Review

Secondary neutrons in clinical proton radiotherapy: A charged issue

David J. Brenner*, Eric J. Hall
Center for Radiological Research, Columbia University Medical Center, NY, USA

Abstract

Hospital-based proton facilities may represent a major advance in radiation therapy, in part because of excellent dose distributions around the tumor, and in part because of the potentially lower whole-body dose compared with photon radiotherapy. Most current proton beams are spread out to cover the tumor using beam scattering and collimation techniques (passive scattering); this will necessarily result in an extra whole-body neutron dose, due to interactions of the protons with the scattering and collimating beam elements. However, the clinical significance of this whole-body low-dose neutron exposure has remained controversial. The number of proton facilities worldwide is increasing rapidly, and most of these facilities are/will be based on passive scattering. Thus it is important to assess and, ideally, minimize, the potential for second cancer induction by secondary neutrons. We discuss here the neutron doses involved, and the associated potential second cancer risks, with an emphasis on the uncertainties involved.

The development of hospital-based proton facilities represents a major step forward in radiotherapy, in part because of excellent dose distributions around the tumor [1], and in part because of the potentially lower whole-body dose compared with photon radiotherapy [2]. In the context of the whole-body dose, however, the issue of secondary neutrons produced by the scattering components of passively scattered radiotherapeutic proton beams has recently attracted much research and considerable discussion [3–20]. Whilst there has been a justifiable focus on establishing the neutron doses involved [7–20], there is still no agreement about whether these scattered neutrons really represent a clinically relevant issue.

To briefly summarize the issue: for most practical proton radiotherapy, it is necessary to spread out the narrow pencil beam produced by a proton accelerator, in order to provide uniform coverage over the target. This can be done, as in most current proton radiotherapy facilities, by inserting scattering material into the beam (passive scattering [9,21]), or by using deflecting magnets to sweep the beam across the tumor (active scanning [22,23]). Because passive scattering necessarily introduces a number of material components into the beamline, proton interactions with these components result in the production of high-energy secondary neutrons not present in actively scanned proton beams. In clinical proton beams, the largest source of these neutrons is generally the final collimator, located close to the patient; this collimator is fabricated out of brass with a patient-specific aperture shaped to match the target. The proton beam is always larger than this aperture, to a lesser or greater extent, so protons will bombard the brass collimator and produce secondary neutrons.

The number of proton facilities worldwide is increasing rapidly [24], and most of these facilities are/will be based on passive scattering. In this light, and in light of the significant carcinogenicity of low-dose neutron exposures [25], it is important to assess and, ideally, minimize, the potential for second cancer induction by these secondary neutrons.

Measurements and calculations of neutron doses in clinical proton beams

Measured neutron doses from clinical proton facilities vary greatly [8,11,14–19], partly as a result of different measurement techniques, and partly as a result of different beam geometries. It is notoriously hard to measure high-energy neutron doses in a mixed radiation field, and it is still harder to make neutron measurements in realistic anthropomorphic phantom — which is what is needed to estimate organ doses and thus risks. A practical alternative for neutron dose estimation is to use a Monte-Carlo approach in which the entire treatment setup, as well as an anthropomorphic phantom, is simulated. This general approach has been well validated [26], and has been used by Paganetti...
and colleagues [10], and others [7], to calculate out-of-field organ-specific neutron doses in clinical proton beams. The same approach has also been used to quantitate out-of-field neutron doses in high-energy photon fields [27] and in boron neutron capture therapy [28].

In particular, Paganetti and colleagues [10] used the Geant-4 radiation transport toolkit [26] to simulate the relevant parts of the proton beam line at the Northeast Proton Therapy Center (NPTC) at Mass General Hospital [29], together with a realistic voxel based whole-body patient model (VIP Man [30]). Table 1 shows calculated neutron-induced organ doses, derived from Ref. [10], for a three-field proton therapy plan at the NPTC, for a lung tumor with a planned GTV dose of 72 Gy. The neutron doses are divided into the internal and external neutron doses, resulting from proton interactions in the body (which is essentially irreducible), and the external neutron dose, resulting from proton interactions with the elements of the NPTC passive focusing system (which is largely avoidable by using an active proton scanning system [15]).

