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1 Overview

These notes are the companion for a four-lecture series given in June 2018 at
the IPAM Graduate Summer School on Mean Field Games and Applications.
The goal of the course is to explain a methodology for the theory of mean
field games coming from a series of papers of the author [7, 29–31]. Most
of the material is drawn from[29]. In fact, the first half of the course is
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solely about optimal control theory, the goal being to expose the powerful
but somewhat old-fashioned methodology of generalized or relaxed controls.
Only in the second half of the course will we adapt these tools to the study
of mean field games.

The key ideas for this methodology dates back to the work of L.C. Young
on generalized solutions of problems of calculus of variations [41, 42], for
which he developed the theory of what is known today as Young measures
or, in a control-theoretic context, relaxed controls. Essentially, when an opti-
mization problem involves the choice of a measurable function α : [0, T ]→ A,
where T > 0 and A is some metric space, it is very often convenient to re-
lax the problem by viewing α as inducing a positive measure on [0, T ]×A,
namely

dtδαt(da).

The closure of the set of such measures in the topology of weak convergence
(i.e., the dual topology induced by bounded continuous functions on [0, T ]×
A), where α ranges over measurable functions from [0, T ] → A, is precisely
the set V of all measures on [0, T ] × A whose first marginal is Lebesgue
measure. This (metrizable) space has two extremely convenient properties:

(1) Compact subsets of V are plentiful and easy to identify using Prokhorov’s
theorem. In particular, if A is compact, then so is V.

(2) The set V is convex.

With property (1) in mind, a “relaxed” optimal control problem can typ-
ically be formulated as the optimization of a continuous function over a
compact set, and this immediately gives existence of an optimizer. Once
existence of a relaxed optimizer is established, with a bit more work one can
often then show that the optimizer is in fact a “strict” control, i.e., induced
by a measurable function in the above sense.

This rather abstract approach to optimal control was developed mainly
in the 60s-80s for optimal control problems, both deterministic [36, 42] and
stochastic [2, 15, 16]. It was primarily used to prove merely the existence
of optimal controls, which was a popular problem at the time, with similar
analysis avoiding explicit use of relaxed controls appearing in [4, 13, 26, 40].
This capstone of this line of research was arguably the work of El Karoui et
al. [9], Haussmann-Lepeltier [19], and later Kurtz-Stockbridge [25], which
proved in great generality the existence of optimal Markovian controls. The
methods are powerful enough to adapt to mixed control/stopping prob-
lems [19], singular control [20, 21], and partial information [10]. Beyond an
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existence theory, this approach facilitates a general proof of the dynamic
programming principle [9,11,12], the precursor to the derivation of the HJB
equation. Finally, we mention the work of Kushner on approximations of
and numerical methods for stochastic control problems, which takes full ad-
vantage of the pleasant topological setting afforded by relaxed controls; see
[27] and also the book of Kushner-Dupuis [28].

There is a price for the great generality and cleanliness afforded by this
powerful theory: It is completely abstract, yielding essentially no informa-
tion about the nature of the optimal control which is proven to exist. This
is in stark contrast with the two more standard approaches to optimal con-
trol, which reduce the problem to a Hamilton-Jacobi-Bellman equation or
a forward-backward stochastic differential equation arising from an applica-
tion of the Pontryagin maximum principle. Both of these approaches are
appealing in that these equations, once solved, provide a way to construct
the optimal control. Solving these equations explicitly, however, is rarely
possible, and even proving well-posedness theorems requires much more re-
strictive assumptions than the relaxed control approach.

At this point, we can finally discuss why this powerful but somewhat
old-fashioned theory is worth reviving for the analysis of mean field games
(MFGs). To solve a MFG requires that one solve a family of optimal con-
trol problems and then resolve a fixed point problem built on these optimal
control problems. Occasionally, one is lucky enough to solve this fixed point
problem explicitly, for instance by solving the PDE system introduced in
the seminal work of Lasry-Lions [33–35]. More often, one must be content
to merely prove existence (and occasionally uniqueness) of a solution. These
notes will show how the relaxed control methodology provides a powerful
framework for proving quite general theorems on the existence of (Marko-
vian) solutions of this fixed point problem. Moreover, the convenient com-
pactness property (1) above enables a detailed analysis of the convergence
of n-player Nash equilibria to the MFG limit, though it is unlikely we will
have time to discuss this much.

Let us dwell a bit longer, and more philosophically, on the advantages
and disadvantages of this approach to MFG analysis. To prove existence of
a fixed point, the vast majority of MFG literature proceeds as follows: First,
solve (in the loosest sense of the word) each of the optimal control problems
using one’s favorite method for studying optimal control, and then apply
one of two fixed point theorems:

(A) Banach’s theorem, which requires the fixed point map to be a con-
traction on some complete metric space. This has the advantage of
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providing a way to constructively find the fixed point, by iterating the
fixed point map.

(B) Compactness-based fixed point theorems à la Schauder or Kakutani,
which requires a continuous map from a convex compact set into itself.
This is non-constructive in the sense that it does not provide an algo-
rithm for finding the fixed point; in particular, iterating the fixed point
map does not converge to a solution in general.

The original work of Huang-Malhamé-Caines [22] on MFGs showed that for
small time horizon one can find a contraction. In general, however, con-
tractions are unavailable, and one must rely on the compactness-based fixed
point theorems. In doing so, one essentially gives up hope of constructing
a fixed point! Even if one starts with an extremely constructive method of
solving each of the control problems, this concreteness is lost in the appli-
cation of an abstract fixed point theorem. By working with relaxed controls
one embraces this abstractness from the start, and doing so allows for a
remarkable level of generality. Moreover, this approach streamlines what
is typically the crux of a fixed point analysis, which is to show that the
optimal control depends continuously on the model inputs (i.e., the mea-
sure flow on which one is performing a fixed point analysis). To find this
continuity by PDE methods, on the other hand, typically requires much
stronger assumptions on the structure, smoothness, or convexity of various
coefficients.

If the reader will forgive one more paragraph of a philosophical nature:
In a game-theoretic context, relaxed controls have a natural interpretation
in terms of mixed strategies. A relaxed control is a measure q(dt, da) on
[0, T ]×A with first marginal equal to Lebesgue measure, and the disintegra-
tion theorem permits us to write q(dt, da) = dtqt(da) for some measurable
function [0, T ] 3 t 7→ qt ∈ P(A), where P(A) is the space of probability
measures on A. We may interpret this to mean that, at each time t, the
controller chooses not a single action in A but rather a probability measure
over the action space from which a specific action is randomly sampled. This
is completely in line with the notion of a mixed strategy in game theory, in
which players choose probability measures over the action set rather than
single actions (pure strategies). In fact, once the appropriate spaces are set
up, our proof of existence of a solution of the MFG fixed point problem is
remarkably parallel to Nash’s original proof of existence of mixed strategy
equilibria in finite games [37].

These notes will mostly focus on existence theory for MFGs, following
the framework put forth in [29]. Subsequently, other authors have extended
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the methodology to cover MFGs built on jump-diffusion dynamics [3] and
singular controls [17]. But it is worth stressing that the scope of the method-
ology is not limited to existence proofs, although this is largely the focus of
these notes. An equally exciting advantage of the framework developed here
is its amenability to proving limit theorems, relating n-player equilibria to
the MFGs. Most of the key ingredients for proving these limit theorems are
already present in some form in the existence theory presented here, but the
details are much more involved. The curious reader should refer to [30] or
[14] for the convergence of open-loop n-player equilibria or to the forthcom-
ing [32] for the closed-loop case, whenever the paper is finished (hopefully
in 2018).

The notes are organized as follows. First, Section 2 contains a brief
summary of the most pertinent facts about weak convergence of probability
measures on metric spaces; this material will not be covered in the lectures
and should be bread and butter for the working probabilist, but hopefully
it is a useful reference for other readers. Section 3 introduces relaxed con-
trols in the simpler setting of deterministic optimal control, with complete
proofs of existence of optimal relaxed and (under additional assumptions)
strict optimal controls. Section 4 then turns to stochastic optimal control,
extending the relaxed approach from the deterministic case from Section 3.
Finally, these ideas from optimal control theory are applied to mean field
games in Section 5, which proves existence of equilibria.

