allocations and

transfers:

max
x,t

Eθ

[
n∑
i=1

[ki(x(θ))− ti(θ)]

]
s.t. Ti(θi)−Xi(θi)θi ≥ Ti(θ′i)−Xi(θ

′
i)θi ∀i, ∀θi, θ′i ∈ Θi

Ti(θi)−Xi(θi)θi ≥ 0 ∀i, ∀θi ∈ Θi∑
i∈N

xi(θ) = 1 ∀θ ∈ Θ, xi(θ) ≥ 0 ∀i ∈ N, θ ∈ Θ,

Recall that Θi = {θ1
i , ..., θ

mi
i }. If we add a dummy type per agent θmi+1

i such that Xi(θ
mi+1
i ) = 0

and Ti(θ
mi+1
i ) = 0, then we can fold the IR constraints into the IC constraints:

Ti(θ
j
i )−Xi(θ

j
i )θ

j
i ≥ Ti(θ

k
i )−Xi(θ

k
i )θji ∀j ∈ {1, ...,mi}, ∀k ∈ {1, ...,mi+1} .

Applying Theorem 6.2.1 in [28] for our procurement setting we obtain that an allocation x is

implementable in Bayes Nash equilibrium if and only if Xi(·) is monotonically decreasing for all

i = 1, ..., n. 27 Further, by Theorem 6.2.2 in [28], all IC constraints are implied by the following

local IC constraints:{
Ti(θ

j
i )−Xi(θ

j
i )θ

j
i ≥ Ti(θ

j+1
i )−Xi(θ

j+1
i )θji (BNICdi,θ)

Ti(θ
j
i )−Xi(θ

j
i )θ

j
i ≥ Ti(θ

j−1
i )−Xi(θ

j−1
i )θji (BNICui,θ)

27Note that the results cited in Vohra are for IID bidders, but the extension to bidders with different distributions
is straightforward.
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Therefore, we can re-write the problem as:

max
x,t

Eθ

[
n∑
i=1

ki(x(θ))

]
−

n∑
i=1

mi∑
j=1

fi(θ
j
i )Ti(θ

j
i ) (obj)

s.t. Ti(θ
j
i )−Xi(θ

j
i )θ

j
i ≥ Ti(θ

j+1
i )−Xi(θ

j+1
i )θji ∀i ∈ N, ∀j ∈ {1, ...,mi} (BNICdi,j)

Ti(θ
j
i )−Xi(θ

j
i )θ

j
i ≥ Ti(θ

j−1
i )−Xi(θ

j−1
i )θji ∀i ∈ N, ∀j ∈ {2, ...,mi} (BNICui,j)

0 ≤ Xi(θ
mi) ≤ . . . ≤ Xi(θ

1), ∀i ∈ N (M)

n∑
i=1

xi(θ) = 1 ∀θ ∈ Θ, xi(θ) ≥ 0 ∀i ∈ N, θ ∈ Θ.

In addition, using standard arguments, we can show that all downward constraints (BNICdi,j)

bind in the optimal solution.28 Hence,

Ti(θ
j
i )−Xi(θ

j
i )θ

j
i = Ti(θ

j+1
i )−Xi(θ

j+1
i )θji ∀i ∈ N, ∀j ∈ {1, ...,mi}.

Further, it is simple to show that in this case, the upward constraints (BNICui,j) are satisfied.

Applying the previous equation recursively we obtain:

Ti(θ
j
i ) = θjiXi(θ

j
i ) +

mi∑
k=j+1

(θk − θk−1)Xi(θ
k
i ) . (17)

28A formal proof can be obtained by trivially adapting the Lemma 6.2.4 in Vohra to the procurement case.
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Replacing in the objective:

obj = Eθ

[
n∑
i=1

ki(x(θ))

]
−

n∑
i=1

mi∑
j=1

fi(θ
j
i )Ti(θ

j
i )

= Eθ

[
n∑
i=1

ki(x(θ))

]
−

n∑
i=1

mi∑
j=1

fi(θ
j
i )

θjiXi(θ
j
i ) +

mi∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i )


= Eθ

[
n∑
i=1

ki(x(θ))

]
−

n∑
i=1

mi∑
j=1

fi(θ
j
i )
(
θjXi(θ

j
i )
)
−

n∑
i=1

mi∑
j=1

mi−1∑
k=0

fi(θ
j
i )
(
I{k ≥ j}(θk+1

i − θki )Xi(θ
k+1
i )

)
= Eθ

[
n∑
i=1

ki(x(θ))

]
−

n∑
i=1

mi∑
j=1

fi(θ
j
i )
(
θjXi(θ

j
i )
)
−

n∑
i=1

mi∑
k=1

Fi(θ
k−1
i )(θki − θk−1

i )Xi(θ
k
i )

=
∑
θ∈Θ

f(θ)

(
n∑
i=1

ki(x(θ))

)
−

n∑
i=1

mi∑
j=1

fi(θ
j
i )

((
θj +

Fi(θ
j−1
i )

fi(θ
j
i )

(θji − θ
j−1
i )

)
Xi(θ

j
i )

)

=
∑
θ∈Θ

f(θ)

(
n∑
i=1

ki(x(θ))

)
−

n∑
i=1

∑
θi∈Θi

fi(θi)vi(θi)Xi(θi)

=
∑
θ∈Θ

f(θ)

(
n∑
i=1

ki(x(θ))− vi(θi)xi(θ)

)

The equations follow by simple algebra. In particular, the fourth equation follows by changing the

order of summations.

Therefore, if we find an allocation such that for all θ ∈ Θ and i ∈ N ,

x(θ) ∈ argmax

n∑
i=1

(ki(x(θ))− vi(θi)xi(θ))

s.t.

n∑
i=1

xi(θ) = 1, xi(θ) ≥ 0 ∀i ∈ N ;

and such that the interim expected allocations are monotonic for all i ∈ N , that is, Xi(θ) ≥ Xi(θ
′)

for all θ ≤ θ′ ∈ Θi; and that the interim expected transfers satisfy Eqs. (17), for all i ∈ N and

θ ∈ Θi, then we have found an optimal solution.