The neutron doses in Table 1 are sufficiently small that they will not cause classic early or late radiation sequelae. However, low neutron doses have been well established to have a high potential for carcinogenesis [25]; so, particularly as one of the putative advantages of protons relates to a potential reduction in second cancer risks, it is important to quantitate the neutron-related second cancer risk.

**Second cancer risk estimation from secondary neutrons**

**High-energy neutron RBEs at low doses**

To estimate a cancer risk from these neutrons, an RBE (relative biological effect) factor must be applied to standard low-LET cancer risk estimates. In general this RBE is dose dependent, but at low doses the RBE tends to a constant value, usually called the maximal RBE (RBE\(_m\) [25]). In general neutron RBEs for relevant endpoints (carcinogenesis or life shortening) are uncertain because there is limited human experience to draw upon, and also because there is a comparatively small relevant database in animals or using in-vitro models of carcinogenesis. The most pertinent quantitative data for low-dose neutron carcinogenesis are summarized in Fig. 1 for humans, and in Table 2 for mice. Based on the human experience (see Fig. 1), using what are now considered to be realistic neutron dose estimates to A-bomb survivors [31,32], two independent groups have estimated the most likely RBE\(_m\) for neutron-induced carcinogenesis in humans, respectively, as 100 [95% CI: 25–400] for solid-cancer mortality [33], and as 63 [95% CI: 0–275] for overall cancer incidence [34]. The results of the most comprehensive quantitative neutron carcinogenesis studies in animals [25,35–37] are summarized in Table 2. As might be expected, there is considerable variation in different tissues, but a crude average of the results gives an RBE\(_m\) estimate of 30 ± 17.

A second major issue in estimating a neutron RBE in the proton radiotherapy context is the neutron energy dependence. Specifically, essentially all the available human and animal data for neutron carcinogenesis come from fission neutrons, where almost all of the dose is delivered by neutrons of energies <10 MeV. By contrast, neutrons produced in a proton-therapy context are themselves of high energy, with less than 3% of the neutron dose resulting from interac-

![Fig. 1. The curves represent the quality of fit of standard risk models to cancer incidence and mortality data in A-bomb survivors, who were exposed to a mixed photon/neutron field [31,32], as a function of assumed values of the neutron RBE\(_m\). The zero values represent the neutron RBEs which give the best fit to the A-bomb data, and the neutron RBEs where the curves intersect the dotted line represent the 95% confidence limits surrounding the best fit. Thus, for solid tumor mortality (dashed curve), the best fit to the A-bomb data involves an estimated RBE\(_m\) of 100 [95% CI: 25–400] [33], and for cancer incidence (solid curve), the best fit to the A-bomb data involves an estimated RBE\(_m\) of 63 [95% CI: 0–275] [34].](image-url)
tions by neutrons with energy less than 10 MeV and more than about 2/3 of the dose comes from neutrons with energies over 100 MeV ([20], and see Fig. 2). Thus a technique is needed to extrapolate the energy dependence of the measured neutron RBE to much higher neutron energies. In the absence of relevant high-energy neutron carcinogenesis data, this has typically been done [25, 38–41] using radiation weighting factors based on extensive measurements of dicentric chromosome aberration induction in human lymphocytes, as a function of neutron energy [42, 43]. However, the available chromosome aberration data used in those analyses extended to a maximum neutron energy of 14 MeV which, as we have seen, is much lower than the neutron energy range of interest here.

In fact, since the most recent of the chromosome-aberration based neutron-energy analyses was completed by the ICRP in 1990 ([39], more recent ICRP reanalyses [40] have focused only on lower energies), an RBE measurement for dicentric chromosome aberrations in human lymphocytes has been reported from CERN in Geneva [44], for a high-energy neutron spectrum [45] which is qualitatively similar to those of interest here [20]. The neutron spectrum used in that CERN study is compared in Fig. 2 to the calculated neutron spectrum downstream of a passive scanning proton nozzle, at the MD Anderson proton facility [20]. The measured [44] RBE for this CERN neutron spectrum (based on a fractionated neutron dose of 2.5 mGy) was 96 (CI: 67–148). By contrast, the predicted RBE for this CERN neutron spectrum, based on the ICRP/NCRP extrapolations to high neutron doses, is 8.

