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Abstract

Mean field game (MFG) theory generalizes classical models of interacting particle systems by
replacing the particles with rational agents, making the theory more applicable in economics
and other social sciences. Intuitively, (stochastic differential) MFGs are infinite-population
or continuum limits of large-population stochastic differential games of a certain symmetric
type, and a solution of an MFG is analogous to a Nash equilibrium. This thesis tackles
several fundamental problems in MFG theory. First, if (approximate) equilibria exist in the
large-population games, to what limits (if any) do they converge as the population size tends
to infinity? Second, can the limiting system be used to construct approximate equilibria for
the finite-population games? Finally, what can be said about existence and uniqueness of
equilibria, for the finite- or infinite-population models?

This thesis presents a complete picture of the limiting behavior of the large-population
systems, both with and without common noise, under modest assumptions on the model
inputs. Approximate Nash equilibria in the n-player games admit certain weak limits as n
tends to infinity, and every limit is a weak solution of the MFG. Conversely, every weak
MFG solution can be obtained as the limit of a sequence of approximate Nash equilibria
in the n-player games. Even in the setting without common noise, a new solution concept
is needed in order to capture all of the possible limits. Interestingly, and in contrast with
well known results on related interacting particle systems, empirical state distributions of-
ten admit stochastic limits which are not simply randomizations among the deterministic
solutions.

With the limit theory in mind, the thesis then develops new existence and uniqueness
results. Using controlled martingale problems together with relaxed controls, a general
existence theorem is derived by means of Kakutani’s fixed point theorem. In the common
noise case, a natural notion of weak solution is introduced, and the existence and uniqueness
theory is designed in perfect analogy with weak solutions of stochastic differential equations.
An existence theorem for weak solutions is proven by a discretization procedure, and a
Yamada-Watanabe result is presented and illustrated under some stronger assumptions which
ensure pathwise uniqueness.
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Chapter 1

Introduction

Large systems of interacting individuals are central to countless areas of science; the individ-
uals may be people, computers, animals, or particles, and the large systems may be financial
markets, networks, flocks, or fluids. Mean field theory (an enormously broad term) was orig-
inally developed to study particle systems and has since emerged as the most widespread
mathematical foundation for studying a broader class of these systems. The key insight of
this approach is that the infinite-population (continuum) limit of the right kind of finite-
population model can effectively approximate macroscopic and statistical features of the
system as well as the behavior of a typical or average particle. Applications of mean field
theory beyond its traditional domain of statistical physics, though plentiful, are often criti-
cized, particularly in the social sciences, for their inability to model individuals as rational.
Indeed, the so-called individuals of classical mean field theories behave according to exoge-
nous laws of motion and are thus best understood as particles.

The young theory of mean field games directly addresses this criticism and fundamentally
generalizes traditional mean field theory by granting individuals choice. Each individual
is allowed to optimize some criterion, as an investor maximizes wealth, a manufacturer
chooses how much to produce, or a driver avoids traffic. Mean field game (MFG) theory
again facilitates succinct descriptions of the behavior of a representative agent as well as
the distribution of states across the population and over time. The distribution of states
could variously represent, for example, the income distribution in a given country or the
distribution of fish in a school. In contrast with classical mean field theory, the dynamics of
the system emerge endogenously in a (typically) competitive equilibrium. Because equilibria
of large competitive systems are usually difficult to analyze, MFG theory again seeks more
tractable infinite-population limits that retain important statistical features of finite systems.

MFG theory has the potential to advance research on a number of problems of intellec-
tual and practical importance, from financial market stability to the dynamics of the income
distribution. However, incorporating choice naturally renders MFG models much more com-
plex than their classical mean field counterparts. As a result, the demands of applications
far exceed their as yet underdeveloped theoretical foundations. The original developments
around 2006 (see the work of Lasry and Lions [91, 89, 90] and Huang et al. [67, 68]) painted
a broad picture of the possibilities of MFG theory and its applications. Subsequent research,
however, has focused largely on theoretical questions of existence and uniqueness of solu-
tions for the equations governing the particular class of MFG systems that warrants the more

1



specific title of stochastic differential mean field games. This thesis deepens the analysis of
these two questions but also investigates the under-emphasized problem of rigorously justi-
fying the mean field limit. The goal of the thesis is to study the following three problems,
in the context of stochastic differential mean field games:

(1) What is the precise nature of the mean field game limit? More specifically, can we
identify all of the possible limits of n-player approximate Nash equilibria as n → ∞
with a sensible mean field game equilibrium concept? This “limit” should at least
capture the behavior of the distribution of state processes.

(2) When does there exist an (approximate) Nash eqiulibria for the finite games, and when
does there exist an equilibrium for the mean field game?

(3) When is the solution of the mean field game unique?

A good equilibrium concept for the mean field game would render the set of MFG equilibria
precisely equal to the set of limits of approximate Nash equilibria. In this case, the two
questions of point (2) are equivalent, and uniqueness results for the MFG immediately imply
that there is a unique limit to which any n-player approximate Nash equilibria converge.
This thesis presents some solutions to these problems, rigorously proving the correspondence
between the finite-population game and a new “weak solution” concept for the mean field
game. Moreover, under various assumptions on the model inputs, several existence and
uniqueness results for this notion of weak solution are derived, along with their implications
for the limit theory.

Throughout the thesis, special attention is paid to models with common noise, also known
as aggregate uncertainty. These models, though largely neglected in the extant literature,
are important for applications due to their ability to model certain types of macroscopic
sources of noise which persist in the mean field limit.

The rest of this introductory chapter describes mean field game theory in more detail and
summarizes the known results on the foundational questions outlined above. Some time is
spent first on background material from the theory of McKean-Vlasov limits of interacting
diffusions, which can be seen, in contrast with mean field games, as zero-intelligence models.

1.1 From particle systems to mean field games

1.1.1 Interacting diffusion models

Let us begin by describing the interacting particle systems on which stochastic differential
mean field games are based. These systems are by now well understood and serve as a chief
source of intuition when studying their competitive game counterpart.

Imagine n particles are moving in d-dimensional space continuously in time, and the
position of particle i at time t is denoted X i

t . The particle system evolves according to a
system of stochastic differential equations (SDEs) of the form{

dX i
t = b(X i

t , µ̂
n
t )dt+ σ(X i

t , µ̂
n
t )dW i

t , i = 1, . . . , n,

µ̂nt = 1
n

∑n
k=1 δXk

t
.

(1.1)
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There are several important structural features of this model that warrant discussion. First of
all, the driving noises W 1, . . . ,W n are independent Wiener processes, and we note that par-
ticle i is influenced directly only by W i. We assume also that the initial positions X1

0 , . . . , X
n
0

are i.i.d. The drift and volatility functions b and σ are the same for each particle, but for
particle i these functions are evaluated at the particle’s own position X i

t as well as the em-
pirical distribution of the n particles’ positions. To be clear, the arguments of the functions b
and σ are a spatial variable and a probability measure. If the Wiener processes W 1, . . . ,W n

are correlated, we have a common noise model; we postpone the discussion of such models
to Section 1.2.

A typical special class of this model arises when the drift (and volatility, though in the
introduction we will typically assume it is constant for simplicity) is of the form

b(x, µ) =

∫
b̃(x, y)µ(dy),

for a function b̃ taking two spatial variables as arguments. The SDEs above then takes the
form

dX i
t =

1

n

n∑
i=1

b̃(X i
t , X

j
t )dt+ σdW i

t .

This model was introduced by McKean in [93], building on ideas of Kac [72], in an effort
to rigorously derive certain reduced equations (e.g., Burger’s or Boltzmann’s) from finite-
particle models. The more general form is discussed in the monograph of Sznitman [104].

One reason these particle systems admit tractable limits as n→∞ is their symmetry. Of
course, the particles are exchangeable in the sense that the distribution of (Xπ(1), . . . , Xπ(n))
is the same for any choice of permutation π of {1, . . . , n}, at least when the SDE system
is well-posed. Moreover, when n is large, the influence of a single paricle on the empirical
measure µ̂n is small; since this is the only source of coupling or interdependence between the
particles, we expect intuitively that some asymptotic independence should arise as n tends
to infinity.

Particle systems of this form are quite natural starting points for many scientific models,
and understanding their limiting behavior is often an important tool in their analysis. On the
other hand, in some applications the limiting system is the starting point (e.g., an idealized
physical model), and the finite particle system is used primarily for the purpose of simulation
and numerical approximation [21, 84].

1.1.2 The McKean-Vlasov limit

A well known heuristic argument allows us to identify the candidate mean field limit of the
system (1.1). Suppose for the moment that (µ̂nt )t∈[0,T ] converges to a deterministic measure
flow (µt)t∈[0,T ]. Then, if b and σ are suitably continuous, the limiting dynamics of a single
particle should become

dX
i

t = b(X
i

t, µt)dt+ σ(X
i

t, µt)dW
i
t .

That is, X i should converge to X
i

in some sense. Then, for continuous functions f , we

should have both E[f(X i
t)]→ E[f(X

i

t)] and E[f(X i
t)] = E

∫
f dµ̂nt →

∫
f dµt for each i, and
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so µt should actually agree with the law of X
i

t. In other words, the X i should converge in a
sense to independent copies of the solution of the McKean-Vlasov equation

dXt = b(Xt,Law(Xt))dt+ σ(Xt,Law(Xt))dWt. (1.2)

Alternatively, the dynamics of (µt)t∈[0,T ] can be described by a nonlinear Kolmogorov forward
equation for µ, which may be written (assuming µt has a smooth density)

∂tµt = L∗µtµt = −∂x(b(x, µt)µt(x)) +
1

2
∂2
x(σ(x, µt)

2µt(x)), (1.3)

where L∗µt is the adjoint of the operator Lµt given by (assuming the particles live in one
dimension)

Lµtϕ(x) = b(x, µt)ϕ
′(x) +

1

2
σ(x, µt)

2ϕ′′(x).

This partial differential equation (PDE) is also sometimes called the McKean-Vlasov equa-
tion, and it may be derived directly from the n-particle model (again heuristically) by ap-
plying Itô’s formula to ϕ(X i

t), for smooth ϕ:

d

∫
ϕdµ̂nt =

1

n

n∑
i=1

dϕ(X i
t) =

(∫
Lµtϕdµ̂

n
t

)
dt+

1

n

n∑
i=1

ϕ′(X i
t)σ(X i

t , µt) dW
i
t . (1.4)

Since W i are independent, the last term should vanish as n tends to infinity, and the equation
which results is simply a weak form of the equation (1.3).

More precisely, when the McKean-Vlasov equation admits a unique solution, it has been
shown rigorously in many settings that the n-particle empirical measures converge in some
sense to this unique solution. This type of result is known as propagation of chaos, a term
coined by Mark Kac. On the other hand, when multiple solutions of the McKean-Vlasov
equation exist, then typically all one can say is that µ̂n admit limits in distribution, and
every such limit is (a stochastic measure flow) concentrated on (i.e., supported by) the set
of solutions of the McKean-Vlasov equation.

This McKean-Vlasov limit and many variations have been studied thoroughly in the
past several decades, using a wide range of techniques. For the basic form of the model
outlined here, there are two dominant strategies for rigorously deriving this limit. The
first and more widely applicable technique is weak convergence arguments. By placing the
empirical measures (µ̂nt )t≥0 in a good topological space, proving the relative compactness of
this sequence typically requires only modest assumptions on the data b and σ. Either of
the above heuristic arguments may then be made rigorous in order to characterize the limit
points. See [96, 53, 58] for implementations of this strategy.

A second technique, often called trajectorial propagation of chaos, tends to yield stronger
convergence results but only under accordingly stronger assumptions (e.g., Lipschitz coeffi-
cients). These assumptions also yield uniqueness of the McKean-Vlasov equation. The idea
is to construct an explicit coupling between the limiting process and the n-particle models,
by building independent copies of the unique solution X of the McKean-Vlasov equation on
the same probability space as the finite-particle system and driven by the same Brownian
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motions. An advantage of this approach is that it permits good estimates of the rate of
convergence to the limit. See [104] for details of this approach.

The non-unique regime, in which the n-particle system admits multiple limits, is empha-
sized in this thesis for a number of reasons. First of all, uniqueness of Nash equilibria is rare
in game theory, and mean field games are no exception. This should not to be seen as a
nuisance or a pathology, but rather as a fact of life and a potentially useful modelling tool.
For example, the existence of both “good” and “bad” equilibria is a critical feature of the
seminal Diamond-Dybvig [44] model of bank runs. Even in the particle models described
above, non-uniqueness can be exploited to model phase transitions and quantum tunneling,
as in a series of papers of Dawson and Gärtner [42, 41, 43].

1.1.3 Mean field games

Let us now return to the setup of the n-particle model (1.1) and bestow upon the particles
some capacity for choice. This will turn the model into a stochastic differential game, and
we take care to design the general model so as to preserve the system’s symmetry. To reflect
their new-found rationality, we will now refer to the “particles” instead as “agents,” and
the process X i is called the state process of agent i. The game takes place on a fixed finite
time horizon T > 0. Agent i chooses a control process αi = (αit)t∈[0,T ], which influences the
evolution of the state process according to the following dynamics:{

dX i
t = b(X i

t , µ̂
n
t , α

i
t)dt+ σ(X i

t , µ̂
n
t , α

i
t)dW

i
t ,

µ̂nt = 1
n

∑n
k=1 δXk

t
.

(1.5)

This is the same SDE as before, except that now the dynamics of the state process of each
agent depends additionally on the agent’s own control. Agent i will seek to maximize a
certain objective, of the form

Ji(α
1, . . . , αn) = E

[∫ T

0

f(X i
t , µ̂

n
t , α

i
t)dt+ g(X i

T , µ̂
n
T )

]
.

Note that the running objective f and the terminal objective g are the same for each agent.
Because the data (b, σ, f, g) depend on the empirical measure µ̂n, these optimization problems
are coupled. The optimal strategy of a single agent i depends through µ̂n on which controls
the other agents choose, but note that this dependence is anonymous, in the sense that agent
i does not care which agent chooses which controls. This is indeed a very particular class
of games, and Section 1.3 will discuss some interesting extensions of this most basic class of
model.

To simultaneously resolve these optimization problems, we will look for Nash equilibria.
Somewhat more generally, we say that (α1, . . . , αn) is an ε-Nash equilibrium (or more vaguely
an approximate Nash equilibrium) if

Ji(α
1, . . . , αn) + ε ≥ Ji(α

1, . . . , αi−1, β, αi+1, . . . , αn)
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for each admissible alternative strategy β and each i = 1, . . . , n. While there are of course
many more refined concepts of equilibrium, the Nash equilibrium is the prototypical compet-
itive equilibrium. Working at this stage with a cooperative type of equilibrium (e.g., Pareto)
leads to an entirely different mean field theory, which is carefully contrasted with the mean
field game paradigm in [34].

As is the case in the analogous particle models, understanding the mean field limit of these
games can be useful in different ways. First, it could be the case that a continuum model
is convenient or tractable to work with but should still be rigorously grounded in a more
realistic or tangible finite-population system; this is much in the spirit of Kac’s influential
work on the Boltzmann equation [72]. On the other hand, it is clear that n-player stochastic
differential of this form tend to be quite intractable, especially when n is large. Closed-form
solutions of such n-player games are almost never available, with the possible exception of
sufficiently simple linear-quadratic models. Numerical analysis would presumably go through
a system of n coupled Hamilton-Jacobi-Bellman (HJB) PDEs (see [12]) which describe the
value functions of the n agents, but common finite-difference schemes naturally suffer from
the curse of dimensionality.1 With this in mind, one may hope to find a simpler system by
passing to the limit n → ∞. Although the literature is limited so far [2, 1, 27, 28, 87, 86],
some numerical methods have been developed for certain types of mean field games, and this
paves the way for approximate solutions of otherwise intractable n-player models.

In fact, it is difficult even to abstractly establish the existence of equilibria for n-player
stochastic differential games. While existence theorems abound for two-player zero sum
stochastic differential games, there are not nearly as many results for nonzero-sum games or
games with more than two players; some work in this direction is by PDE methods [12, 13],
BSDE methods [62, 62], and relaxed control arguments [20]. A key point of MFG theory,
as we will soon discuss in more detail, is that solutions of the limiting equations may be
used to construct approximate equilibria for large-population games, for which existence of
equilibria can be hard to prove directly.

Let us now describe the limiting MFG system on an intuitive level. If the number of
agents n is large, then a single representative agent has little influence on the empirical
measure flow (µ̂nt )t∈[0,T ], and this agent expects to lose little in the way of optimality by
ignoring her own effect on the empirical measure. If there were a continuum of agents,
then each agents’ influence on this empirical measure would be null, and the optimization
problems of the agents would be decoupled and identical. This line of reasoning leads to the
following mean field notion of equilibrium:

For a fixed (deterministic) measure flow µ = (µt)t∈[0,T ], consider the following stochastic
optimal control problem:

(Pµ)

{
supα E

[∫ T
0
f(Xµ,α

t , µt, αt)dt+ g(Xµ,α
T , µT )

]
,

s.t. dXµ,α
t = b(Xµ,α

t , µt, αt)dt+ σ(Xµ,α
t , µt, αt)dWt.

1This approach through HJB equations is preferred for closed-loop equilibria, while a Pontryagin-type
maximum principle is more appropriate for open-loop. The latter approach leads to an equally intractable
n-dimensional system of forward-backward SDEs. This thesis works exclusively with open-loop equilibria.
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A deterministic measure-valued function t 7→ µt is called an equilibrium or a MFG solution
if µt = Law(Xµ,α∗

t ) for each t ∈ [0, T ], for some control α∗ which is optimal for the problem
(Pµ).

Intuitively, the state process of (Pµ) is that of a single representative agent, and µt
represents the distribution of an infinity of agents’ state processes. The representative agent
cannot influence µt and thus considers it as fixed when solving the optimization problem. If
each agent among the infinity is identical and acts in the same way, then the law of large
numbers suggests that the statistical distribution of the representative’s optimally controlled
state process at time t must agree with µt. For this reason, the equation µt = Law(Xµ,α∗

t ) is
often called the consistency condition.

A somewhat more mathematical heuristic argument is as follows. Assume that we are
given for each n a Nash equilibrium (α1, . . . , αn) for the n-player game, and assume also
that that there exists a single deterministic function α̂, independent of n and i, such that
αit = α̂(t,X i

t) for each 1 ≤ i ≤ n. (This is a huge assumption, but the symmetry of the
system and the weakness of the coupling for large n suggest that it may not be far from
reasonable.) If α̂ is sufficiently well-behaved, then the state process empirical measure should
converge to a McKean-Vlasov limit (as discussed in Section 1.1.1), i.e. µ̂n → µ for some
deterministic measure flow µ. The state process X1 of agent 1, controlled by α1, should also
converge as n → ∞ to the solution Xµ,α of the state equation of the mean field problem
(Pµ) with αt = α̂(t,Xµ,α

t ). On the other hand, suppose agent 1 in the n-player game chooses
to use an alternative control β, while the other agents stick with αi; then as n → ∞ the
corresponding empirical measure should be close to the original µ̂n, since only one player
has changed strategy, and thus this new empirical measure should converge to the same µ.
Similarly, the new state process of agent 1 (controlled by β) should then converge to the
state process Xµ,β of the mean field problem (Pµ). The Nash equilibrium assumption on
(α1, . . . , αn) provides an inequality which, when n → ∞, implies that α is superior to β in
the limiting control problem (Pµ). Since β was arbitrary, this yields the optimality condition
of (Pµ). Making this argument rigorous turns out to be a highly nontrivial task, and the
interaction between the optimization and the n→∞ limit is subtle.

1.1.4 Convergence to the mean field game limit

The first question raised by such an optimistic, informal derivation of the MFG system is,
of course: Does the MFG system actually describe the the limit as n→∞, in some rigorous
sense? In the literature, this is most commonly answered by using a solution of the MFG
to construct εn-Nash equilibria for the n-player games, where εn → 0. More specifically,
suppose µ is a MFG solution, and the corresponding optimal control may be written in
feedback form α∗t = α̂(t,Xµ,α∗

t ), for some nice function α̂. Then, if each agent i uses the
control αit = α̂(t,X i

t), then the heuristic argument of the previous paragraph can be adapted
to prove rigorously that we have an εn-Nash equilibrium for some εn → 0. Following [67, 32],
most of the probabilistic work on MFGs adopts this strategy, it is by now indisputable that
MFG solutions are useful in constructing approximate equilibria for n-player games.

Little is known, however, regarding the opposite and arguably more direct convergence
problem, and a thorough study of this problem is one of the main contributions of this
thesis. Namely, if we are given for each n an approximate Nash equilibrium, then what
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can be said about the n → ∞ limit? Thinking cautiously that the MFG solutions may
not be unique, one might guess from the McKean-Vlasov theory that limits of the empirical
measures exist and are concentrated on the set of MFG equilibria. We will see, however,
that this is not the case, and the full story of MFG limits is more subtle. A genuinely
stochastic notion of equilibrium is required for a full description of the limits of n-player
equilibria, and these stochastic equilibrium are not necessarily just randomizations among
the family of deterministic equilibria. As a consequence, the (deterministic) solution concept
considered thus far in the literature on mean field games does not fully capture the limiting
dynamics of n-player equilibria. This thesis studies this point in some detail, proving some
admittedly difficult-to-apply results which nevertheless shed some light on this phenomenon:
The fundamental obstruction is the adaptedness required of controls, which renders the class
of admissible controls quite sensitive to whether or not (µt)t∈[0,T ] is stochastic. In short, a
stochastic equilibrium (or weak MFG solution) requires that the stochastic measure flow µ
is independent of the noise W , and the consistency condition reads µt = Law(Xµ,α∗

t | Fµt ),
where Fµt is the filtration generated by µ.

The early work of Lasry and Lions [91, 89] first attacked the direct convergence problem
rigorously using PDE methods, working with an infinite time horizon and strong simplifying
assumptions on the data, and their results were later generalized by Feleqi [49]. Bardi and
Priuli [7, 8] justified the MFG limit for certain linear-quadratic problems, and Gomes et al.
[54] studied models with finite state space. Substantial progress was made in a recent paper
of Fischer [51], which deserves special mention also because both the level of generality and
the method of proof are quite similar to ours; we will return to this point shortly.

With the exception of [51], the aforementioned results share the important limitation
that the agents have only partial information: the control of agent i may depend only on
her own state process X i or Wiener process W i. The results of this thesis allow for arbi-
trary full-information strategies, partially resolving a conjecture of Lasry and Lions (stated
in Remark x after [91, Theorem 2.3] for the case of infinite time horizon and closed-loop
controls). Combined in [91, 89, 49] with the assumption that the state process coefficients
(b, σ) do not depend on the empirical measure, the assumption of partial information leads
to the immensely useful simplification that the state processes of the n-player games are
independent.

Fischer [51], on the other hand, allows for full-information controls but characterizes
only the deterministic limits of (µ̂nt )t∈[0,T ] as MFG equilibria. Assuming that the limit is
deterministic implicitly restricts the class of n-player equilibria in question. By characterizing
even the stochastic limits of (µ̂nt )t∈[0,T ], which we show are in fact quite typical, we impose
no such restriction on the equilibrium strategies of the n-player games. This not to say,
however, that our results completely subsume those of [51], which work with a more flexible
notion of local approximate equilibria and which notably include conditions under which the
assumption of a deterministic limit can be verified.

The proof of our main limit theorem works by studying the full joint distribution of those
processes (µ̂n,WU , αU , XU) directly relevant to a representative agent U , with U chosen
uniformly at random from {1, . . . , n}. Randomly selecting the representative agent injects
some important symmetry, since equilibrium controls are non necessarily symmetric (see
Section 2.3.3 for some discussion of this point). Deriving the correct limiting state process
dynamics is fairly routine once adequate estimates on the state processes are established,
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and the needed moment bounds on the control processes come from a crucial coercivity
assumption on the objective functions. A key technical difficulty is specifying the right class
of admissible controls in the limit, and this leads to a notion we call compatibility ; this notion
is introduced in Section 3.1.

1.1.5 Existence

Again, the more common way to justify the MFG system is by using its solution to construct
approximate equilibria for the n-player games. When this is possible, the next natural
question is how to solve the MFG. This has been done primarily in one of two ways, using
either PDEs or FBSDEs.

Numerous conditions are known under which the value function v(t, x) of the optimal
control problem (Pµ) can be expressed as a (viscosity) solution of a Hamilton-Jacobi-Bellman
equation, of the form{

−∂tv(t, x)− supa
[
Laµtv(t, x) + f(x, µ, a)

]
= 0, on (0, T )× Rd,

v(T, x) = g(x, µT ).
(1.6)

Here we define the generator Lam on smooth test functions (again assuming the dimension of
the state process is one) by

Lamϕ(t, x) = b(x,m, a)∂xϕ(t, x) +
1

2
σ(x,m, a)2∂2

xϕ(t, x).

On the other hand, if the optimal control is of the form α∗t = α̂(t,Xµ,α∗

t ) for a nice function
α̂, the fixed point condition µt = Law(Xµ,α∗

t ) implies (written assuming µt has a smooth
density) that the Kolmogorov forward equation for µ is{

∂tµt(x) = −∂x (b(x,m, α̂(t, x))µt(x)) + 1
2
∂2
x (σ(x,m, α̂(t, x))2µt(x)) ,

µ0 = Law(X0).

Coupling this Kolmogorov equation with the HJB equation summarizes the important fea-
tures of the MFG problem. This PDE system has been the subject of much analysis, be-
ginning with the work of Lasry and Lions [91] and surveyed in [24, 55], with the chief
difficulty stemming from the opposing directions of time in the two equations. On the
one hand, PDE techniques typically require strong simplifying assumptions on the struc-
ture of the data; for example, typically b(x, µ, a) = a, σ is constant, and f is of the form
f(x, µ, a) = f1(x, a) + f2(x, µ). On the other hand, PDE methods are powerful in their
ability to handle local mean field interactions, meaning that coefficients depend on (x, µ)
through the density dµ/dx(x). In this thesis, we only consider nonlocal smoothing interac-
tions, meaning the dependence of the coefficients on the measure argument is continuous
with respect weak convergence, or more generally a Wasserstein metric.

An alternative approach, pioneered by Carmona and Delarue [32], uses the stochastic
(Pontryagin) maximum principle to reduce the MFG problem to a forward-backward SDE
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of McKean-Vlasov type as follows: Let

H(x, y,m, a) = b(x,m, a)y + f(x,m, a),

and suppose α̂(x, y,m) maximizes H(x, y,m, a) over a, for each x, y,m. Fix a measure flow
µ = (µt)t∈[0,T ], and suppose (X, Y, Z) solves the FBSDE

dXt = b(Xt, Yt, α̂(Xt, Yt, µt))dt+ σdWt,

dYt = −∂xH(Xt, Yt, µt, α̂(Xt, Yt, µt))dt+ ZtdWt,

X0 = ξ, YT = ∂xg(XT , µT )

(1.7)

According to the well known maximum principle (see e.g. [98, Theorem 6.4.6]), under
appropriate differentiability and convexity assumptions, the control α̂(Xt, Yt, µt) is optimal
for the problem (Pµ). Thus, to solve the MFG, it suffices to find µ and a solution (X, Y, Z)
to the above FBSDE such that µt = Law(Xt) for all t.

In a select few cases, the PDE and FBSDE systems above (and thus the MFG prob-
lem) can be solved fairly explicitly. While several examples are provided in [61], very few
stochastic control problems admit explicit solutions beyond simple linear-quadratic models.
A linear-quadratic control problem is one in which b and σ are affine in the state and control
arguments (x, a), and the objectives f and g are quadratic in (x, a). A linear-quadratic mean
field game typically involves an affine function of the mean

∫
yµ(dy) in the state dynamics

and a quadratic function of the same term in the objectives. Generally, linear-quadratic
control problems and MFGs can be reduced to certain Riccati differential equations [15, 34],
which occasionally themselves admit explicit solutions [35]. Beyond the linear-quadratic
case, explicit solutions of MFGs are typically unavailable, and it is nontrivial to prove that
a solution exists. Both the PDE and FBSDE have been the basis for well-posedness studies,
and in both cases a key difficulty comes from the forward-backward nature of the problem.
When the time horizon T is small, a contraction argument yields existence and uniqueness of
solutions under standard Lipschitz assumptions [67], but a restriction on the time horizon is
often unsatisfactory. Most existence proofs instead turn on Schauder’s fixed point theorem,
establishing the requisite compactness and continuity via a priori estimates on the PDE or
FBSDE system.