B Optimal mechanisms for Vertical Demand Model

We now consider a classic model of pure vertical differentiation (see, e.g., [6]). There are n potential

suppliers, supplier i offering a product of quality αi. We assume, w.l.o.g., that α1 < . . . < αn. The

qualities of the products are common-knowledge. There is a continuum of consumers, all wishing

to buy one unit of the good (so the market is covered), uniformly distributed on the consumer-type

space Z = [0, 1]. The type of a consumer indicates her value for quality. In particular, the utility
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a consumer of type j ∈ Z obtains from consuming the product offered by supplier i at price pi is

given by:

uji(pi) = jαi − pi, (18)

Given a set of potential suppliers with fixed unit prices p = {pi}i∈N , the set of active suppliers

with strictly positive demand is given by:

Q(p) =

{
i ∈ N : max

j∈Z
min
k 6=i
{j (αi − αk)− (pi − pk)} > 0

}
.

Namely, a supplier i ∈ N will be active only if there exists a j ∈ Z for which uji(pi) > ujk(pk) for

all k ∈ N with k 6= i.

As in the previous section, for unit prices p and agent i ∈ Q(p), let %p(i) (resp. ϑp(i)) denote

the agent preceding (resp. following) i in Q(p), that is, %p(i) = max {j ∈ Q(p) : j < i} and

ϑp(i) = min {j ∈ Q(p) : j > i}. Also, let ι(Q(p)) (resp. η(Q(p))) denote the rightmost (resp.

leftmost) agent in Q(p). Then, the expected demand for product i is given by:

di(p) =



0 if i /∈ Q(p)

1 if Q(p) = {i}
pϑp(i)−pi
αϑp(i)−αi

if i = η(Q(p))
pϑp(i)−pi
αϑp(i)−αi

− pi−p%p(i)
αi−α%p(i)

if i ∈ Q(p), i 6= η(Q(p)), ι(Q(p))

1− pi−p%p(i)
αi−α%p(i)

if i = ι(Q(p))

(19)

The linear constraints imposed by Eq. (19) that the prices must satisfy so as to have OPT (P0) =

OPT (P1) agree with those of Hotelling demand case. That is, the prices must satisfy:

pϑθ(i)(θ)− pi(θ) = vϑθ(i)(θϑθ(i))− vi(θi) ∀θ ∈ Θ, i ∈ Q(θ), i 6= ι(θ), (20)

together with the constraints Ti(θ
j
i ), ∀i ∈ N, ∀θ

j
i ∈ Θi. With this in mind, it is simple to derive a

result analogous to that of Theorem 5.2.

Theorem B.1. Consider the general setting in which agents have arbitrary qualities and costs

distributions. Let b∗ = min1≤i≤n−1(αi+1 − αi). Suppose that the following two conditions are

simultaneously satisfied:

1. There exists θ ∈ Θ and c∗ ∈ R such that vi+2(θi+2)−vi+1(θi+1)
αi+2−αi+1

> c∗ + vi+1(θi+1)−vi(θi)
αi+1−αi for all

1 ≤ i ≤ n− 2, v2(θ2)−v1(θ1)
α2−α1

> c∗, and, 1− c∗ > vn(θn)−vn−1(θn−1)
αn−αn−1

;

2. |Θi| ≥ 3 for all i ∈ N , and for every i ∈ N and every θj ∈ Θi, we have vi(θ
j+1
i )−vi(θji ) ≤

c∗b∗

4 .
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Then, we have OPT (P0) = OPT (P1).

The intuition behind these two requirements is the same as that of Theorem 5.2. As usual,

let θ = (θ1, . . . , θn). From the definition of vertical demands (Eq. (19)), it is easy to see that, by

condition (1), for n ≥ 2 we must have Q(θ) = N . Hence, the first condition guarantees the existence

of an ‘interior solution’. The second condition imposes a ‘thin enough’ cost discretization.

C Extensions to our model

We now discuss two important extensions to our model. The first one is related to the assumption

that each supplier offers one product. In Section C.1, we provide a reasonable extension to our

model under which suppliers can offer multiple products. We show that our main result extends

accordingly, so we are able to characterize (under additional conditions) the optimal mechanisms

for the multiproduct case.

The second extension is related to the constraint that demand is inelastic. In particular, we

study what happens if we allow the total demand to be elastic in prices instead of requiring it to

be constant. We show that, in general, our main result fails to hold and a gap between the optima

of the original and the relaxed problem exists. However, preliminary computational results show

that the market structures (i.e., which suppliers are in the menu) are usually similar in both the

relax and the original problems.

C.1 Extension to multiple products per agents

We now show how to extend our model to the case where suppliers can offer more than one

product. If each agent is assumed to have a different random variable to represent the cost for

each product, then problem involves solving a multidimensional mechanism design problem. This

problem is recognized to be hard. Therefore, our approach is to assume that suppliers’ costs can

be parametrized by a single type, which can be interpreted as if the auctioneer knows the agents’

cost structures but not their underlying cost parameter. This approach is commonly used in the

literature to overcome the multidimensional mechanism design problem [17].

For i ∈ N , let Pi denote the set of products offered by supplier i. We assume that agent i has

cost cip(θi) for product p ∈ Pi, where θi is agent is type. The utility function of supplier i is given

by

ui = ti −
∑
p∈Pi

cip(θi)xip,

where xip is the amount of product p allocated to i, ti is the payment i receives in the auction, and

θi is his type. Similarly, the interim utility for supplier i when he reports cost θ′i and has true cost
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θi is given by:

Ui(θ
′
i|θi) = Ti(θ

′
i)−

∑
p∈Pi

cip(θi)Xip(θ
′
i).