While the CERN experiment is suggestive of a high RBE for high-energy neutrons, it is important to stress that it represents only a single report. It should also be emphasized that the endpoint of dicentric chromosome aberrations in peripheral blood lymphocytes, used there and in all the ICRP/ICRU/NCRP extrapolations of neutron RBE to high doses, may well be a poor surrogate for radiation-induced cancer; while exchange-type chromosome aberrations are linked to leukemias, they are comparatively rarely associated with solid cancers [46].

In principle, we should also consider the effects of fractionation on the RBE, and a formalism for doing this is available [47–49]. However, at low doses, the effect of fractionation on RBE is expected to be small [49].

We can conclude that there are major uncertainties associated with the low-dose RBE of the very high-energy neutrons associated with proton radiotherapy, the limited available evidence suggesting that the NCRP/ICRP high-energy neutron radiation weighting factors may underestimate these high-energy neutron RBEs. Based on these considerations, a conservative estimate of the RBE for neutron carcinogenesis would be 25. It is certainly possible that an RBE value of 25 is an overestimate, but the weight of evidence, but based on the human and animal data for fission neutrons, and the chromosome aberration data for a neutron spectrum similar to the ones of interest here, an RBE estimate of 25 for neutron carcinogenesis is probably a conservative estimate. Hereafter, we shall use this value of 25, but it is important to bear in mind that it is associated with uncertainty of about a factor of 4 in each direction.

### Estimated second cancer risks from secondary neutrons in proton radiotherapy

Table 3 shows the estimated neutron equivalent doses to relevant organs, based on the neutron dose estimates in Table 1 and an RBE estimate of 25. These organ-specific equivalent doses can then be utilized to calculate lifetime cancer risks, using standard techniques such as those described in the US National Academy of Sciences BEIR-VII report [50] and other radiation risk estimation reports. Specifically, age-, gender- and organ-specific cancer risks from A-bomb survivors are transferred to lifetime cancer risks in a Western population using techniques described, for example, by Land et al. [51]. Shown in Table 3 are estimated organ-specific and summed lifetime second cancer risks induced by external neutrons for a 15 year old male and female, assuming that the patient is cured of his/her primary cancer. The overall lifetime cancer risk estimates for a 15 year old (in the case considered here, ~5% for a male, ~10% for a female) would, of course, be larger for a still younger patient, and smaller for an older patient. We emphasize the risks for a young patient, in that one of the

### Table 2

<table>
<thead>
<tr>
<th>Mouse strain/endpoint</th>
<th>Measured RBE&lt;sub&gt;in&lt;/sub&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFM/thymic lymphoma</td>
<td>27 ± 26</td>
</tr>
<tr>
<td>RFM/pituitary</td>
<td>59 ± 52</td>
</tr>
<tr>
<td>RFM/Harderian gland</td>
<td>36 ± 10</td>
</tr>
<tr>
<td>RFM/lung tumor</td>
<td>6 ± 3</td>
</tr>
<tr>
<td>BALB/c lung adenocarcinoma</td>
<td>19 ± 6</td>
</tr>
<tr>
<td>BALB/c mammary carcinoma</td>
<td>33 ± 12</td>
</tr>
<tr>
<td>Overall</td>
<td>30 ± 17</td>
</tr>
</tbody>
</table>

Data from Refs. [35–37], and analysis from Ref. [25].

---

Fig. 2. Comparison of energy spectrum of CERN neutron field [45] used in neutron RBE measurements by Heimers [44], compared with the estimated neutron spectrum [20] directly downstream of the final patient collimator at the MD Anderson clinical proton facility.
prima-facie advantages of proton therapy is to minimize the second cancer risk for young patients with a potentially long life expectancy, but Fig. 3 also shows the estimated summed cancer risks, calculated as in Table 3, for older patients.