This thesis takes a very different approach to proving existence theorems by working
with relaxed controls. Rather than characterizing solutions of the control problems (Pµ) via
solutions of PDEs or FBSDEs, a more functional-analytic framework is employed in which
admissible controls are described by joint distributions of state-control pairs, i.e. (X,α).
This framework was studied heavily until a couple of decades ago, and it is quite convenient
for proving the existence of optimal (Markovian) controls [75, 63] and for weak convergence
arguments, such as those arising in numerical methods [85]. For mean field games, there
are several advantages to adopting this approach. First, by moving to a compactification
of the control space, there is no need for precise analysis of the optimal feedback control.
This is often the crux of the PDE and FBSDE approaches, which require strong convexity
assumptions to ensure that the continuity of the fixed point map is not lost because of a
poorly behaved control. Second, the arguments can be carried out under much less restrictive
assumptions on the data (b, σ, f, g). To the reader familiar with the existence theory for
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stochastic optimal controls, it should come at no surprise that this relaxed control approach
simultaneously affords both greater generality and a simpler proof. Indeed, the PDE and
FBSDE methods are the preferred methods for constructing optimal controls and yield much
more explicit information about the solution than the more abstract approach of relaxed
controls. However, in the study of existence for mean field games, this explicit information is
almost always immediately surrendered by an application of an abstract fixed point theorem,
usually Schauder’s. Hence, purely for the sake of proving existence of equilibria, the use of
relaxed controls seems more natural in that it is abstract from the start.

1.1.6 Uniqueness

Uniqueness is much harder to come by than existence in game theory in general, and mean
field games are no exception. Existence results vastly outnumber uniqueness results in the
literature, and uniqueness generally should not be expected. When the time horizon is
small, or alternatively when the product of certain Lipschitz constants is small, contraction
arguments are available [67]. Beyond such restrictive assumptions, Lasry and Lions [91]
discovered a versatile uniqueness criterion, often called the monotonicity condition. More
recently, Ahuja [3] showed by FBSDE methods that a weaker monotonicity condition still
yields uniqueness for a particular class of MFGs. Finally, various authors have proven
uniqueness by specialized PDE methods for certain classes of MFGs with local interactions
[25, 26, 57].

The only novelty in the uniqueness results of this thesis comes from the notion of solution.
Indeed, the precise uniqueness results rely on the Lasry-Lions monotonicity condition. But
this novelty is an important one; the new notion of weak solution is developed in this thesis
precisely because it captures the limiting behavior of the n-player approximate equilibria
completely. Uniqueness of weak solutions thus translates to a unique limit for all n-player
approximate equilibria. We will see that the notion of solution in previous literature, which
we call a strong solution, does not necessarily describe all of the limits of n-player games,
and thus a uniqueness result for strong solutions carries no information about uniqueness of
limits of n-player games.

1.2 Common noise

One important feature of the interacting diffusion model (1.1) is the independence of the
driving noises. This is unrealistic in many applications, especially in economics and finance
where aggregate shocks should not be ruled out. A model of a large financial market should
include, for example, a common set of assets to which all of the agents have access. Mean
field games with common noise are naturally more complicated and as such have appeared
very little in the literature so far. This thesis seeks to remedy this, providing some first
existence and uniqueness results for such MFGs. First, let us explore the corresponding
particle systems to get a sense of what changes in the presence of common noise.
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1.2.1 Interacting diffusion models

The diffusion model (1.1) can be extended to incorporate common noise, most easily by
including an additional independent Brownian motion B and altering the dynamics to{

dX i
t = b(X i

t , µ̂
n
t )dt+ σ(X i

t , µ̂
n
t )dW i

t + σ0(X i
t , µ̂

n
t )dBt,

µ̂nt = 1
n

∑n
k=1 δXk

t
.

(1.8)

While these systems have not been studied quite as thoroughly as the one without common
noise, it is still fairly well understood how to describe the limit n → ∞. Because of the
additional correlations entering the system through the common noise B, one should no
longer expect the limiting measure flow to be deterministic, even if it is unique.

The heuristic arguments of Section 1.1.2 adapt naturally to deriving the limiting dynamics
of (µ̂nt )t∈[0,T ]. By again applying Itô’s formula to ϕ(X i

t), for smooth ϕ, we get an extra term
compared to (1.4):

d

∫
ϕdµ̂nt =

(∫
Lµ̂nt ϕdµ̂

n
t

)
dt+

1

n

n∑
i=1

ϕ′(X i
t)σ(x, µ̂nt ) dW i

t

+

(∫
ϕ′(x)σ(x, µ̂nt )µ̂nt (dx)

)
dBt.

The dW term should again vanish in the limit, but now the dB term remains. We arrive at
a weak form of the stochastic PDE (SPDE)

dµt(x) = L∗µtµt(x) dt− ∂x (σ(x, µt)µt(x)) dBt (1.9)

This is essentially a stochastic form of a Kolmogorov forward equation, and indeed this
suggests that µt should coincide with the conditional law of Xt given B, when (Xt)t∈[0,T ]

solves the SDE

dXt = b(Xt, µt)dt+ σ(Xt, µt)dWt + σ0(Xt, µt)dBt. (1.10)

This is essentially the McKean-Vlasov SDE of (1.2), except that the law appearing in the
coefficients is now conditional. Of course, it is a highly nontrivial effort to turn these brief
heuristics into a rigorous derivation, but this has been done. Under Lipschitz assumptions
on the data, Kurtz and Xiong prove a trajectorial propagation of chaos result in [83]; they
show that the descriptions (1.9) and (1.10) are equivalent and characterize the unique limit
of (µ̂nt )t∈[0,T ].

In the non-unique regime, the literature is much thinner, but some results were obtained
by Dawson and Vaillancourt [40]. The SPDE (1.9) is replaced by a martingale problem on the
space of probability measures, shown to correspond to a weak solution of the SPDE. Here the
word “weak” is interpreted not only in the distributional sense but also in the probabilistic
sense; the SPDE must be integrated against test functions, and also the solution (µt)t∈[0,T ] is
not required to be adapted to the filtration generated by the driving noise B. Unfortunately,
no alternative formulation in the spirit of (1.10) is provided. This gap will be filled in Section
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2.2, as a useful first step toward mean field games with common noise. Indeed, rather than
requiring µt equal the conditional law of Xt given B, the right notion of weak solution requires
that we condition on (B, µ), and again remove the restriction that µ be B-measurable.

1.2.2 Mean field games

When a common noise is introduced into the stochastic differential game system described
in Section 1.1.3, one should now expect that the correct MFG limit involves conditional
measure flow. To be clear, let us now consider a stochastic differential games with n players,
with state processes given by X1, . . . , Xn satisfying{

dX i
t = b(X i

t , µ̂
n
t , α

i
t)dt+ σ(X i

t , µ̂
n
t , α

i
t)dW

i
t + σ0(X i

t , µ̂
n
t , α

i
t)dBt,

µ̂nt = 1
n

∑n
k=1 δXk

t
.

(1.11)

The description of the system and the objective functions is exactly as in Section 1.1.3,
with the only exception of the dBt term in the dynamics (1.11). The Wiener process B is
independent of W 1, . . . ,W n.

Combining our intuition from the McKean-Vlasov setting with common noise and the
MFG without common noise leads to the following candidate MFG problem. For a fixed
stochastic measure flow µ = (µt)t∈[0,T ], consider the following stochastic optimal control
problem:

(P′µ)

{
supα E

[∫ T
0
f(Xµ,α

t , µt, αt)dt+ g(Xµ,α
T , µT )

]
,

s.t. dXµ,α
t = b(Xµ,α

t , µt, αt)dt+ σ(Xµ,α
t , µt, αt)dWt + σ0(Xµ,α

t , µt, αt)dBt.

A stochastic measure flow (µt)t∈[0,T ] is called an equilibrium or a MFG solution if µt =

Law(Xµ,α∗

t | FBt ) for each t ∈ [0, T ], for some control α∗ which is optimal for the problem
(P′µ). Here FBt = σ(Bs : s ≤ t) denotes the filtration generated by the common noise.

Although we understand heuristically how to formulate the common noise problem, the
literature on such problems is very thin. The papers [61, 35] contain specific common noise
models which can be solved explicitly, and the latter paper provides the first and only
rigorous justification of this equilibrium concept, i.e. the only limit theorem, by a direct
calculation. Otherwise, Ahuja [3] provided the first and only somewhat general existence
results, for an essentially linear-quadratic model with common noise but with non-quadratic
terminal objective g.

In theory, both the PDE and FBSDE approaches described in Section 1.1.5 can adapt
to this setting, but both become far more complicated. The FBSDE system described by
(1.7) adapts in the obvious way once the dBt term is included; the only difference is that
the consistency condition now requires µt = Law(Xt | FBt ) instead of simply µt = Law(Xt).
The PDE system, on the other hand, is more sensitive. The control problem (P′µ) is not
Markovian when µ is stochastic, and thus a standard HJB equation is not available. Using
Peng’s ideas [97], we can derive in its place a stochastic HJB equation, which now reads as a
backward SPDE. Similarly, there is a Kolmogorov forward equation for the conditional laws
(µt)t∈[0,T ], but it is now a (forward) stochastic PDE as in (1.9). This forward-backward SPDE
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system is difficult to work with, but some interesting ideas appear here nonetheless. On may
guess, as in the theory of standard FBSDEs, that the backward part of the solution (the
value fuction) can be written as a deterministic function of time and of the forward part (the
measure flow). If so, this deterministic function (the arguments of which are time, a state,
and a measure) should itself solve a certain deterministic PDE, which is called the master
equation. This approach is described thoroughly in [33, 14, 39], and verification theorems
are available, but so far it is of limited value in establishing existence theorems.

The randomness of the equilibrium measure flow (µt)t∈[0,T ] significantly complicates the
analysis of common noise problems. Indeed, existence theorems must study a fixed point
problem in the much larger space of stochastic measure-valued paths. The compactness issue
is resolved by again formulating the problem in a weak sense, in terms of joint laws of the
relevant processes (B,W, µ, α,X), and by working with relaxed controls. A more stubborn
problem is posed by the rather discontinuous operation of conditioning required in the fixed
point procedure. Indeed, if random variables (Zn, Y ) converge in law (with Y independent
of n), there is generally no useful sense in which we can say that the conditional law of Zn
given Y converges. However, if the support of Y is finite, then a conditional law given Y is
merely a finite vector of (deterministic) probability measures, and it will converge weakly in
a natural and useful sense. With this in mind, we approximate the common noise B by a
sequence of random walks with finite support and solve a discretized form of the MFG; by
then refining the discretization and taking weak limits, we prove existence for the original
problem.

Both the existence theory and, of course, the limit theory hinge on weak convergence
arguments. In fact, our proof of the convergence of n-player equilibria is not complicated
much by the common noise. However, these weak convergence arguments make it much more
clear why a notion of weak solution arises naturally. For the common noise problem, a weak
solution requires only that (B, µ) is independent of W and that µt = Law(Xµ,α∗

t | FB,µt ),
where the filtration (FB,µt )t∈[0,T ] is generated by B and µ. Note that µ is not required to be B-
measurable, and if it is we call it a strong solution. As is well known in the theory of SDEs,
taking weak limits (even of strong solutions) yields weak solutions, in which the solution
process is not necessarily adapted to the driving Wiener process; pathwise uniqueness is
usually needed in order to prove the limit remains a strong solution. We will develop a
theory of strong and weak solutions of MFGs with common noise in exact analogy with the
SDE theory, complete with natural notions of pathwise uniqueness and uniqueness in law,
as well as an analog of the famous theorem of Yamada and Watanabe [109].

1.3 Extensions of the mean field game framework

This section summarizes several interesting extensions to the mean field game frameworks
described above. This thesis will not discuss any of the problems discussed here, instead
focusing on deepening the theory of the simple setting first. However, the methods of this
thesis seem versatile enough to apply to any of these more general models, and hopefully
future work will explore these possibilities.

A first simple extension of the basic MFG setup is to allow for different types of agents,
as a way of introducing more heterogeneity among agents. One simple way to do this is
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by drawing each agent’s data (b, σ, f, g) in an i.i.d. fashion at time zero. More precisely,
in the n-player game, introduce auxiliary i.i.d. random factors (ζ i)ni=1, measurable at time
zero; then, for example, assign agent i the drift b(X i

t , µ̂
n
t , α

i
t, ζ

i). To illustrate what this can
accomplish, consider a simple example in which ζ i is 1 with probability p ∈ (0, 1) or 0 with
probability 1 − p, and set g(X i

T , µ̂
n
T , ζ

i) = −ζ i|X i
T |2 (recall that the agents are maximizers,

not minimizers). This means that a fraction of p of the agents are penalized for having a
nonzero terminal state X i

T , while the remaining fraction 1− p have no such penalty. This is
not the most common way of incorporating types in MFGs (see e.g. [67]), but it seems the
simplest to which to adapt the arguments of this thesis. Incorporating types into this thesis
in this way would complicate nothing but the notation.

Another class of MFG models, called major-minor player models, supplements the field
of small (minor) agents with an additional major player. For example, the states X1, . . . , Xn

of the minor agents may evolve according to

dX i
t = b(X i

t , X
0
t , µ̂

n
t , α

i
t)dt+ σdW i

t ,

where again µ̂nt = 1
n

∑n
k=1 δXk

t
is the empirical distribution of the minor agents’ states, while

the state X0 of the major player follows

dX0
t = b0(X0

t , µ̂
n
t , α

0
t )dt+ σ0dW

0
t .

Objective functions should of course be modified similarly to reflect this change. The cor-
responding mean field game is now intuitively much like a two-player game, in which the
major player competes with the mean field of minor players. The curious reader is referred
to [94, 95, 11, 37] for more details. It seems natural to cover this model and the common
noise models treated in this thesis under the same blanket, by studying this major-minor
player model with a common dW 0

t term added to the dynamics of the minor players, but
this is beyond the scope of this thesis.

Another natural extension of this framework is to allow mean field interactions based on
the controls, and not just the states. That is, one might replace the empirical measure µ̂nt
with the joint empirical measure of states and controls, 1

n

∑n
k=1 δ(Xk

t ,α
k
t ). This was studied by

the author and Carmona in [36], pointing out that many models arising in the price impact
and optimal execution literature naturally incorporate this form of interaction. This type of
MFG has also been called an extended mean field games ; see [56] for a PDE approach.

Finally, ideas resembling MFG theory are discernible in several other recent extensions
of classical mean field models. For example, the recent information percolation model of
Duffie et al. [45] is in some ways a MFG form of the classical Smoluchowski coagulation
equation, which suggests a corresponding n-player game based on the Marcus-Lushnikov
model of stochastic coalescence; see [4] for a good survey of the classical mean field theory.
Additionally, MFG-like analogs of models of spin systems (e.g., the Ising model) have begun
to appear in economics [65, 64], albeit under different names.
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1.4 Continuum games in economics

We have seen how mean field games incorporate competition into particle systems, explaining
the choice terminology. However, the idea of a continuum of agents is old news to economists,
and such models have been immensely popular for over half a century. The work of Aumann
[6] in 1964 and Schmeidler [101] in 1973 seem to have popularized continuum-agent models in
cooperative and competitive settings, respectively. This section aims to clarify what about
mean field game theory is novel, apart from its name.

First of all, the economic theory of competitive games with a continuum of agents is
dominated by static games. The early results of Schmeidler [101] and Mas-Colell [92] laid
the foundations and proved some general existence results, and countless subsequent papers
studied extensions, variations, and different aspects of these models. Discrete-time dynamics
were incorporated in later theoretical work, e.g. [71, 16, 17], although plenty of specific
models had appeared previously which involved dynamic games with a continuum of agents.
The latter papers of Bergin and Bernhardt [16, 17] notably study models with common noise,
which economists refer to as aggregate uncertainty. Compared to this line of literature, one
novelty of mean field games is that they are typically set in continuous time, which leads to
interesting new PDE and SDE systems. However, the term mean field game, like anonymous
games in economics, is general enough that we should avoid tying it to a particular time set;
differential mean field games will refer specifically to continuous-time models.

A more interesting novelty of modern mean field game theory is its attention to finite-
population models. Many economics papers work exclusively with a continuum of agents,
justified as a sort of idealization or limit of some corresponding model with a large but finite
population. By far the most popular way to justify continuum models in economics is by
means of an “exact law of large numbers,” which directly models a continuum of independent
agents. The intuitive idea of this approach is that if a continuum of independent coins are
flipped, then exactly half of them will be heads. To make mathematical sense of this, however,
runs into well known measure-theoretic difficulties. Substantial work has gone into making
the exact law of large numbers rigorous; see [105, 103] and the references therein.

Scarcely in economics is any attempt made to rigorously expose a continuum model as
some kind of limit of finite models. Some of the few papers include [59, 66] as well as a
number of papers of G. Carmona and collaborators [29, 9, 31] (not to be confused with R.
Carmona, the thesis advisor and author of more recent papers on mean field games). Most
if not all such results seem to pertain to static games, with no time dynamics. Some of
these papers study the limits of sequences of approximate Nash equilibria as the number
of agents tend to infinity, while others [100, 30] show how continuum equilibria give rise to
approximate equilibria for finite games, in the spirit of much of the mean field game research.

Interestingly, some of the economic literature seems quite aware of a key phenomenon
this thesis takes care to elucidate. Namely, even without common noise, there often ex-
ist stochastic MFG equilibria which are qualitatively quite different from the deterministic
equilibria. Both the zero-intelligence McKean-Vlasov models and mean field static games
discussed in Sections 2.2 and 2.3 respectively exhibit a useful simplifying feature: While
there may exist stochastic equilibria, they are all mixtures (i.e., randomizations) of the de-
terministic equilibria. This breaks down in the MFG setting because of the effect of the
aggregate uncertainty (i.e., stochasticity of the measure flow) on the information available
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to agents; it is only the combination of dynamics and competition that produces this effect.
This point was observed, for example, in the seminal paper of Diamond and Dybvig [44],
which analyzes a two-period model of bank runs. Green and Lin [60] studied the stochastic
equilibria in more detail, and the papers of Bergin and Bernhardt [16, 17] explored this issue
for more general continuum games.

1.5 Outline of the thesis

This thesis consists of eight chapters and two appendices.
Chapter 2 gathers some preliminary material on weak convergence, relaxed controls,

McKean-Vlasov equations, and static mean field games. Many but not all of the weak
convergence results compiled in the first Section 2.1 are well known, and they are the bread
and butter of many of the proofs of this thesis. Proofs are given for those results which are
new (or at least for which references are unknown to the author). Strictly speaking, Section
2.2 on McKean-Vlasov limits is not a prerequisite for this thesis, but this known material
will shape our intuition for the analogous MFG theory. We do sketch here a novel proof of a
known result, because it seems to adapt better to the MFG setting than previously known
proofs. Finally, Section 2.3 discusses static mean field games, i.e. with no time component,
and derives some simple limit theorems; while the presentation is mostly original, the results
most likely are not. In a sense, we isolate separately the dynamic and competitive aspects
of mean field theory in these Sections 2.2 and 2.3, respectively, before turning to stochastic
differential mean field games, which combine the two.

Chapter 3 begins the discussion of stochastic differential mean field games with common
noise by defining the central equilibrium concepts and stating the main theorems on con-
vergence, existence, and uniqueness. The various notions of mean field game solution are
carefully defined and discussed first, before turning to the n-player games. The main limit
theorem and its converse are stated in Section 3.2, along with some useful corollaries. Finally,
the existence and uniqueness theory is summarized in Section 3.3, including statements of
the main results and the definitions of pathwise uniqueness and uniqueness in law. This
chapter contains almost no proofs, as the proofs of the main theorems are long enough to
warrant their own chapters.

Chapter 4 focuses on mean field games without common noise, specializing the results of
Chapter 3 to this setting. The solution concepts simplify somewhat in this setting, and we
elaborate on the implications of the main limit theorem. The gap between weak and strong
solutions is discussed in depth here. The new phenomenon is illustrated by an example, in
which a MFG without common noise has a stochastic equilibrium (i.e., weak solution), the
support of which is disjoint from the set of deterministic equilibria (i.e., strong solutions).
An intuitively natural but difficult-to-verify assumption is presented which rules out this
possibility. Finally, in Section 4.6, existence and uniqueness results are stated for MFG
without common noise.

Chapter 5 begins the road to proofs of the main theorems. The weak solution concept is
reformulated on a canonical space, and some first properties are developed. Several technical
results are proven here which are useful in both the proof of the limit theorem and the proof
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of existence. For example, some first continuity properties are established for certain maps
which appear repeatedly in the convergence and existence proofs.

Chapter 6 proves the main limit theorems of Chapters 3 and 4, completing the charac-
terization of weak MFG solutions as the limits of n-player approximate equilibria. Chapter
7 proves the existence and uniqueness results for MFGs with common noise, while Chapter 8
proves existence and uniqueness results in the setting without common noise. The first two
of these three, Chapters 6 and 7, work in the framework developed in Chapter 5. Chapter
8, on the other hand, develops a controlled martingale problem framework which is better-
suited to studying strong MFG solutions. This more specialized framework is useful in that
it accommodates a control-dependent volatility coefficient σ, unlike the framework we adopt
for common noise problems.

Appendix A compiles some useful but rather non-standard topics in stochastic analysis.
In particular, weak and strong solutions of stochastic differential equations with random
coefficients are discussed in some detail. These results are used mostly implicitly throughout
the body of the thesis, as they are intuitive and not at all surprising. Nonetheless, this
material is worth developing carefully, not only because concise references are difficult to
locate: This material serves as a good illustration of two ideas which are also developed
in this appendix and which play important roles elsewhere in the thesis: abstract Yamada-
Watanabe theorems and compatibile extensions of filtrations. Finally, with applications
in Chapter 8 in mind, Appendix A closes with a discussion of the stochastic calculus for
martingale measures, and some basic results on SDEs and martingale problems driven by
them. Lastly, Appendix B proves three tightness results for solutions of stochastic differential
equations.
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Chapter 2

Preliminaries

This chapter serves first to compile the notation and basic tools that will be used repeatedly
in what follows. Weak convergence arguments pervade this thesis, not only in the formalism
of the main limit theorem but also in existence proofs, which turn on topological fixed
point theorems. The reader is assumed to be familiar with the basics of measure-theoretic
probability, though presumably all of the unemphasized background material can be found
in the book of Kallenberg [73].

The second goal of this chapter is to explore McKean-Vlasov limits and static MFGs,
both as a warm-up and to illustrate some key ideas which will show up in our study of
stochastic differential MFGs.

2.1 Spaces of probability measures

All of the topological spaces we will encounter are Polish spaces, meaning they are separable
and completely metrizable. Given a Polish space E, we let B(E) denote the Borel sets of E,
and let P(E) denote the set of Borel probability measures on E. We endow P(E) with the
weak topology, which is the weakest topology making the maps µ 7→

∫
ϕdµ continuous for

each bounded, continuous function ϕ : E → R. When E is a Polish space, so is P(E), and
we equip it with its Borel σ-field. Given E-valued random variables X and (Xn)∞n=1, defined
perhaps on different probability spaces, we say that Xn converges in law (or in distribution)
to X if the sequence of laws of Xn converges weakly (i.e., in the weak topology) to the law
of X.

Several useful facts about weak convergence are outlined in the following theorem:

Theorem 2.1.1 (Portmanteau’s theorem). For probablity measures µn, µ on a given metric
space E, the following are equivalent:

1. µn → µ weakly.

2. lim supn
∫
ϕdµn ≤

∫
ϕdµ for all upper semicontinuous ϕ bounded from above.

3. lim infn
∫
ϕdµn ≥

∫
ϕdµ for all lower semicontinuous ϕ bounded from below.

Polish spaces are of particular importance in weak convergence arguments because of
Prokhorov’s theorem, which characterizes compact sets of P(E). A set K ⊂ P(E) is called
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tight if for every ε > 0 there exists a compact set S ⊂ E such that µ(S) ≥ 1 − ε for each
µ ∈ K.

Theorem 2.1.2 (Prokhorov’s theorem). Suppose E is a Polish space. A set K ⊂ P(E) is
relatively compact if and only if it is tight.

Much of the analysis of this thesis deals with weak convergence on product spaces, for
which several special results are available. The following result is well known and easy to
prove.

Lemma 2.1.3. Let E and F be Polish spaces. A set K ⊂ P(E × F ) is tight if and only if
KE := {P (· × F ) : P ∈ K} ⊂ P(E) and KF := {P (E × ·) : P ∈ K} ⊂ P(F ) are tight.

When working with probability measures on a product space, such as Ω× E, there is a
fairly natural alternative to the topology of weak convergence. Namely, the stable convergence
of a sequence of probabilities Pn on Ω × E to P means that

∫
ϕdPn →

∫
ϕdP for every

bounded measurable function ϕ : Ω× E → R for which ϕ(ω, ·) is continuous on E for each
ω ∈ Ω. Here Ω is any measurable space, while E is again a Polish space. We will make no
use of this topology, except to note that when Ω too is a Polish space and the Ω-marginals of
Pn are fixed, stable convergence and weak convergence of Pn are equivalent. This is stated
more precisely in the following theorem, which follows from [69, Corollary 2.9] but is proven
directly for the sake of completeness:

Lemma 2.1.4. Suppose E and F are Polish spaces and P, Pn ∈ P(E×F ). Let ϕ : E×F → R
be bounded and satisfy the following:

1. ϕ(·, y) is measurable for each y ∈ F .

2. ϕ(x, ·) is continuous for each x ∈ E.

If Pn → P weakly and Pn(· × F ) = P (· × F ) =: µ(·) for all n, then
∫
ϕdPn →

∫
ϕdP .

Proof. Let C > 0 be such that |ϕ(x, y)| ≤ C for all (x, y) ∈ E × F . Fix ε > 0, and use
Prokhorov’s theorem to find a compact set K ⊂ F such that Pn(E ×K) ≥ 1 − ε for all n.
Let E0 denote the set of x ∈ E for which ϕ(x, ·) is continuous on F . Next, let C(K) denote
the space of continuous functions on K, endowed with the supremum norm. Consider the
map ϕ : E0 → C(K) defined by Φ(x)(y) = ϕ(x, y).

Step 1. First we check that Φ is measurable when C(K) is equipped with the supremum
norm and the corresponding Borel σ-field. The σ-field of C(K) is generated by the family
D = {Bε(f) : f ∈ C(K), ε > 0}, where Bε(f) denotes the closed ball of radius ε centered at
f . If K0 is a countable dense subset of K, then continuity of ϕ(x, ·) for x ∈ E0 implies, for
each f ∈ C(K),

Φ−1(Bε(f)) = {x ∈ E0 : Φ(x) ∈ Bε(f)}

=

{
x ∈ E0 : sup

y∈K
|ϕ(x, y)− f(y)| ≤ ε

}
=

{
x ∈ E0 : sup

y∈K0

|ϕ(x, y)− f(y)| ≤ ε

}
.
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This shows that Φ−1(Bε(f)) is measurable, because x 7→ supy∈K0
|ϕ(x, y)−f(y)| is the point-

wise supremum of measurable functions of x. See also [5, Theorem 4.55] for an alternative
argument.

Step 2. Next we show that for each δ > 0 there exists a continuous function ϕδ :
E ×K → R such that |ϕδ| ≤ C pointwise and

µ{x ∈ E : ϕδ(x, y) ≡ ϕ(x, y), ∀y ∈ y} ≥ 1− δ.