For each pair (i, p) with i ∈ N and p ∈ Pi, we define the modified virtual cost as:

vip(θi) = cip(θi) +
Fi(ρ(θi))

fi(θi)
(cip(θi)− cip(ρ(θi))) .

As usual, we assume virtual costs to be increasing. Furthermore, we require that the function

hi : R|Pi| × R → R defined as hi(xi, θi) =
∑

p∈Pi cip(θi)xip satisfies the increasing differences

property. Under these assumptions, the optimal solution to the relaxed problem is characterized

by the following proposition.

Proposition C.1. Suppose that (x, t) satisfy the following conditions:

1. The allocation function satisfies for all θ ∈ Θ,

x(θ) ∈ argmax
n∑
i=1

∑
p∈Pi

kip(x(θ))− vip(θi)xip(θ)

s.t.

N∑
i=1

∑
p∈Pi

xip(θ) = 1, xip(θ) ≥ 0 ∀i ∈ N, p ∈ Pi .

2. Interim expected transfers satisfy for all i ∈ N and θji ∈ Θi:

Ti(θ
j
i ) =

∑
p∈Pi

cip(θ
j
i )Xip(θ

j
i ) +

|Θi|∑
k=j+1

∑
p∈Pi

(
cip(θ

k
i )− cip(θk−1

i )
)
Xip(θ

k
i )

Then, (x, t) is an optimal mechanism for the relaxed problem.

Ideally, we would like to use the the characterization of the optimal solution to the relaxed

problem to study the original problem. The optimal demands for the relaxed problem still have

an intuitive form, similar to the single-product case. However, the expected transfers constraints

differ. While demands depend on both the individual product and the cost realization, the expected

transfers only depend on the cost realization. Therefore, for each cost realization, the expected

transfers constraints involve terms for potentially many products. This introduces some additional

complexities in the analysis, and the extension of Theorem C.1 to the multiproduct case is not

straightforward.

Surprisingly, under sufficient conditions, we are able to show that our main result still holds.

That is, there exists prices under which we have OPT (P0) = OPT (P1). This is formalized by the
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following theorem.

Theorem C.1. Consider the general setting in which agents have arbitrary costs distributions and

offer any arbitrary number of products. Then, there exists c∗ ∈ N, d∗ ∈ R+ such that, whenever

the following conditions are simultaneously satisfied,

1. There exists a profile θ ∈ Θ such that pi ∈ Q(θ) for all pi ∈ Pi and all i ∈ N . Furthermore,

there exists a d∗ ∈ R such that, for all θ′ ∈ Θ with |θ − θ′|∞ ≤ d∗ we have Q(θ′) = ∪i∈NPi.

2. |Θi| ≥ c∗ for all i ∈ N , and for every i ∈ N and every θj ∈ Θi, we have maxp∈Pi{vip(θ
j+1
i )−

vip(θ
j
i )} ≤ d∗/3.

we have OPT (P0) = OPT (P1).

The proof of Theorem C.1 can be found in the companion appendix. Although the intuition

is similar to the single-product case, there are some fundamental differences. For example, the set

Q(θ) now denotes the active products rather than the active suppliers. Note that a single supplier

can simultaneously have many different products in the assortment, which will be reflected in the

expected transfer constraints. In addition, as the cost realization of a supplier is simultaneously

valid for all his products, we need to guarantee that the grid is thin enough for all products offered

by the supplier.

C.2 Demand Elasticity

Throughout this work we have assumed that demand is inelastic; regardless the prices, exactly

one unit is consumed across all substitute products. This is a natural constraint to impose when

modeling some specific FAs such as dialysis supply, in which the aggregate demand is inelastic.

In some FAs, however, it is not unreasonable to suppose that the actual quantity purchased will

depend on the prices: for instance, a school seeking to renovate two computer labs might decide

to renovate only one of them if the price of computers is too high. Therefore, one reasonable

extension to our model would be to consider an elastic demand setting by relaxing the constraint

that demands should add up to one.

The problem of auctions with endogenous quantities is not new, it was first introduced by Hansen

[14]. In his paper, even though demand is elastic, the auction has a unique winner (the lowest-price

bidder). Therefore, determining the allocation is easy and only the quantity is endogenous. This

unique-winner assumption is usually common to all the literature in the area. In our problem

instead, both winners (i.e., agents that are in menu) and quantities should be endogenous, which

adds significant difficulties to the analysis.
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To illustrate, consider the general affine demand model introduced in Section 5.3. By using the

same arguments as in Proposition 4.1, we know that the optimal solution to the relaxed problem

must satisfy:

x(θ) = argmax
y≥0

cy − 1

2
yTDy − v(θ)y,

where v(θ) is the vector of virtual costs. Unfortunately, given our market primitives, in the general

case this implies a gap between the optimal solutions of the relaxed and the original problem. As

the consumer surplus function is assumed to be strictly concave, it has a unique optimal solution.

Whenever both agents have positive allocations in the optimal solution to the relaxed problem, the

only way to replicate those demands in original problem is by setting the prices equal to the virtual

costs. However, this choice of prices generally violates the incentive compatibility constraints.