2 Weak convergence of probability measures

This short section collects some basic and standard facts about weak con-
vergence of probability measures on metric spaces. Again, this material will
be reviewed only very briefly in the lectures and is included in the notes as a
reference for the less probabilistically oriented reader. This machinery forms
the foundation for many arguments of these notes, and, inn order to get to
the meat of the course, we will cover this material far too quickly. For more
details, refer to the classic textbook of Billingsley [5]. Weak convergence
of processes is treated concisely in Kallenberg’s tome [23, Chapter 14], and
the book of Parthasarathy [38] is a nice reference for a more topological
perspective.

Throughout the section, let (X , d) denote a metric space. We always
equip X with the Borel σ-field, meaning the σ-field generated by the open
sets of X . We will write P(X ) for the set of (Borel) probability measures
on X. For a measurable function ϕ from X to another metric space Y, we
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define the image measure µ ◦ ϕ−1 ∈ P(Y) by setting µ ◦ ϕ−1(A) := µ(ϕ ∈
A) = µ{x ∈ X : ϕ(x) ∈ A}.

Let Cb(X ) denote the set of bounded continuous real-valued functions
on X. The fundamental definition is the following, which we state in two
equivalent forms, one measure-theoretic and one probabilistic:

Definition 2.1. Given µ, νn ∈ P(X ), we say that µn converges weakly to
µ, or µn → µ, if

lim
n→∞

∫
X
f dµn =

∫
X
f dµ, for every f ∈ Cb(X ).

Definition 2.2. Given a sequence of X -valued random variables (Xn), we
say that Xn converges weakly (or in distribution) to another X -valued ran-
dom variable X (often denoted Xn ⇒ X) if

lim
n→∞

E[f(Xn)] = E[f(X)], for every f ∈ Cb(X ).

When we say X is a X -valued random variable, we mean the following:
Behind the scenes, there is a probability space (Ω,F ,P) and a function
X : Ω→ X , measurable with respect to the Borel σ-field on X . We will not
always be explicit about the choice of probability space.

It is important to notice that the weak convergence µn → µ does not
imply that µn(A)→ µ(A) for every measurable set A ⊂ X (unless the metric
space X is finite, in which case P(X ) can be identified with a compact subset
of R|X|). Nonetheless, the following famous theorem clarifies what weak
convergence does tell us about setwise convergence:

Theorem 2.3 (Portmaneau theorem). Let µ, µn ∈ P(X ). The following
are equivalent:

(i) µn → µ.

(ii) lim infn→∞ µn(U) ≥ µ(U) for every open set U ⊂ X .

(iii) lim supn→∞ µn(C) ≥ µ(C) for every closed set C ⊂ X .

(iv) limn→∞ µn(A) = µ(A) for every Borel set A ⊂ X with µ(A◦) = µ(A).1

(v)
∫
f dµn →

∫
f dµ for every bounded uniformly continuous function f

on X .

1Here A◦ denotes the interior of the set A and A the closure.
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We omit the proof of Theorem 2.3, as it is entirely classical (see [5,
Theorem 2.1] or [23, Theorem 4.25]. The following theorem will often be
used implicitly and is completely trivial to prove:

Theorem 2.4 (Continuous mapping theorem). Suppose X and Y are metric
spaces, and (Xn) is a sequence of X -valued random variables converging in
distribution to another X -valued random variable X. Suppose g : X → Y is
a continuous function. Then g(Xn)⇒ g(X).

2.1 P(X ) as a metric space

It is an important fact that weak convergence of probability measures corre-
sponds to a metric topology on P(X ), at least when the underlying metric
space (X , d) is separable. The weak convergence topology on P(X ) is of
course generated by the basic open sets of the form{

ν ∈ P(X ) :

∣∣∣∣∫ fi dν −
∫
fi dµ

∣∣∣∣ < εi, i = 1, . . . , k

}
,

where k ∈ N, µ ∈ P(X ), and f1, . . . , fk ∈ Cb(X ). The following theorem is
well known and can be found, for instance, in [38, Section II.6].

Theorem 2.5. If (X , d) is a separable metric space, then P(X ) can be
metrized as a separable metric space. If (X , d) is a complete and separable
metric space, then P(X ) can be metrized as a complete and separable metric
space. If (X , d) is a compact metric space, then P(X ) can be metrized as a
compact metric space.

There are several popular metrics, including the Levy-Prokhorov met-
ric, the family of Wasserstein metrics (most of which metrize a somewhat
stronger topology than that of weak convergence), or the bounded-Lipschitz
metric. While we will rarely need to explicitly use such a metric, the
bounded-Lipschitz metric is often quite convenient to use in practice. For
µ, ν ∈ P(X ), define

dBL(µ, ν) = sup
f

(∫
X
f dµ−

∫
X
f dν

)
,

where the supremum is over all functions f : X → R satisfying

sup
x∈X
|f(x)| ≤ 1, |f(x)− f(y)| ≤ d(x, y) ∀x, y ∈ X .

See [8, Theorem 11.3.3] for proof of the following:

Proposition 2.6. If (X , d) is a separable metric space and µn, µ ∈ P(X ),
then µn → µ weakly if and only if dBL(µn, µ)→ 0.
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2.2 Compactness in P(X )

Given the title of the course, it should come as no surprise that characterizing
compact sets of P(X ) will be extremely useful. The classical theorem of
Prokhorov accomplishes this. Given a set S ⊂ P(X ), we say that the family
S of probability measures is tight if for all ε there exists a compact set
K ⊂ X such that

sup
µ∈S

µ(Kc) ≤ ε.

The importance of this definition lies in the following theorem, the proof of
which can be found in [5, Theorem 6.1, 6.2] and [23, Theorem 16.3]

Theorem 2.7 (Prokhorov’s theorem). Suppose S ⊂ P(X ). If S is tight,
then it is pre-compact in P(X ). Conversely, if S is pre-compact, and if the
metric space (X , d) is separable and complete, then S is tight.

As a first application, we see how easily tightness lends itself to working
on product spaces:

Lemma 2.8. Suppose X1 and X2 are complete, separable metric spaces, and
endow X1×X2 with any metric compatible with the product topology. Define
the projections πi : X1×X2 → Xi, for i = 1, 2. Then a set S ⊂ P(X1×X2) is
tight if and only if the sets S1 = {µ◦π−1

1 : µ ∈ S} and S2 = {µ◦π−1
2 : µ ∈ S}

are tight in P(X1) and P(X2), respectively.

Proof. Suppose first that S1 and S2 are tight. Let ε > 0. for i = 1, 2, find a
compact set Ki ⊂ Xi such that supµ∈S µ ◦ π−1

i (Kc
i ) ≤ ε/2. Then K1×K2 is

compact, and for each µ ∈ K we have

µ((K1 ×K2)c) = µ(S1 ×Kc
2) + µ(Kc

1 ×K2)

≤ µ ◦ π−1
2 (Kc

2) + µ ◦ π−1
1 (Kc

1)

≤ ε.

On the other hand, if S is tight, then there exists a compact set K ⊂ X1×X2

such that supµ∈S µ(Kc) ≤ ε. Then πi(K) ⊂ Xi is compact for each i = 1, 2,
and for each µ ∈ S we have

µ ◦ π−1
i (πi(K)) = µ {(x1, x2) ∈ X1 ×X2 : πi(x1, x2) ∈ πi(K)}

≥ µ {(x1, x2) ∈ K : πi(x1, x2) ∈ πi(K)}
= µ(K) ≥ 1− ε.

This shows that S1 and S2 are tight.
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2.3 Useful continuity results

In the analysis in these notes, we will frequently need continuity properties
of the following form:

Lemma 2.9. Suppose X and Y are complete, separable metric spaces, and
let f : X × Y → R be bounded and jointly continuous. Then the map

P(X )× Y 3 (µ, y) 7→
∫
X
f(x, y)µ(dy) ∈ R

is jointly continuous.

Closely related is the following:

Lemma 2.10. Suppose X , Y, and Z are complete, separable metric spaces,
and let f : X × Y → Z be jointly continuous. Then the map

P(X )× Y 3 (µ, y) 7→ µ ◦ f(·, y)−1 ∈ P(Z)

is jointly continuous.

Exercise 2.11. Prove Lemmas 2.9 and 2.10.

3 Deterministic optimal control theory

As a warm-up, we consider the deterministic optimal control problem de-
scribed as follows:

(Ps)

{
supα

[∫ T
0 f(t, xαt , αt)dt+ g(xT )

]
,

s.t. xαt = x0 +
∫ t

0 b(s, x
α
s , αs)ds, t ∈ [0, T ].