First extend the domain of Φ to all of E by choosing arbitrarily some f0 ∈ C(K) and setting
Φ(x) = f0 for x /∈ E0, and note that Φ remains measurable. Next, apply Lusin’s theorem
[19, Theorem 7.1.13] to find, for each δ > 0, a continuous function Φδ : E → C(K) such that
µ{x ∈ E : Φδ(x) = Φ(x)} ≥ 1− δ. Finally, define ϕδ(x, y) = (Φδ(x)(y) ∧ C) ∨ (−C), where
C was the bound on |ϕ|.

Step 3. To complete the proof, compute∣∣∣∣∫
E×F

ϕdPn −
∫
E×F

ϕdPn

∣∣∣∣
≤
∣∣∣∣∫
E×K

ϕdPn −
∫
E×K

ϕdPn

∣∣∣∣+ 2εC

≤
∣∣∣∣∫
E×K

ϕδ dPn −
∫
E×K

ϕδ dPn

∣∣∣∣+ (2ε+ 4δ)C.

Indeed, the last inequality follows from the fact that∣∣∣∣∫
E0×K

(ϕ− ϕδ) dPn
∣∣∣∣ ≤ 2Cµ{x ∈ E : ϕ(x, y) = ϕδ(x, y), ∀y ∈ y} ≤ 2Cδ,

because each Pn has the same first marginal µ. The same is true with Pn replaced by P ,
because clearly P has first marginal µ as well when Pn → P . Because ϕδ is continuous on
the closed set E × K, it admits a continuous extension ϕ̄δ to all of E × F with |ϕ̄δ| ≤ C
pointwise, by the Tietze extension theorem. Thus∣∣∣∣∫

E×F
ϕdPn −

∫
E×F

ϕdPn

∣∣∣∣
≤
∣∣∣∣∫
E×F

ϕ̄δ dPn −
∫
E×F

ϕ̄δ dPn

∣∣∣∣+ 4C(ε+ δ)

Finally, continuity of ϕ̄δ and weak convergence of Pn to P imply

lim sup
n→∞

∣∣∣∣∫
E×F

ϕdPn −
∫
E×F

ϕdPn

∣∣∣∣ ≤ 4C(ε+ δ).

As ε and δ were arbitrary, the proof is complete.

The following important result is well known, and will be quite useful later.
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Proposition 2.1.5. Suppose E and F are Polish spaces and µ ∈ P(E). Let Sµ = {P ∈
P(E × F ) : P (· × F ) = µ} denote the set of joint laws with first marginal µ.

1. A sequence ϕn of measurable functions from E to F converges in µ-measure to ϕ if
and only if µ(dx)δϕn(x)(dy) converges to µ(dx)δϕ(x)(dy) weakly.

2. If µ is nonatomic, then the set{
µ(dx)δϕ(x)(dy) ∈ P(E × F ) : ϕ : E → F is measurable

}
is dense in Sµ.

3. If µ is nonatomic and F is a convex subset of a locally convex space H (we still assume
F is Polish with the induced topology), then the set{

µ(dx)δϕ(x)(dy) ∈ P(E × F ) : ϕ : E → F is continuous
}

is dense in Sµ.

Proof.

1. The first claim is proven in [69, Corollary 3.7], but here is a direct proof using Lemma
2.1.4. One direction is clear, since convergence in probability implies weak convergence.
Assume that µ(dx)δϕn(x)(dy) converges to µ(dx)δϕ(x)(dy) weakly. Then, since (x, y) 7→
ϕ(x)− y is continuous in y, Lemma 2.1.4 implies∫

µ(dx)|ϕ(x)− ϕn(x)| ∧ 1 =

∫
µ(dx)δϕn(x)(dy)|ϕ(x)− y| ∧ 1

→
∫
µ(dx)δϕ(x)(dy)|ϕ(x)− y| ∧ 1 = 0.

2. This is well known, but precise references are hard to find, so for the reader’s conve-
nience we provide an adaptation of the proof given in [38, Theorem 2.2.3]. First, it
follows from [69, Proposition 2.4] and and Lemma 2.1.4 that the topology induced on
Sµ by weak convergence admits as a base the system of (open) neighborhoods of the
form

U =

{
P ∈ Sµ :

∣∣∣∣∫
Ai×F

fi(y)P (dx, dy)−
∫
Ai×F

fi(y)Q(dx, dy)

∣∣∣∣ < ε, ∀i = 1, . . . ,m

}
,

where m ≥ 1, Q ∈ Sµ, ε > 0, fi : F → R are bounded continuous functions, and
Ai ⊂ E are Borel sets. In fact, the same set system forms a base even if we require
(A1, . . . , Am) to form a partition of E. Now fix P ∈ Sµ. To prove the claim, it suffices
to show that for every m ≥ 1, ε > 0, bounded continuous functions fi : F → R, and
measurable partition (A1, . . . , Am) of E, there exists a measurable map ϕ : E → F
such that ∣∣∣∣∫

Ai×F
fi(y)P (dx, dy)−

∫
Ai

fi(ϕ(x))µ(dx)

∣∣∣∣ < ε, ∀i = 1, . . . ,m.
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As (A1, . . . , Am) form a partition, we are free to specify ϕ separately on each A. Hence,
it suffices to show that for every ε > 0, every continuous f : F → R, and every
measurable A ⊂ E there exists a measurable map ϕ : A→ F such that∣∣∣∣∫

A×F
f(y)P (dx, dy)−

∫
A

f(ϕ(x))µ(dx)

∣∣∣∣ < ε.

The set of convex combinations of Dirac measures is dense in P(F ) (see, e.g., [5,
Theorem 5.10]), and thus there exist n ≥ 1, yi ∈ F , and constants ci ≥ 0 such that∑n

i=1 ci = P (A× F ) and∣∣∣∣∣
n∑
i=1

cif(yi)−
∫
A×F

f(y)P (dx, dy)

∣∣∣∣∣ < ε.

As µ is nonatomic, we may apply Sierpiński’s theorem [5, Theorem 10.52] to find a
measurable partition (B1, . . . , Bn) of A such that µ(Bi) = ci for each i = 1, . . . , n.
Define ϕ(x) to be yi for x ∈ Bi, and complete the proof by noting that∫

A

f(ϕ(x))µ(dx) =
n∑
i=1

cif(yi).

3. In light of the second part, we must only show that any measurable function ϕ : E → F
can be obtained as the µ-a.s. limit of continuous functions. By a form of Lusin’s
theorem [19, Theorem 7.1.13], for each ε > 0 we may find a compact Kε ⊂ E such
that µ(Kc

ε ) ≤ ε. the restriction ϕ|Kε : Kε → F is continuous. By the Tietze extension
theorem, or rather a generalization due to Dugundji [46, Theorem 4.1], we may find
a continuous function ϕ̃ε : E → H such that ϕ̃ε = ϕ on Kε and such that the range
ϕ̃ε(E) is contained in the convex hull of ϕ|Kε(E), which is itself contained in the
convex set F . We may thus view ϕ̃ε as a continuous function from E to F . Since
µ(ϕ̃ε 6= ϕ) ≤ µ(Kc

ε ) ≤ ε, we may find a subsequence of ϕ̃ε which converges µ-a.s. to ϕ.

For instance, that the set of joint laws on a product space E×F which are concentrated
on the graph of a measurable (continuous if F is convex) function from E to F is dense in
the set of all joint laws on E × F . More useful to us will be the following adapted version
of the previous result, presented in discrete time. Various continuous-time analogs readily
follow via approximation by simple processes, and one such analog, Proposition 2.1.15, will
be important in our analysis of mean field games.

Proposition 2.1.6. Let (Ω,F , P ) be a probability space supporting two stochastic processes
S = (S1, . . . , SN) and X = (X1, . . . , XN) with values in Polish spaces S and X , and let
FSn = σ(S1, . . . , Sn) denote the filtration generated by S. Assume X is a convex subset
of a locally convex space. Suppose that the law of S1 is nonatomic and that (X1, . . . , Xn) is
conditionally independent of FSN given FSn , for each n. Then there exist continuous functions
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hjk : Sk → X , for k ∈ {1, . . . , N} and j ≥ 1, such that

(S, (hj1(S1), hj2(S1, S2), . . . , hjN(S1, . . . , SN)))→ (S,X)

in law in the space SN ×XN .

Proof. The proof is an inductive application of Proposition 2.1.5. First, use Proposition 2.1.5
to find a sequence of continuous functions hj1 : S → X such that (S1, h

j
1(S1)) → (S1, X1)

as j → ∞, where convergence is in distribution throughout this proof. Let us show that in
fact (S, hj1(S1)) converges to (S,X1). Let ϕ : SN → R be bounded and measurable, and let
ψ : X → R be continuous. Noting that S and (S1, X1) are conditionally independent given
S1, we use Lemma 2.1.4 to get

lim
j→∞

E[ϕ(S)ψ(hj1(S1))] = lim
j→∞

E
[
E [ϕ(S)|S1]ψ(hj1(S1))

]
= E [E [ϕ(S)|S1]ψ(X1)]

= E [E [ϕ(S)|S1]E [ψ(X1)|S1]]

= E [E [ϕ(S)ψ(X1)|S1]]

= E [ϕ(S)ψ(X1)]

This is enough to show that (S, hj1(S1))→ (S,X1) (see e.g. [47, Proposition 3.4.6(b)]).
We proceed inductively as follows. Abbreviate Sn := (S1, . . . , Sn) and Xn :=

(X1, . . . , Xn) for each n = 1, . . . , N , noting SN = S. Suppose we are given 1 ≤ n < N and
continuous functions gjk : Sk → X , for k ∈ {1, . . . , n} and j ≥ 1, satisfying

lim
j→∞

(S, gj1(S1), . . . , gjn(Sn)) = (S,X1, . . . , Xn). (2.1)

We will show that there exist continuous functions hik : Sk → X for each k ∈ {1, . . . , n+ 1}
and i ≥ 1 such that

lim
i→∞

(S, hi1(S1), . . . , hin+1(Sn+1)) = (S,X1, . . . , Xn+1). (2.2)

By Proposition 2.1.5 there exists a sequence of continuous functions ĝj : (Sn+1 × X n)→ X
such that

lim
j→∞

(Sn+1, X1, . . . , Xn, ĝ
j(Sn+1, Xn)) = (Sn+1, X1, . . . , Xn, Xn+1).

Note that S and (Sn, Xn) are conditionally independent given S1. Using the same argument
as above, it follows that in fact

lim
j→∞

(S,X1, . . . , Xn, ĝ
j(Sn+1, Xn)) = (S,X1, . . . , Xn, Xn+1). (2.3)

24



By continuity of ĝj, the limit (2.1) implies that, for each j,

lim
i→∞

(S, gi1(S1), . . . , gin(Sn), ĝj(Sn+1, gi1(S1), . . . , gin(Sn)))

= (S,X1, . . . , Xn, ĝ
j(Sn+1, X1, . . . , Xn)). (2.4)

Combining the two limits (2.3) and (2.4), we may find a subsequence ji such that

lim
i→∞

(S, gji1 (S1), . . . , gjin (Sn), ĝi(Sn+1, gji1 (S1), . . . , gjin (Sn)))

= (S,X1, . . . , Xn, Xn+1).

Define hik := hjik for k = 1, . . . , n and hin+1(Sn+1) := ĝi(Sn+1, gji1 (S1), . . . , gjin (Sn)) to complete
the induction.

2.1.1 Wasserstein distances

Given a complete separable metric space (E, d), and a real number p ≥ 1, define

Pp(E) :=

{
µ ∈ P(E) :

∫
E

d(x0, x)pµ(dx) <∞ for some x0 ∈ E
}
. (2.5)

Using the triangle inequality, it is easily proven that the words “for some” may be replaced
above by “for every.” The p-Wasserstein distance is defined for µ, ν ∈ Pp(E) by

`E,p(µ, ν) := inf

{∫
E×E

d(x, y)pγ(dx, dy) : γ ∈ P(E × E) has marginals µ, ν

}1/p

. (2.6)

That is, the infimum is over all probability measures γ on E × E with γ(E × ·) = ν and
γ(· × E) = µ. It is well known that (Pp(E), `E,p) is a complete, separable metric space. Its
convergent sequences are summarized in the following proposition.

Proposition 2.1.7 (Theorem 7.12 of [107]). Let (E, d) be a metric space, and suppose
µ, µn ∈ Pp(E). Then the following are equivalent for p ≥ 1:

1. `E,p(µn, µ)→ 0.

2. µn → µ weakly and for some (and thus any) x0 ∈ E we have

lim
r→∞

sup
n

∫
{x:d(x,x0)p≥r}

µn(dx)d(x, x0)p = 0. (2.7)

3.
∫
ϕdµn →

∫
ϕdµ for all continuous functions ϕ : E → R such that there exists x0 ∈ E

and c > 0 for which |ϕ(x)| ≤ c(1 + d(x, x0)p) for all x ∈ E.

In particular, (2) implies that a sequence (µn)n ⊂ Pp(E) is relatively compact if and only it
is tight and satisfies (2.7).
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We may think of the weak topology of P(E) as the space Pp(E) with p = 0, and the
Wasserstein topology simply incorporates some additional moment behavior. Several of the
results on product spaces of the previous section on product spaces will now be extended to
Wasserstein space. The proofs are all completely straightforward with the aid of a simple
homeomorphism: Fix x0 ∈ E, and define ψ(x) := 1 + dp(x, x0). For each µ ∈ Pp(E) define
a measure ψµ ∈ P(E) by (ψµ)(B) =

∫
B
ψ dµ for all B ∈ B(E). Then µ 7→ ψµ/

∫
ψ dµ is

easily seen to define a homeomorphism from (Pp(E), `E,p) to P(E) with the weak topology.
Indeed, the details of the proofs are omitted, as one simply uses this homeomorphism to
transfer the corresponding weak convergence results to Wasserstein space.

In the following two lemmas, let (E, dE) and (F, dF ) be two complete separable metric
spaces. Equip E × F with the metric formed by adding the metrics of E and F , given by
((x1, x2), (y1, y2)) 7→ d1(x1, y1) + d2(x2, y2), but this choice is inconsequential.

Lemma 2.1.8. A set K ⊂ Pp(E × F ) is relatively compact if and only if {P (· × F ) : P ∈
K} ⊂ Pp(E) and {P (E × ·) : P ∈ K} ⊂ Pp(F ) are relatively compact.

Lemma 2.1.9. Let ϕ : E × F → R satisfy the following:

1. ϕ(·, y) is measurable for each y ∈ F .

2. ϕ(x, ·) is continuous for each x ∈ E.

3. There exist c > 0, x0 ∈ E, and y0 ∈ F such that

|ϕ(x, y)| ≤ c(1 + dpE(x, x0) + dpF (y, y0)), ∀(x, y) ∈ E × F.

If Pn → P in Pp(E × F ) and Pn(· × F ) = P (· × F ) for all n, then
∫
ϕdPn →

∫
ϕdP .

Corollary 2.1.10. Suppose ϕ satisfies (1) and (2) of Lemma 2.1.9, and instead

3’. There exist c > 0, x0 ∈ E, and y0 ∈ F such that

ϕ(x, y) ≤ c(1 + ρpE(x, x0) + ρpF (y, y0)), ∀(x, y) ∈ E × F.

If Pn → P in Pp(E × F ) and Pn(· × F ) = P (· × F ) for all n, then

lim sup
n→∞

∫
ϕdPn ≤

∫
ϕdP.

Proof. For each M < 0, Lemma 2.1.9 implies∫
M ∨ ϕdP = lim

n→∞

∫
M ∨ ϕdPn ≥ lim sup

n→∞

∫
ϕdPn.

Send M ↓ −∞ and use the monotone convergence theorem.
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2.1.2 Mean measures and compactness

Fix a complete separable metric space (E, d) and an exponent p ≥ 1 throughout the section.
It is well known [18, Corollary 7.29.1] that for any real-valued measurable function ϕ : E →
R, not necessarily continuous, the map µ 7→

∫
ϕdµ is Borel measurable on P(E), at least if

the integral is defined to be +∞ when it is otherwise ill-defined. From this it follows easily
that the Borel σ-field of Pp(E) is nothing but the trace of the Borel σ-field of P(E). In
this section, we study the space Pp(Pp(E)); recall that we implicitly endow Pp(E) with the
p-Wasserstein metric `E,p.

For P ∈ P(P(E)), define the mean measure mP ∈ P(E) by

mP (C) :=

∫
P(E)

P (dµ)µ(C).

The following Proposition 2.1.11 is contained in Proposition 2.2(ii) of Sznitman [104]. We
will omit its proof and instead prove a useful extension to Wasserstein space, using a natural
adaptation of Sznitman’s proof.

Proposition 2.1.11. A set K in P(P(E)) is tight if and only if {mP : P ∈ K} is tight.

Proposition 2.1.12. A subset K of Pp(Pp(E)) is relatively compact if and only if {mP :
P ∈ K} is relatively compact in Pp(E) and

lim
r→∞

sup
P∈K

∫
{µ:

∫
E µ(dx)d(x,x0)p>r}

P (dµ)

∫
E

µ(dx)d(x, x0)p = 0, (2.8)

for some x0 ∈ E.

Proof. Suppose first that K is relatively compact. Note that

`E,p(µ, δx0)
p =

∫
E

µ(dx)d(x, x0)p, (2.9)

and thus the uniformly integrability (2.8) holds by Proposition 2.1.7(2). It is straightforward
to show that m : Pp(Pp(E))→ Pp(E) is continuous; indeed, suppose Pn → P in Pp(Pp(E)),
and ϕ : E → R is continuous with |ϕ(x)| ≤ c(1 + d(x, x0)p) for some c ≥ 0. Then∣∣∣∣∫ ϕdµ

∣∣∣∣ ≤ c (1 + `E,p(µ, δx0)
p) ,

and thus Proposition 2.1.7(3) implies∫
ϕd[mPn] =

∫
Pn(dµ)

∫
ϕdµ→

∫
P (dµ)

∫
ϕdµ =

∫
ϕd[mP ].

Continuity of m implies that {mP : P ∈ K} is relatively compact.
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Conversely, assume {mP : P ∈ K} is relatively compact and (2.8) holds. Because of
(2.9), the uniform integrability assumption rewrites as

lim
r→∞

sup
P∈K

∫
{µ:`E,p(µ,δx0 )p≥r}

P (dµ)`E,p(µ, δx0)
p = 0,

so we need only to show that K is tight, in light of Proposition 2.1.7. Now suppose Pn ∈ K,
and let In := mPn. Define ψ(x) := 1 + d(x, x0)p. Relative compactness of In in Pp(E)
implies that

lim
r→∞

sup
n

∫
{ψ≥r}

ψ dIn = 0.

Thus, for each ε > 0 there exist r(ε) > 0 and a compact set Kε ⊂ E such that

sup
n
In(Kc

ε ) ≤ ε/2, sup
n

∫
{ψ>r(ε)}

ψ dIn ≤ ε/2.

Now fix ε > 0, and for each k define

Ck =

{
µ ∈ Pp(E) : µ(Kc

ε2−k/k) ≤ 1/k, and

∫
{ψ>r(ε2−k/k)}

ψ dµ ≤ 1/k

}
.

Markov’s inequality implies

Pn(Cc
k) ≤ Pn

{
µ : µ(Kc

ε2−k/k) > 1/k
}

+ Pn

{
µ :

∫
{ψ>r(ε2−k/k)}

ψ dµ > 1/k

}
≤ kIn(Kc

ε2−k/k) + k

∫
{ψ>r(ε2−k/k)}

ψ dIn

≤ 2−kε,

and thus Pn(
⋃
k≥1C

c
k) ≤ ε. Since 1Kc

η
and ψ1ψ>η are lower semicontinuous on E for each

η > 0, it follows from Portmanteau’s theorem that each Ck is closed. Thus
⋂
k≥1Ck is

compact, and Pn are tight.

Corollary 2.1.13. Suppose K ⊂ Pp(Pp(E)) is such that {mP : P ∈ K} ⊂ P(E) is tight
and

sup
P∈K

∫
mP (dx)d(x, x0)p

′
<∞, for some p′ > p.

Then K is relatively compact.

Proof. The assumption along with Jensen’s inequality implies

sup
P∈K

∫
P (dµ)

(∫
d(x, x0)pµ(dx)

)p′/p
<∞.

This in turn implies the uniform integrability condition (2.8) of Proposition 2.1.12.
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2.1.3 Relaxed controls

This section introduces a useful tool for continuous-time control theory (both deterministic
and stochastic) known as relaxed controls, which are used heavily in this thesis. The essential
idea is that the path space for control processes should generally be the space of (equivalence
classes of Lebesgue-a.e. equal) measurable functions from an interval [0, T ] to a Polish space
A. To use weak convergence arguments we would like to endow this path space with a Polish
topology, with the obvious choice being the topology of convergence in Lebesgue measure.
However, this topology is far too strong for compactness purposes, and the space of relaxed
controls is essentially a completion of this path space under a weaker (metric) topology.

Let A be a Polish space and p ≥ 1. Let V [A] denote the set of measures q on [0, T ]× A
with first marginal equal to Lebesgue measure (i.e., q([0, t]×A) = t for t ∈ [0, T ]) such that∫

[0,T ]×A
q(dt, da)|a|p <∞.

When A is understood, we write simply V . An element of V is called a relaxed control. Endow
V with the weakest topology making the maps q 7→

∫
ϕdq continuous for each continuous

function ϕ : [0, T ] × A → R satisfying |ϕ(t, a)| ≤ 1 + |a|p for all (t, a). This topology
is metrizable via a natural analog p-Wasserstein metric, which we will not need to define
explicitly. Note that {q/T : q ∈ V} is a closed subset of Pp([0, T ] × A), and thus V is a
Polish space. When A is compact, so is V .

We will frequently identify an element q ∈ V with the measurable map t 7→ qt ∈ P(A)
arising from its disintegration q(dt, da) = dtqt(da), which is unique up to (Lebesgue) almost
everywhere equality. There is a one-to-one map between V and the space of (equivalence
classes of a.e. equal) functions from [0, T ] to P(A), but let us check that we may reasonably
define a canonical P(A)-valued process on V , which will be denoted Λ. The natural filtration
on V is FΛ = (FΛ

t )t∈[0,T ], where for each t FΛ
t is generated by the map q 7→ 1[0,t]q, or

equivalently by the maps q 7→ q(C), where C ranges over measurable subsets of [0, t] × A.
The following lemma seems to be known and often used implicitly in the literature, but a
sketch the proof is included for the reader’s convenience, as a precise reference is difficult to
locate.

Lemma 2.1.14. There exists a FΛ-predictable process Λ : [0, T ] × V → P(A) such that
Λ(t, q) = qt for almost every t ∈ [0, T ], for each q ∈ V. In particular, q = Λ(t, q)(da) for
each q ∈ V.

Proof. Define Fε : [0, T ]× V → P(A) by

Fε(t, q) :=
1

t− (t− ε)+

∫ t

(t−ε)+
qsds.

Then Fε(·, q) is continuous for each q ∈ V , and Fε(t, ·) is FΛ
t -measurable for each t ∈ [0, T ].

Hence Fε is FΛ
t -predictable. Fix arbitrarily q0 ∈ P(A), and for each (t, q) ∈ [0, T ]×V define

Λ(t, q) :=

{
limε↓0 Fε(t, q) if the limit exists,

q0 otherwise.
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Then Λ is predictable, and it follows from Lebesgue’s differentiation theorem (arguing with
a countable convergence-determining class of functions on A) that Λ(t, q) = qt for almost
every t ∈ [0, T ].

Write Λt = Λ(t, ·) for the canonical process on V given by Lemma 2.1.14. Then, it is
straightforward to check that

FΛ
t = σ(Λs : s ≤ t).

Of particular interest, of course, are the strict controls, which are of the form q = dtδα(t)(da)
for measurable α : [0, T ]→ A. It follows from Proposition 2.1.5 that the set of strict controls
is dense in V . Since we will be working with random elements of V , the following adapted
form of this statement will be useful. As a guiding example of the rather strange-looking
assumptions, think of E as the path space C([0, T ];Rm), W as an m-dimensional Wiener
process, and St equal to W stopped at time t, i.e. St = W·∧t.

Proposition 2.1.15. Let T > 0, and fix a Polish space E and a closed convex subset A
of a Euclidean space. Let (Ω,F , P ) be a probability space supporting stochastic processes
(St)t∈[0,T ] and Λ = (Λt)t∈[0,T ], with values in E and P(A), respectively. Let FSt = σ(St), and
assume that this defines a filtration, i.e. that FSu ⊂ FSt for u < t. Assume that law of St
is nonatomic for all t > 0. Finally, assume σ(Λu : u ≤ t) is conditionally independent of
FST given FSt , for each t ∈ [0, T ]. Then there exists a sequence of FS := (FSt )t∈[0,T ]-adapted
A-valued process (αkt )t∈[0,T ] satisfying:

1. For each k, αk is uniformly bounded.

2. (dtδαkt (da), S) converges in distribution to (Λ = dtΛt(da), S), on the space V × E.

3. For each k, there exists a continuous function ϕk : E → V such that ϕk(S) = dtδαkt (da)
a.s.

4. If P ◦ S−1 ∈ Pp(E) for p ≥ 1 and also E
∫ T

0

∫
A
|a|pΛt(da)dt < ∞, then P ◦

(dtδαkt (da), S)−1 converges to P ◦ (Λ, S)−1 in Pp(V × E).

Proof. First, we may reduce to the case where A is compact as follows. Let An denote the
intersection of A with the closed ball of radius n centered at the origin. For sufficiently large
n0, An is nonempty for all n ≥ n0. Fix a0 ∈ An0 arbitrarily, and define ιn : A → A by
ιn(a) = a for a ∈ An and ιn(a) = a0 for a /∈ An. Letting Λn

t = Λt ◦ ι−1
n , it is clear that

Λn → Λ almost surely (in the topology of V). Moreover, Λn
t (An) = 1 for all t and n ≥ n0,

almost surely. Finally, since |ιn(a)| ≤ |a| for n ≥ n0, we have the uniform integrability

lim
r→∞

sup
n

∫ T

0

∫
|a|>r
|a|pΛn

t (da)dt ≤ lim lim
r→∞

∫ T

0

∫
|a|>r
|a|pΛt(da)dt = 0.

Thus P ◦ (Λn, S)−1 converges to P ◦ (Λ, S)−1 in Pp(V × E).
Now assume that A is compact, and note that it remains only to construct αk satisfying

property (2). Define F = (Ft)t∈[0,T ] by

Ft = σ(St,Λu : u ≤ t).
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By a version of the so-called Chattering Lemma [76, Theorem 2.2(b)], there exists a sequence
of simple F-adapted A-valued processes (αkt )t∈[0,T ] on Ω such that dtδαkt (da) → Λ almost
surely, and a fortiori (S, dtδαkt (da)) converges to (Λ, S) in distribution. Here, a simple F-
adapted A-valued process α is of the form

αt = a01[0,t0](t) +
n−1∑
i=1

ai1(ti,ti+1](t), (2.10)

where a0 ∈ A is deterministic, ai is an Fti-measurable A-valued random variable, and 0 <
t0 < t1 < . . . < tn = T for some n is a fixed, deterministic time grid. It remains to show that,
for any simple F-adapted A-valued process α, there exist FS-adapted A-valued processes αk

such that (S, dtδαkt (da))→ (S, dtδαt(da)) weakly.
Now let α be of the form (2.10). By Proposition 2.1.6, there exists a sequence of

(FSti )
n
i=1-adapted processes (aki )

n
i=1 such that (St1 , . . . , Stn , a

k
1, . . . , a

k
n) converges in law to

(St1 , . . . , Stn , a1, . . . , an) as k →∞. Define

αkt = a01[0,t0](t) +
n∑
i=1

aki 1(ti,ti+1](t).

The map

An 3 (α1, . . . , αn) 7→ dt

[
δa0(da)1[0,t0](t) +

n∑
i=1

δαi(da)1(ti,ti+1](t)

]
∈ V

is easily seen to be continuous, and thus (S, dtδαkt (da))−1 converges in law to (S, dtδαt(da))−1,
completing the proof.

We close the section with an easy but useful compactness criterion for the space V .