Even though the optimal relaxed solution cannot be mimicked, solving the relaxation still give

us some useful information regarding the original problem. To that end, we consider the problem

of two ex-ante identical agents and two possible types, θL and θH . We calculated the optimal

solution to both problems for different combination of paremeters c, D, θL and θH and different

distributions. In general, we considered own-price elasticities in the range [−7,−0.3]. We discovered

that the optimal solution to the original problem generally imitates the market structure of the

relaxed problem, i.e., the decision on how many suppliers to include in the assortment agrees in

both problems. In addition, the same constraints bind in optimality: the IR constraint for the

high type and the IC constraint for the low type. Whenever the high-type agents is never in the

menu (high elasticity case), the optimal solution of the relaxed problem can be implemented in

the original problem. This is straightforward; as the demand for the high-type is always zero, the

low-type will not have an incentive to misreport if he is offered his own cost as price. However, in

the general case a gap exists. In such cases, the price of the high-type is set at θH at optimality,

and the prices of the low-type are higher than in the relaxed problem. As a result, when compared

to the relaxation, the demand of low-type agents decreases in the original problem and the demand

of the high-type increases. For all combination of parameters, the gap between the relaxed and

original problem was less than 5%.
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D Proof of Lemma 5.1

Proof. We start by stating the KKT conditions for problem (LD(p)):

c−Dx− p+ λ1 + q = 0 (21)

1′x = 1

x ≥ 0

x′q = 0,

where λ is the multiplier associated to the equality constraint and q is the vector of multipliers

associated to the non-negativity constraints. Define v = c−Dx−p+λ1. By the KKT conditions

we must have that vi = ci −Di,∗x− pi + λ = 0, for all i ∈ Q. Therefore,

0 = vQ = cQ −DQxQ − pQ + λ1Q.

As D is positive definite and DQ is a principal submatrix of D we have that (DQ)−1 exists and,

furthermore,

xQ = (DQ)−1
(
cQ − pQ + λ1Q

)
In addition, by the feasibility constraint, we must have 1′QxQ = 1 and hence,

1 = 1′QxQ = 1′Q(DQ)−1
(
cQ − pQ + λ1Q

)
which implies

λ =
1− 1′Q(DQ)−1

(
cQ − pQ

)
1′Q(DQ)−11Q

.

Hence,

xQ = (DQ)−1

(
cQ − pQ +

(
1− 1′Q(DQ)−1

(
cQ − pQ

)
1′Q(DQ)−11Q

)
1Q

)
,

as desired.
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E Proof of Main Theorems

In this section we prove our main theorems. In particular, we prove a more general theorem

(Theorem E.1), which generalized the statements of Theorem 5.2, Theorem B.1, and Theorem C.1.

Throughout this section, we use several basic definitions and concepts from linear algebra. We refer

the reader to [? ].

E.1 The coefficient matrix

Abusing notation, let M and m be the coefficient matrix and the corresponding RHS respectively

defined by linear equations in (Mi(θ)) and (Ti(θ
j
i )), where each column is associated with a price

pi(θ). We can safely discard the columns corresponding to prices pi(θ) such that i /∈ Q(θ), as all

the coefficients of such columns are zero. The resulting matrix M will have
∑

θ∈Θ |Q(θ)| columns

as we have one price variable per active supplier and per profile of costs. In addition, for each θ ∈ Θ,

there will be |Q(θ)|−1 rows given by the constraints in Eqs. (Mi(θ)) and
∑

i∈N
∑

θi∈Θi
I[∃ θ−i : i ∈

Q(θi,θ−i)] ≤ |Θ| rows given by the constraints in Eqs. (Ti(θ
j
i )). The preceding observations are

summarized by the following remark:

Remark E.1 (Dimension of the coefficient matrix). The coefficient matrix M has
∑

θ∈Θ |Q(θ)|
columns and

∑
θ∈Θ |Q(θ)| −Θ +

∑
i∈N

∑
θi∈Θi

I[∃ θ−i : i ∈ Q(θi,θ−i)] rows. Further, the number

of columns is greater or equal than the number of rows.

By the Rouché-Frobenius theorem, a system of linear equations Mp = m is consistent (has a

solution) if and only if the rank of its coefficient matrix M is equal to the rank of its augmented

matrix [M |m]. To show whether the system of equations has a solution, we use an equivalent

definition of consistency.

Lemma E.1 (Consistency of a system of linear equations). Consider the system of linear equations

Mp = m. Let M i,∗ denote the ith row of M . Then, the system is consistent (has a solution) if

and only if for every vector y such that
∑

i yiM i,∗ = 0, we have
∑

i yimi = 0.

For each row M i(θ), let aiθ denote the associated coefficient. Similarly, we denote by bi
θji

the

coefficient associated to row Ti(θ
j
i ). Let (a, b) be the vector of coefficients we just described. Then,

for a system to be consistent we must have that for every vector (a, b) such that:

∑
θ∈Θ

∑
i∈Q(θ)
i 6=ι(Q(θ))

aiθM i(θ) +
∑
i∈N

∑
θji∈Θi

bi
θji
Ti(θ

j
i ) = 0 (22)
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the linear combination of the right hand side also equals zero, that is,

∑
θ∈Θ

∑
i∈Q(θ)
i 6=ι(Q(θ))

aiθ

 ∑
j∈Q(θ)

A(θ)ij(θ)vj(θj)

+
∑
i∈N

∑
θji∈Θi

bi
θji

θjiXi(θ
j
i ) +

|Θi|∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i )

 = 0.

(23)

To conclude, we note that, whenever the rows of M are linearly independent, the only vector

of coefficients satisfying Eq. (22) is (a, b) = 0 and therefore the system is trivially consistent.

For a given θ ∈ Θ, we denote byA(θ) the submatrix ofM that contains the demand constraints

for θ, that is, A(θ) = (Mi(θ))i∈Q(θ)\ι(θ). Recall from Section 5, that the demand constraints for

both the Hotelling model and Vertical model can be expressed as:

pϑθ(i)(θ)− pi(θ) = vϑθ(i)(θϑθ(i))− vi(θi) ∀θ ∈ Θ, i ∈ Q(θ), i 6= ι(θ). (24)

Therefore, we have that the ith row of A(θ) will consist of all zeros except for a 1 in column ϑθ(i)

and a −1 in column i for i = η(Q(p)) for all i ∈ Q(θ), i 6= ι(θ).29 The following claim characterizes

the matrix A(θ) for the general affine demand models defined in Section 5.3.