Here, x0 ∈ Rd is a given initial state, T > 0 is a time horizon, and the control
α takes values in a set A. For simplicity, we make the following assumptions

Assumption A. The functions b : [0, T ]×Rd×A→ Rd, f : [0, T ]×Rd×
A → R, and g : Rd → R are bounded and continuous. The action space A
is a compact metric space.

One needs to be a bit careful about specifying what controls are ad-
missible. Most convenient is to work with open-loop controls, where α ∈
L0([0, T ];A) is simply a measurable function of time. Often one wishes
to work with feedback controls, where αs = α̂(s, xs) for some measurable
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function α̂ : [0, T ]× Rd → A. Neither of these sets lend themselves to com-
pactness arguments. While L0([0, T ];A) can be topologized by convergence
in measure and becomes separable and completely metrizeable, compact sets
are hard to come by in this space. The idea of relaxed controls is to com-
pactify the set of admissible controls in order to turn the problem (Ps) into
a problem of maximizing a continuous function over a compact set.

To do this, we embed our controls into a space of measures, for which
compactness criteria are straightforward. Precisely, let V denote the set of
positive Borel measures on [0, T ]×A with first marginal equal to Lebesgue
measure. That is, q ∈ V satisfies q([s, t] × A) = t − s for 0 ≤ s < t ≤ T .
Note that every q ∈ V thus has total mass T . We may endow V with
the topology of weak convergence, which means that qn → q if and only if∫
ϕdqn →

∫
ϕdq for every bounded continuous function ϕ : [0, T ]×A→ R.

Two incredibly useful lemmas are the following:

Lemma 3.1. Suppose q, qn ∈ V with qn → q. Then, for any bounded
measurable function ϕ : [0, T ]×A→ R such that ϕ(t, ·) is continuous on A
for each t ∈ [0, T ], we have

∫
ϕdqn →

∫
ϕdq.

Exercise 3.2. Prove Lemma 3.1. Hint: Show that the map Φ : [0, T ] →
C(A) defined by Φ(t) = ϕ(t, ·) is Borel measurable. Then, by Lusin’s the-
orem, there exists for each δ > 0 a continuous function Φδ : [0, T ] → C(A)
such that Φδ = Φ except on a set of Lebesgue measure less than δ.

Lemma 3.3. The space V is compact and metrizeable.

Proof. Assume T = 1 for simplicity, as the general case amounts to no
more than a rescaling. Because [0, 1] × A is a compact metric space, the
space P([0, 1] × A) is compact and metrizeable when equipped with the
topology of weak convergence (see Theorem 2.5). We also note that V is a
closed subset of P([0, 1] × A): A measure µ ∈ P([0, 1] × A) belongs to V if
and only if its first marginal is the uniform (Lebesgue) measure. The map
[0, 1]×A 3 (t, a) 7→ t ∈ [0, 1] is continuous, and so if µn → µ in P([0, 1]×A)
then the first marginal must converge, thanks to the continuous mapping
Theorem 2.4.

Alternatively, instead of referring to Teorem 2.5, we can note that the
Banach space C([0, T ]×A) of continuous functions on [0, T ]×A is separable.
Hence, by Banach-Alaoglu, closed bounded sets in the dual C([0, T ] × A)∗

are weak∗-compact and metrizeable. Clearly V is bounded, and closedness
is argued as above.
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By the disintegration theorem, note that every q ∈ V can be written as

q(dt, da) = dtqt(da),

for some measurable family of probability measures (qt)t∈[0,T ] on A, uniquely
defined up to almost-everywhere equality. Any (open-loop) control α ∈
L0([0, T ];A),2 now called a strict control, can be embedded in V by identi-
fying it with the measure

q(dt, da) = dtδαt(da).

We may write V0 for the set of q ∈ V of the above form. Elements of V0 are
called strict controls, while general elements of V are called relaxed controls.
The following remarkable fact is quite important, but we leave it as a (tricky)
exercise, given that we will not use it in this course:

Exercise 3.4. Show that V0 is dense in V. Hint: You may use the following
implication of the Borel Isomorphism Theorem: Suppose X and Y are com-
plete, separable metric spaces. Suppose µ and ν are nonnegative measures
on X and Y, respectively, with the same total mass, i.e., µ(X ) = ν(Y). If
µ is nonatomic, then there exists a Borel-measurable function ϕ : X → Y
such that µ ◦ ϕ−1 = ν.

We can now define a relaxed analogue of (Ps). To be precise, we should
notice that the ODE defining xq may not be well-posed. Hence, we make
the following definitions: Let

Cd = C([0, T ];Rd)

denote the continuous path space, endowed with supremum norm. Let R
denote the set of (x, q) ∈ Cd × V such that

xt = x0 +

∫
[0,t]×A

b(s, xs, a)q(ds, da), t ∈ [0, T ].

We may now define:

(Pr) sup
(x,q)∈R

[∫
[0,T ]×A

f(t, xt, a)q(dt, da) + g(xT )

]
.

Using the above two lemmas, we quickly prove existence of a solution to
(Pr).

2We write L0([0, T ];A) for the set of (equivalence classes of a.e. equal) measurable
functions from [0, T ] to A.
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Theorem 3.5. Suppose R is nonempty. Then the supremum in (Pr) is
attained.

Proof. The goal is to check thatR is compact and that the map Γ : Cd×V →
R defined by

Γ(x, q) :=

∫
[0,T ]×A

f(t, xt, a)q(dt, da) + g(xT ) (3.1)

is continuous. In fact, continuity of Γ is a consequence of Lemma 2.9. Hence,
we focus on compactness. Fix a sequence (xn, qn) ∈ R. Because V is
compact, we may assume that there exists q ∈ V such that qn → q. By
boundedness of b, we have

|xnt − xns | =

∣∣∣∣∣
∫

[s,t]×A
b(r, xnr , a) qn(dr, da)

∣∣∣∣∣ ≤ ‖b‖∞(t− s),

for s < t. Hence, by Arzela-Ascoli, the sequence (xn) is precompact in
Cd. By passing to a further subsequence, we may assume xn → x for some
x ∈ Cd, endowed with the supremum norm. We then find, for each t ∈ [0, T ]

xt = lim
n
xnt = lim

n

(
x0 +

∫
[0,t]×A

b(s, xns , a) qn(ds, da)

)

= x0 +

∫
[0,t]×A

b(s, xs, a)q(ds, da),

which shows that (x, q) ∈ R. Indeed, the last limit follows from Lemmas
2.9 and 2.10. This completes the proof.

Now that we have proven existence of a relaxed solution, we want to see
when we can build from it a strict optimal control. This can be done under
a suitable convexity assumption, often known as Roxin’s condition:

Theorem 3.6. Suppose that R 6= ∅, and suppose also that for each (t, x) ∈
[0, T ]× Rd the set

K(t, x) = {(b(t, x, a), z) : a ∈ A, f(t, x, a) ≥ z} ⊂ Rd × R

is convex. (As usual, we implicitly grant Assumption A as well.) Then, for
every (x, q) ∈ R, there exists q0 ∈ V0 such that (x, q0) ∈ R and Γ(x, q0) ≥
Γ(x, q).
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Proof. Disintegrate q(dt, da) = qt(da)dt. By convexity of K(t, x), we first
observe that ∫

A

(
b(t, xt, a), f(t, xt, a)

)
qt(da) ∈ K(t, xt),

for each t ∈ [0, T ]. Hence, for each t ∈ [0, T ], we may find αt ∈ A and zt ∈ R
such that zt ≤ f(t, xt, αt) and∫

A

(
b(t, xt, a), f(t, xt, a)

)
qt(da) =

(
b(t, xt, αt), zt

)
.

There is an important subtle point here, which is that we must choose (αt, zt)
to be measurable functions t. There are established measurable selection
theorems that ensure this is possible, and we will take this for granted; see
[19, Lemma A.9] for details. With measurable choices of α and z in hand,
we define

q0(dt, da) := dtδαt(da),

and we complete the proof by two simple observations. First, for each t ∈
[0, T ],

xt = x0 +

∫ t

0

∫
A
b(s, xs, a)qs(da)ds = x0 +

∫ t

0
b(s, xs, αs)ds.

Second, we have∫
[0,T ]×A

f(t, xt, a)q0(dt, da) =

∫ T

0
f(t, xt, αt)dt

≥
∫ T

0
ztdt

=

∫ T

0

∫
A
f(t, xt, a) qt(da)dt.