Lemma 2.1.16. Assume A ⊂ Rk for some k, and suppose a set K ⊂ V satisfies

lim
r→∞

sup
q∈K

∫ T

0

∫
|a|>r
|a|pqt(da)dt = 0. (2.11)

Then K is relatively compact. In particular, (2.11) holds if there exists p′ > p such that

sup
K

∫ T

0

∫
A

|a|p′qt(da)dt <∞.

Proof. Since p ≥ 1, it follows from Markov’s inequality and (2.11) that

sup
q∈K

q {(t, a) : |a| > r} ≤ 1

r
sup
q∈K

∫ T

0

∫
A

|a|qt(da)dt <∞,

for each r > 0. Thus K is tight, and it follows from Proposition 2.1.7 that K is relatively
compact.
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2.2 McKean-Vlasov limits

This section surveys some of the known results on McKean-Vlasov limits of interacting
diffusions. The goal is not to be completely formal or general in the statements of results,
but rather to present the ideas of the results and a new perspective on their proofs. First,
we elaborate on the interacting diffusion model discussed of Section 1.1.1.

2.2.1 No common noise

For the sake of this section, consider bounded continuous (recalling that we implicitly equip
P(Rd) with weak convergence) functions

(b, σ) : Rd × P(Rd)→ Rd × Rd×m.

Consider a system of n particles with positions (Xn,1
t , . . . , Xn,n

t ) at time t, which evolve
according to the dynamics{

dXn,i
t = b(Xn,i

t , µ̂nt )dt+ σ(Xn,i
t , µ̂nt )dW i

t ,

µ̂n = 1
n

∑n
i=1 δXn,i ,

(2.12)

where W 1, . . . ,W n are independent standard Wiener processes of dimension m, and the
initial positions Xn,1

0 , . . . , Xn,n
0 are i.i.d. with initial law λ ∈ P(Rd). Here, we view µ̂n

as a random measure on the path space Cd = C([0,∞);Rd), and its time-marginals are
µ̂nt = 1

n

∑n
i=1 δXn,i

t
. Note that under the stated assumptions, there exists a weak solution of

this SDE system, but it may not be unique.
The heuristic argument outlined in the introduction suggests that the limiting dynamics

as n → ∞ could be described by the McKean-Vlasov equation, defined as follows. Let us
say that a probability measure µ on Cd is a solution of the McKean-Vlasov equation with
initial law λ if µ0 = λ and there exists a weak solution (Xt)t≥0 of the SDE

dXt = b(Xt, µt)dt+ σ(Xt, µt)dWt,

(defined on some filtered probability space supporting an m-dimensional Wiener process W )
such that the law of X is µ. Alternative definitions are not uncommon in the literature:
First, we may study the (nonlinear) martingale problem associated to the generator which
acts on smooth functions ϕ by

Lmϕ(x) = b(x,m)>Dϕ(x) +
1

2
Tr[σ(x,m)σ>(x,m)D2ϕ(x)], (2.13)

where D and D2 denote the gradient and Hessian, respectively. A solution of the martingale
problem is a law µ ∈ P(Cd) under which the process defined on Cd by

[0,∞)× Cd 3 (t, x) 7→ ϕ(xt)−
∫ t

0

Lµsϕ(xs)ds
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is a martingale for each smooth ϕ with compact support. (Here the filtration on Cd is the
canonical one.) Second, the McKean-Vlasov equation is related to the nonlinear Kolmogorov
forward equation, formally (assuming µt has a smooth density) written as

∂tµt(x) = L∗µtµt(x), µ0 = λ

where L∗µt is adjoint to Lµt . For discussions of these various formulations of the McKean-
Vlasov equation and connections between them, see [52, 96, 53, 104].

The following limit theorem and its proof are archetypal in the literature on McKean-
Vlasov limits [96, 53]. To fix some ideas, endow Cd with the usual topology of uniform
convergence on compacts.

Theorem 2.2.1. For each n, let µ̂n arise from a weak solution of the SDE system (2.12).
Then the set {µ̂n : n ≥ 1} of P(Cd)-valued random variables is tight, and every limit is
supported on the set of solutions of the McKean-Vlasov equation with initial law λ.

There are two obvious corollaries. First, from existence of the n-particle systems we
deduce the existence of a solution of the McKean-Vlasov equation. Second, if it can be
shown that the solution of the McKean-Vlasov equation is unique, then it follows that µ̂n

converge in law to this unique solution, which is a deterministic measure! This phenomenon,
known as propagation of chaos, is discussed in detail in [104].

Soon we will discuss a new proof of Theorem 2.2.1, but let us first mention two interesting
ways this is typically proven. First of all, to prove tightness it suffices to show that the mean
measures of µ̂n are tight (see Proposition 2.1.12), and this typically employs well known
tightness criteria on Cd. The meat of the proof is in characterizing the limits, which is often
done by studying the (nonlinear) martingale problem associated with the McKean-Vlasov
equation [96, 53].

Another approach works when the coefficients b and σ are Lipschitz (using again a Wasser-
stein distance for the measure argument), known as a trajectorial propagation of chaos argu-
ment detailed in [104]. In this case, the McKean-Vlasov solution can be shown to be unique,
and a direct coupling argument yields a stronger form of convergence. More precisely, let
(µt)t≥0 denote this unique solution, and fix a common probability space supporting indepen-
dent Wiener processes W 1,W 2, . . . and i.i.d. random vectors ξ1, ξ2, . . . with common law λ.
We may solve the SDE (2.12) with Xn,i

0 = ξi, and using the same driving Wiener process
solve also the SDEs

dY i
t = b(Y i

t , µt)dt+ σ(Y i
t , µt)dW

i
t , Y i

0 = ξi.

Then (Y i
t )∞i=1 are i.i.d. with law µt, and it can be shown that a much stronger form of

convergence holds, namely

lim
n→∞

E
[

sup
0≤s≤t

|Xn,i
s − Y i

s | ∧ 1

]
= 0.

This can be shown to imply the weak convergence of the empirical measures stated in Theo-
rem (2.2.1), and often yields a rate of convergence. See [104] for details of these arguments.
This coupling technique will be useful in Section 6.2.
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2.2.2 Common noise

Suppose we are given another bounded, continuous (for simplicity) function σ0 : Rd ×
P(Rd)→ Rd×m0 , and the particle system (2.12) is replaced with the following:{

dXn,i
t = b(Xn,i

t , µ̂nt )dt+ σ(Xn,i
t , µ̂nt )dW i

t + σ0(Xn,i
t , µ̂nt )dBt,

µ̂n = 1
n

∑n
i=1 δXn,i ,

(2.14)

Here B is an m0-dimensional Wiener process, independent of the others. Intuitively, even if
the empirical measures µ̂n admit a unique limit, we should not expect it to be deterministic,
since there is a common source of noise B which persists in the limit n → ∞. The new
limiting dynamics can again be described in a number of ways, either in terms of a McKean-
Vlasov SDE, a martingale problem, or a PDE. The rigorous connections between these three
formulations become more subtle in this case, but let us describe them optimistically:

1. First, adapting the notion of McKean-Vlasov equation above, we may look for a random
measure µ on Cd such that there exists a solution X of the SDE

dXt = b(Xt, µt)dt+ σ(Xt, µt)dWt + σ0(Xt, µt)dBt, (2.15)

where B and W are independent Wiener processes, such that µ equals the conditional
law of X given B. It is somewhat a matter of taste to work with a random measure
µ on the path space, rather than the flow of marginal laws (µt)t≥0, but our choice will
prove useful later.

2. Under Lipschitz assumptions, Kurtz and Xiong [83] proved existence and uniqueness
for this equation and showed that it arises as the limit of µ̂n in distribution. They also
show rigorously that the solution µ solves the stochastic Kolmogorov forward equation:

∂tµt(x) = L∗µtµt(x)−
∑
i,j

∂xi [(σ0)i,j(x, µt)µt(x)] dBj
t , µ0 = λ, (2.16)

where L∗µ now contains the term (σσ>+σ0σ
>
0 ) in place of σσ>. (No effort will be made

here to make rigorous sense of this SPDE.)

3. Alternatively, Dawson and Vaillancourt in [40, 106] prefer a martingale problem ap-
proach. Under weaker assumptions than those of [83], the limits of µ̂n is now non-unique
but can be described by the solutions of a martingale problem on the space P(Rd).
They show that this corresponds to a weak solution of the SPDE (2.16), in the sense
that µ need not be B-measurable, and also the equation is required to hold only in
a distributional sense, i.e. when µt is integrated against smooth compactly supported
functions.

In the non-unique regime, the first formulation described above seems less flexible so
far as the literature seems to provide no corresponding weak solution concept. It turns out
the methods developed in this thesis for mean field games with common noise yield a new
interpretation of this McKean-Vlasov equation along with a new proof of the limit theorem.
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The next section describes this approach in some detail, with the goal of illustrating some of
the key ideas in a setting much simpler than mean field games. The idea of the argument is
to tag a representative particle; this point of view adapts nicely to the MFG setting, where
it is quite useful to keep track a representative agent.

2.2.3 An unorthodox derivation

Let us loosely define a weak solution of the McKean-Vlasov equation starting from λ to
be a random measure µ such that there exists a weak solution X of the SDE (2.15) such
that µ agrees with the conditional law of X given (B, µ), and also (B, µ) is assumed to be
independent of W . More precisely:

Definition 2.2.2. A weak solution of the McKean-Vlasov equation starting from λ is a tuple
(Ω̃,F = (Ft)t∈[0,T ], P, B,W, µ,X), where (Ω̃,FT ,F, P ) is a complete filtered probability space
supporting (B,W, µ,X) satisfying

1. B and W are independent F-Wiener processes of respective dimension m0 and m,
respectively. The processes X is continuous and F-adapted with values in Rd, and
P ◦X−1

0 = λ. Finally, µ is a random element of P(Cd) such that µ(C) is Ft-measurable
whenever C ∈ FXt for each t ≥ 0, where (FXt )t≥0 denotes the natural filtration on Cd.

2. X0, W , and (B, µ) are independent.

3. The SDE holds

dXt = b(Xt, µt)dt+ σ(Xt, µt)dWt + σ0(Xt, µt)dBt.

4. µ is a version of the conditional law of X given (B, µ).

We may shorten condition (4) to µ = P (X ∈ · | B, µ), and note that it implies the
arguably more natural condition

µt = P (Xt ∈ · | B, µ) = P (Xt ∈ · | Bs, µs : s ≤ t), a.s.,

for each t ≥ 0. Alternatively, we may define a weak solution in terms of the law of
(B,W,X, µ) induced on the canonical space

Ω = C([0,∞);Rm0 × Rm × Rd)× P(Cd).

It is not too difficult to show that a weak solution in this sense gives rise to a certain type of
weak solution of the SPDE (2.16), and even the martingale problems described in [40, 106].
The other direction is not as clear; constructing a weak solution of the McKean-Vlasov
equation from a solution of the SPDE (2.16) requires an important uniqueness assumption,
as in [83], but we will not go into the details. Even when uniqueness fails for the McKean-
Vlasov equation, we have the following limit theorem:
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Theorem 2.2.3. Assume the SDE system (2.14) is unique in law for each n, and for each n
let Bn, W n,1, . . . ,W n,n, and Xn,i denote a weak solution, defined on some filtered probability
space (Ωn, (Fnt )t≥0, Pn). Define µ̂n accordingly. Then

{Qn := Pn ◦ (Bn,W n,1, Xn,1, µ̂n)−1 : n ≥ 1}

is tight in Ω, and every limit is a weak solution of the McKean-Vlasov equation with initial
law λ.

Proof sketch. Note that Qn = Pn ◦ (Bn,W n,k, Xn,k, µ̂n)−1 for each choice of index k ≤ n,
because of the symmetry of the system and the assumption of uniqueness in law (the easy
proof can be found in [106]). It is easy to check that (Ωn, (Fnt )t≥0, Pn, B

n,W n,1, Xn,1, µ̂n)
in fact satisfies all of the properties of Definition (2.2.2), with the exception of the second.
Indeed, the fourth property follows by symmetry. Moreover, it can be shown that these
properties are closed, in the sense that they must hold under any limit point of Qn. See the
proof of Lemma 6.1.5 for more details, along with the simple proof that the independence
property (2) appears in the limit. For example, property (4) holds at the limit because if
(Bn, Xn,1, µ̂n) converges in law to (B,X, µ), then for continuous bounded functions ϕ and ψ
we have, by symmetry,

E
[
ϕ(B, µ)

(
ψ(X)−

∫
ψ dµ

)]
= lim

n
E
[
ϕ(Bn, µ̂n)

(
ψ(Xn,1)−

∫
ψ dµ̂n

)]
= 0.

Finally, tightness follows from fairly standard arguments, as will be demonstrated more
carefully in Proposition 5.3.2 during our analysis of mean field games.

It is worth emphasizing that the more standard arguments of [40, 106] focus solely on the
convergence of the empirical measures µ̂n. On the other hand, the new argument above keeps
track of more information, namely the joint law of (Bn,W n,1, µ̂n, Xn,1), which we interpret
as the joint law of precisely those processes which are directly relevant to the first particle
in the sense that they appear in the dynamics (2.15). By symmetry, we may choose any
particle to be the representative, not just the first. The assumption of uniqueness in law in
2.2.3 was only used for the sake of symmetry. In fact, we can make sense of this argument
even if we drop this uniqueness assumption! The proof of the following theorem is essentially
identical.

Theorem 2.2.4. For each n let Bn, W n,1, . . . ,W n,n, and Xn,i denote a weak solution of the
SDE system (2.14), defined on some filtered probability space (Ωn, (Fnt )t≥0, Pn). Define µ̂n

accordingly. Then {
Qn :=

1

n

n∑
k=1

Pn ◦ (Bn,W n,k, Xn,k, µ̂n)−1 : n ≥ 1

}
(2.17)

is tight in Ω, and every limit is a weak solution of the McKean-Vlasov equation with initial
law λ.
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Remark 2.2.5. Note that Qn defined in (2.17) may alternatively be written as

Qn = Pn ◦ (Bn,W n,U , Xn,U , µ̂n)−1,

where U is a random variable, uniformly distributed on {1, . . . , n}, drawn independently
of the other processes (constructed, if necessary, by enlarging the probability space). The
point is that now, without symmetry, the representative particle cannot be chosen arbitrarily,
but rather it must be chosen uniformly at random. Note also that the limiting behavior of
Pn◦(Bn, µ̂n)−1 can be determined from that of Qn, simply by projection onto the appropriate
marginals.

Theorem 2.2.4 is not stated merely for the sake of generality, but rather because this
idea will reappear in our study of mean field game limits. Many symmetric games have
asymmetric Nash equilibria, and thus to study the limits of arbitrary Nash equilibria we will
use this trick to force exchangeability into the picture.

Now, returning to the setting without common noise, it is natural to try to specialize this
new approach. Indeed, removing the common noise term everywhere, it can be shown that
the limits of Pn ◦ (W n,1, µ̂n, Xn,1)−1 as in Theorem 2.2.3 (or we may argue more generally as
in Theorem 2.2.4) are weak solutions in the following sense:

Definition 2.2.6. A weak solution of the McKean-Vlasov equation without common noise
starting from λ is a tuple (Ω̃,F = (Ft)t∈[0,T ], P,W,X, µ), where (Ω̃,FT ,F, P ) is a complete
filtered probability space supporting (W,µ,X) satisfying

1. W is an F-Wiener processes of dimension m, respectively. The processes X is continu-
ous and F-adapted with values in Rd, and P ◦X−1

0 = λ. Finally, µ is a random element
of P(Cd) such that µ(C) is Ft-measurable whenever C ∈ FXt for each t ≥ 0, where
(FXt )t≥0 denotes the natural filtration on Cd.

2. X0, W , and µ are independent.

3. The SDE holds

dXt = b(Xt, µt)dt+ σ(Xt, µt)dWt.

4. µ = P (X ∈ · | µ). That is, µ is a version of the conditional law of X given µ.

If it happens that µ is deterministic a.s., then we refer to µ itself as a strong solution. More
precisely, if there exists ν ∈ P(Cd) such that P (µ = ν) = 1, then we may refer to ν as a
strong solution.

The following proposition indicates that there is actually no need for this weak solution
concept for describing the limits of finite systems, at least in the absence of common noise.

Proposition 2.2.7. Let (Ω̃,F = (Ft)t∈[0,T ], P,W,X, µ) be a weak solution of the McKean-
Vlasov equation without common noise. Then µ is supported by the set of strong solutions.
That is, if S ⊂ P(Cd) is the set of strong solutions, then P (µ ∈ S) = 1.
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Proof. By independence of X0, W , and µ, the conditional law of (X0,W ) given µ is the
product of λ with the Wiener measure. Note also that

ν = P (X ∈ ·|µ = ν) , (2.18)

for almost every ν. Intuitively, we now just “freeze” µ = ν and note that the correct SDE
and fixed point condition hold under this conditional measure. This will be made rigorous
using martingale problems (see [102] for background). First, define the enlarged filtration

Gt := Ft ∨ σ(µ).

Independence of W and µ implies that W remains a Wiener process with respect to G :=
(Gt)t≥0. Thus, in the equation

Xt = X0 +

∫ t

0

b(Xs, µs)ds+

∫ t

0

σ(Xs, µs)dWs,

the meaning of stochastic integral is insensitive to the choice of reference filtration F or G
(see [99, Theorem 2.16]). Hence, defining the generator Lm as in (2.13), the process

Mϕ
t := ϕ(Xt)−

∫ t

0

Lµsϕ(Xs)ds

is a martingale under both F and G, for each smooth function ϕ of compact support. Now fix
t > s ≥ 0, and let Y and Z denote bounded σ(Xu : u ≤ s)-measurable and σ(µ)-measurable
random variables, respectively. Then Y Z is Gs-measurable, and for each ϕ as above we have

0 = EP [ZY (Mϕ
t −Mϕ

s )] .

Since this holds for every such choice of Z,

0 = EP [Y (Mϕ
t −Mϕ

s )|µ] , a.s. (2.19)

This holds for every bounded σ(Xu : u ≤ s)-measurable Y , and we conclude that Mϕ is
a martingale under the conditional measure P (· | µ), almost surely, for each ϕ. Although
the null set in (2.19) may depend on the choice of Y , it is well known that we need only
check this for countably many Y . Similarly, by restricting to a countable dense set of ϕ, we
may interchange the order of the quantifiers once more to conclude that the following holds
almost surely: under P (· | µ), Mϕ is a martingale for each ϕ. Combined with (2.18), we
conclude that P ◦ µ−1-almost every ν ∈ P(Cd) is a strong solution.

Remark 2.2.8. A converse of Proposition 2.2.7 is also true: Given any probability measure
ρ on P(Cd) with ρ(S) = 1, there exists a weak solution (Ω̃,F, P,W,X, µ) of the McKean-
Vlasov equation without common noise with P ◦ µ−1 = ρ. We will not need this fact, and
to prove it cleanly requires a notion of martingale problem with random coefficients
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Finally, as a corollary of Proposition 2.2.7 and Theorem 2.2.4 (or rather its simple adap-
tation to the case without common noise), we obtain the following generalization of Theorem
2.2.1.

Corollary 2.2.9. For each n let (W n,i, Xn,i)ni=1 denote a weak solution of the SDE system
(2.12), defined on some filtered probability space (Ωn, (Fnt )t≥0, Pn). Define µ̂n accordingly.
Then {

Qn :=
1

n

n∑
k=1

Pn ◦ (W n,k, Xn,k, µ̂n)−1 : n ≥ 1

}
is tight in Ω, and every limit is concentrated on the set of strong solutions (without common
noise) with initial law λ.

2.3 Static mean field games

Let us now forget about dynamics for the moment and see how mean field theory looks
for static but competitive systems. The goal of this section is to develop some intuition
for mean field games by beginning with the technically simpler setting of static or one-shot
games, before turning to stochastic differential games. The first section treats the simplest
conceivable setting of deterministic static games, borrowing heavily from Cardaliaguet’s
notes [24]. The second section introduces stochastic factors into these static games and
derives a limit theorem which resembles in many ways the main limit theorem on stochastic
differential games but is unencumbered by technical details arising from continuous-time
dynamics. First, we summarize a few results we will use from the analysis of set-valued
maps, with a view toward fixed point theorems.

2.3.1 Elements of set-valued analysis

The material of this short section is borrowed from [5, Chapter 17], to which the reader is
referred for more background. Given two sets X and Y , the graph of a set-valued function
ϕ : X → 2Y is the subset of X ×Y given by {(x, y) : x ∈ X, y ∈ ϕ(x)}. If Y is a topological
space, we say ϕ has closed values if h(x) is a closed set for each x ∈ X. Similarly, if Y is a
subset of a vector space, we say ϕ has convex values if ϕ(x) is a convex set for each x. The
following version of Kakutani’s fixed point theorem is due to K. Fan [48]; see also Corollary
17.55 of [5].

Theorem 2.3.1 (Kakutani’s fixed point theorem). Let K be a nonempty compact convex
subset of a locally convex Hausdorff (topological vector) space, and suppose ϕ : K → 2K has
a closed graph and nonempty convex compact values. Then ϕ admits a fixed point; that is,
there exits x ∈ K such that x ∈ ϕ(x).

In our applications, this will be applied to set-valued maps of the form

ϕ(x) = arg max
y∈ψ(x)

f(x, y) :=

{
y ∈ Y : f(x, y) = sup

y′∈ψ(x)

f(x, y′)

}
, (2.20)
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where ψ : X → 2Y and f : X × Y → R. A well known theorem due to Berge allows us to
determine that ϕ has a closed graph when ψ and f have adequate continuity properties. This
requires a brief discussion of continuity notions for set-valued maps. Assume X and Y are
metric spaces, and let ϕ : X → 2Y be a set-valued map. We say ϕ is lower hemicontinuous
if, for every sequence (xn)n in X converging to x, and for every y ∈ ϕ(x), there exist
ynk ∈ ϕ(xnk) such that ynk → y. If ϕ is closed-valued, we say ϕ is upper hemicontinuous if,
whenever xn → x in E and yn ∈ ϕ(xn) for each n, the sequence (yn)n has a limit point in
ϕ(x). We say ϕ is continuous if it is both upper hemicontinuous and lower hemicontinuous.
We may finally state Berge’s theorem, quoted from [5, Theorem 17.31].

Theorem 2.3.2 (Berge’s Theorem). Suppose X and Y are metric spaces, f : X × Y → R
is continuous, and ψ : X → 2Y is continuous. Then the map ϕ defined by (2.20) is upper
hemicontinuous and has nonempty compact values.

In order to apply Kakutani’s theorem, Berge’s theorem is often used in conjunction with
the following version of the closed graph theorem:

Theorem 2.3.3 (Theorem 17.11 of [5]). Suppose X and Y are metric spaces, with Y com-
pact. Then a closed-valued map ϕ : X → 2Y is upper hemicontinuous if and only if its graph
is closed.

2.3.2 The deterministic case

Imagine we have a large population of n agents, each of whom can choose an action from
a common action set A. Suppose we are also given objective functions Jni : An → R. A
vector (a1, . . . , an) in An is called a strategy profile, meaning the ith agent has chosen the
strategy ai. The objective of agent i is to choose ai to try to maximize Jni (a1, . . . , an). Of
course, the optimization problems of each agents are interdependent. In order to resolve
them simultaneously we will look for a Nash equilibrium. More generally, for ε > 0, an
ε-Nash equilibrium is defined to be any strategy profile (a∗1, . . . , a

∗
n) satisfying

Jni (a∗1, . . . , a
∗
n) + ε ≥ sup

a∈A
Jni (a∗1, . . . , a

∗
i−1, a, a

∗
i+1, . . . , a

∗
n), for i = 1, . . . , n.

Following Nash’s famous argument, one can show under quite modest assumptions (e.g.,
when A is compact metric and Jni are continuous) that a Nash equilibrium exists, at least
among mixed strategies. A mixed strategy is a vector in P(A)n rather than An, and Nash
equilibrium among mixed strategies is a vector (π∗1, . . . , π

∗
n) ∈ P(A)n satisfying

J
n

i (π∗1, . . . , π
∗
n) ≥ sup

π∈P(A)

J
n

i (π∗1, . . . , π
∗
i−1, π, π

∗
i+1, . . . , π

∗
n), for i = 1, . . . , n,

where

J
n

i (π1, . . . , πn) :=

∫
An
Jni (a1, . . . , an)

n∏
k=1

πk(dak).
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The point of passing to mixed strategies is to acquire convexity, both of the action set P(A)
and of the objective functions Jni , which facilitate an application of Kakutani’s fixed point
theorem.

When the number of agents n is large, Nash equilibria may be difficult to compute. On
the other hand, the desired output of a game-theoretic model is not always a full description
of the equilibria. In large-population games, for example, the distribution of the equilibrium
strategies (or a quantity derived it) is often the main object of interest. In this case, if n
is sufficiently large and the game is symmetric in a certain sense, then some simplifying
analysis is available. By symmetric we mean that

Jnπ(i)(aπ(1), . . . , aπ(n)) = Jni (a1, . . . , an),

for every permutation π of {1, . . . , n}. More specifically, we will assume there is a single
function F : A×P(A)→ R, where P(A) is the set of probability measures on A, such that

Jni (a1, . . . , an) = F

(
ai,

1

n

n∑
k=1

δak

)
, for 1 ≤ i ≤ n.

In an asymptotic sense illustrated more precisely in [24, Theorem 2.1], it is not too restrictive
to assume the Jni take this form. The main limiting result is the following:

Theorem 2.3.4 (Theorem 2.4 of [24]). Suppose that for each n we are given an εn-Nash
equilibrium (an1 , . . . , a

n
n), where εn → 0. Let µ̂n = 1

n

∑n
i=1 δani denote the empirical measure

of these strategy profiles. Suppose the action space A is compact and metrizable, and the
function F is jointly continuous. Then {µ̂n} ⊂ P(A) is tight, and every weak limit µ∗ is
supported by the set of maximizers of F (·, µ∗). That is, µ∗{a ∈ A : F (a, µ∗) ≥ F (b, µ∗) ∀b ∈
A} = 1.

Proof. Fix any alternative action b ∈ A. The Nash property implies

F (ani , µ̂
n) + εn ≥ F (b, ν̂ni ), where ν̂ni =

1

n

(
δb +

n∑
k 6=i

δani

)
.

Summing over i = 1, . . . , n, we get∫
A

F (a, µ̂n)µ̂n(da) + εn ≥
1

n

n∑
i=1

F (b, ν̂ni ) (2.21)

If the action space A is a compact metrizable space, then the sequence {µ̂n} admits weak
limits. If µ̂n converges to a measure µ∗ along a subsequence, then ν̂ni must too converge to
the same µ along the same subsequence, uniformly in i ≤ n. More precisely, recalling the
definition of the Wasserstein distance from (2.6), it is not hard to check that

`A,1(ν̂n, ν̂ni ) ≤ c/n, for 1 ≤ i ≤ n,
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where we have chosen any compatible metric on A, and c > 0 is the diameter of A with
respect to this metric, finite thanks to the compactness of A. Since F is uniformly continuous,
we may pass to the limit in (2.21) (using the assumption that εn → 0) to get∫

A

F (a, µ∗)µ∗(da) ≥ F (b, µ∗).

This holds for each b ∈ A, and thus µ∗ is concentrated on the set of maximizers of F (·, µ∗).

With this result in mind, it is natural to define a mean field game (MFG) solution as
any probability measure µ on A supported on the set of maximizers of F (·, µ). Note, for
example, that when F (·, µ) admits a unique maximizer for each µ, we conclude that every
MFG solution is in fact a point mass!

The definition of a MFG solution can be alternatively expressed as a fixed point condition.
For each µ ∈ P(A), define ϕ(µ) to be the set of probability measures on A supported on the
set of maximizers of F (·, µ). Then, the MFG solutions are exactly the fixed points of this
set-valued map, in the sense that µ∗ ∈ ϕ(µ∗). Intuitively, given that the distribution of a
continuum of adverse agents’ strategies is µ, any given representative agent wishes to choose
a strategy from the set of maximizers of F (·, µ). Since all of the agents are identical, the
fixed point is a natural expression of consistency, or equilibrium.