**Conclusions**

Of course some radiation-induced second cancer risk is an unavoidable consequence of any radiotherapeutic protocol, and the neutron-induced second cancer risks estimated here are not dissimilar from the second cancer risks inherent in photon-based intensity-modulated radiation therapy [52,53]. A difference is that the second cancer risks from externally generated neutrons in a passively scanned proton beam are (a) more uncertain, (b) reducible through optimized beamline design, and (c) avoidable through the use of an active scanning system.

Regarding the issue of actively- vs. passively scanned proton beams, it is pertinent to note that the technology required for actively scanned proton beams, which would avoid this external neutron problem, is relatively complex, requiring high instantaneous dose rates and sophisticated control systems; in particular there may be a greater potential for dose delivery errors due to patient motion [23,54–56]. Nevertheless, one active-scanning system is in clinical use [57–59], and plans are ongoing for their introduction into many of the major proton radiotherapy facilities that currently use passive scanning [60–62].

In the meantime, it would be highly desirable to optimize the geometry of the current generation of passively modulated proton beamlines, in order to reduce the neutron dose to the patient. Two complementary approaches are possible: the first is to better match the beam broadening devices with the beam size being used, which would reduce the number of protons incident on the final patient collimator; this is really a practical matter of how easily different beamline “snouts” can be interchanged. The other comple-

---

**Table 3**

<table>
<thead>
<tr>
<th>Organ</th>
<th>Neutron equivalent dose (mSv)</th>
<th>Lifetime cancer risk (%) due to external neutrons in a cured 15 year old*a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal</td>
<td>External</td>
</tr>
<tr>
<td>Red bone marrow</td>
<td>702</td>
<td>397</td>
</tr>
<tr>
<td>Colon</td>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>Lung (out-of-field)</td>
<td>968</td>
<td>851</td>
</tr>
<tr>
<td>Stomach</td>
<td>12</td>
<td>508</td>
</tr>
<tr>
<td>Bladder</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>Breast</td>
<td>33</td>
<td>596</td>
</tr>
<tr>
<td>Liver</td>
<td>36</td>
<td>802</td>
</tr>
<tr>
<td>Esophagus</td>
<td>59</td>
<td>734</td>
</tr>
<tr>
<td>Thyroid</td>
<td>32</td>
<td>788</td>
</tr>
<tr>
<td>Brain</td>
<td>4</td>
<td>288</td>
</tr>
<tr>
<td>Kidney</td>
<td>6</td>
<td>471</td>
</tr>
<tr>
<td>Pancreas</td>
<td>10</td>
<td>559</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Lifetime risk estimates for leukemia, colon, lung, stomach, bladder, breast, liver, and thyroid based on data in the recent BEIR-VII report [47]. Lifetime risks for esophagus, brain, kidney and pancreas based on data from the IREP software developed by Land and colleagues [48].

b Based on breast dose calculated for male phantom.

---

Fig. 3. Total estimated lifetime second cancer risks due to externally produced neutrons, for a 72 Gy proton therapy lung-tumor plan at the passively modulated NPTC facility, assuming the patient is cured of his/her primary tumor. Organ-specific risks are estimated, as in Table 3, from the organ-specific equivalent doses shown in Table 3, and then summed. It is important to emphasize the uncertainties associated with these risk estimates, as discussed in the text.

---

Fig. 3. Total estimated lifetime second cancer risks due to externally produced neutrons, for a 72 Gy proton therapy lung-tumor plan at the passively modulated NPTC facility, assuming the patient is cured of his/her primary tumor. Organ-specific risks are estimated, as in Table 3, from the organ-specific equivalent doses shown in Table 3, and then summed. It is important to emphasize the uncertainties associated with these risk estimates, as discussed in the text.
mentary approach, given that a patient collimator will always be needed in a passively scanned proton beamline, is to optimize the collimator design. In particular, most proton collimators are currently made out of brass or cerrobend, which are high atomic-mass materials; because neutron production increases with increasing atomic mass [63,64], a collimator made out of lower-mass high-density material could significantly decrease the neutron dose and thus the neutron-related second cancer risk.

* Corresponding author. David J. Brenner, Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA. E-mail address: djb3@columbia.edu

Received 19 September 2007; received in revised form 7 December 2007; accepted 7 December 2007; Available online 14 January 2008

References