Hence,

Γ(x, q0) =

∫
[0,T ]×A

f(t, xt, a)q0(dt, da) + g(xT )

≥
∫

[0,T ]×A
f(t, xt, a)q(dt, da) + g(xT )

= Γ(x, q).
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Combining Theorems 3.5 and 3.6 provides a pretty satisfactory existence
result:

Corollary 3.7. Suppose that R is nonempty and that the convexity assump-
tion of Theorem 3.6 holds. Then the relaxed and strict control problems (Pr)
and (Ps) have the same value, and there exists a strict optimal control.

Example 3.8. The most common example of the assumption of Theorem
3.6 is the following. Assume the control space A is a convex subset of Rk
for some k. Assume b is affine in a, meanig it is of the form b(t, x, a) =
b1(t, x)+ b2(t, x)a, where b1 and b2 take values in Rd and Rd×k, respectively.
Lastly, assume that a 7→ f(t, x, a) is concave for each (t, x). We may then
write K(t, x) = b1(t, x) + b2(t, x)K ′(t, x), where K ′(t, x) is the set

K ′(t, x) = {(a, z) : a ∈ A, z ≤ f(t, x, a)} ⊂ A× R ⊂ Rk × R.

The set K ′(t, x) is precisely the hypograph of the function a 7→ f(t, x, a), or
the set of coordinates lying below the graph of the function. For a concave
function the hypograph is a concex set, and so K ′(t, x) is convex. Hence,
the linear transformation K(t, x) of this set is also convex.

Remark 3.9. The first statement of Corollary (3.7), that the relaxed and
strict control problems (Pr) and (Ps) have the same value, is true even
without the convexity assumption of Theorem 3.6. Indeed, this follows from
continuity of the functional Γ defined in (3.1) and from Exercise 3.4, which
says that the set of strict controls is dense in the set of relaxed controls.

3.1 An example of the chattering phenomenon

It is instructive to see an example of when a relaxed optimal control ex-
ists while there is no strict optimal control. Consider the one-dimensional
problem describe by the data

T = 1, A = {−1, 1}, b(t, x, a) = a, f(t, x, a) = −|x|, g(x) = 0.

That is, the controller tries to solve the following optimization problem:

V := inf
α∈L0([0,1];{−1,1})

∫ 1

0
|xαt | dt, where xαt :=

∫ t

0
αsds.

Clearly V ≥ 0. On the other hand, consider the control αn which alternates
between ±1 on intervals of length 1/n. Precisely, define αnt = +1 if t ∈

14



[
k
n ,

k+1
n

)
for some odd integer k, and set αnt = −1 otherwise. Then, for n

even, the function t 7→ xα
n

t is periodic, with period 2/n, and we have

xα
n

t =

{
t if t ∈ [0, 1/n),
2
n − t if t ∈ [1/n, 2/n).

The integral of this “triangular” function∫ 1

0
|xαn

t |dt = n

∫ 1/n

0
tdt =

1

2n
.

This shows that V ≤ 1/2n for each n, and so in fact V = 0. But there
is no control achieving this value! Indeed, if α ∈ L0([0, 1]; {−1, 1}) had∫ 1

0 |x
α
t | dt = 0, then we would have xαt = 0 for a.e. t, and thus αt = 0 for a.e.

t. But this is not allowed, as controls must take values in {−1, 1}.
We see that the controller can approach the optimal value by using

the rapidly oscillating or chattering controls αn. As relaxed controls these
controls simply approximate q(dt, da) := dt

(
1
2δ1 + 1

2δ−1

)
(da). That is,

dtδαn
t
(da) → q. Indeed, if we allow the controller to choose among re-

laxed controls, then this choice q gives xt = 0 for all t and thus achieves the
optimal value.

In a sense, the problem here is that the control space A is not convex.
Using the above chattering controls effectively convexifies the control space.

4 Stochastic optimal control

We now develop the analogous story for stochastic control problems, in
which the state process is governed not by an ODE but by an SDE driven
by Brownian motion. This methodology matured in the 80s with the papers
[9, 19], but the essential ideas go back to the work of Fleming and Nisio
[15, 16]. The compactification method is powerful enough to handle quite
general setups, in which the controlled state process follows dynamics of the
form

dXt = b(t,Xt, αt)dt+ σ(t,Xt, αt)dWt. (4.1)

For the sake of the reader less familiar with stochastic calculus, and to
avoid a significant increase in technical difficulty, we choose to restrict our
attention to the case where the diffusion coefficient σ is constant, and in fact
we take it to be the identity matrix. That is, our state process will follow
the dynamics

dXt = b(t,Xt, αt)dt+ dWt.

15



Here X = (Xt)t∈[0,T ] is a d-dimensional process, and W = (Wt)t∈[0,T ] is a
d-dimensional Brownian motion.

To define the control problem precisely, we work under the same As-
sumption A defined in the previous section, and we work with a highly
convenient weak formulation, in which the controller gets to choose the prob-
ability space. Throughout, we will fix a probability measure λ0 on Rd to
represent a given initial distribution for the state process.

Definition 4.1. A control rule is a tuple A = (Ω,F ,F,P,W, α,X), where:

1. (Ω,F ,P) is a probability space equipped with a filtration F = (Ft)t∈[0,T ].

2. W is an F-Brownian motion.

3. X is a continuous F-adapted process, and X0 ∼ λ0.

4. α is a progressively measurable A-valued process.

5. The state equation holds,

Xt = X0 +

∫ t

0
b(s,Xs, αs)ds+Wt, t ∈ [0, T ].

For a control rule A = (Ω,F ,F,P,W, α,X), we define the value of A as

J(A) := EP
[∫ T

0
f(t,Xt, αt)dt+ g(XT )

]
.

An optimal control rule optimizes J over all control rules.

Remark 4.2. Stochastic control problems are often posed in the strong
formulation, as opposed to the above weak formulation. In the strong for-
mulation, the probability space (Ω,F ,F,P) is fixed, typically with F as the
filtration generated by the Brownian motion. The controller must choose
α to be progressively measurable with respect to this given filtration, as a
response to the noise of the Brownian motion. One must then be careful
to restrict attention to those controls for which the state equation is well-
posed. When b is Lipschitz in x, uniformly in (t, a), this is not much of a
restriction, and it can typically be shown that the optimal value is the same
in both the strong and weak formulations. See [9, Section 4] or the more
recent [12, Section 4.4] for details, or even [31, Theorem 2.4] for the case of
controlled McKean-Vlasov dynamics.
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Remark 4.3. It is worth noting also that an alternative weak formulation is
available in this special case in which the diffusion coefficient is uncontrolled
and the drift is bounded. This approach uses Girsanov’s theorem to write
the value function as the solution of a BSDE [39, Section 6.4], characterizing
an optimal but generally path-dependent control. It is not easy with these
techniques to find optimal Markovian controls, nor is it possible to adapt
the framework to cover controlled diffusion coefficient.

Remark 4.4. A nice feature of stochastic control in the weak formulation
is that it is quite easy to check that the set of control rules is nonempty.
Indeed, as we have assumed our drift function b to be bounded, for any
constant control a ∈ A the SDE

dXt = b(t,Xt, a)dt+ dWt

has a weak solution which is unique in law. This is a well known consequence
of Girsanov’s theorem [24, Propositions 5.3.6 and 5.3.10].

Definition 4.5. A relaxed control rule is a tuple A = (Ω,F ,F,P,W,Λ, X),
where:

1. (Ω,F ,P) is a probability space equipped with a filtration F = (Ft)t∈[0,T ].

2. W is an F-Brownian motion.

3. X is a continuous F-adapted process, and X0 ∼ λ0.

4. Λ is a V-valued random variable, and Λ([0, s] × S) is Ft-measurable
for all s ≤ t and all Borel sets S ⊂ A.

5. The state equation holds,

Xt = X0 +

∫
[0,t]×A

b(s,Xs, a) Λ(ds, da) +Wt, t ∈ [0, T ].

For a relaxed control rule A = (Ω,F ,F,P,W,Λ, X), we define the value of
A as

J(A) := EP

[∫
[0,T ]×A

f(t,Xt, αt) Λ(dt, da) + g(XT )

]
.

An optimal relaxed control rule optimizes J over all control rules.
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4.1 Existence of optimal relaxed controls

The first main theorem is the following, which proves existence of optimal
relaxed controls in a rather general setting:

Theorem 4.6. Under Assumption A, there exists an optimal relaxed control
rule.