With this fixed point formulation in mind, we illustrate how to prove an existence theorem
using Kakutani’s theorem, in what is by now a well known argument [92, Theorem 1].
(Naturally, this could also be proven by combining Nash’s existence theorem with a version
of Theorem 2.3.4 for mixed strategy.)

Theorem 2.3.5. Under the same assumptions of Theorem 2.3.4, the map ϕ admits a fixed
point.

Proof. Since P(A) is compact and convex, Kakutani’s fixed point theorem will apply if we
can show that ϕ(µ) is convex for each µ and that the graph S := {(µ, ν) ∈ P(A) × P(A) :
ν ∈ ϕ(µ)} is closed. The convexity is clear. To show S is closed, note that ν ∈ ϕ(µ) if and
only if ∫

A

[F (a, µ)− F (b, µ)] ν(da) ≥ 0, ∀b ∈ A.

Since the functional of (µ, ν) on the left-hand side is continuous, it follows easily that S is
closed.

2.3.3 The stochastic case with independent noises

Now suppose we are given i.i.d. random variables (Wi)
∞
i=1 with values in a Polish space E

and with common law λ, defined on some common probability space (Ω,F ,P). Interpret
W1,W2, . . . as idiosyncratic noises or shocks, with Wi specific to agent i. Suppose now
that F : E × P(A) × A → R. Each agent i in the n-player game chooses an A-valued
σ(W1, . . . ,Wn)-measurable random variable Xi to try to maximize

Jni (X1, . . . , Xn) = E

[
F

(
Wi,

1

n

n∑
k=1

δXk , Xi

)]
.
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Nash equilibrium is defined in the same manner as before. Again, suppose A is a compact
metrizable space and F is bounded and continuous. To prove a limit theorem, the basic idea
is to think of (Wi, µ̂

n, Xi) as the random variables relevant to agent i, where µ̂n = 1
n

∑n
i=1 δXi

is the empirical measure. Then, we uniformly at random pick one of the n agents to be the
representative agent, and look at the law of the quadruple of random variables which are
relevant to that representative. This leads to the law (2.22) considered in the limit theorem
below.

We will state the limit theorem first in its more complicated form, involving a notion of
weak solution. This is more robust to changes in the specification of the problem, in a sense
which will be more clear in the next Section 2.3.4 dealing with common noise. Then, we
show that weak solutions admit a simpler description as mixtures of strong solutions. First,
we need some notation.

Let Ω := E×P(A)×A denote our canonical space, and let (W,µ,X) denote the canonical
projections. Given a probability measure ρ on E×P(A), letA(ρ) denote the set of probability
measures P on Ω with E × P(A)-marginal equal to ρ, i.e. P ◦ (W,µ)−1 = ρ. The letter A
stands for “admissible,” as this set specifies which joint laws of action X and inputs (W,µ)
are admissible for the optimization problems given in the definition below. Finally, let us
say that a measure Q ∈ P(Ω) is a weak solution of the MFG (or a weak MFG solution) if:

1. Q has E-marginal equal to λ, i.e. Q ◦W−1 = λ.

2. For each P ∈ A(ρ) where ρ := Q ◦ (W,µ)−1, we have
∫
F dQ ≥

∫
F dP .

3. W and µ are independent under Q.

4. Q(X ∈ · | µ) = µ, Q-almost surely. That is, EQ[ϕ(X) | µ] =
∫
ϕdµ a.s. for each

bounded measurable ϕ : A→ R.

For an intuitive explanation of the definition of Qn in the following limit theorem, refer
back to Remark 2.2.5.

Theorem 2.3.6. Suppose for each n we are given an εn-Nash equilibrium (Xn
1 , . . . , X

n
n ),

where εn → 0. Let µ̂n = 1
n

∑n
i=1 δXn

i
denote the empirical measure of these strategy profiles.

Define

Qn :=
1

n

n∑
i=1

P ◦ (Wi, µ̂
n, Xn

i )−1. (2.22)

Then (Qn)∞n=1 ⊂ P(Ω) is tight, and every weak limit Q is a weak MFG solution.

Proof. Note that the E-marginal ofQn does not depend on n. Since P(A) and A are compact,
the P(A) × A-marginals of Qn are tight. Hence (Qn)∞n=1 is tight (see Lemma 2.1.3). Fix a
limit point Q, and let us abuse notation by letting (Qn)∞n=1 denote a subsequence convergent
to Q. Now we check the four defining properties of a weak MFG solution.

1. Define ρ := Q ◦ (W,µ)−1. Note that Qn ◦W−1 = P ◦W−1
1 = λ, since (Wi)

∞
i=1 are i.i.d.

with law λ under P. Thus, passing to the limit, Q ◦W−1 = λ as well.

43



2. Fix any continuous function ϕ : E × P(A)→ A, and define

P := ρ ◦ (W,µ, ϕ(W,µ))−1.

Then P is in A(ρ), and we will show that
∫
F dQ ≥

∫
F dP for this type of P . Indeed,

any element of A(ρ) can be approximated by a P of this form, according to Proposition
2.1.5. Define a random measure µ̂n−i on Ω by

µ̂n−i :=
1

n− 1

n∑
k 6=i

δXn
k
,

to represent the empirical measure with the ith agent removed. Set Y n
i = ϕ(Wi, µ̂

n
−i),

and define another random measure µ̂ni on Ω by

µ̂ni :=
1

n

(
δY ni +

n∑
k 6=i

δXn
k

)
.

Using the εn-Nash property, we have∫
F dQn + εn =

1

n

n∑
i=1

EP [F (Wi, X
n
i , µ̂

n)] + εn

≥ 1

n

n∑
i=1

EP [F (Wi, Y
n
i , µ̂

n
i )]

Since εn → 0, we have∫
F dQ = lim

n→∞

∫
F dQn

≥ lim sup
n→∞

1

n

n∑
i=1

EP [F (Wi, Y
n
i , µ̂

n
i )]

= lim sup
n→∞

1

n

n∑
i=1

EP [F (Wi, Y
n
i , µ̂

n
−i)
]
. (2.23)

The last equality holds because F is bounded and continuous and because µ̂n and
µ̂ni are close; namely, `A,1(µ̂n, µ̂ni ) ≤ c/n, where c > 0 is the diameter of A. Finally,
continuity of ϕ implies

P ◦ (Wi, Y
n
i , µ̂

n
−i)
−1 = P ◦ (Wi, ϕ(Wi, µ̂

n
−i), µ̂

n
−i)
−1 → P.

This holds uniformly in i, and we conclude from (2.23) that
∫
F dQ ≥

∫
F dP .
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3. Let ϕ : E → R and ψ : P(A) → R be bounded and continuous. Since ψ is bounded,
the law of large numbers implies

EQ
[(
ϕ(W )− EQ[ϕ(W )]

)
ψ(µ)

]
= lim

n→∞
EP

[(
1

n

n∑
i=1

ϕ(Wi)− EP[ϕ(W1)]

)
ψ(µ̂n)

]
= 0.

4. Let ϕ : A → R and ψ : P(A) → R be bounded and continuous. Since
∫
ϕdµ̂n =

1
n

∑n
i=1 ϕ(Xi), we have

EQ
[(
ϕ(X)−

∫
ϕdµ

)
ψ(µ)

]
= lim

n→∞
EP

[(
1

n

n∑
i=1

ϕ(Xi)−
∫
ϕdµ̂n

)
ψ(µ̂n)

]
= 0.

Remark 2.3.7. The properties (1) and (4) of a weak MFG solution in fact hold before the
limit, i.e. for each Qn.

There is a nice way to simplify the above result, which requires some alternative termi-
nology. We say that m ∈ P(A) is a strong MFG solution if there exists Q ∈ P(Ω) satisfying
properties (1-4) of Theorem 2.3.6 as well as Q(µ = m) = 1. Essentially, if we avoid mak-
ing precise sense of which probability space these objects are defined on, a strong MFG
solution is any m ∈ P(A) such that there exists an A-valued random variable X satisfying
E[F (W,m,X)] ≥ E[F (W,m,X ′)] for any other random variable X ′.

Proposition 2.3.8. For any weak MFG solution Q, the measure Q ◦µ−1 is concentrated on
the set of strong MFG solutions. In particular, if Qn is defined as in Theorem 2.3.6, then
for every limit point Q of (Qn)∞n=1, the measure Q ◦ µ−1 is concentrated on the set of strong
MFG solutions. Conversely, suppose that for each (w,m) ∈ E × P(A) there exists a unique
maximizer x̂(w,m) of the function x 7→ F (w,m, x). Then, for every probability measure M
on P(A) concentrated on the set of strong MFG solutions, there exists a weak MFG solution
Q with Q ◦ µ−1 = M .

Proof. Let Q be a weak MFG solution. The function F (w,m, ·) admits a maximizer for each
(w,m), by compactness of A. It follows from property (2) that Q is necessarily of the form

Q(dw, dm, dx) = λ(dw)M(dm)Kw,m(dx),

where M := Q ◦ µ−1, the kernel E ×P(A) 3 (w,m) 7→ Km,w ∈ P(A) is measurable, and for
λ ×M -almost every (w,m) the measure Kw,m is concentrated on the set of maximizers of
F (w,m, ·). For each m ∈ P(A) let Km ∈ P(A) denote the mean measure

Km(C) :=

∫
E

λ(dw)Kw,m(C).
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Then properties (3) and (4) imply that

m = Q(X ∈ · | µ = m) = Km, (2.24)

for M -almost every m in P(A). Now fix some such m̃ ∈ P(A) satisfying (2.24). Define a

measure Q̃ ∈ P(Ω) by

Q̃(dw, dm, dx) = λ(dw)δm̃(dm)Kw,m(dx).

Trivially Q̃ satisfies properties (1) and (3) of a weak MFG solution. Since m̃ satisfies (2.24),

it holds that Q̃ satisfies property (4) as well. But Q̃ also clearly satisfies property (2), since
Kw,m is concentrated on the set of maximizers of F (w,m, ·). Thus m̃ is a strong MFG
solution.

Conversely, suppose M ∈ P(P(A)) is concentrated on the set of strong MFG solutions.
First note that the maximizer x̂ must be jointly measurable (e.g., by [5, Theorem 18.19]).
Consider the measure on Ω given by

Q(dω, dm, dx) = λ(dω)M(dm)δx̂(ω,m)(dx).

It is clear that Q ◦ W−1 = λ and that W and µ are independent under Q. The fixed
point property (4) for strong MFG solutions implies that for M -a.e. m ∈ P(A) we have
m = λ ◦ x̂(·,m)−1. Thus

EQ[ϕ(X) | µ = m] =

∫
E

λ(dω)ϕ(x̂(ω,m)) =

∫
A

ϕdm,

for every bounded measurable ϕ : A → R. This shows µ = Q(X ∈ · | µ). Finally, we
must check the optimality property (2). Put ρ = Q ◦ (W,µ)−1, and fix P ∈ A(ρ). By
disintegration, we may find a measurable kernel E × P(A) 3 (ω,m) 7→ Kω,m ∈ P(A) such
that

P (dω, dm, dx) = λ(dω)M(dm)Kω,m(dx).

For each fixed m ∈ P(A), define Pm ∈ P(E × A) by Pm(dω, dx) = λ(dω)Kω,m(dx). Since
M -a.e. m ∈ P(A) is a strong MFG solution, it follows that∫

E

λ(dω)F (ω,m, x̂(ω,m)) ≥
∫
E×A

Pm(dω, dx)F (ω,m, x), for M − a.e. m,

which implies ∫
Ω

F dQ =

∫
P(A)

M(dm)

∫
E

λ(dω)F (ω,m, x̂(ω,m))

≥
∫
P(A)

M(dm)

∫
E×A

Pm(dω, dx)F (ω,m, x)

=

∫
Ω

F dP.
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This proves property (2), and so Q is a weak MFG solution.

Notice that we haven’t shown that our description of the limits of n-player approximate
Nash equilibria is sharp. That is, we don’t know that every weak solution can be reached as
the limit of εn-Nash equilibria with εn → 0. This is indeed an important point, and a good
MFG solution concept should be sharp in this sense, at least for a reasonably wide variety of
models. In many situations, this weak solution concept will indeed be sharp; in particular,
the weak solution concept we use for stochastic differential mean field games has this feature.
In any case, sharp or not, Proposition 2.3.8 supports the claim that there is often little need
for weak solutions in describing the limits of n-player equilibria, in the static MFG model
presented in this section.

As in Section 2.3.2, we may prove existence of a strong solution by solving a fixed point
problem. Namely, let A denote the set of P ∈ P(E × A) with first marginal equal to λ.
Define a set-valued map ϕ : P(A)→ 2P(A) by setting

ϕ(m) :=

{
P (E × ·) :

∫
F (w,m, x)P (dw, dx) = sup

Q∈A

∫
F (w,m, x)Q(dw, dx)

}
.

That is, ϕ(m) is the set of A-marginals of the set of maximizers of A 3 P 7→∫
F (w,m, x)P (dw, dx). A strong solution is simply a fixed point m ∈ ϕ(m). Since A

is compact, it is not hard to prove an existence result using Kakutani’s theorem along the
lines of Theorem 2.3.5. Again, we emphasize that a direct existence theorem for MFG
solutions is not necessarily useful from the perspective of n-player games unless we have a
converse limit theorem of the type described in the previous paragraph, that is if we can use
the MFG solutions to construct approximate Nash equilibria for the n-player games.

2.3.4 The stochastic case with common noise

Now we sketch how the idea of the previous section extends when common noise is present.
Continue with the same setting and notation, but now suppose an additional independent
random variable W0 is given, with values in another Polish space E0 and with law λ0.
Suppose that A is a compact metric space and now that F : E0 × E × P(A) × A → R
is continuous. Each agent i in the n-player game chooses an A-valued σ(W0,W1, . . . ,Wn)-
measurable random variable Xi to try to maximize

Jni (X1, . . . , Xn) = E

[
F

(
W0,Wi,

1

n

n∑
k=1

δXk , Xi

)]
.

Now let Ω := E0×E×P(A)×A denote our canonical space, and let (B,W, µ,X) denote the
canonical projections. Given ρ ∈ P(E0 × E × P(A)), let A(ρ) denote the set of probability
measures P on Ω with E0×E×P(A)-marginal equal to ρ, i.e. P ◦ (B,W, µ)−1 = ρ. A weak
MFG solution is now defined as follows:

1. Q has E0 × E-marginal equal to λ0 × λ.

2. For each P ∈ A(ρ) where ρ := Q ◦ (B,W, µ)−1, we have
∫
F dQ ≥

∫
F dP .
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3. W and (B, µ) are independent under Q.

4. Q(X ∈ · | B, µ) = µ, Q-almost surely.

The proof of the following limit theorem is analogous to that of Theorem 2.3.6:

Theorem 2.3.9. Suppose for each n we are given a εn-Nash equilibrium (Xn
1 , . . . , X

n
n ), where

εn → 0. Let µ̂n = 1
n

∑n
i=1 δXn

i
denote the empirical measure of these strategy profiles. Define

Qn :=
1

n

n∑
i=1

P ◦ (W0,Wi, µ̂
n, Xn

i )−1.

Then (Qn)∞n=1 ⊂ P(Ω) is tight, and every weak limit Q is a weak MFG solution.

In this setting it is natural to call a weak MFG solution Q a strong MFG solution if µ is
a.s. B-measurable under Q, i.e. µ is measurable with respect to the Q-completion of σ(B). In
this case, the defining property (4) of a weak MFG solution reduces to Q(X ∈ · | B) = µ. Not
only can µ fail to be a.s. B-measurable, but also X can fail to be a.s. (B,W, µ)-measurable;
two layers of randomization may appear in the limit, which are in a sense external to the
given sources (B,W ) of randomness.

There are now two points which make this setting much more complicated than when
common noise was absent. First of all, it is not clear that an analog of Proposition 2.3.8
is available, and thus we must stick with weak solutions in order to describe the limits of
finite games. Second, an existence proof is much more complicated here. It is difficult to
find the right topological spaces in which to formulate a fixed point problem, and the usual
continuity-compactness tradeoff seems unassailable at first. There is a critical failure of
continuity due to the operation of conditioning a joint measure. In general, if some random
variables (Zn, Y ) converge weakly to (Z, Y ), then there is no reason that the conditional
laws of Zn given Y should converge in any useful sense. However, if the support of Y is
finite, then there is no problem, as a conditional law given a finite σ-field can then be seen
as a finite vector of (deterministic) probability measures. Hence, if λ0 is nonatomic, we can
obtain an existence result via the following procedure:

1. Approximate λ0 by a sequence of measures with finite support.

2. Prove existence of strong MFG solutions for the approximate systems, exploiting the
additional continuity.

3. Take weak limits to obtain a weak solution of the original problem.

This is exactly the strategy employed in Chapter 7 to prove existence of weak solutions of
mean field games with common noise.
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Chapter 3

Stochastic differential mean field
games

This chapter describes in detail the n-player stochastic differential games under consideration
as well as the associated mean field game solution concepts. We take now an approach
opposite to that of the previous chapter, in the sense that we start immediately with the
most general situation, with common noise, before successively refining and specializing the
results. Refer back to the introduction, specifically Section 1.2.2, for an informal discussion
of the mean field game with common noise. The main limit theorems and existence theorems
are stated, but the proofs are postponed to Chapters 6 and 7. The equilibrium concepts for
mean field games (MFGs) developed in this chapter are admittedly cumbersome. But they
are central to this thesis, so we take time to thoroughly explain all of the moving parts.

3.1 MFG solution concepts

The basic inputs to the model are the following data. We are given a time horizon T > 0,
three exponents (p′, p, pσ) with p ≥ 1, a control space A, an initial state distribution λ ∈
P(Rd), and the following functions:

(b, σ, σ0, f) : [0, T ]× Rd × Pp(Rd)× A→ Rd × Rd×m × Rd×m0 × R,
g : Rd × Pp(Rd)→ R.

The state, idiosyncratic noises, and common noise are of dimension d, m, and m0, respec-
tively. The following standing assumptions are assumed to hold throughout the thesis, al-
though additional assumptions will be imposed for certain results later on:

Assumption A1.

(A1.1) The control space A is a closed convex subset of a Euclidean space. (More generally,
as in [63], a closed convex σ-compact subset of a Banach space would suffice.)

(A1.2) The exponents satisfy p′ > p ≥ 1 ∨ pσ and pσ ∈ [0, 2]. Moreover, assume λ ∈ Pp′(Rd).

(A1.3) The functions b, σ, σ0, f , and g of (t, x, µ, a) are jointly measurable and are continuous
in (x, µ, a) for each t.
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(A1.4) The functions (b, σ, σ0) are uniformly Lipschitz in x. That is, there exists c1 > 0 such
that, for all (t, x, y, µ, ν, a) ∈ [0, T ]× Rd × Rd × Pp(Rd)× Pp(Rd)× A,

|(b, σ, σ0)(t, x, µ, a)− (b, σ, σ0)(t, y, ν, a)| ≤ c1|x− y|,

and

|b(t, x, µ, a)| ≤ c1

[
1 + |x|+

(∫
Rd
|z|pµ(dz)

)1/p

+ |a|

]
,

|(σσ> + σ0σ
>
0 )(t, x, µ, a)| ≤ c1

[
1 + |x|pσ +

(∫
Rd
|z|pµ(dz)

)pσ/p
+ |a|pσ

]

(A1.5) There exist c2, c3 > 0 such that, for each (t, x, µ, a) ∈ [0, T ]× Rd × Pp(Rd)× A,

|g(x, µ)| ≤ c2

(
1 + |x|p +

∫
Rd
|z|pµ(dz)

)
,

f(t, x, µ, a) ≤ c2

(
1 + |x|p +

∫
Rd
|z|pµ(dz)

)
− c3|a|p

′
,

f(t, x, µ, a) ≥ −c2

(
1 + |x|p +

∫
Rd
|z|pµ(dz) + |a|p′

)
.

For simplicity, the initial distribution λ on Rd is fixed throughout, and the state processes
of the n-player games are assumed to be independent and identically distributed (i.i.d.) with
common law λ. It should be clear how the definitions to follow depend on the choice of initial
condition. Remark 3.2.6 will explain how to extend the main limit theorem beyond the i.i.d.
setting.

A typical case is p′ = 2, p = 1, and pσ = 0 (i.e., σ and σ0 bounded). Unfortunately, our
assumptions to not cover all linear-quadratic models. When the objective f is quadratic in
the control a, we are forced to choose p′ = 2, and the constraint p < p′ forces f and g to
be strictly subquadratic in x. However, this is not surprising in light of the counterexample
discussed in Section 7.4.

For all of the results except for one existence theorem, it is assumed that the volatility
coefficients are uncontrolled. This is not so benign an assumption; several arguments involv-
ing relaxed controls are simply unavailable when the volatilities are controlled. We assume
throughout this chapter that the following assumption holds, in addition to assumption A1.

Assumption A2. The volatilites σ and σ0 are uncontrolled.

Before defining the various solution concepts for MFGs, let us define some additional
canonical spaces. For positive integers k let Ck = C([0, T ];Rk) denote the set of continuous
functions from [0, T ] to Rk, endowed with the supremum norm and its Borel σ-field. For
µ ∈ P(Ck), let µt ∈ P(Rk) denote the image of µ under the map x 7→ xt. Let

X := Cm × V × Cd. (3.1)
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This space will house the idiosyncratic noise, the relaxed control, and the state process. Let
(FXt )t∈[0,T ] denote the canonical filtration on X , where FXt is the σ-field generated by the
maps

X 3 (w, q, x) 7→ (ws, xs, q(C)) ∈ Rm × Rd × R, for s ≤ t, C ∈ B([0, t]× A).

For µ ∈ P(X ), let

µx := µ(Cm × V × ·) (3.2)

denote the Cd-marginal. Finally, for ease of notation let us define the objective functional
Γ : Pp(Cd)× V × Cd → R ∪ {−∞} by

Γ(µ, q, x) :=

∫ T

0

∫
A

f(t, xt, µt, a)qt(da)dt+ g(xT , µT ). (3.3)

Note that Γ is well-defined, thanks to the growth assumptions A1.5 pertaining to f and g.

Definition 3.1.1. A weak MFG solution with weak control, or simply a weak MFG solution,
is a tuple (Ω̃,F = (Ft)t∈[0,T ], P, B,W, µ,Λ, X), where (Ω̃,FT ,F, P ) is a complete filtered
probability space supporting (B,W, µ,Λ, X) satisfying

1. B and W are independent F-Wiener processes of respective dimension m0 and m,
respectively. The processX is F-adapted with values in Rd, and P◦X−1

0 = λ. Moreover,
µ is a random element of Pp(X ) such that µ(C) is Ft-measurable for each C ∈ FXt
and t ∈ [0, T ].

2. X0, W , and (B, µ) are independent.

3. Λ is a F-progressively measurable process with values in P(A) and

EP
∫ T

0

∫
A

|a|pΛt(da)dt <∞.

Moreover, the control Λ is compatible with (FX0,B,W,µ
t )t∈[0,T ], meaning that σ(Λs : s ≤ t)

is conditionally independent of FX0,B,W,µ
T given FX0,B,W,µ

t , for each t ∈ [0, T ], where

FX0,B,W,µ
t = σ

(
X0, Bs,Ws, µ(C) : s ≤ t, C ∈ FXt

)
.

4. The state equation holds:

dXt =

∫
A

b(t,Xt, µ
x
t , a)Λt(da)dt+ σ(t,Xt, µ

x
t )dWt + σ0(t,Xt, µ

x
t )dBt. (3.4)

5. If (Ω̃′,F′, P ′) is another filtered probability space supporting (B′,W ′, µ′,Λ′, X ′) satis-
fying (1-4) and P ◦ (B, µ)−1 = P ′ ◦ (B′, µ′)−1, then

EP [Γ(µx,Λ, X)] ≥ EP ′ [Γ(µ′x,Λ′, X ′)] .
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6. µ is a version of the conditional law of (W,Λ, X) given (B, µ).

If also there exists an A-valued process α such that P (Λt = δαt a.e. t) = 1, then we say the
weak MFG solution has strict control. If this α is progressively measurable with respect to
the completion of (FX0,B,W,µ

t )t∈[0,T ], we say the weak MFG solution has strong control. If µ
is a.s. B-measurable, then we have a strong MFG solution (with either weak control, strict
control, or strong control).

Given a weak MFG solution (Ω̃,F, P, B,W, µ,Λ, X), we view (X0, B,W, µ,Λ, X) as a
random element of the canonical space

Ω := Rd × Cm0 × Cm × Pp(X )× V × Cd. (3.5)

A weak MFG solution thus induces a probability measure on Ω, which itself we would like to
call a MFG solution, as it is really the object of interest more than the particular probability
space. The following definition will be reformulated in Section 5.2 in a more intrinsic manner.

Definition 3.1.2. If P ∈ P(Ω) satisfies P = P ′ ◦ (X0, B,W, µ,Λ, X)−1 for some weak
MFG solution (Ω′,F′, P ′, B,W, µ,Λ, X), then we refer to P itself as a weak MFG solution.
Naturally, we may also refer to P as a weak MFG solution with strict control or strong
control, or as a strong MFG solution, under the analogous additional assumptions.

The definition is to be interpreted as follows. The first conditions (1-3) are largely techni-
cal, but we will elaborate notion of compatibility shortly. Remark 3.2.6 will explain why X0

is independent of µ in point (2). The fourth condition simply says that the given processes
verify the correct state equation. The fifth is an optimality condition stated, requiring that
the given control Λ achieves a greater reward than any other compatible control; the agent is
allowed to change the underlying probability space to construct an alternative control, but
the joint distribution of the inputs (X0, B,W, µ) of the control problem must remain intact.
The final condition (6) is the consistency condition.

As we saw in Sections 2.2 and 2.3, dealing respectively with interacting diffusions and
static mean field games, some care is needed in defining a notion of equilibrium that captures
a given mean field limit. This is because weak convergence does not preserve measurability
properties, as is strikingly illustrated by Proposition 2.1.5. Even if we require the strategies
of the n-player games to be adapted to a given filtration (e.g., generated by the driving
Wiener processes), there may appear additional randomness in the n → ∞ limit. For this
reason, we allow both the random measure µ and the control Λ to be randomized externally
to the inputs (X0, B,W ). Following the terminology of weak and strong solutions of SDEs,
we call the MFG solution strong if µ happens to be B-adapted and weak otherwise. Similarly,
a strong control is adapted to the filtration (FX0,B,W,µ

t )t∈[0,T ] generated by the inputs to the
control problem, whereas a weak control may not be.

This precise notion of “weak control” is unusual. It is not surprising that we need
measure-valued controls, which we interpret as a continuous-time form of mixed strategy,
but the compatibility condition (3) deserves some discussion. Compatibility is actually
well known by various names in diverse areas of stochastic analysis, and there are several
interesting equivalent definitions. Appendix A.1 elaborates on this, but we will prove all of
the needed properties in the body of the thesis, to keep the presentation as self-contained as
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possible. Strong controls are more prevalent in the literature, but, as discussed above, weak
limits of strong controls are not guaranteed to remain strong controls, as is illustrated by
Proposition 2.1.15. On the other extreme, it seems more natural at first to omit compatibility
and merely require that Λ is F-progressively measurable; this class of controls does indeed
catch any relevant weak limits of n-player strategies, but requiring optimality of a limiting
control among this class turns out to be too restrictive. The compatibility requirement falls
between these two extremes, and mathematically the best intuition for why compatibility
should be relevant comes from Proposition 2.1.15: This says that the set of compatible
controls is precisely the closure of the set of strong controls, in a certain topological sense.

A more game-theoretic interpretation of compatibility is as follows. An agent has full
information, in the sense that she observes (in an adapted fashion) the initial state X0, the
noises B and W , and also the distribution µ of the (infinity of) other agents’ states, controls,
and noises. That is, the agent has access to FX0,B,W,µ

t at time t. Controls are allowed to be
randomized externally to these observations, but such a randomization must be conditionally
independent of future information given current information.

Remark 3.1.3. Given a MFG solution, the consistency condition (6) implies that µxt =
P (Xt ∈ · | FB,µ

x

t ) for each t, where

FB,µ
x

t := σ(Bs, µ
x
s : s ≤ t).