Claim E.1. Let F = F (θ) = (DQ(θ))
−1. Then, for every j ∈ Q(θ) and every i such that

1 ≤ i ≤ Q(θ), the coefficient for pj(θ) in equation i is given by:

A(θ)ij = −F ij +
(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)1Q(θ)
. (25)

The proof of the Claim is omitted, as it follows straightforward from the characterization of demand

given in Lemma 5.1.

E.2 Definitions and notation

We now state some definitions that we will use to prove the main theorem. Recall that θi and

θi denote the lowest and highest values in Θi. For each j ∈ N , let θuj = max{θj ∈ Θj : θj ∈
Q(θj ,θ−j)}, that is, θuj is the maximum θj under which there exists a profile θ = (θj ,θ−j) such

that j ∈ Q(θ). We may assume that θj ≤ θuj for all agents j ∈ N , as otherwise we can consider

(w.l.o.g.) the reduced problem in which all agents for which the condition is violated are removed.

Two profiles θ,θ′ ∈ Θ are defined to be adjacent if and only if θ and θ′ only differ in one

component and Q(θ) = Q(θ′). To illustrate, consider Example 5.1. There, profiles (2.5, 2.3) and

29Alternatively, one could think of a matrix A(θ) in which the ith row has a 1 in column ϑθ(i) and a −1 in column i
for i = η(Q(p)), and a 1 in column ϑθ(i) and a −2 in column i and a 1 in column %θ(i), for all other i ∈ Q(θ), i 6= ι(θ).
Note that both matrices will define the same solutions.
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(2.5, 2) are adjacent, but profiles (2.5, 2) and (2.5, 1) are not. We define two profiles θ,θ′ ∈ Θ to

be connected if there exists a sequence of adjacent profiles such that one can go from θ to θ′.

Definition E.1 (Acceptable set). We say a subset of profiles Θ̃ ⊆ Θ is an acceptable set if the

following conditions are simultaneously satisfied:

1. Q(θ) = N for every θ ∈ Θ̃.

2. For each agent i, let Θ̃i = {θi ∈ Θi : ∃θi−1 such that (θi, θ−i) ∈ Θ̃}. Then, for every θi ∈ Θi

such that min Θ̃i ≤ θi ≤ max Θ̃i we must have θi ∈ Θ̃i. That is, each Θ̃i must be an interval.

3. For every profile θ such that θi ∈ Θ̃i for all i ∈ N , we must have θ ∈ Θ̃. That is, any two

profiles in Θ̃ can be connected through profiles in Θ̃ and Θ̃ must be maximal.

To illustrate, in Example 5.1 the set Θ̃ = {(1, 1), (2.5, 2)} satisfies the first two conditions but

violates the third one as the profiles are not connected. The above definition of acceptable set

will help us characterize sufficient conditions under which the optima of the relaxed and original

mechanisms agree. In particular, let a market be defined by the set of suppliers, their product

characteristics and cost distributions, as well as the demand model. We define a relaxation-is-

optimal market(RIOM) as follows.

Definition E.2 (RIOM). We say a market is RIOM if there exists an acceptable set Θ̃ under which

the following (additional) conditions are satisfied:

(4) For every i ∈ N we have |Θ̃i| ≥ 3.

(5) Let θ ∈ Θ be a profile such that θi ≥ max Θ̃i. Then, there exists a profile θ′ ∈ Θ̃ such that

the profiles θ,θ′ are connected.

Intuitively, the above conditions can be satisfied when we require the difference in virtual

costs between adjacent points in the support to be small enough. To illustrate, we show that the

conditions of Theorem 5.2 imply that the market is RIOM. First, by condition (2) in the statement

of the theorem, a profile θ in which Q(θ) = N must exist. Furthermore, |vi+1(θi) − vi(θi)| ≤
δ(`i+1− `i)/2 for all i ∈ N . As vi(θ

j+1
i )− vi(θji ) ≤

δc∗

4 for all i ∈ N , and θji ∈ Θi, it follows that by

letting θki denote θi we have Q(θk+2
i ,θ−i) = Q(θk−2

i ,θ−i) = N , provided these exist. As |Θi| ≥ 3

for all i ∈ N , we must have than an acceptable Θ̃ exists and |Θ̃i| ≥ 3. Finally, the connectivity

requirement follows from the fact that vi(θ
j+1
i )− vi(θji ) ≤

δc∗

4 for all i ∈ N , and θji ∈ Θi. Using the

same arguments, it can be see that the conditions of Theorem B.1 imply the market is RIOM.
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E.3 Auxiliary Lemmas and Properties

We first state the following remark.

Remark E.2. Suppose that vector of coefficients (a, b) is such that the equality given by Eq. (22))

holds. If there exists θ−i such that Q(θi,θ−i) = {i}, then biθi (the coefficient associated with row

Ti(θi)) must be zero.

Note that the column corresponding to pi(θi,θ−i) will have exactly one non-zero element located

in row Ti(θi). Therefore, equality (22) will not hold unless the coefficient biθi is zero. Next, we state

and prove the following proposition.

Proposition E.1. Suppose the coefficients (a, b) are such that equality in Eq. (22) holds. For each

i ∈ N and each θi ∈ Θi, let gi(θi) be defined as gi(θi) =
biθi
fi(θi)

. Then for each θ ∈ Θ, we must have

∑
i∈Q(θ)

gi(θj)xi(θ) = 0 (26)

Proof. Fix θ ∈ Θ. We first show the result for the general affine demand model as described in

Section 5.3. Recall that the coefficients of the matrix corresponding to the demand equations (that

is, Eqs. (Mi(θ)) ) are as defined by Eq. (25). As the equality in Eq. (22) holds, for each j ∈ Q(θ)

we must have:

bjθjf(θ−j)xj(θ) +

Q(θ)−1∑
i=1

aiθ

(
−Fij + (1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

)
= 0.