To prove Theorem 4.6, we reformulate the problem slightly, by redefining
a “control rule” in terms of the probability law of the state and control
processes. In this section, we work on the canonical measurable space Ω =
Cd × V, equipped with its Borel σ-field F . We define canonical processes
X and Λ, simply by setting X(x, q) = x and Λ(x, q) = q for (x, q) ∈ Ω,
and similarly Xt(x, q) = xt for t ∈ [0, T ]. We endow Ω with the natural
filtration F = (Ft)t∈[0,T ], where Ft is the σ-field generated by the following
the random variables Xs and Λ([0, s] × B), where s ≤ t and B ⊂ A is a
Borel set.

Recall in the following that the initial state distribution λ0 ∈ P(Rd) is
fixed throughout.

Definition 4.7. Let R denote the set of probability measures P on Cd ×V
such that:

1. P ◦X−1
0 = λ0.

2. Under P , the process W = (Wt)t∈[0,T ] defined by

Wt = Xt −X0 −
∫

[0,t]×A
b(s,Xs, a) Λ(ds, da) (4.2)

is a F-Brownian motion. Equivalently, P◦W−1 equals Wiener measure,
and it holds that Ws − Wt is independent of Ft under P whenever
0 ≤ t ≤ s ≤ T .

The point of this definition is to pose the relaxed optimal control problem
as an optimization over the set R, which the following lemma formalizes:

Lemma 4.8. For each relaxed control rule (Ω̃, F̃ , F̃, P̃, W̃ , Λ̃, X̃), the proba-
bility measure P̃ ◦ (X̃, Λ̃)−1 belongs to R. Conversely, for every P ∈ R, the
tuple (Ω,F ,F, P,W,Λ, X) is a relaxed control rule, where W is defined as in
(4.2).

Exercise 4.9. Prove Lemma 4.8.
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Remark 4.10. For problems with controlled diffusion coefficient, as in (4.1),
Definition 4.7 should be refined. In particular, it is not immediately obvious
how to adapt property (2). The right way to proceed is to formulate the
controlled SDEs in terms of martingale problems, and the curious reader
is referred to [9] for details. Once the right formulation is ironed out, the
essential structure of the arguments is the same as presented here.

This lemma shows that finding a relaxed optimal control rule is equiva-
lent to finding an optimizer in the control problem

sup
P∈R

∫
Ω

Γ dP = sup
P∈R

EP
[∫

[0,T ]×A
f(t,Xt, a) Λ(dt, da) + g(XT )

]

where we define the functional Γ : Ω→ R as in (3.1) by

Γ(x, q) :=

∫
[0,T ]×A

f(t, xt, a) q(dt, da) + g(xT ).

Theorem 4.11. There exists P ∗ ∈ R such that supP∈R
∫

Ω Γ dP =
∫

Ω Γ dP ∗.

Note that Theorem 4.6 follows immediately from Theorem 4.11 and
Lemma 4.8. To prove Theorem 4.11, we will again argue that the problem is
nothing but the maximization of a continuous function over a compact set.
Recall that Γ is continuous by Lemma 2.9. As it is bounded, we conclude
that the map P(Ω) 3 P 7→

∫
Ω Γ dP ∈ R is continuous.

It suffices to prove that R is compact. Do accomplish this, we will use
a nice tightness criterion due to Aldous [23, Theorem 16.11]:

Theorem 4.12 (Aldous’ criterion for tightness). Consider a family (Xn) of
Cd-valued random variables (i.e., continuous stochastic processes with values
in Rd). Suppose that for any δn > 0 with δn ↓ 0 and any stopping times τn
with values in [0, T − δn] we have3

lim
n→∞

sup
n

E
[
min{1, |Xn

τn+δn −X
n
τn |}

]
= 0.

Then (Xn) is tight.

Proof of Theorem 4.11. We first show thatR is tight. It suffices (see Lemma
2.8) to show that the families {P ◦X−1 : P ∈ R} ⊂ P(Cd) and {P ◦ Λ−1 :

3We say that τn is a stopping time to mean relative to the filtration of Xn. That is, τn

is a [0, T ]-valued random variable with the property that the set {τn ≤ t} is measurable
with respect to σ(Xn

s : s ≤ t), for each t ∈ [0, T ].
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P ∈ R} ⊂ P(V) are tight. The latter set is tight by Prokhorov’s Theorem
2.7, because the space V is compact. To show that the former set is tight,
we use Theorem 4.12. For any δ > 0 and any F-stopping time τ on Ω with
values in [0, T − δ], we have

|Xτ+δ −Xτ | =

∣∣∣∣∣
∫

[τ,τ+δ]×A
b(t,Xt, a) Λ(dt, da) +Wτ+δ −Wτ

∣∣∣∣∣
≤ ‖b‖∞Λ([τ, τ + δ]×A) + |Wτ+δ −Wτ |
= δ‖b‖∞ + |Wτ+δ −Wτ |.

Take expectations to get

E|Xτ+δ −Xτ | ≤ δ‖b‖∞ +
√
δ, (4.3)

where we used the strong Markov property and Jensen’s inequality to get

E|Wτ+δ −Wτ | = E|N(0, δ)| ≤ E[|N(0, δ)|2]1/2 =
√
δ,

where N(0, δ) denotes a generic normal random variable with mean zero and
variance δ. From (4.3) and Theorem 4.12, we conclude that {P ◦X−1 : P ∈
R} ⊂ P(Cd) is tight and thus that R is tight.

To complete the proof of Theorem 4.11, it suffices now to show that R
is closed. To do this, let us fix Pn ∈ R and P ∈ P(Ω) with Pn → P . We
show that P ∈ R by checking the two properties of Definition 4.7. By the
continuous mapping Theorem 2.4,

P ◦X−1
0 = lim

n
Pn ◦X−1

0 = λ0.

Similarly, P ◦ W−1 = limn Pn ◦ W−1 equals Wiener measure. It remains
to show that Ws − Wt is independent of Ft, for 0 ≤ t ≤ s ≤ T . To do
this, fix t < s, a bounded continuous function ϕ : Rd → R, and a bounded,
Ft-measurable, and continuous function h : Ω → R. By continuity and the
fact that Pn ∈ R for each n, we have

EP [ϕ(Ws −Wt)h(X,Λ)] = lim
n

EPn [ϕ(Ws −Wt)h(X,Λ)]

= lim
n

EPn [ϕ(Ws −Wt)]EPn [h(X,Λ)]

= EP [ϕ(Ws −Wt)]EP [h(X,Λ)] .

In fact, it follows then that the identity

EP [ϕ(Ws −Wt)h(X,Λ)] = EP [ϕ(Ws −Wt)]EPn [h(X,Λ)]
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holds not only for continuous functions ϕ and h but also for merely measur-
able functions; indeed, a bounded measurable function of Ws −Wt can be
approximated in L1(P ) by bounded continuous functions of Ws −Wt, and,
with a bit more thought, a bounded Ft-measurable function of (X,Λ) can be
approximated in L1(P ) by bounded, continuous, Ft-measurable functions of
(X,Λ).

4.2 Existence of optimal strict controls

Adapting the idea of Theorem 3.6, under the same convexity assumption we
may find an optimal strict control.

Theorem 4.13. Suppose that for each (t, x) ∈ [0, T ]× Rd the set

K(t, x) = {(b(t, x, a), z) : a ∈ A, f(t, x, a) ≥ z} ⊂ Rd × R

is convex. Then, for every P ∈ R, there exists a strict Markovian control
P 0 ∈ R such that

∫
Ω Γ dP 0 ≥

∫
Ω Γ dP and P 0 ◦X−1

t = P ◦X−1
t for all t ∈

[0, T ]. By strict Markovian control we mean that there exists a measurable
function α : [0, T ]× Rd → A such that P 0(Λ = dtδα(t,Xt)(da)) = 1.

The second part of the conclusion, that P 0 ◦ X−1
t = P ◦ X−1

t for all
t ∈ [0, T ], is not important in this section, but it will be absolutely essential
when we study mean field games in Section 5.

The proof of Theorem 4.13 makes use of a beautiful theorem, sometimes
referred to as a mimicking theorem or Markovian projection. It is originally
due to Gyöngy [18], later extended by Brunick and Shreve [6].