Indeed, for any bounded measurable ϕ : Rd → R, since FB,µ
x

t ⊂ FB,µT and µxt is FB,µ
x

t -
measurable, we may condition by FB,µ

x

t on both sides of the equation E[ϕ(Xt) | FB,µT ] =∫
ϕdµxt to get the desired result. More carefully, this tells us E[ϕ(Xt) | FB,µ

x

t ] =
∫
ϕdµxt

a.s. for each ϕ, and by taking ϕ from a countable sequence which is dense in pointwise
convergence we conclude that µxt is a version of the regular conditional law of Xt given
FB,µ

x

t .

Somewhat less clear is why we must work with the full conditional law of (W,Λ, X) in
the consistency condition (6). Indeed, as in Remark (3.1.3), it seems more natural to work
simply with the X-marginals, and to require that µx = P (X ∈ · | B, µx). After all, only µx

appears in the state equation and the objective functions. Mathematically, the compatibility
required of the control prevents such a simplification, and even our method of proof depends
crucially on the use of the full joint law; see Lemma 5.1.2. Intuitively, the full conditional
law µ carries more information than µx, particularly pertaining to correlations between the
states, controls, and idiosyncratic noises of the other agents. The example of Section 4.3
(specifically Remark 4.3.4) elaborates on this point.

The definition of weak MFG solution is a bit complicated, but additional convexity
and concavity assumptions translate into additional structure of weak MFG solutions. For
example, we can rule out relaxed controls under the following convexity assumption, which
is familiar in control theory ever since Filippov’s work [50].

Assumption (Convex). For each (t, x, µ) ∈ [0, T ]× Rd × Pp(Rd), the subset{(
b(t, x, µ, a), (σσ> + σ0σ

>
0 )(t, x, µ, a), z

)
: a ∈ A, z ≤ f(t, x, µ, a)

}
of Rd × Rd×d × R is convex.
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Proposition 3.1.4. Under assumption (Convex), for every weak MFG solution with weak
control, there exists a weak MFG solution with strict control which induces the same joint
law of (B,W, µx, X). More precisely, if (Ω̃,F, P, B,W, µ,Λ, X) is a weak solution with weak

control, there exists a strict control Λ̃ and a random element µ̃ of Pp(X ), both defined on Ω̃,

such that (Ω̃,F, P, B,W, µ̃, Λ̃, X) is a weak solution with strict control, and µ̃x = µx a.s.

Note, for future reference, that when the volatilities are uncontrolled (i.e., when assump-
tion A2 is in place), the Rd×d term can be omitted from the set of assumption (Convex). A
typical special case of assumption (Convex) is detailed in the following stronger assumption,
under which a stronger conclusion is possible.

Assumption (Linear-Convex).

1. The state coefficients are affine in (x, a), in the following form:

b(t, x, µ, a) = b1(t, µ)x+ b2(t, µ)a+ b3(t, µ),

σ(t, x, µ) = σ1(t, µ)x+ σ2(t, µ), σ0(t, x, µ) = σ1
0(t, µ)x+ σ1

0(t, µ),

2. The objective functions are strictly concave in (x, a); that is, the maps (x, a) 7→
f(t, x, µ, a) and x 7→ g(x, µ) are strictly concave for each (t, µ).

Proposition 3.1.5. Under assumption (Linear-Convex), every weak MFG solution with
weak control is in fact a weak MFG solution with strong control.

The proofs of Propositions (3.1.4) and (3.1.5) are deferred to Section 5.4.

3.2 Limits of finite games

Let us now return to defining the n-player games precisely. As before, we assume throughout
that assumptions A1 and A2 are in force. In this section, however, we also assume the
following:

Assumption A3. The exponent p′ is at least 2, and (b, σ, σ0) are uniformly Lipschitz in
(x, µ) in the sense that, for all (t, x, y, µ, ν, a) ∈ [0, T ]× Rd × Rd × Pp(Rd)× Pp(Rd)× A,

|(b, σ, σ0)(t, x, µ, a)− (b, σ, σ0)(t, y, ν, a)| ≤ c1

(
|x− y|+ `Rd,p(µ, ν)

)
.

An n-player environment is defined to be any tuple

En = (Ωn,Fn = (Fnt )t∈[0,T ],Pn, ξ, B,W ),

where (Ωn,FnT ,Fn,Pn) is a complete filtered probability space supporting an Fn0 -measurable
(Rd)n-valued random variable ξ = (ξ1, . . . , ξn) with law λ×n, an m0-dimensional (Fnt )t∈[0,T ]-
Wiener process B, and a nm-dimensional Fn-Wiener process W = (W 1, . . . ,W n), indepen-
dent of B. For simplicity, we consider i.i.d. initial states ξ1, . . . , ξn with common law λ,
although it is possible to generalize this (see Remark 3.2.6). Perhaps all of the notation here
should be parametrized by En or an additional index for n, but, since we will typically focus
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on a fixed sequence of environments (En)∞n=1, we avoid complicating the notation. Indeed,
the subscript n on the measure Pn will be enough to remind us on which environment we
are working at any moment.

Until further notice, we work with a fixed n-player environment En. An admissible (re-
laxed) control is any Fn-progressively measurable P(A)-valued process Λ satisfying

EPn
∫ T

0

∫
A

|a|pΛt(da)dt <∞.

An admissible strategy is a vector of n admissible controls. The set of admissible controls
is denoted An(En), and accordingly the set of admissible strategies is the Cartesian product
Ann(En). A strict control is any control Λ ∈ An(En) such that Pn(Λt = δαt , a.e. t) = 1 for
some Fn-progressively measurable A-valued process α, and a strict strategy is any vector of
n strict controls. Given an admissible control Λ = (Λ1, . . . ,Λn) ∈ Ann(En) define the state
processes X[Λ] := (X1[Λ], . . . , Xn[Λ]) by

dX i
t [Λ] =

∫
A

b(t,X i
t [Λ], µ̂xt [Λ], a)Λi

t(da)dt+ σ(t,X i
t [Λ], µ̂xt [Λ])dW i

t

+ σ0(t,X i
t [Λ], µ̂xt [Λ])dBt, X i

0 = ξi,

µ̂x[Λ] :=
1

n

n∑
k=1

δXk[Λ].

Note that we abbreviate

µ̂xt [Λ] := (µ̂x[Λ])t =
1

n

n∑
k=1

δXk
t [Λ]

Assumption A3 ensures that a unique strong solution of this SDE system exists.1 Indeed,
the Lipschitz assumption and the obvious inequality

`Rd,p

(
1

n

n∑
i=1

δxi ,
1

n

n∑
i=1

δyi

)
≤

(
1

n

n∑
i=1

|xi − yi|p
)1/p

together imply, for example, that the function

(Rd)n 3 (x1, . . . , xn) 7→ b

(
t, x1,

1

n

n∑
i=1

δxi , a

)
∈ Rd

is Lipschitz, uniformly in (t, a).

1 The filtrations are required to be complete or right-continuous. No problems will arise in the stochastic
integration, thanks to the careful treatment of Stroock and Varadhan [102, Section 4.3].
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3.2.1 Equilibrium concepts

The value for player i corresponding to a strategy Λ = (Λ1, . . . ,Λn) ∈ Ann(En) is defined by

Ji(Λ) := EPn
[∫ T

0

f(t,X i
t [Λ], µ̂xt [Λ], a)Λi

t(da)dt+ g(X i
T [Λ], µ̂xT [Λ]

]
.

A standard estimate using assumption (A1.4) (proven in Lemma 6.1.1), shows that

EPn

[
sup
t∈[0,T ]

|X i
t [Λ]|p

]
<∞

for each Λ ∈ Ann(En), n ≥ i ≥ 1. Thus Ji(Λ) < ∞ is well-defined because of the upper
bounds of assumption (A1.5), although it is possible that Ji(Λ) = −∞ since we do not
require that an admissible control possess a finite moment of order p′. Given a strategy Λ =
(Λ1, . . . ,Λn) ∈ Ann(En) and a control β ∈ An(En), define a new strategy (Λ−i, β) ∈ Ann(En)
by

(Λ−i, β) = (Λ1, . . . ,Λi−1, β,Λi+1, . . . ,Λn).

Given ε = (ε1, . . . , εn) ∈ [0,∞)n, a relaxed ε-Nash equilibrium in En is any strategy Λ ∈
Ann(En) satisfying

Ji(Λ) ≥ sup
β∈An(En)

Ji((Λ
−i, β))− εi, i = 1, . . . , n.

Naturally, if εi = 0 for each i = 1, . . . , n, we use the simpler term Nash equilibrium, as
opposed to 0-Nash equilibrium. A strict ε-Nash equilibrium in En is any strict strategy
Λ ∈ Ann(En) satisfying

Ji(Λ) ≥ sup
β∈An(En) strict

Ji((Λ
−i, β))− εi, i = 1, . . . , n.

Note that the optimality is required only among strict controls.
Note that the role of the filtration Fn in the environment En is mainly to specify the class

of admissible controls. We are particularly interested in the sub-filtration generated by the
Wiener processes and initial states; define Fs,n = (F s,nt )t∈[0,T ] to be the Pn-completion of

(σ(ξ, Bs,Ws : s ≤ t))t∈[0,T ] .

Of course, F s,nt ⊂ Fnt for each t. Let us say that Λ ∈ An(En) is a strong control if Pn(Λt =
δαt a.e. t) = 1 for some Fs,n-progressively measurable A-valued process α. Naturally, a
strong strategy is a vector of strong controls. A strong ε-Nash equilibrium in En is any strong
strategy Λ ∈ Ann(En) such that

Ji(Λ) ≥ sup
β∈An(En) strong

Ji((Λ
−i, β))− εi, i = 1, . . . , n.

Remark 3.2.1. A strong ε-Nash equilbrium in En = (Ωn,Fn,Pn, ξ, B,W ) is equivalently a

strict ε-Nash equilibrium in Ẽn := (Ωn,Fs,n,Pn, ξ, B,W ).
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The most common type of Nash equilibrium considered in the literature is, in our ter-
minology, a strong Nash equilibrium. The next proposition assures us that our equilibrium
concept using relaxed controls (and general filtrations) truly generalizes this more standard
situation, thus permitting a unified analysis of all of the equilibria described thusfar. The
proof is deferred to Appendix 6.4.1.

Proposition 3.2.2. On any n-player environment En, every strong ε-Nash equilibrium is
also a strict ε-Nash equilibrium, and every strict ε-Nash equilibrium is also a relaxed ε-Nash
equilibrium.

Remark 3.2.3. Another common type of strategy in dynamic game theory is called closed-
loop. Whereas our strategies (also called open-loop) are specified by processes, a closed-loop
(strict) strategy is specified by feedback functions ϕi : [0, T ]×(Rd)n → A, for i = 1, . . . , n, to
be evaluated along the path of the state process. In the model of Carmona et al. [35], both
the open-loop and closed-loop equilibria are computed explicitly for the n-player games, and
they are shown to converge to the same MFG limit. There is no distinction between open-
loop and closed-loop in the MFG, and this begs the question of whether or not closed-loop
equilibria converge to the same MFG limit that obtained in Theorem 3.2.4. This thesis does
not attempt to answer this question.

3.2.2 The limit theorem

We are ready now to state the first main Theorem 3.2.4 and its corollaries. The proof is
deferred to Section 6.1. Given an admissible strategy Λ = (Λ1, . . . ,Λn) ∈ Ann(En) defined
on some n-player environment En = (Ωn,Fn = (Fnt )t∈[0,T ],Pn, ξ, B,W ), define (on Ωn) the
random element µ̂[Λ] of Pp(X ) (recalling the definition of X from (3.1)) by

µ̂[Λ] :=
1

n

n∑
i=1

δ(W i,Λi,Xi[Λ]).

Note that this is consistent with the notation of (3.2), i.e. µ̂x[Λ] = (µ̂[Λ])x. As usual, we
identify a P(A)-valued process (Λi

t)t∈[0,T ] with the random element Λi = dtΛi
t(da) of V .

Theorem 3.2.4. Suppose assumptions, A1, A2, and A3 hold. For each n, let εn =
(εn1 , . . . , ε

n
n) ∈ [0,∞)n, and let En = (Ωn, (Fnt )t∈[0,T ],Pn, ξ, B,W ) be any n-player environ-

ment. Assume

lim
n→∞

1

n

n∑
i=1

εni = 0. (3.6)

Suppose for each n that Λn = (Λn,1, . . . ,Λn,n) ∈ Ann(En) is a relaxed εn-Nash equilibrium, and
let

Pn :=
1

n

n∑
i=1

Pn ◦
(
ξi, B,W i, µ̂[Λn],Λn,i, X i[Λn]

)−1
. (3.7)

Then (Pn)∞n=1 is relatively compact in Pp(Ω), and each limit point is a weak MFG solution.

57



Remark 3.2.5. As in Remark 2.2.5, averaging over i = 1, . . . , n in (3.7) circumvents the
problem that the strategies (Λn,1, . . . ,Λn,n) need not be exchangeable. Note also that the
limiting behavior of Pn ◦ (B, µ̂[Λn])−1 can always be recovered from that of Pn. To interpret
the definition of Pn, note that we may again write

Pn = Pn ◦
(
ξUn , B,WUn , µ̂[Λn],Λn,Un , XUn [Λn]

)−1
,

where Un is a random variable independent of FnT , uniformly distributed among {1, . . . , n},
constructed by extending the probability space Ωn. In words, Pn is the joint law of the
processes relevant to a randomly selected representative agent. Of course, Theorem 3.2.4
specializes when there is exchangeability, in the following sense. For any set E, any element
e = (e1, . . . , en) ∈ En, and any permutation π of {1, . . . , n}, let eπ := (eπ(1), . . . , eπ(n)). If

Pn ◦ (ξπ, B,Wπ,Λ
n
π)−1

is independent of the choice of permutation π, then so is

Pn ◦ (ξπ, B,Wπ, µ̂[Λn
π],Λn

π, X[Λn
π]π)−1 .

It then follows that

Pn = Pn ◦
(
ξk, B,W k, µ̂[Λn],Λn,k, Xk[Λn]

)−1
, for n ≥ k.

Remark 3.2.6. The assumption that the initial states ξi are i.i.d. is not strictly necessary.
As is common in the literature on McKean-Vlasov limits [53], a form of Theorem 3.2.4 still
holds assuming merely that

Pn ◦

(
1

n

n∑
i=1

δξi

)−1

are tight. The only difference is that in the definition of a weak MFG solution, instead of
requiringX0, W , and (B, µ) to be independent, we instead require only thatW and (X0, B, µ)
are independent; the reason for this becomes clear in the second step of the proof of Lemma
6.1.5. To keep track of this point throughout the thesis would only add unnecessarily to the
already heavy notation.

Theorem 3.2.4 is stated in quite a bit of generality, devoid even of standard convexity
assumptions on the objective functions f and g. Theorem 3.2.4 includes quite degenerate
cases, such as the case of no objectives, where f ≡ g ≡ 0 and A is compact. In this case,
any strategy profile whatsoever in the n-player game is a Nash equilibrium, and any weak
control can arise in the limit. This explains why such a relaxed solution concept is needed
in Theorem 3.2.4. Under additional convexity assumptions, however, we saw in Propositions
3.1.4 and 3.1.5 that weak MFG solutions (and thus limits of n-player equilibria) admit more
refined descriptions. Let us see how to apply these results to strengthen the conclusions of
Theorem Theorem 3.2.4.
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Corollary 3.2.7. Suppose the assumptions of Theorem 3.2.4 hold, as well as assumption
(Convex). Then {

1

n

n∑
i=1

Pn ◦
(
B,W i, µ̂x[Λn], X i[Λn]

)−1
: n ≥ 1

}

is relatively compact in Pp(Cm0 × Cm × Pp(Cd) × Cd), and every limit is of the form P ◦
(B,W, µx, X)−1, for some weak MFG solution with strict control (Ω̃,F, P, B,W, µ,Λ, X).

Proof. This follows immediately from Theorem 3.2.4 and Proposition 3.1.4.

Corollary 3.2.8. Suppose the assumptions of Theorem 3.2.4 hold, as well as assumption
(Linear-Convex). Then (Pn)∞n=1 is relatively compact in Pp(Ω), and every limit point is
a weak MFG solution with strong control.

Proof. By Proposition 3.1.5, the present assumptions guarantee that every weak MFG so-
lution is a weak MFG solution with strong control. The claim then follows from Theorem
3.2.4.

Finally, we provide an example of the satisfying situation in which there is a unique MFG
solution. Say that uniqueness in law holds for the MFG if any two weak MFG solutions
induce the same law on Ω. The following corollary is an immediate consequence of Theorem
3.2.4 and the uniqueness Theorem 3.3.5 to be developed later.

Corollary 3.2.9. Suppose the assumptions of Corollary 3.2.8 hold, and define Pn as in
(3.7). Assume also that

1. b, σ, and σ0 have no mean field term, i.e. no µ dependence,

2. f is of the form f(t, x, µ, a) = f1(t, x, a) + f2(t, x, µ),

3. For each µ, ν ∈ Pp(Cd) we have∫
Cd

(µ− ν)(dx)

[
g(xT , µT )− g(xT , νT ) +

∫ T

0

(f2(t, x, µ)− f2(t, x, ν)) dt

]
≤ 0.

Then there exists a unique in law weak MFG solution, and it is a strong MFG solution with
strong control. In particular, Pn converges in Pp(Ω) to this unique MFG solution.

3.2.3 The converse limit theorem

This section states and discusses a converse to Theorem 3.2.4. For this, we need an additional
technical assumption, which we note holds automatically under assumption A1 in the case
that the control space A is compact.

Assumption A4. The function f of (t, x, µ, a) is continuous in (x, µ), uniformly in a, for
each t ∈ [0, T ]. That is,

lim
(x′,µ′)→(x,µ)

sup
a∈A
|f(t, x′, µ′, a)− f(t, x, µ, a)| = 0, ∀t ∈ [0, T ].
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Moreover, there exists c4 > 0 such that, for all (t, x, x′, µ, µ′, a),

|f(t, x′, µ′, a)− f(t, x, µ, a)| ≤ c4

(
1 + |x′|p + |x|p +

∫
Rd
|z|p(µ′ + µ)(dz)

)
.

Theorem 3.2.10. Suppose assumptions A1, A2, A3, and A4 hold. Let P ∈ P(Ω)
be a weak MFG solution, and for each n let En = (Ωn,Fn,Pn, ξ, B,W ) be any n-player
environment. Then there exist εn ≥ 0 and a strong (εn, . . . , εn)-Nash equilibrium Λn =
(Λn,1, . . . ,Λn,n) on En, such that limn→∞ εn = 0 and

P = lim
n→∞

1

n

n∑
i=1

Pn ◦
(
ξi, B,W i, µ̂[Λn],Λn,i, X i[Λn]

)−1
, in Pp(Ω). (3.8)

Combining Theorems 3.2.4 and 3.2.10 shows that the set of weak MFG solutions is exactly
the set of limits of (strong) approximate Nash equilibria. More precisely, the set of weak
MFG solutions is exactly the set of limits

lim
k→∞

1

nk

nk∑
i=1

Pnk ◦
(
ξi, B,W i, µ̂[Λnk ],Λnk,i, X i[Λnk ]

)−1
,

where Λn ∈ Ann(En) are strong εn-Nash equilibria and εn = (εn1 , . . . , ε
n
n) ∈ [0,∞)n satisfies

(3.6). The same statement is true when the word “strong” is replaced by “strict” or “relaxed”,
because of Proposition 3.2.2. Similarly, combining Theorem 3.2.10 with Corollaries 3.2.7 and
3.2.8 yields characterizations of the mean field limit without recourse to relaxed controls.

Remark 3.2.11. In light of Remark 3.2.1, the statement of Theorem 3.2.10 is insensitive
to the choice of environments En. Without loss of generality, they may all be assumed to
satisy Fn = Fs,n; that is, the filtration may be taken to be the one generated by the process
(ξ, Bt,Wt)t∈[0,T ].

Remark 3.2.12. It follows from the proofs of Theorems 3.2.4 and 3.2.10 that the values
converge as well, in the sense that 1

n

∑n
i=1 Ji(Λ

n) converges (along a subsequence in the case
of Theorem 3.2.4) to the corresponding optimal value corresponding to the MFG solution.

Remark 3.2.13. Theorem 3.2.10 is admittedly abstract, and not as strong in its conclusion
as the typical results of this nature in the literature. Namely, in the setting without common
noise, it is usually argued as in [67] that a MFG solution may be used to construct not just
any sequence of approximate equilibria, but rather one consisting of symmetric distributed
strategies, in which the control of agent i is of the form α̂(t,X i

t) for some function α̂ which
depends neither on the agent i nor the number of agents n. The techniques of this paper
seem too abstract to yield a result of this nature, but in any case this would stray from the
objective of the paper. On a somewhat related note, at the level of generality of Theorem
3.2.10 we do not expect to obtain a rate of convergence of εn, as in [78, 32].
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3.3 Existence and uniqueness

This section summarizes the main existence and uniqueness theorems for mean field games
with common noise. The proof of the following existence theorem is the main subject of
Chapter 7.

Theorem 3.3.1. Under assumptions A1 and A2, there exists a weak MFG solution (with
weak control). If also assumption (Convex) holds, there exists a weak MFG solution with
strict control.

Exactly analogous to the theory of SDEs, we will define two notions of uniqueness.
The terminology introduced here will appear again only in Sections 4.6 and 7.3. The first
definition is quite natural:

Definition 3.3.2. An MFG is unique in law if any two weak solutions induce the same law
on Ω, i.e. the law of (B, µ,W,Λ, X).

To define pathwise uniqueness properly requires a bit more care. The starting point is
to notice that the law of a weak MFG solution is really determined by the law of (B, µ).
Indeed, for an element γ ∈ P p(Cm0 × Pp(X )), we can define Mγ ∈ P(Ω) by

Mγ(dξ, dβ, dw, dν, dq, dx) = γ(dβ, dν)ν(dw, dq, dx)δx0(dξ).

We will say γ is a MFG solution basis if the distribution Mγ together with the canonical
processes on Ω form a weak MFG solution. Then uniqueness in law for the MFG simply
means that there is at most one MFG solution basis. Given two MFG solution bases γ1 and
γ2, we say (Θ, (Gt)t∈[0,T ], Q,B, µ

1, µ2) is a coupling of γ1 and γ2 if:

1. (Θ, (Gt)t∈[0,T ], Q) is a probability space with a complete filtration.

2. B is a (Gt)t∈[0,T ]-Wiener process on Θ.

3. For each t ∈ [0, T ], we have (up to null sets)

Gt = σ(Bs, µ
1(C), µ2(C) : s ≤ t, C ∈ FXt ).

4. For i = 1, 2, Q ◦ (B, µi)−1 = γi.

An independent coupling of γ1 and γ2 is any coupling of the two satisfying the additional
property

5. µ1 and µ2 are conditionally independent given B.

Definition 3.3.3. We say pathwise uniqueness (resp. independent pathwise uniqueness)
holds for the MFG if, for any coupling (resp. independent coupling) (Θ, (Gt)t∈[0,T ], Q,B, µ

1, µ2)
of any two MFG solution bases, we have µ1 = µ2 a.s.

The following Proposition is analogous to the famous theorem of Yamada and Watanabe.
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Proposition 3.3.4. Suppose assumptions A1 and A2 hold, and suppose independent path-
wise uniqueness holds for the MFG. Then uniqueness in law and pathwise uniqueness hold
as well, and the unique weak MFG solution is in fact a strong solution with weak control.

Using this result, we will prove a modest uniqueness result, inspired by the work of Lasry
and Lions [91]. When there is no mean field term in the state coefficients, when the optimal
controls are unique, and when the monotonicity condition of Lasry and Lions [91] holds, we
indeed have a form of pathwise uniqueness.

Assumption U.

(U.1) b, σ, and σ0 have no mean field term.

(U.2) f is of the form f(t, x, µ, a) = f1(t, x, a) + f2(t, x, µ).

(U.3) For all µ, ν ∈ Pp(Cd) we have the Lasry-Lions monotonicity condition:∫
Cd

(µ− ν)(dx)

[
g(xT , µT )− g(xT , νT ) +

∫ T

0

(f2(t, xt, µt)− f2(t, xt, νt)) dt

]
≤ 0.

(3.9)

Theorem 3.3.5. Suppose assumptions A1, (Linear-Convex), and U hold. Then the
MFG is pathwise unique. In particular, there exists a unique in law weak MFG solution with
weak control, and it is in fact a strong MFG solution with strong control.

A somewhat more general form of this theorem will be presented, along with the proofs
of Proposition 3.3.4 and Theorem 3.3.5, in Section 7.3.
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Chapter 4

Stochastic differential mean field
games without common noise

The goal of this section is to specialize the limit theorem to MFGs without common noise.
Indeed we assume that σ0 ≡ 0 throughout this section. The assumption of Theorem 3.2.4
permits degenerate volatility, but when σ0 ≡ 0 our general definition of weak MFG solution
still involves the common noise B, which in a sense should no longer play any role. To be
absolutely clear, we will rewrite the definitions and the two main theorems so that they do
not involve a common noise; most notably, the notion of strong controls for the finite-player
games is refined to very strong controls.

The case without common noise is also worth treating separately because better existence
results are available. These will be discussed in Section 4.6.

4.1 MFG solution concepts

The proofs of the limit theorems of this chapter are deferred to Section 6.3, where we will
see how to deduce almost all of the results without common noise from those with common
noise. Crucially, even without common noise, a weak MFG solution still involves a random
measure µ, and the consistency condition becomes µ = P ((W,Λ, X) ∈ · | µ). We illustrate
by example just how different weak solutions can be from the strong solutions typically
considered in the MFG literature, in which µ is deterministic. Finally we close the section
by discussing some situations in which weak solutions are concentrated on the family of
strong solutions.

First, let us state a simplified definition of MFG solution for the case σ0 ≡ 0, which is
really just Definition 3.1.1 rewritten without B. Again, the following definition is relative to
the initial state distribution λ.

Definition 4.1.1. A weak MFG solution without common noise is a tuple (Ω̃,F =

(Ft)t∈[0,T ], P,W, µ,Λ, X), where (Ω̃,FT ,F, P ) is a complete filtered probability space sup-
porting (W,µ,Λ, X) satisfying

1. W is an F-Wiener processes of dimension m, the process X is F-adapted with values
in Rd, and P ◦X−1

0 = λ. Moreover, µ is a random element of Pp(X ) such that µ(C)
is Ft-measurable for each C ∈ FXt and t ∈ [0, T ].
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2. X0, W , and µ are independent.

3. Λ is a F-progressively measurable process with values in P(A) and

EP
∫ T

0

∫
A

|a|pΛt(da)dt <∞.

Moreover, σ(Λs : s ≤ t) is conditionally independent of FX0,W,µ
T given FX0,W,µ

t , for each
t ∈ [0, T ], where

FX0,W,µ
t = σ

(
X0,Ws, µ(C) : s ≤ t, C ∈ FXt

)
.

4. The state equation holds:

dXt =

∫
A

b(t,Xt, µ
x
t , a)Λt(da)dt+ σ(t,Xt, µ

x
t )dWt. (4.1)

5. For any other (Ω̃′, (F ′t)t∈[0,T ], P
′,W ′, µ′,Λ′, X ′) satisfying (1-4) and also P ′ ◦ (µ′)−1 =

P ◦ µ−1, we have

EP [Γ(µx,Λ, X)] ≥ EP ′ [Γ(µ′x,Λ′, X ′)] .

6. µ is a version of the conditional law of (W,Λ, X) given µ.

As in Definition 3.1.2, we may refer to the law P ◦ (W,µ,Λ, X)−1 itself as a weak MFG solu-
tion. Again, if also there exists an A-valued process (αt)t∈[0,T ] such that P (Λt = δαt a.e. t) =
1, then we say the MFG solution has strict control. If this (αt)t∈[0,T ] is progressively measur-

able with respect to the completion of (FX0,W,µ
t )t∈[0,T ], we say the MFG solution has strong

control. If µ is a.s.-constant, then we have a strong MFG solution without common noise. In
this case, we may abuse the terminology somewhat by saying that a measure µ̃ ∈ Pp(X ) is
itself a strong MFG solution (without common noise), if there exists a weak MFG solution

(Ω̃, (Ft)t∈[0,T ], P,W, µ,Λ, X) without common noise such that P (µ = µ̃) = 1.