Therefore

∑
j∈Q(θ)

bjθjf(θ−j)xj(θ) = −
∑

j∈Q(θ)

Q(θ)−1∑
i=1

aiθ

(
−F ij +

(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)1Q(θ)

)

= −
Q(θ)−1∑
i=1

aiθ

 ∑
j∈Q(θ)

(
−F ij +

(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)1Q(θ)

)
= −

Q(θ)−1∑
i=1

aiθ

−F i,∗ · 1Q(θ) + F i,∗ · 1Q(θ)

 ∑
j∈Q(θ)

(1′Q(θ) · F ∗,j)
1′Q(θ)F1Q(θ)1Q(θ)


= −

Q(θ)−1∑
i=1

aiθ
(
−F i,∗ · 1Q(θ) + F i,∗ · 1Q(θ)

)
= 0

To complete the proof, note that
∑

j∈Q(θ) b
j
θj
f(θ−j)xj(θ) = f(θ)

(∑
j∈Q(θ) gj(θj)xj(θ)

)
= 0.
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Hence,
∑

j∈Q(θ) gj(θj)xj(θ) = 0 as desired.

Next, we establish the result for the Hotelling and vertical models. In particular, we show that

whenever the coefficients (a, b) are such that equality (22) holds, then for each θ ∈ Θ, we must

have:

aiθ =
∑

{j∈Q(θ): j≤i}

bjθjf(θ−j)xj(θ) ∀ i ∈ Q(θ), i 6= ι(θ),

and, ∑
j∈Q(θ)

bjθjf(θ−j)xj(θ) = 0

which implies the result.

Fix θ ∈ Θ. We show that aiθ =
∑
{j∈Q(θ): j≤i} b

j
θj
f(θ−j)xj(θ) by induction in the agents’

number. Consider the coefficients (a, b) involving i = η(Q(θ)), i.e., i is the leftmost vertex agent

in Q(θ). If Q(θ) = {i} is the leftmost active vertex, then biθi = 0, there is no such coefficient aiθ

and the result vacuously holds. Otherwise, we have that aiθ = biθif(θ−i)xi(θ), which establishes the

basis for the induction.

Suppose that the claim holds for every coefficient associated to the columns pj(θ) with j ∈
Q(θ) and j < i. We show that it holds for the coefficients associated with pi(θ) with i ∈
Q(θ). Consider the column associated to pi(θ). If i 6= ι(Q(θ)), then we need a

%θ(i)
θ − aiθ +

biθif(θ−i)xi(θ) = 0. By inductive hypothesis, a
%θ(i)
θ =

∑
{j∈Q(θ): j≤%θ(i)} b

j
θj
f(θ−j)xj(θ), and there-

fore aiθ =
∑
{j∈Q(θ): j≤i} b

j
θj
f(θ−j)xj(θ) as desired. Finally, if i = ι(θ), then a%θ(i)+biθif(θ−i)xi(θ) =

0 together with the inductive hypothesis imply
∑

j∈Q(θ) b
j
θj
f(θ−j)xj(θ) = 0 as desired. To con-

clude, we note that the same result can be similarly obtained for the alternative definition of A for

the hotelling and vertical cases.

Let A = A(θ) for any θ ∈ Θ such that Q(θ) = N be as defined by Claim E.1. We are now

going to prove two useful properties of A.

Remark E.3. A is symmetric.

Note that, whenever Q(θ) = N , we have F = D−1 where F is as defined in Claim E.1. By

assumption, D−1 is symmetric and positive definite. Therefore, A is also symmetric by definition.

The second property is related to the rank of A. Note that we want to find prices p such that

x(p) = x(v(θ)), where v(θ) = (v1(θ), . . . , vn(θ)) is defined as the vector of virtual costs. That is,

we must have Ap = Av(θ). We now show that the dimension of prices satisfying that is exactly

one. In particular, we show that A has rank n− 1.

Claim E.2. A has rank n− 1.
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Proof. Let I denote the identity matrix of size n. Note that A = D1
(
−I + 1 1D−1

1D−11

)
. Therefore,

rank(A) ≥ rank(D1) + rank

(
−I + 1

1D−1

1D−11

)
− n = rank

(
−I + 1

1D−1

1D−11

)
,

as D−1 has full rank. In addition, we have30

rank

(
−I + 1

1D−1

1D−11

)
≥
∣∣∣n− rank(1

1D−1

1D−11

) ∣∣∣ ≥ n− 1,

as the matrix 1 1D−1

1D−11
has rank exactly one. The converse follows just from the definition of A, as

we know that one row must be redundant as all demands must some up to one.

We conclude this section by noting that Claim E.2 trivially holds for the hotelling and vertical

cases. Also, note that Remark E.3 does not hold for the original definition of A(θ) for the hotelling

and vertical models, but it does hold for the alternative definition. We highlight that this will not

affect the proof: essentially, we require that for every i, j ∈ N , the coefficient of pj in the demand

equation of i must be equation to the coefficient of pi in the demand equation for j.

E.4 Main Theorem

We can now state and prove our main theorem. To avoid excessive notation, we assume that

we are working with the general affine demand model as defined in Section 5.3 but all steps and

calculations are also valid for the hotelling and vertical models, when the alternative definition of

the matrix is assumed. For completeness, we clarify using a footnote when the validity of a step is

not immediate.

Theorem E.1. Consider the general setting in which agents have arbitrary costs distributions. If

the market is RIOM, then OPT (P0) = OPT (P1).