Theorem 4.14 (Markovian projection). Suppose that we are given three Rd-
valued stochastic process (Xt)t∈[0,T ], (Wt)t∈[0,T ], and (bt)t∈[0,T ], with E

∫ T
0 |bt|

2dt <
∞, and with

dXt = btdt+ dWt.

All three processes are defined on a common probability space and are adapted
with respect to a common filtration with respect to which W is a Brownian
motion. Then there exists a measurable function b̂ : [0, T ] × Rd → Rd such
that:

(i) b̂(t,Xt) = E[bt |Xt] almost surely for each t ∈ [0, T ],

(ii) There exists a weak solution of the SDE

dX̃t = b̂(t, X̃t)dt+ dW̃t, (4.4)
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such that Xt and X̃t have the same law, for each t ∈ [0, T ]. To be
precise, we can find a filtered probability space (Ω̃, F̃ , F̃, P̃) supporting d-

dimensional F̃-adapted processes X̃ and W̃ , where W̃ is an F̃-Brownian
motion and the above SDE is satisfied, with Xt and X̃t having the same
law for each t.

To clarify the meaning of this remarkable theorem: Given any Itô process
with random coefficients, the time-t marginal distributions can be matched
(or mimicked) by the solution of a Markovian SDE, with no additional ran-
domness. Note that X and X̃ do not have the same law when viewed as
Cd-valued random variables; the joint distributions of (Xs, Xt) and (X̃s, X̃t)
can be different for s 6= t.

Proof sketch for Theorem 4.14. Apply Itô’s formula to a smooth function ϕ
of compact support to get

E[ϕ(t,Xt)]− E[ϕ(0, X0)]

=

∫ t

0
E
[
∂tϕ(s,Xs) + bs · ∇ϕ(s,Xs) +

1

2
∆ϕ(s,Xs)

]
ds.

By the tower property of conditional expectation, this implies

E[ϕ(t,Xt)]− E[ϕ(0, X0)]

=

∫ t

0
E
[
∂tϕ(s,Xs) + b̂(t,Xs) · ∇ϕ(s,Xs) +

1

2
∆ϕ(s,Xs)

]
ds.

It follows quickly from Girsanov’s theorem that the law of Xt admits a
density p(t, ·) with respect to Lebesgue measure, and the above equation
implies that it satisfies∫

Rd

ϕ(x)(p(t, x)− p(0, x))dx

=

∫ t

0

∫
Rd

(
∂tϕ(s, x) + b̂(s, x) · ∇ϕ(s, x) +

1

2
∆ϕ(s, x)

)
p(s, x)dxds.

In other words, p is a weak solution of the Fokker-Planck equation

∂tp(t, x) = −div(̂b(t, x)p(t, x)) +
1

2
∆p(t, x).

On the other hand, the same argument shows that, if p̃(t, ·) denotes the
law of X̃t, then p̃ is a weak solution of the same PDE. Uniqueness for weak
solutions of this PDE then yields the desired result. Notably, however, the
result is valid even for SDEs which correspond to non-unique Fokker-Planck
equations, and the arguments of [6] get around this issue.
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Remark 4.15. Recall that may disintegrate any q ∈ V by q(dt, da) =
dtqt(da), where the measurable map [0, T ] 3 t 7→ qt ∈ P(A) is uniquely
determined up to (Lebesgue-) almost everywhere equality. In a sense, we
think equivalently either about measures on [0, T ]×A or about P(A)-valued
functions. The same is true for random elements of V, but a bit more care
is required to make this precise. That is, for our canonical V-valued random
variable Λ defined on the canonical space Ω, we would like to be able to write
Λ(dt, da) = Λt(da)dt, where (Λt)t∈[0,T ] is a P(A)-valued process with nice
measurability properties. By nice measurability properties we mean that the
map [0, T ] × Ω 3 (t, x, q) 7→ Λ(t, x, q)t ∈ P(A) should be predictable with
respect to the canonical filtration F on Ω. This is purely technical and can
be accomplished without too much trouble; see [29, Lemma 3.2]. We will
henceforth take this “nice disintegration” for granted.

Proof of Theorem 4.13. This follows a similar argument to Theorem 3.6.
Fix P ∈ R. By convexity of K(t, x), we first observe that∫

A

(
b(t,Xt, a), f(t,Xt, a)

)
Λt(da) ∈ K(t,Xt),

for each t ∈ [0, T ]. Hence, taking conditional expectations, we still have

EP
[∫

A

(
b(t,Xt, a), f(t,Xt, a)

)
Λt(da)

∣∣∣∣ Xt

]
∈ K(t,Xt).

Hence, for each t ∈ [0, T ] and x ∈ Rd, we may find α(t, x) ∈ A and z(t, x) ∈ R
such that z(t, x) ≤ f(t, x, α(t, x)) and

EP
[∫

A

(
b(t,Xt, a), f(t,Xt, a)

)
Λt(da)

∣∣∣∣ Xt

]
=
(
b(t,Xt, α(t,Xt)), z(t,Xt)

)
.

We will again ignore the important issue that we must choose (α(t, x), z(t, x))
to be jointly measurable functions of (t, x); see again [19, Lemma A.9] for
details.

Notice that, under P , we have the SDE

dXt =

∫
A
b(t,Xt, a) Λt(da) dt+ dWt.

We have just found an expression for the conditional expectation of the drift,
namely

b(t,Xt, α(t,Xt)) = EP
[∫

A
b(t,Xt, a)Λt(da)

∣∣∣∣ Xt

]
.
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Hence, by Theorem 4.14, we can find (Ω̃, F̃ , F̃, P̃, Y, B̃) as in Theorem 4.14
such that P̃ ◦ Y −1

t = P ◦X−1
t for each t ∈ [0, T ] and also

dYt = b(t, Yt, α(t, Yt))dt+ dB̃t.

Define
P 0 = P̃ ◦ (Y, dtδα(t,Yt)(da))−1.

Then clearly P 0 belongs to R, and we use Fubini’s theorem to get∫
Ω

Γ dP 0 = EP̃
[∫ T

0
f(t, Yt, α(t, Yt))dt+ g(YT )

]
=

∫ T

0
EP̃ [f(t, Yt, α(t, Yt))] dt+ EP̃ [g(YT )]

=

∫ T

0
EP [f(t,Xt, α(t,Xt))] dt+ EP̃ [g(XT )]

= EP
[∫ T

0
f(t,Xt, α(t,Xt))dt+ g(XT )

]
≥ EP

[∫ T

0
z(t,Xt)dt+ g(XT )

]
= EP

[∫ T

0

∫
A
f(t,Xt, a)Λt(da)dt+ g(XT )

]
=

∫
Ω

Γ dP.

4.3 Extensions

Some of these points may have been obvious to the astute reader, but it is
worth mentioning some of the many ways in which the above results can be
generalized.

First, the coefficients (b, f, g) need not be bounded, and the action space
A need not be compact. Instead, one should impose suitable growth assump-
tions for (b, f, g), along with a corresponding integrability assumption on the
initial distribution λ0. Also, quite importantly, the running cost should be
coercive in a sense; if A is unbounded, then f(t, x, a) should grow “quickly
enough” with a in order to ensure that sub-level sets of the objective function
R 3 P 7→

∫
Γ dP are precompact. See [19] for details.

Our existence theorems come from the fact that a continuous function
achieves its maximum over a compact set. But it is enough that the function

24



is merely upper semicontinuous. Hence, f and g need only be upper semi-
continuous. Moreover, by choosing objective functions which are allowed to
equal −∞, one can incorporate hard constraints on the state and control
process. See again [19] for details.

A controlled diffusion coefficient σ(t,Xt, αt)dWt is more difficult but
certainly possible to handle in this approach. See [9,19]. Moreover, one can
handle discontinuous coefficients (b, σ) (see [9, Section 7]) and even jump-
diffusion state processes (see [9, Section 8]). In fact, this approach has been
extended to extremely general contexts of state processes taking values in
locally compact metric spaces by Kurtz and Stockbridge [25].

5 Mean field games

We now turn our attention to mean field games, with the prototypical prob-
lem described loosely but concisely as follows:

(MFG)


α∗ ∈ arg maxα E

[∫ T
0 f(t,Xµ,α

t , µt, αt)dt+ g(Xµ,α
T , µT )

]
,

s.t. dXµ,α
t = b(t,Xµ,α

t , µt, αt)dt+ dWt, t ∈ [0, T ],

µt = L(Xµ,α
t ), ∀t ∈ [0, T ].