Remark 4.1.2. We state Definitions 4.1.1 and 3.1.1 only under the assumption that the
volatilities are uncontrolled for a number of reasons. The main reason at this stage is
the SDE (4.1). To correctly include a relaxed control in the volatility requires the use
of martingale measures, and this would lose us control over the driving Wiener process
W . There is no problem, however, in defining weak MFG solutions with strict control,
and the existence theorem of this chapter, Theorem 4.6.1, allows for controlled volatility.
Under only assumption A1, we may define a weak MFG solution with strict control as a
tuple (Ω̃,F, P,W, µ, α,X) satisfying all the properties of Definition 4.1.1 with Λ = dtδαt(da),
except with property (4) replaced by the state equation

dXt = b(t,Xt, µ
x
t , αt)dt+ σ(t,Xt, µ

x
t , αt)dWt.

Note that for a strong solution, i.e. when µ is deterministic, the consistency condition (6)
is strengthened to µ = P ◦ (W,Λ, X)−1. The definition of a strong solution may be simplified
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somewhat, noting that the X marginal of µ is all that appears in the state equation and
objective functions. Indeed, we may alter the definition to require that µ be a (deterministic)
element of Pp(Cd), rather than Pp(X ), and the fixed point condition (6) may be replaced
by µ = P ◦ X−1. This loses no information, and there is an obvious one-to-one mapping
between the two types of solutions.

For weak solutions, however, no such simplification is available, and there is no redun-
dant information in the full conditional law µ = P ((W,Λ, X) ∈ · | µ) of Definition 4.1.1.
While only the X-marginal appears in conditions (4) and (5) of the definition, the filtration
generated by (X0,W, µ) is generally larger than that of (X0,W, µ

x), and this is important to
the conditional independence of condition (3).

Remark 4.1.3. Our notion of strong MFG solution without common noise with strong
control corresponds to the usual definition of MFG solution in the literature. It is exactly
the definition used in the recent papers [51, 88], and it is a generalization of the more standard
definition of MFG solution without common noise found in [67, 32, 15], for example. The
latter papers require optimality only relative to other strong controls, not among all weak
controls as we do in condition (5) of Definition 4.1.1. Under assumption A1, however,
optimality among strong controls implies optimality among weak controls, as will be seen
in Proposition 5.3.7 (which is just a consequence of Proposition 2.1.15). Thus our definition
does include this more standard one. See also [75] or the more recent [77] for further dicussion
of this point.

4.2 The limit theorem

We continue to work with the definition of the n-player games of Section 3.2. Suppose we
are given an n-player environment En = (Ω̃n,Fn = (Fnt )t∈[0,T ],Pn, ξ, B,W ), as was defined in
Section 3.2. Let Fvs,n = (Fvs,nt )t∈[0,T ] denote the Pn-completion of (σ(ξ,Ws : s ≤ t))t∈[0,T ],
that is the filtration generated by the initial state and the idiosyncratic noises (but not the
common noise). Let us say that a control Λ ∈ An(En) is a very strong control if Pn(Λt =
δαt a.e. t) = 1, for some Fvs,n-progressively measurable A-valued process α. A very strong
strategy is a vector of strong controls. For ε = (ε1, . . . , εn) ∈ [0,∞)n, a very strong ε-Nash
equilibrium in En is any very strong strategy Λ ∈ Ann(En) such that

Ji(Λ) ≥ sup
β∈An(En) very strong

Ji((Λ
−i, β))− εi, i = 1, . . . , n.

The very strong equilibrium is arguably the most natural notion of equilibrium in the case
of no common noise, and it is certainly one of the most common in the literature. The proof
of the following Proposition is deferred to Section 6.4.2.

Proposition 4.2.1. When σ0 ≡ 0, every very strong ε-Nash equilibrium is also a relaxed
ε-Nash equilibrium.

The following Theorem 4.2.2 rewrites Theorems 3.2.4 and 3.2.10 in the setting without
common noise. Although this is mostly derived from Theorems 3.2.4 and 3.2.10, the proof
is spelled out in Section 6.3, as it is not entirely straightforward.
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Theorem 4.2.2. Suppose σ0 ≡ 0. Theorem 3.2.4 remains true if the term “weak MFG
solution” is replaced by “weak MFG solution without common noise,” and if Pn is defined
instead by

Pn :=
1

n

n∑
i=1

Pn ◦
(
ξi,W i, µ̂[Λn],Λn,i, X i[Λn]

)−1
. (4.2)

Theorem 3.2.10 remains true if “weak MFG solution” is replaced by “weak MFG solution
without common noise,” if Pn is defined by (4.2), and if “strong” is replaced by “very strong.”

Since strong MFG solutions are more familiar in the literature on mean field games and
presumably more accessible computationally, it would be nice to have a description of weak
solutions in terms of strong solutions. Recall from Sections 2.2 and 2.3.3 that, without com-
mon noise, both McKean-Vlasov equations and static mean field game exhibit the property
that weak solutions are simply randomizations among the set of strong solutions. We will see
that this is not true in general for dynamic mean field games and that the interplay between
the dynamics and the optimization leads to a fundamental difference between stochastic and
deterministic equilibria (i.e., weak and strong MFG solutions). More specifically, the adapt-
edness requirement renders the class of admissible controls quite sensitive to how random
µ is. To highlight this point, Section 4.3 below describes a model possessing weak MFG
solutions which are not randomizations of strong MFG solutions. Subsection 4.4 discusses
some partial results on when this simplification can occur in the MFG setting.

4.3 An illuminating example

This section describes a deceptively simple example which illustrates the difference between
weak and strong solutions. Consider the time horizon T = 2, the initial state distribution
λ = δ0, and the following data (still with σ0 ≡ 0):

b(t, x, ν, a) = a, σ constant, A = [−1, 1]

g(x, ν) = xν̄, f ≡ 0,

where for ν ∈ P1(R) we define ν̄ :=
∫
xν(dx). Similarly, for µ ∈ P1(X ) write µ̄xt :=∫

R xµ
x
t (dx). Assumption A1 is verified by choosing p = 2, pσ = 0, and any p′ > 2.

Let us first study the optimization problems arising in the MFG problem. Let (Ω̃,F =
(Ft)t∈[0,2], P,W, µ,Λ, X) satisfy (1-5) of Definition 4.1.1. For F-progressively measurable
P([−1, 1])-valued processes β, define

J̃(β) := E
[
Xβ

2 µ̄
x
2

]
,

where

Xβ
t =

∫ t

0

∫
[−1,1]

aβt(da)dt+ σWt, t ∈ [0, 2].
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Independence of W and µ implies

J̃(β) = E
[∫ 2

0

∫
[−1,1]

aµ̄x2βt(da)dt

]
= E

[∫ 2

0

∫
[−1,1]

aEP [µ̄x2 | F
β
t ]βt(da)dt

]
,

where Fβt := σ(βs : s ≤ t). If it is also required that Fβt is conditionally independent of
FX0,W,µ

2 given FX0,W,µ
t , then

EP [µ̄x2 | F
β
t ] = EP [µ̄x2 | F

X0,W,µ
t ] = EP [µ̄x2 | F

µ
t ],

where the last equality follows from independence of (X0,W ) and µ, and Fµt := σ(µ(C) :
C ∈ FXt ). Hence

J̃(β) = E
[∫ 2

0

∫
[−1,1]

aEP [µ̄x2 | F
µ
t ]βt(da)dt

]
. (4.3)

Condition (5) of Definition 4.1.1 implies that Λ maximizes J over all such processes β, which
implies that Λt(ω) must equal δα∗t (ω) on the (t, ω)-set {α∗ 6= 0}, where

α∗t := sign (E [ µ̄x2 | F
µ
t ]) ,

and we use the convention sign(0) := 0.

Remark 4.3.1. This already highlights the key point: When µ is deterministic, an optimal
control is the constant sign(µ̄x2), but when µ is random, this control is inadmissible since it
is not adapted.

Proposition 4.3.2. Every strong MFG solution (without common noise) satisfies µ̄x2 ∈
{−2, 0, 2} and µ̄xt = t sign(µ̄x2).

Proof. Let (Ω̃, (Ft)t∈[0,2], P,W, µ,Λ, X) satisfy Definition 4.1.1, with µ deterministic. In this
case, α∗t = sign(µ̄x2) for all t. Suppose that µ̄x2 6= 0. Then Λt = δα∗t must hold dt ⊗ dP -a.e.,
and thus

Xt = t sign(µ̄x2) + σWt, t ∈ [0, 2].

The consistency condition (6) of Definition 4.1.1 implies µ̄xt = E[Xt] = t sign(µ̄x2). In partic-
ular, µ̄x2 = 2 sign(µ̄x2), which implies µ̄x2 = ±2 since we assumed µ̄x2 6= 0.

Proposition 4.3.3. There exists a weak MFG solution (without common noise) satisfying
P (µ̄x2 = 1) = P (µ̄x2 = −1) = 1/2.

Proof. Construct on some probability space (Ω̃,F , P ) a random variable γ with P (γ = 1) =
P (γ = −1) = 1/2 and an independent Wiener process W . Let α∗t = γ1(1,2](t) for each
t (noticing that this interval is open on the left), and define (Ft)t∈[0,2] to be the complete
filtration generated by (Wt, α

∗
t )t∈[0,2]. Let

Xt :=

∫ t

0

α∗sds+ σWt = (t− 1)γ1(1,2](t) + σWt, t ∈ [0, 2].
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Finally, let Λ = dtδα∗t (da), and define µ := P ((W,Λ, X) ∈ · | γ). Clearly µ is γ-measurable.
On the other hand, independence of γ and W implies

µ̄x2 = E[X2 | γ] = γ.

Thus γ is also µ-measurable, and we conclude that µ := P ((W,Λ, X) ∈ · | µ). It is straight-
forward to check that

Fµt =

{
{∅, Ω̃} if t ≤ 1

σ(γ) if 1 < t ≤ 2
.

Thus

E[µ̄x2 | F
µ
t ] =

{
E[γ] = 0 if t ≤ 1

E[γ | γ] = γ if 1 < t ≤ 2
.

Since µ̄x2 = γ = sign(γ), we conclude that α∗t = sign(E[µ̄x2 | F
µ
t ]). It is then readly checked

using the previous arguments that (Ω̃, (Ft)t∈[0,2], P,W, µ,Λ, X) is a weak MFG solution.

To be absolutely clear, the above two propositions imply the following: If S := {ν ∈
P(X ) : ν̄x2 ∈ {−2, 0, 2}}, then every strong MFG solution lies in S, but there exists a weak
MFG solution with P (µ ∈ S) = 0.

Remark 4.3.4. The example of Proposition 4.3.3 can be modified to illustrate another
strange phenomenon. The proof of Proposition 4.3.3 has α∗t = γ for t ∈ (1, 2] and α∗t = 0
for t ≤ 1. Instead, we could set α∗t = ηt for t ≤ 1, for any mean-zero [−1, 1]-valued process
(ηt)t∈[0,1] independent of γ and W . The rest of the proof proceeds unchanged, yielding
another weak MFG solution with the same conditional mean state µ̄x, but with different
conditional law µx. (In fact, we could even choose α∗ to be any mean-zero relaxed control
on the time interval [0, 1].) Intuitively, for t ≤ 1 we have E[µ̄x2 | F

µ
t ] = 0, and the choice of

control on the time interval [0, 1] does not matter in light of (4.3); the agent then has some
freedom to randomize her choice of control among the family of non-unique optimal choices.
This type of randomization can typically occur when optimal controls are non-unique, and
although it is unnatural in some sense, Theorem 3.2.4 indicate that this behavior can indeed
arise in the limit from the finite-player games.

4.4 Supports of weak solutions

In this section, we attempt to partially explain what permits the existence of weak solutions
which are not randomizations among strong solutions. As was mentioned in Remark 4.3.1,
the culprit is the adaptedness required of controls. Indeed, in the example of Section 4.3,
very different optimal controls arise depending on whether or not the measure µ is random.
If µ is deterministic, then so is the optimal control, and we may write this optimal control
as a functional of µ by

α̂D(t, µ) = sign(µ̄xT ), t ∈ [0, T ].

The problem is as follows: for each fixed deterministic µ, the optimal control (α̂D(t, µ))t∈[0,T ]

is deterministic and thus trivially adapted, but when µ is allowed to be random then this
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control is no longer adapted and thus no longer admissible. If, for a different MFG problem,
it happens that α̂D is in fact progressively measurable with respect to (Fµt )t∈[0,T ], then this
control is still admissible when µ is randomized; moreover, it should be optimal when µ is
randomized, since it was optimal for each realization of µ.

The following results make these idea precise, but first some terminology will be useful.
The discussion of this subsection unfortunately require very cumbersome definitions, but
rest assured these definitions are local to this and the following section (Sections 4.4 and
4.5), which can thus be safely skipped with no loss of continuity. As usual we work under
assumption A1 at all times, and the initial state distribution λ ∈ Pp′(Rd) is fixed.

Definition 4.4.1. We say that a function α̂ : [0, T ]×Cm×Cd×Pp(X )→ A is a universally
admissible control if:

1. α̂ is progressively measurable with respect to the (universal completion of the) natural
filtration (FW,X,µt )t∈[0,T ] on Cm × Cd × Pp(X ). Here FW,X,µt := σ(Ws, Xs, µ(C) : s ≤
t, C ∈ FXt ) for each t, where (W,X, µ) denotes the identity map on Cm×Cd×Pp(X ).

2. For each fixed ν ∈ Pp(X ), the SDE

dXt = b(t,Xt, ν
x
t , α̂(t,W,X, ν))dt+ σ(t,Xt, ν

x
t )dWt, X0 ∼ λ, (4.4)

is unique in joint law; that is, if we are given two pairs of processes (W i
t , X

i
t)t∈[0,T ] for

i = 1, 2, possibly on different filtered probability spaces but with (W i
t )t∈[0,T ] a Wiener

process in either case, then (W 1, X1) and (W 2, X2) have the same law.

3. Suppose we are given a filtered probability space (Ω̃, (F̃t)t∈[0,T ], P̃ ) supporting an

(F̃t)t∈[0,T ]-Wiener process W̃ , an F̃0-measurable Rd-valued random variable ξ̃ with law
λ, and a Pp(X )-valued random variable µ̃ independent of (ξ,W ) such that µ̃(C) is

F̃t-measurable for each C ∈ FXt and t ∈ [0, T ]. Then there exists a strong solution X̃
of the SDE

dX̃t = b(t, X̃t, µ̃
x
t , α̂(t,W, X̃, µ̃))dt+ σ(t, X̃t, µ̃

x
t )dW̃t, X̃0 = ξ̃,

and it satisfies E
∫ T

0
|α̂(t,W, X̃, µ̃)|pdt <∞.

If α̂ is a universally admissible control, we say it is locally optimal if for each fixed ν ∈ Pp(X )

there exists a complete filtered probability space (Ω(ν), (F (ν)
t )t∈[0,T ], P

ν) supporting a Wiener
process W ν and a continuous adapted process Xν such that (W ν , Xν) satisfies the SDE (4.4)
and:

(4) If (Ω̃, (Ft)t∈[0,T ], P ) supports a m-dimensional Wiener process W , a progressive P(A)-

valued process Λ satisfying EP
∫ T

0

∫
A
|a|pΛt(da)dt < ∞, and a continuous adapted

Rd-valued process X satisfying

dXt =

∫
A

b(t,Xt, ν
x
t , a)Λt(da)dt+ σ(t,Xt, ν

x
t )dWt, P ◦X−1

0 = λ,

69



then

EP (ν) [
Γ
(
νx, dtδα̂(t,W ν ,Xν ,ν)(da), Xν

)]
≥ EP [Γ(νx,Λ, X)] .

We need an additional assumption C, which simply requires the uniqueness of the optimal
controls. A typical example when this holds is for linear-convex coefficients; in the proof of
Proposition 3.1.5 in Section 5.4, it is shown that assumption (Linear-Convex) implies C.

Assumption C. If (Ω̃i, (F it )t∈[0,T ], P
i,W i, µi,Λi, X i) for i = 1, 2 both satisfy (1-5) of Def-

inition 4.1.1 as well as P 1 ◦ (µ1)−1 = P 2 ◦ (µ2)−1, then P 1 ◦ (W 1, µ1,Λ1, X1)−1 = P 2 ◦
(W 2, µ2,Λ2, X2)−1.

Note the similarities between the following Theorem 4.4.2 and Proposition 2.3.8, which
derived a similar result for static MFGs. In Proposition 2.3.8, it was shown without fur-
ther assumption that weak solutions concentrate on strong solutions; here, because of the
adaptedness issues discussed above, we need to assumption that there exists a universally
admissible locally optimal control.

Theorem 4.4.2. Assume C holds. Suppose that there exists a universally admissible and
locally optimal control α̂ : [0, T ] × Cm × Cd × Pp(X ) → A. Then, for every weak MFG

solution (Ω̃, (Ft)t∈[0,T ], P,W, µ,Λ, X) (without common noise), P ◦ µ−1 is concentrated on
the set of strong MFG solutions (without common noise). Conversely, if ρ ∈ Pp(Pp(X )) is
concentrated on the set of strong MFG solutions (without common noise), then there exists
a weak MFG solution (without common noise) with P ◦ µ−1 = ρ.

Proof. Let (Ω̃, (Ft)t∈[0,T ], P,W, µ,Λ, X) be a weak MFG solution (without common noise).
Step 1: We will first show that necessarily Λt = δα̂(t,W,X,µ) holds dt ⊗ dP -a.e. On

(Ω̃, (Ft)t∈[0,T ], P ) we may use (3) of Definition 4.4.1 to find a strong solution X ′ of the SDE

dX ′t = b(t,X ′t, µ
x
t , α̂(t,W,X ′, µ))dt+ σ(t,X ′t, µ

x
t )dWt, X

′
0 = X0,

wth EP
∫ T

0
|α̂(t,W,X ′, µ)|pdt < ∞. In particular, X ′ is adapted to the (completion of the)

filtration FX0,W,µ
t := σ(X0,Ws, µ(C) : s ≤ t, C ∈ FXt ). Let Λ′ := dtδα̂(t,W,X′,µ)(da). Then it

is clear that (Ω̃, (FX0,W,µ
t )t∈[0,T ], P,W, µ,Λ

′, X ′) satisfies conditions (1-4) of Definition 4.1.1.
Optimality of P implies

EP [Γ(µx,Λ, X)] ≥ EP [Γ(µx,Λ′, X ′)] .

On the other hand, for P ◦ µ−1-a.e. ν ∈ Pp(X ), the following hold under P (· | µ = ν):

• W is a (Ft)t∈[0,T ]-Wiener process.

• (W,Λ, X) satisfies

dXt =

∫
A

b(t,Xt, ν
x
t , a)Λt(da) + σ(t,Xt, ν

x
t )dWt.

• (W,X ′) solves the SDE (4.4).
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From the local optimality of α̂ we conclude (keeping in mind the uniqueness condition (2)
of Definition 4.4.1) that

EP [Γ(µx,Λ, X)|µ] ≤ EP [Γ(µx,Λ′, X ′)|µ] .

Thus
EP [Γ(µx,Λ, X)] = EP [Γ(µx,Λ′, X ′)] .

By assumption C, there is only one optimal control, and so Λ = Λ′ = dtδα̂(t,W,X′,µ)(da), P -a.s.
From uniqueness of the SDE solutions we conclude that X = X ′ a.s. as well, completing the
first step. (Note we do not use the assumptions of Definition 4.4.1 for this last conclusion,
but only the Lipschitz assumption A1.4.)
Step 2: Next, we show that P ◦ µ−1 is concentrated on the set of strong MFG solutions.
Using (2) and (3) of Definition 4.4.1, we know that for P ◦ µ−1-a.e. ν ∈ Pp(X ) there exists

on some filtered probability space (Ω(ν), (F (ν)
t )t∈[0,T ], P

ν) a weak solution Xν of the SDE

dXν
t = b(t,Xν

t , ν
x
t , α̂(t,W ν , Xν , ν))dt+ σ(t,Xν

t , ν
x
t )dW ν

t , P
ν ◦ (Xν

0 )−1 = λ,

where W ν is an (F (ν)
t )t∈[0,T ]-Wiener process. From Step 1, on (Ω̃, (Ft)t∈[0,T ], P ) we have

dXt = b(t,Xt, µ
x
t , α̂(t,W,X, µ))dt+ σ(t,Xt, µ

x
t )dWt, P ◦X−1

0 = λ.

It follows from the P -independence of µ, X0, and W along with the uniqueness in law of
condition (2) of Definition 4.4.1 that

P ((W,Λ, X) ∈ · | µ = ν) = P ν ◦
(
W ν , dtδα̂(t,W ν ,Xν ,ν)(da), Xν

)−1
, (4.5)

for P ◦ µ−1-a.e. ν ∈ Pp(X ). Since µ = P ((W,Λ, X) ∈ · | µ), it follows that

ν = P ν ◦
(
W ν , dtδα̂(t,W ν ,Xν ,ν)(da), Xν

)−1
, for P ◦ µ−1-a.e. ν ∈ Pp(X ). (4.6)

We conclude that P ◦ µ−1-a.e. ν ∈ Pp(X ) is a strong MFG solution, or more precisely that

(Ω(ν), (F (ν)
t )t∈[0,T ], P

ν ,W ν , ν, dtδα̂(t,W ν ,Xν ,ν)(da), Xν)

is a strong MFG solution. Indeed, we just verified condition (6) of Definition 4.1.1, and
conditions (1-4) are obvious. The optimality condition (5) of Definition 4.1.1 is a simple
consequence of the local optimality of α̂
Step 3: We turn now to the converse. Let (Ω̃,F , P ) be any probability space supporting a
random variable (ξ,W, µ) with values in Rd×Cm×Pp(X ) with law λ×Wm× ρ, where Wm

is Wiener measure on Cm. Let (Ft)t∈[0,T ] denote the P -completion of (σ(ξ,Ws, µ(C) : s ≤
t, C ∈ FXt ))t∈[0,T ]. Solve strongly on (Ω̃, (Ft)t∈[0,T ], P ) the SDE

dXt = b(t,Xt, µ
x
t , α̂(t,W,X, µ))dt+ σ(t,Xt, µ

x
t )dWt, X0 = ξ.

Note that hypothesis (3) makes this possible. Define Λ := dtδα̂(t,W,X,µ)(da). Clearly P ◦µ−1 =

ρ by construction, and we claim that (Ω̃, (Ft)t∈[0,T ], P,W, µ,Λ, X) is a weak MFG solution.
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Using hypothesis (1), it is clear that conditions (1-4) of Definition 4.1.1 hold, and thus we
must only check the optimality condition (5) and the fixed point condition (6).

First, let (Ω̃′, (F ′t)t∈[0,T ], P
′,W ′, µ′,Λ′, X ′) be an alternative probability space satisfying

(1-4) of Definition 4.1.1 and P ′ ◦ (µ′)−1 = P ◦ µ−1 = ρ. The uniqueness in law condition (2)
of Definition 4.4.1 implies that P ((W,X) ∈ · | µ = ν) is exactly the law of the solution of
the SDE (4.4), for P ◦ µ−1-a.e. ν. Applying local optimality of α̂ for each ν, we conclude
that

EP [Γ(νx,Λ, X)|µ = ν] ≥ EP ′ [Γ(νx,Λ′, X ′)|µ = ν] , for ρ− a.e. ν.

Integrate with respect to ρ on both sides to get EP [Γ(µx,Λ, X)] ≥ EP ′ [Γ((µ′)x,Λ′, X ′)],
which verifies condition (5) of Definition 4.1.1. Finally, we check (6) by applying Step 1 to
deterministic µ and again using uniqueness of the SDE (4.4) to find that both (4.5) and (4.6)
hold for ρ-a.e. ν.

4.5 Applications of Theorem 4.4.2

It is admittedly quite difficult to check that there exists a universally admissible, locally
optimal control, and we will leave this problem open in all but the simplest cases. Note, how-
ever, that conditions (2) and (3) of Definition 4.4.1 hold automatically when α̂(t, w, x, ν) =
α̂′(t, w, x0, ν), for some α̂′ : [0, T ]× Cm × Rd × Pp(X )→ A.

A simple class of examples

Suppose A ⊂ Rk is convex, g ≡ 0, and f = f(t, µ, a) is twice differentiable in a with uniformly
negative Hessian. That is, D2

af(t, µ, a) ≤ −δ for all (t, µ), for some δ > 0. Suppose as usual
that assumption A1 holds. Define

α̂(t, w, x, ν) := arg max
a∈A

f(t, νxt , a), for (t, w, x, ν) ∈ [0, T ]× Cm × Cd × Pp(X ).

It is straightforward to check that assumption C holds and that α̂ is a universally admissible
and locally optimal control. Of course, this example is quite simple in that the state process
does not influence the optimization.

A possible general strategy

The following approach may be more widely applicable. First, for a fixed ν ∈ Pp(X ), we
may define the value function V [ν](t, x) of the corresponding optimal control problem in the
usual way, and it should solve a Hamilton-Jacobi-Bellman (HJB) PDE of the form{

−∂tV [ν](t, x)−H(t, x, νxt , DxV [ν](t, x), D2
xV [ν](t, x)) = 0, on [0, T )× Rd,

V [ν](T, x) = g(x, νxT )
,

where the Hamiltonian H : [0, T ]× Rd × Pp(Rd)× Rd × Rd×d → R is defined by

H(t, x, µ, y, z) := sup
a∈A

[
y>b(t, x, µ, a) + f(t, x, µ, a)

]
+

1

2
Tr
[
zσσ>(t, x, µ)

]
.
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Suppose that we can show (as is well known to be possible in very general situations) that
for each ν the value function V [ν] is the unique (viscosity) solution of this HJB equation.
Then, an optimal control can be obtained by finding α̂(t, xt, ν) which achieves the supremum
in

H(t, xt, ν
x
t , DxV [ν](t, xt), D

2
xV [ν](t, xt)),

for each (t, x, ν). The crux of this approach is to show that the value function V [ν](t, x) is
adapted with respect to ν in some sense, which would imply that α̂ is universally admissible
and locally optimal. A nice special case would be a Markovian dependence, V [ν](t, x) =

Ṽ (t, x, νxt ). In short, we must study the dependence of a family of HJB equations on a
path-valued parameter.

4.6 Existence and uniqueness

The study of existence of solutions is much simpler in the absence of common noise. The
existence of strong solutions can be established directly in this case, solely under assumption
A1; notably, the volatility term σ may be controlled. The following existence theorem is
stated under assumption (Convex) (defined on page 53), but again without this assumption
a form of the theorem still holds with relaxed controls. Because of the presence of control
in the volatility term, the precise statement of the general result requires additional techni-
cal developments which we postpone to Chapter 8. Although we only defined weak MFG
solutions under the assumption A2 that the volatilities are uncontrolled, note that we may
define weak MFG solutions with strict control in a natural way without assumption A2; see
Remark 4.1.2.

Theorem 4.6.1. Under assumption A1 and (Convex), the MFG without common noise
(σ0 ≡ 0) admits a strong solution with strict Markovian control.

The question of uniqueness requires some new definitions compared to the setting with
common noise. The results here are simpler than in Section 3.3 with common nose, but we
still need the notions of uniqueness in law and pathwise uniqueness.

Definition 4.6.2. An MFG without common noise is unique in law if any two weak solutions
induce the same law of (µ,W,Λ, X).

A weak MFG solution without common noise is determined by the law of µ, just as for
MFG with common noise the law of a weak MFG solution is determined by the law of (B, µ).
Indeed, for an element γ ∈ P p(Pp(X )), we can define Mγ ∈ P(CmPp(X )× V × Cd) by

Mγ(dw, dm, dq, dx) = γ(dm)m(dw, dq, dx).