Proof. To show OPT (P0) = OPT (P1), we show that the system of equations is consistent. Let

(a, b) be a vector of coefficients satisfying Eq. (22). Let gi(θi) be as defined in the statement of

Proposition E.1. As the market is RIOM, we know that there exists a subset of profiles Θ̃ ⊆ Θ that

satisfies conditions (1)-(5). The idea of the proof is as follows. First, we show that if the market is

RIOM all gi(θi) must be zero. To do so, we start by proving that gi(θi) = 0 for all θi ∈ Θ̃i, where

Θ̃i is as defined by condition (2). Then, we show that this implies gi(θi) = 0 for all θi ∈ Θi. We

conclude the proof by showing that the fact that gi(θi) = 0 for all θi ∈ Θi implies that the system

is consistent.

30Matrix property: rank(A−B) ≥ |rank(A)− rank(B)|
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We now show that gi(θi) = 0 for all θi ∈ Θ̃i. By assumption, Θ̃ satisfies conditions (1)-

(5). Therefore, for every θ ∈ Θ̃ for all i ∈ N we must have Q(θ) = N . Consider two profiles

θ = (θi,θ−i) and θ′ = (θ′i,θ−i) which only differ in agent i’s cost and such that θ,θ′ ∈ Θ̃.

By the definition of Θ̃, such pair of profiles exists (condition (4)). By Eq. (26), we must have

gi(θi)xi(θ) +
∑

j 6=i gj(θj)xj(θ) = 0 and gi(θ
′
i)xi(θ

′) +
∑

j 6=i gj(θj)xj(θ
′) = 0. Hence, by subtracting

the second equality from the first one we obtain

gi(θi)xi(θ)− gi(θ′1)xi(θ
′) =

∑
j 6=i

gj(θj)
[
xj(θ

′)− xj(θ)
]
.

For each j ∈ N , we must have xj(θ
′) − xj(θ) = A(θ)j,i (vi(θ

′
i)− vi(θi)), where we used the fact

that A(θ) = A(θ′) by definition (see Claim E.1). Let A = A(θ), and note that this A agrees with

the one in Remark E.3 and Claim E.2. Hence, we can re-write the above equality as:

gi(θi)xi(θ)− g1(θ′i)xi(θ
′) =

(
vi(θ

′
i)− vi(θi)

)∑
j 6=i

gj(θj)Aj,i

 ,

and therefore,

gi(θi)xi(θ)− gi(θ′i)xi(θ′)vi(θ′i)− vi(θi) =

∑
j 6=i

gj(θj)Aj,i

 . (27)

Fix an arbitrary j ∈ N with j 6= i and Aij 6= 0.31 Assume that j has cost θj in both θ and θ′

as defined above. Let θ′j ∈ Θj be such that θ′j 6= θj and θ′j ∈ Θ̃j . Define θ̃ = (θi, θ
′
j ,θ−i,j) and

θ̃
′
= (θ′i, θ

′
j ,θ−i,j). The only thing we assumed about θj was θj ∈ Θ̃j . Therefore, the above equality

must also hold for any Θ̃j . That is,

g1(θi)x1(θ̃)− g1(θ′i)x1(θ̃′)

vi(θ′i)− vi(θi)
= gj(θ

′
j) +

∑
k 6=i,j

gk(θk)Ak,i.

By subtracting the inequality when j has cost θj from the one when his cost is θ′j we get

gi(θ1)
(
xi(θ̃)− xi(θ)

)
− gi(θ′1)

(
xi(θ̃

′)− xi(θ′)
)

vi(θ′i)− vi(θi)
= Aj,i

(
gj(θ

′
j)− gj(θj)

)
.

31In the hotelling and vertical models, this implies that j = i− 1 or j = i+ 1.
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However, note that xi(θ̃)− xi(θ) = Ai,j

(
vj(θ

′
j)− vj(θj)

)
. Therefore,

Ai,j
gi(θi)− gi(θ′i)
vi(θ′i)− vi(θi)

= Aj,i

gj(θ
′
j)− gj(θj)

vj(θ′j)− vj(θj)
.

Recall that A is symmetric (Remark E.3).32 Therefore, whenever Ai,j 6= 0 we must have:

gi(θi)− gi(θ′i)
vi(θ′i)− vi(θi)

=
gj(θ

′
j)− gj(θj)

vj(θ′j)− vj(θj)
, ∀θi ∈ Θ̃i, ∀θj ∈ Θ̃j .

Furthermore, the above equality should hold for every i, j ∈ N as we can find a sequence of agents

{l0 = i, . . . , lK = j} such that Alk,lk+1
6= 0 for all 0 ≤ k < K.33

We now show that gi(θi) = 0 for all θi ∈ Θ̃i. Suppose the numerator is zero for at least one

pair of gi(θi), gi(θ
′
i). Then, gj(θj) − gj(θ′j) must be zero for every j ∈ N and all pairs θj , θ

′
j ∈ Θ̃j .

We now show that gi(θi) = gj(θj) must hold for every θi ∈ Θ̃i and θj ∈ Θ̃j and i, j ∈ N . This is

trivial if i = j, as gi(θi)− gi(θ′i) must be zero for every i ∈ N and all pairs θi, θ
′
i ∈ Θ̃i. Otherwise,

note that when gi(θi) = gi(θ
′
i), we have gi(θi)xi(θ) − gi(θ′i)xi(θ

′) = gi(θi)Ai,i (vi(θi)− vi(θ′i)). By

Eq. (27) the above equality reduces to

∑
j∈N

gj(θj)Ai,j = 0, (28)

and this must be true for any i ∈ N . LetAR denote the submatrix ofA consisting of (n−1) linearly

independent rows. By Claim E.2, we know such matrix exists. Furthermore, we can assume that

those are the n−1 demand equations that appear in the matrix coefficient M . Let g = (g1, . . . , gn)

denote the vector of coefficients gi = gi(θi) for θ ∈ Θ. By Eq. (28), the vector g must be in the

nullspace of AR. However, as AR ∈ R(n−1)×n has dimension (n− 1) the dimension of its nullspace

is at most 1. We will show that 1 is in Null(Ã), which implies that all gi with i ∈ N must be equal.