Here L(Z) denotes the law of a random variable Z. We make the following
assumptions on the coefficients:

Assumption B. The functions b : [0, T ] × Rd × P(Rd) × A → Rd, f :
[0, T ] × Rd × P(Rd) × A → R, and g : Rd × P(Rd) → R are bounded
and jointly continuous, where P(Rd) is endowed with the topology of weak
convergence. The action space A is a compact metric space. Lastly, assume
that b is Lipschitz in x, uniformly in the other variables; that is, there exists
L > 0 such that, for all (t,m, a) ∈ [0, T ]× P(Rd)× A and all x, y ∈ Rd, we
have

|b(t, x,m, a)− b(t, y,m, a)| ≤ L|x− y|.

Finally, the initial distribution λ0 ∈ P(Rd) is arbitrary.

Actually, all of the results of this section hold true without the Lispchitz
assumption, but we include it in order to simplify one key proof step. This
point is discussed briefly in Remark 5.12.

More completely, an equilibrium is defined as follows. For a measure
µ ∈ P(Cd), we define µt ∈ P(Rd) for each t ∈ [0, T ] as the time-t marginal.
That is, µt is the image of µ through the map Cd 3 x 7→ xt ∈ Rd.
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Definition 5.1. A Markovian mean field equilibrium (MFE) is a tuple
(Ω,F ,F,P, µ,W, α,X) such that

1. (Ω,F ,P) is a probability space equipped with a filtration F = (Ft)t∈[0,T ].

2. µ ∈ P(Cd)

3. W is an F-Brownian motion.

4. X is a continuous F-adapted process, and X0 ∼ λ0.

5. α : [0, T ]× Rd → A is a measurable function.

6. The state equation holds,

dXt = b(t,Xt, µt, α(t,Xt))dt+ dWt.

7. The control is optimal, in the sense that, for any other tuple of the
form (Ω′,F ′,F′,P′, µ,W ′, α′, X ′) satisfying (1-6) with the same µ, we
have

EP
[∫ T

0
f(t,Xt, µt, α(t,Xt))dt+ g(XT , µT )

]
≥ EP

′
[∫ T

0
f(t,X ′t, µt, α

′(t,X ′t))dt+ g(X ′T , µT )

]
.

8. The consistency condition holds, µ = P ◦X−1.

Our goal in this section is to prove the following:

Theorem 5.2. Suppose Assumption B holds. Assume that for each (t, x,m) ∈
[0, T ]× Rd × P(Rd) the set

K(t, x,m) = {(b(t, x,m, a), z) : a ∈ A, f(t, x,m, a) ≥ z} ⊂ Rd × R

is convex. The there exists a Markovian MFE.

The way we will prove this, once again, is by first proving existence of a
relaxed MFE, and then arguing that we may massage any given equilibrium
into a Markovian one.
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5.1 Relaxed mean field equilibrium

A workable relaxed notion of equilibrium is defined as follows:

Definition 5.3. A relaxed mean field equilibrium (MFE) is a tuple (Ω,F ,F,P, µ,W,Λ, X)
such that

1. (Ω,F ,P) is a probability space equipped with a filtration F = (Ft)t∈[0,T ].

2. µ ∈ P(Cd)

3. W is an F-Brownian motion.

4. X is a continuous F-adapted process, and X0 ∼ λ0.

5. Λ is a V-valued random variable, and Λ([0, s] × S) is Ft-measurable
for all s ≤ t and all Borel sets S ⊂ A.

6. The state equation holds,

Xt = X0 +

∫
[0,t]×A

b(s,Xs, µs, a) Λ(ds, da) +Wt, t ∈ [0, T ].

7. The control is optimal, in the sense that, for any other tuple of the
form (Ω′,F ′,F′,P′, µ,W ′,Λ′, X ′) satisfying (1-6) with the same µ, we
have

EP
[∫

[0,T ]×A
f(t,Xt, µt, a) Λ(dt, da) + g(XT , µT )

]

≥ EP
′

[∫
[0,T ]×A

f(t,X ′t, µt, a) Λ′(dt, da) + g(X ′T , µT )

]
.

8. The consistency condition holds, µ = P ◦X−1.

The first main theorem is the following, which proves existence of optimal
relaxed controls in a rather general setting:

Theorem 5.4. Under Assumption B, there exists a relaxed MFE.

To prove Theorem B, we first reformulate the problem as in Section 4.1,
in terms of the probability law of the state and control processes. Again,
we work on the canonical measurable space Ω = Cd × V, equipped with its
Borel σ-field F . We define canonical processes X and Λ, simply by setting
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X(x, q) = x and Λ(x, q) = q for (x, q) ∈ Ω, and similarly Xt(x, q) = xt for
t ∈ [0, T ]. We endow Ω with the natural filtration F = (Ft)t∈[0,T ], where
Ft is the σ-field generated by the following the random variables Xs and
Λ([0, s]×B), where s ≤ t and B ⊂ A is a Borel set.

Recall that the initial state distribution λ0 ∈ P(Rd) is fixed throughout.

Definition 5.5. For µ ∈ P(Cd), let R(µ) denote the set of probability
measures P on Ω = Cd × V such that:

1. P ◦X−1
0 = λ0.

2. Under P , the process W = (Wt)t∈[0,T ] defined by

Wµ
t = Xt −X0 −

∫
[0,t]×A

b(s,Xs, µs, a) Λ(ds, da) (5.1)

is a F-Brownian motion. Equivalently, P◦W−1 equals Wiener measure,
and it holds that Ws − Wt is independent of Ft under P whenever
0 ≤ t ≤ s ≤ T .

Define the function Γ : P(Cd)× Cd × V → R by

Γ(µ, x, q) :=

∫
[0,T ]×A

f(t, xt, µt, a) q(dt, da) + g(xT ).

Finally, define R∗(µ) as the set of P ∗ ∈ R(µ) such that∫
Ω

Γ(µ, ·) dP ∗ = sup
P∈R(µ)

∫
Ω

Γ(µ, ·) dP,

or more briefly R∗(µ) := arg maxP∈R(µ)

∫
Ω Γ(µ, ·) dP .

The point of these definitions is that a mean field equilbrium is nothing
but a fixed point of the set-valued map P(Cd) 3 µ 7→ {P ◦ X−1 : P ∈
R∗(µ)} ⊂ P(Cd).

Lemma 5.6. If (Ω̃, F̃ , F̃, P̃, W̃ , µ, Λ̃, X̃) is a relaxed MFE if and only if
µ ∈ {P ◦ X−1 : P ∈ R∗(µ)}. More specifically, if µ = P ◦ X−1 for some
P ∈ R∗(µ)}, then the tuple (Ω,F ,F, P,Wµ, µ,Λ, X) is a relaxed MFE, where
Wµ is defined as in (5.1).

Exercise 5.7. Prove Lemma 5.6.

The goal now is to show the following:
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Theorem 5.8. There exists µ ∈ P(Cd) such that µ ∈ {P ◦ X−1 : P ∈
R∗(µ)}.

Notice that Theorem 5.4 follows immediately from Theorem 5.8 and
Lemma 5.6.

The proof of Theorem 5.8 follows a well known line of argument in game
theory, indeed dating back to the original existence proof of Nash [37]. The
idea is to apply Kakutani’s fixed point theorem, which we quote without
proof from [1, Corollary 17.55].

Theorem 5.9 (Kakutani’s fixed point theorem). Let K be a nonempty
compact convex subset of a locally convex Hausdorff topological vector space.
Suppose a map Ψ : K → 2K has the following properties:

(i) Ψ(x) is nonempty and convex for each x ∈ K.

(ii) The graph {(x, y) : x ∈ K, y ∈ Ψ(x)} is closed.

Then Ψ has a fixed point. That is, there exists x ∈ K such that x ∈ Ψ(x).

We wish to apply this to the map

Ψ(µ) := {P ◦X−1 : P ∈ R∗(µ)}, Ψ : P(Cd)→ 2P(Cd). (5.2)

Our ambient topological vector space will of course be the set of bounded
signed measures on Cd, of which P(Cd) is a convex subset. The following
lemma designs an appropriate compact convex set K ⊂ P(Cd).

Lemma 5.10. Let K0 denote the set of probability measures µ ∈ P(Cd) such
that µ0 = λ0 and

Eµ|Xτ+δ −Xτ | ≤ δ‖b‖∞ +
√
δ,

for any δ > 0 and any stopping time τ with values in [0, T − δ]. Then the
following hold:

(i)
⋃
µ∈P(Cd)R(µ) ⊂ K0.

(ii) K0 is tight.

(iii) K0 is convex.

In particular, the closure K = K0 is compact and convex.

Proof. Claim (i) follows from the same argument which led to (4.3) in the
proof of Theorem 4.11. Claim (ii) follows from Aldous’ criterion for tight-
ness, Theorem 4.12. Claim (iii) is straightforward to check, as K0 is defined
in terms of constraints which are linear in the measure µ.
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The next step is to show that the map Ψ defined in (5.2) satisfies the two
key hypotheses of Kakutani’s theorem. This is done with the help of another
famous theorem, widely used in game theory, and typically attributed to
Berge. We quote the result from [1, Theorem 17.31]:

Theorem 5.11 (Berge’s Maximum Theorem). Suppose X and Y are met-
ric spaces, with Y compact. Let F : X → 2Y and f : X × Y → R be
given. Suppose that f is jointly continuous, and F satisfies the following
two properties:

(i) The graph Gr(F ) := {(x, y) : x ∈ X , y ∈ F (x)} is closed.

(ii) F is lower hemicontinuous, which means the following: Given xn → x
in X , and given y ∈ F (x), we may find n1 < n2 < . . . and ynk

∈ F (xnk
)

such that ynk
→ y.

Define v : X → R and F ∗ : X → 2Y by setting

v(x) = sup
y∈F (x)

f(x, y), F ∗(x) = arg max
y∈F (x)

f(x, y).

Then v is continuous, F ∗(x) 6= ∅ for all x ∈ X , and the graph Gr(F ∗) :=
{(x, y) : x ∈ X , y ∈ F ∗(x)} is closed.

We are now ready for the main proof:

Proof of Theorem 5.8. Recall the definition of the set-valued mapR : P(Cd)→
P(Ω), given by

R∗(µ) = arg max
P∈R(µ)

∫
Ω

Γ(µ, ·) dP.

We would like to apply Berge’s Theorem 5.11 to conclude that R∗(µ) 6= ∅ for
each µ and that the graph Gr(R∗) := {(µ, P ) : µ ∈ X , P ∈ R∗(µ)} is closed.
Knowing this, we complete the proof as follows. Because

∫
Ω Γ(µ, ·) dP is

linear in P , the set of maximizers R∗(µ) must be convex for each µ. If we
then define Ψ as in (5.2), it is readily checked using the fact that P 7→ P◦X−1

is linear and continuous that Ψ(µ) is convex and nonempty for each µ and
that the graph Gr(Ψ) is closed. Hence, Kakutani’s Theorem 5.9 yields the
existence of a fixed point.

It remains to check the hypotheses of Berge’s Theorem 5.11. It follows
from Lemma 2.9 that

∫
Ω Γ(µ, ·) dP is jointly continuous in (µ, P ). It remains

to check that R satisfies the hypotheses (i) and (ii) of Berge’s Theorem hold.
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(i) Suppose (µn, Pn) → (µ, P ), with (µn, Pn) ∈ Gr(R) and (µ, P ) in
P(Cd)×P(Ω). Note that (µn, Pn) ∈ Gr(R) simply means µn ∈ P(Cd)
and Pn ∈ R(µn). Thus Pn ◦ X−1

0 = λ0 for each n, and we conclude
P ◦X−1

0 = λ0. Finally, we must check that Wµ is an F-Brownian mo-

tion under P . First, notice that the map Ŵ : P(Cd)×Ω→ Cd defined
by

Ŵ (ν, x, q)t := xt − x0 −
∫

[0,t]×A
b(s, xs, νs, a) q(ds, da) (5.3)

is jointly continuous (see Lemma 2.9). It then follows from Lemma
2.10 that

P ◦ (Wµ)−1 = P ◦ Ŵ (µ, ·)−1 = lim
n
Pn ◦ Ŵ (µn, ·)−1

equals Wiener measure. It remains to show that Wµ
s −Wµ

t is inde-
pendent of Ft, for 0 ≤ t ≤ s ≤ T . To do this, fix t < s, a bounded
continuous function ϕ : Rd → R, and a bounded, Ft-measurable, and
continuous function h : Ω→ R. By continuity and the fact that Pn ∈ R
for each n, we have (implicitly using Lemma 2.9)

EP [ϕ(Wµ
s −W

µ
t )h(X,Λ)] = lim

n
EPn

[
ϕ(Wµn

s −W
µn

t )h(X,Λ)
]

= lim
n

EPn

[
ϕ(Wµn

s −W
µn

t )
]
EPn [h(X,Λ)]

= EP [ϕ(Wµ
s −W

µ
t )]EP [h(X,Λ)] .

This is enough to conclude the desired independence.

(ii) Fix µn → µ in P(Cd) and P ∈ R(µ). Note that under P we have

dXt =

∫
A
b(t,Xt, µt, a) Λt(da)dt+ dWt,

where W := Wµ is a Brownian motion. Now, Assumption B ensures
that b is Lipschitz in x. Hence, we may find a unique strong solution
of the SDE

dXn
t =

∫
A
b(t,Xn

t , µ
n
t , a) Λt(da)dt+ dWt, Xn

0 = X0,

constructed on the same probability space (Ω,F ,F, P ). It is then clear
that Pn := P ◦ (Xn,Λ)−1 belongs to R(µn) for each n. We complete
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the proof by checking that Pn → P weakly. A standard argument
shows Xn → X almost surely in Cd. Indeed, note that

|Xn
t −Xt| ≤

∫
[0,t]×A

|b(s,Xn
s , µ

n
s , a)− b(s,Xs, µs, a)|Λ(ds, da)

≤ L
∫

[0,t]×A
|Xn

s −Xs|Λ(ds, da)

+

∫
[0,t]×A

|b(s,Xs, µ
n
s , a)− b(s,Xs, µs, a)|Λ(ds, da)

= L

∫ t

0
|Xn

s −Xs|ds

+

∫
[0,t]×A

|b(s,Xs, µ
n
s , a)− b(s,Xs, µs, a)|Λ(ds, da),

and then use Gronwall’s inequality to get

EP sup
t∈[0,T ]

|Xn
t −Xt|

≤ LeLTEP
∫

[0,T ]×A
|b(s,Xs, µ

n
s , a)− b(s,Xs, µs, a)|Λ(ds, da).

By dominated convergence and continuity of b in the measure ar-
gument, the right-hand side converges to zero. We conclude that
Pn = P ◦ (Xn,Λ)−1 converges to P ◦ (X,Λ)−1 = P .

Remark 5.12. The only place we used the Lipschitz part of Assumption B
is in this last step, to prove lower hemicontinuity. Reflecting on the proof,
what is really needed is some form of weak uniqueness. That is, for any
choice of µ and P ∈ R(µ), we want to be able to exhibit P as the unique
solution of some SDE, for which suitable stability properties let us prove
convergence. Annoyingly, the controlled SDEs we encounter in this way
have random coefficients, and the weak solution theory for such equations
is not incredibly well-developed. But there are other ways to make this
work, and we Remark that Theorems 5.2, 5.8, and 5.4 all hold without the
Lipschitz assumption, albeit with a trickier proof. See [29, Theorem 6.2].

5.2 Markovian equilibria

Using a relaxed equilibrium, the existence of which we now know from The-
orem 5.4, we can use it to construct a Markovian equilibrium, thus proving
Theorem 5.2. We do this by adapting the argument of Section 4.2.
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Proof of Theorem 5.2. By Theorem 5.8, there exist (µ, P ) ∈ P(Cd)×P(Cd×
V) such that P ◦ X−1 = µ and P ∈ R∗(µ). By Theorem 4.13, we can
find a Markovian strict optimal control P 0 ∈ R∗(µ) such that P 0 ◦X−1

t =
P ◦ X−1

t = µt for each t ∈ [0, T ]. Next note that all of the coefficients
(b, f, g) depend on µ only through the marginal flow (µt)t∈[0,T ]. Hence, if
we define µ0 := P 0 ◦X−1, then we have µ0

t = µt for all t ∈ [0, T ], and thus
R(µ) = R(µ0) and R∗(µ) = R∗(µ0). Hence, P 0 ∈ R∗(µ0), and we conclude
that µ0 is a mean field equilibrium.
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