Consider Ãi,∗, that is, row i of the coefficient matrix Ã. We will show that Ãi,∗ · 1 = 0. Note

that

Ãi,∗ · 1 =
∑
j

(
−Aij +

(1′Q(θ) ·A∗,j)(Ai,∗ · 1Q(θ))

1′Q(θ)A1Q(θ)1Q(θ)

)
= −Ai,∗ · 1 +Ai,∗ · 1 = 0,

as desired. Therefore, 1 is in Null(Ã) and gi(θi) = gj(θj) for all i, j ∈ N , θi ∈ Θ̃i, θj ∈ Θ̃j .

Using that gi(θi) = gj(θj) for all θi ∈ Θ̃i and θj ∈ Θ̃j , we now show that gi(θi) = 0 for all i ∈ N
and all θi ∈ Θi which implies biθi = 0 for all θi ∈ Θ̃i. If gi(θi) = 0, for some i ∈ N and θi ∈ Θi, we

32Note that this also holds for the alternative definition in the hotelling and vertical cases.
33Here we are implicitly assuming that matrix A has only one block. If A has more than one block, then we can

use the same argument for each block.
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are done. Otherwise, suppose that gi(θi) = k 6= 0 for all i ∈ N and all θi ∈ Θi. By Proposition E.1

we have:

0 =
∑

j∈Q(θ)

gj(θj)xj(θ) = k

 ∑
j∈Q(θ)

xj(θ)

 = k,

which is a contradiction.

Now suppose that there exists a pair gi(θi), gi(θ
′
i) such that

gi(θi)−gi(θ′i)
vi(θ′i)−vi(θi)

= k 6= 0, and rewrite

gi(θi) = gi(θ
′
i) + k[vi(θ

′
i)− vi(θi)]. Let θi, θ

′
i, θ
′′
i ∈ Θ̃i and let θ−i ∈ Θ̃−i. Then, we must have

(
vi(θ

′
i)− vi(θi)

)∑
j 6=i
Ajigj(θj) = gi(θi)xi(θ)− gi(θ′i)xi(θ′)

=
(
gi(θ

′
i) + k[vi(θ

′
i)− vi(θi)]

)
xi(θ)− gi(θ′i)xi(θ′)

= gi(θ
′
i)
(
xi(θ)− xi(θ′)

)
+ k[vi(θ

′
1)− vi(θi)]xi(θ)

= gi(θ
′
i)Aii

(
vi(θi)− vi(θ′i)

)
+ k[vi(θ

′
i)− vi(θi)]xi(θ)

By dividing on both sides by vi(θ
′
i)− vi(θ) we obtain:

∑
j 6=i
Ajigj(θj) = −gi(θ′i)Aii + kxi(θ)

In addition, since θ′′i ∈ Θ̃i, we have
gi(θ

′′
i )−gi(θ′i)

vi(θ′i)−vi(θ′′i )
= k and thus:

∑
j 6=i
Ajigj(θj) = −gi(θ′i)Aii + kxi(θ

′′)

which is a contradiction as the virtual costs are strictly increasing and therefore xi(θ) 6= xi(θ
′′).

Next, we show that gj(θj) = 0 for the remaining cases, that if, whenever θj < min Θ̃i or

θj > max Θ̃j . For θj < min Θ̃j consider a profile θ = (θj ,θ−j) such that θi ∈ Θ̃i for all i 6= j. By

the definition of Θ̃j , we must have have xj(θ) > 0. By Proposition ?? we have

0 =
∑
i∈Q(θ)

gi(θi)xi(θ) = gj(θj)xj(θ).

and therefore gj(θj) = 0 for all θj < min Θ̃j and all j ∈ N . For θj > max Θ̃j , let θ = (θj ,θ−j) be

a profile such that j ∈ Q(θ). We may assume that θ is such that θi ≥ min Θi for all i ∈ N , as

otherwise we can increase the θi < min Θi to satisfy this condition and j will still be active. By

the definition of Θ̃, θ = (θj ,θ−j) must be connected to a profile θ′ ∈ Θ̃. That means, that there
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exists a sequence of adjacent profiles {θ0 = θ′, . . . ,θK = θ}. Given that θ′ ∈ Θ̃, we must have that

gi(θ
′
i) = 0 for all i ∈ N . Let k be the component in which θ0 and θ1 differ. By Proposition E.1

we have
∑

i∈N gi((θ1)i)xi(θ1) = 0. As θ′ and θ1 only differ in the kth component, we must have

gk((θ1)k) = 0. We can inductively repeat this argument to show that all the g’s corresponding to

a profile in the path between θ′ and θ must be zero, which implies gj(θj) = 0. Therefore, we have

gj(θj) = 0 for all i ∈ N and all θi ∈ Θi which implies biθi = 0 for all i ∈ N and all θi ∈ Θi.

To conclude the proof, we show that biθi = 0 for all i ∈ N and all θi ∈ Θi implies that the

system is consistent. To that end, consider a vector (a,0) satisfying Eq. (22). For each θ ∈ Θ̃, we

have
|Q(θ)|−1∑
i=1

aiθ

 ∑
j∈Q(θ)

A(θ)i,jvj(θj)

 =
∑

j∈Q(θ)

vj(θj)

|Q(θ)|−1∑
i=1

aiθA(θ)i,j

 = 0,

as (a,0) satisfying Eq. (22) implies
∑|Q(θ)|−1

i=1 aiθA(θ)i,j = 0. Hence, we have shown that (a,0) also

satisfies Eq. (23). Therefore, the system is consistent and OPT (P1) = OPT (P0) as desired.
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