We will say γ is a MFG solution basis without common noise if the distribution Mγ to-
gether with the canonical processes and filtrations on CmPp(X ) × V × Cd form a weak
MFG solution. Given two MFG solution bases (without common noise) γ1 and γ2, we say
(Θ, (Gt)t∈[0,T ], Q, µ

1, µ2) is a coupling of γ1 and γ2 if:

1. (Θ, (Gt)t∈[0,T ], Q) is a probability space with a complete filtration.

73



2. For each t ∈ [0, T ], we have (up to null sets)

Gt = σ(µ1(C), µ2(C) : s ≤ t, C ∈ FXt ).

3. For i = 1, 2, Q ◦ (µi)−1 = γi.

4. µ1 and µ2 are independent.

Definition 4.6.3. We say pathwise uniqueness holds for the MFG without common noise if,
for any coupling (Θ, (Gt)t∈[0,T ], Q,B, µ

1, µ2) of any two MFG solution bases (without common
noise), we have µ1 = µ2 a.s.

Remark 4.6.4. In a sense, the analog of the Yamada-Watanabe theorem is trivial in this
setting, and thus we make only a remark rather than a proposition. If there exists a weak
solution, and if pathwise uniqueness holds, then the weak solution is strong and is unique in
law. The proof follows simply from the fact that if µ1 and µ2 are independent, but µ1 = µ2

almost surely, then µ1 and µ2 must be almost surely constant. Such a concept is still useful,
however, because of the fact that weak solutions do not necessarily concentrate on the set
of strong solutions. If they did, then uniqueness of weak solutions would follow immediately
from uniqueness of strong solutions.

The proof of the following uniqueness Theorem 4.6.5 is essentially the same as that of
Theorem 3.3.5, which is proven in Section 7.3.

Theorem 4.6.5. Suppose assumptions A1, A2, U, and (Linear-Convex) hold. Then
the MFG without common noise (σ0 ≡ 0) is pathwise unique. In particular, there exists a
unique in law weak MFG solution with weak control, and it is in fact a strong MFG solution
with strong control.
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Chapter 5

Properties of mean field game
solutions

We now turn toward the proofs of the main theorems on convergence, existence, and unique-
ness. As a first step, this chapter is devoted to the derivation of several useful structural
properties of MFG solutions. The first section defines and discusses MFG pre-solutions,
leading to the critical Lemma 5.1.2, which provides a shortcut around the troublesome com-
patibility condition. Then, in Section 5.2, we transfer the definitions to a canonical space
and set up convenient notation that will be used throughout the proofs. Section 5.3 contains
a number of useful topological results, including the useful Proposition 5.3.7 which allows
us to check optimality against a dense subclass of admissible controls. Using some of these
results, we return to the proofs of Propositions 3.1.4 and 3.1.5. Finally, the chapter closes
with a reformulation of the definition of weak MFG solution, solely in terms of the induced
law on the canonical space Ω, providing a more intrinsic form of Definition 3.1.2.

5.1 Pre-solutions

The following definition of MFG pre-solution will be useful. It is exactly the same as the
definition of weak MFG solution, except that the property of optimality is omitted. Recall
the definitions of the canonical spaces X and Ω from (3.1) and (3.5).

Definition 5.1.1. An MFG pre-solution is a tuple (Ω̃, (Ft)t∈[0,T ], P, B,W, µ,Λ, X) satisfy-
ing properties (1-4) and (6) of Definition 4.1.1. Alternatively, we may refer to the law of
(B,W, µ,Λ, X) on Ω as an MFG pre-solution.

The definition of MFG solution and pre-solution both require the compatibility of Λ,
that is the conditional independence of FΛ

t = σ(Λs : s ≤ t) and FX0,B,W,µ
T given FX0,B,W,µ

t ,
for each t. This property does not behave well under limits, and it will be crucial to have
an alternative characterization of MFG pre-solutions which allows us to avoid directly com-
patibility directly. Namely, Lemma 5.1.2 below shows that compatibility essentially follows
automatically from the fixed point condition (3) of Definition 3.1.1. In fact, Lemma 5.1.2 is
the main reason we work with the conditional law of (W,Λ, X), and not just X.
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Lemma 5.1.2. Let (Ω̃,F = (Ft)t∈[0,T ], P ) is a complete filtered probability space supporting
(B,W, µ,Λ, X) satisfying:

1. B and W are independent F-Wiener processes of respective dimension m0 and m, re-
spectively. The process X is F-adapted with values in Rd, and P ◦X−1

0 = λ. Moreover,
µ is a random element of Pp(X ) such that µ(C) is Ft-measurable for each C ∈ FXt
and t ∈ [0, T ]. Finally, Λ is F-progressively measurable with values in Pp(A).

2. X0, W , and (B, µ) are independent.

3. µ is a version of the conditional law of (W,Λ, X) given (B, µ).

Then the following statements hold:

1. Letting (W,Λ, X) denote the canonical processes on X = Cm × V × Cd, it holds for
P ◦ µ−1-almost every ν ∈ Pp(X ) that W is an FXt -Wiener process under ν.

2. On Ω̃, it holds that Λ is compatible, in the sense that FΛ
t is conditionally independent

of FX0,B,W,µ
T given FX0,B,W,µ

t , for each t ∈ [0, T ].

Proof. First step. We begin by proving the first claim. For ν ∈ P(X ), let νw = ν ◦W−1

denote the Cm-marginal. Let also Wm denote Wiener measure on Cm. To prove the first
claim, let ϕ1 : Pp(X ) → R and ϕ2 : Cm → R be bounded and measurable. Then, since
P ◦W−1 =Wm (with E denoting expectation under P ),

E [ϕ1(µ)]

∫
Cm
ϕ2 dWm = E [ϕ1(µ)ϕ2(W )] = E

[
ϕ1(µ)

∫
Cm
ϕ2 dµ

w

]
.

The first equality follows from the independence hypothesis (2), and the second follows from
hypothesis (3). This holds for all ϕ1, and thus

∫
ϕ2 dµ

w =
∫
ϕ2 dWm a.s. This holds for all

ϕ2, and thus µw =Wm a.s.
It remains to check that σ(Ws −Wt : s ∈ [0, T ]) and FXt are independent under almost

every realization of µ. Fix t ∈ [0, T ]. Suppose ϕ1 : Pp(X ) → R is bounded and Fµt -
measurable, ϕ2 : Cm → R is bounded and σ(Ws − Wt : s ∈ [t, T ])-measurable, and ϕ3 :

X → R is bounded and FXt -measurable. Then, on Ω̃, ϕ2(W ) and (ϕ1(µ), ϕ3(W,Λ, X)) are
independent (since W is a Wiener process with respect to F), and so

E
[
ϕ1(µ)

∫
X
ϕ3 dµ

] ∫
Cm
ϕ2 dWm = E [ϕ1(µ)ϕ3(W,Λ, X)]

∫
Cm
ϕ2 dWm

= E [ϕ1(µ)ϕ2(W )ϕ3(W,Λ, X)]

= E
[
ϕ1(µ)

∫
X
ϕ2(w)ϕ3(w, q, x)µ(dw, dq, dx)

]
,

the first and third equalities following from hypothesis (3). This holds for all ϕ1, and thus∫
Cm
ϕ2 dWm

∫
X
ϕ3(w, q, x)µ(dw, dq, dx) =

∫
X
ϕ2(w)ϕ3(w, q, x)µ(dw, dq, dx), a.s.

76



Sine this holds for all ϕ2 and ϕ3, the proof is completed by arguing with a countable family of
(ϕ2, ϕ3), dense in the family of bounded measurable functions under pointwise convergence.

Second step. The second claim is proven in two steps. First, we show that FΛ
t is condi-

tionally independent of FB,W,µT given FB,W,µt , for each t ∈ [0, T ]. Here we define (FB,W,µt )t∈[0,T ]

and (FB,µt )t∈[0,T ] by

FB,W,µt = σ(Bs,Ws, µ(C) : s ≤ t, C ∈ FXt )

FB,µt = σ(Bs, µ(C) : s ≤ t, C ∈ FXt ).

Define also FΛ,X
t and FWt in the natural way. Let ϕt : V × Cd → R be FΛ,X

t -measurable, let
ϕwt : Cm → R be FWt -measurable, let ϕwt+ : Cm → R be σ(Ws −Wt : s ∈ [t, T ])-measurable,

let ψT : Cm0 × Pp(X ) → R be FB,µT -measurable, and let ψt : Cm0 × Pp(X ) → R be FB,µt -
measurable. Assume all of these functions are bounded. We first compute

E
[
ψT (B, µ)ϕwt+(W )ψt(B, µ)ϕwt (W )

]
= E [ψT (B, µ)ψt(B, µ)]E

[
ϕwt+(W )

]
E [ϕwt (W )]

= E
[
E
[
ψT (B, µ)| FB,µt

]
ψt(B, µ)

]
E
[
ϕwt+(W )

]
E [ϕwt (W )]

= E
[
E
[
ψT (B, µ)| FB,µt

]
ϕwt (W )ψt(B, µ)

]
E
[
ϕwt+(W )

]
.

This shows that

E
[
ψT (B, µ)ϕwt+(W )

∣∣FB,W,µt

]
= E

[
ψT (B, µ)| FB,µt

] ∫
Cm
ϕwt+ dWm. (5.1)

On the other hand, using the first result of this Lemma, we get, almost surely,∫
X
ϕtϕ

w
t+ϕ

w
t dµ =

∫
X
ϕtϕ

w
t dµ

∫
Cm
ϕwt+ dWm, (5.2)

Note also that
∫
X ϕtϕ

w
t dµ =

∫
X ϕt(q, x)ϕwt (w)µ(dw, dq, dx) is FB,µt -measurable, since

ϕt(Λ, X)ϕwt (W ) is FW,Λ,Xt -measurable. Putting it together (further explanations follow the
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computations):

E
[
ϕt(Λ, X)ψT (B, µ)ϕwt+(W )ψt(B, µ)ϕwt (W )

]
= E

[(∫
X
ϕtϕ

w
t+ϕ

w
t dµ

)
ψT (B, µ)ψt(B, µ)

]
= E

[(∫
X
ϕtϕ

w
t dµ

)
ψT (B, µ)ψt(B, µ)

] ∫
ϕwt+ dWm

= E
[(∫

X
ϕtϕ

w
t dµ

)
E
[
ψT (B, µ)| FB,µt

]
ψt(B, µ)

] ∫
Cm
ϕwt+ dWm

= E
[
ϕt(Λ, X)ϕwt (W )E

[
ψT (B, µ)| FB,µt

]
ψt(B, µ)

] ∫
Cm
ϕwt+ dWm

= E
[
E
[
ϕt(Λ, X)| FB,W,µt

]
E
[
ψT (B, µ)| FB,µt

]
ψt(B, µ)ϕwt (W )

] ∫
Cm
ϕwt+ dWm

= E
[
E
[
ϕt(Λ, X)| FB,W,µt

]
E
[
ψT (B, µ)ϕwt+(W )

∣∣FB,W,µt

]
ψt(B, µ)ϕwt (W )

]
,

the first and fourth equalities following from hypothesis (3), the second from (5.2), the third
from the fact that

∫
ϕt(q, x)ϕwt (w)µ(dw, dq, dx) is FB,µt -measurable, and the sixth from (5.1).

Replacing ϕwt (W ) with ϕwt (W )ψwt (W ), where both ϕwt and ψwt are FWt -measurable, we
see that

E
[
ϕt(Λ, X)ψT (B, µ)ϕwt+(W )ϕwt (W )

∣∣FB,W,µt

]
= E

[
ϕt(Λ, X)| FB,W,µt

]
E
[
ψT (B, µ)ϕwt+(W )ϕwt (W )

∣∣FB,W,µt

]
.

Since random variables of the form ϕwt (W )ϕwt+(W ) generate FWT , this shows that FΛ,X
t is

conditionally independent of FB,W,µT given FB,W,µt .
Last step. It now remains to prove that FΛ

t is conditionally independent of FX0,B,W,µ
T

given FX0,B,W,µ
t for each t, which is slightly different from the result of the previous step.

Fix t ∈ [0, T ]. Let ϕt : V → R be FΛ
t -measurable, ψt : Cm0 × Cm × Pp(X ) → R be FB,W,µt -

measurable, ψT : Cm0 × Cm × Pp(X ) → R be FB,W,µT -measurable and ζ0 : R → R be Borel
measurable. Assume all of these functions are bounded. From the previous step, we deduce
that

E
[
ϕt(Λ)ζ0(X0)ψT (B,W, µ)ψt(B,W, µ)

]
= E

[
E
[
ϕt(Λ)ζ0(X0)| FB,W,µt

]
E
[
ψT (B,W, µ)| FB,W,µt

]
ψt(B,W, µ)

]
= E

[
ϕt(Λ)ζ0(X0)E

[
ψT (B,W, µ)| FB,W,µt

]
ψt(B,W, µ)

]
where the first equality follows from the conditional independence of FΛ,X

t and FB,W,µT

given FB,W,µt . In order to complete the proof, notice that E[ψT (B,W, µ)|FB,W,µt ] =
E[ψT (B,W, µ)|FX0,B,W,µ

t ] since X0 and (B,W, µ) are independent by hypothesis (2). There-
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fore, for another bounded Borel measurable function ζ ′0 : R→ R, we get

E [ϕt(Λ)ψT (B,W, µ)ψt(B,W, µ)ζ0(X0)ζ ′0(X0)]

= E
[
ϕt(Λ)E

[
ψT (B,W, µ)| FX0,B,W,µ

t

]
ψt(B,W, µ)ζ0(X0)ζ ′0(X0)

]
= E

[
ϕt(Λ)E

[
ζ ′0(X0)ψT (B,W, µ)| FX0,B,W,µ

t

]
ψt(B,W, µ)ζ0(X0)

]
,

which proves that FΛ
t and FX0,B,W,µ

T are conditionally independent given FX0,B,W,µ
t .

5.2 Canonical space

This section briefly elaborates on the notion of mean field game solution on the canonical
space. This will allow us to state simpler conditions by which may check that a measure
P ∈ P(Ω) is a weak MFG solution, in the sense of Definition 3.1.2, and also to streamline
certain weak continuity results. First, we mention some notational conventions. We will
routinely use the same letter ϕ to denote the natural extension of a function ϕ : E → F to
any product space E × E ′, given by ϕ(x, y) := ϕ(x) for (x, y) ∈ E × E ′. Similarly, we will
use the same symbol (Ft)t∈[0,T ] to denote the natural extension of a filtration (Ft)t∈[0,T ] on a
space E to any product space E × E ′, given by (Ft ⊗ {∅, E ′})t∈[0,T ].

We will make heavy use of the following canonical spaces, two of which have been defined
already but are recalled for convenience:

X := Cm × V × Cd, Ω0 := Rd × Cm0 × Cm, Ω := Ω0 × Pp(X )× V × Cd.

From now on, let ξ, B, W , µ, Λ, and X denote the identity maps on Rd, Cm0 , Cm, Pp(X ),
V , and Cd, respectively. Note, for example, that our convention permits W to denote both
the identity map on Cm and the projection from Ω to Cm.

The canonical processes B, W , and X generate obvious natural filtrations, on Cm0 , Cm,
and Cd, denoted FB = (FBt )t∈[0,T ], FW = (FWt )t∈[0,T ], and FX = (FXt )t∈[0,T ], respectively.
The natural filtration FΛ = (FΛ

t )t∈[0,T ] is defined by

FΛ
t := σ(1[0,t]Λ) = σ (Λ(C) : C ∈ B([0, t]× A)) . (5.3)

We will abuse notation somewhat by writing Λ both for (Λt)t∈[0,T ], the canonical P(A)-valued
process on V (see Lemma (2.1.14)), and also for Λ(dt, da), the identity map on V . Define
the canonical filtration Fµ = (Fµt )t∈[0,T ] on Pp(X ) by

Fµt := σ
(
µ(C) : C ∈ FXt

)
.

We will frequently work with filtrations generated by several canonical processes, such as
Fξ,B,W = (F ξ,B,Wt := σ(ξ, Bs,Ws : s ≤ t))t∈[0,T ] defined on Ω0, and Fξ,B,W,Λ = (F ξ,B,W,Λt :=

F ξ,B,Wt ⊗ FΛ
t ) defined on Ω0 × V . Our convention on canonical extensions of filtrations to

product spaces permits the use of Fξ,B,W to refer also to the filtration on Ω0 × V generated
by (ξ, B,W ), and it should be clear from context on which space the filtration is defined.
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Hence, the filtration (FXt )t∈[0,T ] defined just before Definition 3.1.1 could alternatively be

denoted FXt = FW,Λ,Xt , but we stick with the former notation for consistency.
There is somewhat of a conflict in notation, between our use of (ξ, B,W ) here as the

identity map on Rd ×Cm0 ×Cm and our previous use (beginning in Section 3.2) of the same
letters for random variables with values in (Rd)n × Cm0 × (Cm)n, defined on an n-player
environment En = (Ωn, (Fnt )t∈[0,T ],Pn, ξ, B,W ). However, we will almost exclusively discuss
the random variables (ξ, B,W ) through the lenses of various probability measures, and thus
it should be clear from context (i.e., from the nearest notated probability measure) which
random variables (ξ, B,W ) we are working with at any given moment. For example, given
P ∈ P(Ω), the notation P ◦ (ξ, B,W )−1 refers to a measure on Rd × Cm0 × Cm. On the
other hand, Pn is reserved for the measure on Ωn in a typical n-player environment, and so
Pn ◦ (ξ, B,W )−1 refers to a measure on (Rd)n × Cm0 × (Cm)n. In any case, this is only be a
potential issue in Chapter 6.

We next specify how µ and Λ are allowed to correlate with each other and with the given
sources of randomness (ξ, B,W ). It will be useful to fix some notation for the joint law

Wλ := λ×Wm0 ×Wm ∈ Pp′(Ω0), (5.4)

whereWk denotes Wiener measure on Ck for any positive integer k; note that p′-integrability
follows from the assumption λ ∈ Pp′(Rd). Recall that the conditional independence require-
ment in (3) of Definition 3.1.1 is referred to as compatibility, and we will require also that µ
is compatible in a slightly different sense.

1. An element ρ ∈ Pp(Ω0 × Pp(X )) is said to be in Ppc [(Ω0,Wλ)  Pp(X )] if (ξ, B,W )
has law Wλ under ρ and if B and W are independent Fξ,B,W,µ-Wiener processes under
ρ. The subscript c and the symbol  in Ppc [(Ω0,Wλ)  Pp(X )] indicate that the
extension of the probability measure Wλ from Ω0 to Ω0 × Pp(X ) is compatible.

2. For ρ ∈ Pp(Ω0 × Pp(X )), an element Q ∈ Pp(Ω0 × Pp(X ) × V) is said to be in
Ppc [(Ω0 × Pp(X ), ρ)  V ] if (ξ, B,W, µ) has law ρ under Q and F ξ,B,W,µT and FΛ

t are
conditionally independent given F ξ,B,W,µt . Again, Q is then compatible with ρ in the
sense that, given the observation of (ξ, B,W, µ) up until time t, the observation of Λ
up until t has no influence on the future of (ξ, B,W, µ).

Remark 5.2.1. These notions of compatibility are both special cases of a more general and
well understood idea, which goes by several names in the literature. We will elaborate on
this in Appendix A.1, but to keep the presentation self-contained, we will derive the needed
results as we go.

We now have enough material to describe the relevant control problems. For a given
joint law ρ ∈ Pp(Ω0×Pp(X )) of the original sources of randomness (ξ, B,W ) and a random
measure µ, we denote by

A(ρ) := Ppc [(Ω0 × Pp(X ), ρ) V ] (5.5)

the set of admissible relaxed controls (see (2) above). In words, the controls are specified by
joint laws of (ξ, B,W, µ,Λ) that are compatible with the given joint law of (ξ, B,W, µ), in
the above sense.
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Observe that, for ρ ∈ Ppc [(Ω0,Wλ)  Pp(X )] and Q ∈ A(ρ), the process (B,W ) is
a Wiener process with respect to the filtration Fξ,B,W,µ,Λ. Following (1), we will denote
by Ppc [(Ω0,Wλ)  Pp(X ) × V ] the elements of Pp(Ω0 × Pp(X ) × V) under which (B,W )
is a Wiener process with respect to the filtration Fξ,B,W,µ,Λ, so that, if Q ∈ A(ρ) with
ρ ∈ Ppc [(Ω0,Wλ) Pp(X )], then Q ∈ Ppc [(Ω0,Wλ) Pp(X )× V ].

For Q ∈ Ppc [(Ω0,Wλ) Pp(X )× V ] we have that Λ is p-integrable in the sense that

EQ
∫ T

0

∫
A

|a|pΛt(da)dt <∞.

On the completion of the filtered probability space (Ω0 × Pp(X ) × V ,Fξ,B,W,µ,Λ, Q) there
exists a unique strong solution Y of the SDE

Yt = ξ +

∫ t

0

ds

∫
A

Λs(da)b(s, Ys, µ
x
s , a) +

∫ t

0

σ(s, Ys, µ
x
s)dWs +

∫ t

0

σ0(s, Ys, µ
x
s)dBs.

where we recall that µx(·) = µ(Cm × V × ·) is the marginal law of µ on Cd and µxs is the
time-s marginal. We then denote by

R(Q) := Q ◦ (ξ, B,W, µ,Λ, Y )−1 ∈ P(Ω) (5.6)

the joint law of the solution and the inputs. Equivalently (by Theorem A.2.3), R(Q) is the
unique element P of P(Ω) such that P ◦ (ξ, B,W, µ,Λ)−1 = Q and such that the canonical
processes (ξ, B,W, µ,Λ, X) verify the SDE

Xt = ξ +

∫ t

0

ds

∫
A

Λs(da)b(s,Xs, µ
x
s , a) +

∫ t

0

σ(s,Xs, µ
x
s)dWs +

∫ t

0

σ0(s,Xs, µ
x
s)dBs. (5.7)

under P . (As before, we do not augment our filtrations; see footnote 1 on page 55 for
a related discussion.) A standard estimate (see Lemma 5.3.1 below) will show that this
measure is p-integrable, i.e. R(Q) ∈ Pp(Ω).

For each ρ ∈ Ppc [(Ω0,Wλ) Pp(X )], define

RA(ρ) := R(A(ρ)) = {R(Q) : Q ∈ A(ρ)} .

Recalling the definition of Γ from (3.3), the expected reward functional J : Pp(Ω) → R is
defined by

J(P ) := EP [Γ(µx,Λ, X)] . (5.8)

The problem of maximizing J(P ) over P ∈ RA(ρ) is called the control problem associated
to ρ. Define the set of optimal controls corresponding to ρ by

A∗(ρ) := arg max
Q∈A(ρ)

J(R(Q)) (5.9)

=

{
Q ∈ A(ρ) : J(R(Q)) = sup

Q′∈A(ρ)

J(R(Q′))

}
,
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and note that

RA∗(ρ) := R(A∗(ρ)) = arg max
P∈RA(ρ)

J(P ).

Pay attention that, a priori, the set A∗(ρ) may be empty.
We may now reformulate some of the definitions and results from before. First, we simply

rewrite the definitions of MFG solution (Definition 3.1.1) and pre-solution (Definition 5.1.1)
in the new notation. Lemma 5.2.3 uses Lemma 5.1.2 to provide what will be the most useful
description of MFG solutions and pre-solutions.

Definition 5.2.2. A measure P ∈ Pp(Ω) is a MFG pre-solution if and only if it satisfies the
following:

1. (B, µ), ξ and W are independent under P .

2. P ∈ RA(ρ) where ρ := P ◦ (ξ, B,W, µ)−1 is in Ppc [(Ω0,Wλ) Pp(X )].

3. µ = P ((W,Λ, X) ∈ · | B, µ) a.s. That is, µ is a version of the conditional law of
(W,Λ, X) given (B, µ).

Similarly, a measure P ∈ Pp(Ω) is a MFG solution if and only if it satisfies (1-4) as well as
P ∈ RA∗(ρ).

Lemma 5.2.3. Suppose P ∈ Pp(Ω) satisfies the following hold:

1. B and W are independent Fξ,B,W,µ,Λ,X-Wiener processes, and P ◦ ξ−1 = λ.

2. ξ, W , and (B, µ) are independent.

3. µ = P ((W,Λ, X) ∈ · | B, µ), a.s.

4. The canonical processes (ξ, B,W, µ,Λ, X) verify the state equation (5.7) on Ω.

Then P is a MFG pre-solution.

Proof. The only point that needs to be checked is the compatibility, i.e. that P ◦
(ξ, B,W, µ,Λ)−1 is in A(ρ) where ρ = P ◦ (ξ, B,W, µ)−1. Equivalently, we need to check
that FΛ

t is conditionally independent of F ξ,B,W,µT given F ξ,B,W,µt , for each t ∈ [0, T ]. But this
follows from Lemma 5.1.2.

5.3 Continuity results

Before beginning the proofs of the main theorems, it is useful to study the continuity proper-
ties of the maps R, A, and J defined in the previous section. Let us begin with a version of a
standard integral estimate for the state process. To this end, define the truncated supremum
norms ‖ · ‖t on Cd by

‖x‖t := sup
s∈[0,t]

|xs|, t ∈ [0, T ]. (5.10)
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Lemma 5.3.1. On some filtered probability space (Ω̃,F = (Ft)t∈[0,T ], P ), suppose B and W
are independent F-Wiener processes of dimension m and m0, suppose µ is a Pp(Cd)-valued
random variable such that µ(C) is Ft-measurable for each C ∈ FXt and each t ∈ [0, T ],
suppose Λ is an F-progressive Pp(A)-valued process, and suppose ξ is a F0-measurable random
vector with law λ. Assume A1 and A2 hold. Then there exists a unique solution X of the
state equation

Xt = ξ +

∫ t

0

ds

∫
A

Λs(da)b(s,Xs, µs, a) +

∫ t

0

σ(s,Xs, µs)dWs +

∫ t

0

σ0(s,Xs, µs)dBs.

Moreover, for each γ ∈ [p, p′], there exists a constant c4 > 0, depending only on γ, λ, T , and
the constant c1 of (A1.4) such that,

E‖X‖γT ≤ c4

(
1 +

∫
Cd
‖z‖γTµ(dz) + E

∫ T

0

∫
A

|a|γΛt(da)dt

)
.

Moreover, if P (X ∈ · | B) = µ, then we have

E
∫
Cd
‖z‖γTµ(dz) = E‖X‖γT ≤ c4

(
1 + E

∫ T

0

∫
A

|a|γΛt(da)dt

)
.

Proof. Existence and uniqueness are standard. The Burkholder-Davis-Gundy inequality and
Jensen’s inequality yield a constant C (depending only on γ, λ, c1, and T , and which may
then change from line to line) such that, if Σ := σσ> + σ0σ

>
0 , then

E‖X‖γt ≤CE

[
|X0|γ +

∫ t

0

ds

∫
A

Λs(da)|b(s,Xs, µs, a)|γ +

(∫ t

0

ds|Σ(s,Xs, µs)|
)γ/2]

≤CE
{
|X0|γ + cγ1

∫ t

0

ds

[
1 + ‖X‖γs +

(∫
Cd
‖z‖psµ(dz)

)γ/p
+

∫
A

|a|γΛs(da)

]
+

[
c1

∫ t

0

ds

(
1 + ‖X‖pσs +

(∫
Cd
‖z‖psµ(dz)

)pσ/p)]γ/2}
≤ CE

[
1 + |X0|γ +

∫ t

0

ds

(
1 + ‖X‖γs +

∫
Cd
‖z‖γsµ(dz) +

∫
A

|a|γΛs(da)

)]
To pass from the second to the last line, we used the bound (

∫
‖z‖psµ(dz))γ/p ≤

∫
‖z‖γsµ(dz),

which holds true since γ ≥ p. To bound (
∫
‖z‖psµ(dz))pσ/p in the third line, we used the

following argument. If γ ≥ 2, we can pass the power γ/2 inside the integral in time by means
of Jensen’s inequality and then use the inequality |x|pσγ/2 ≤ 1+|x|γ, which holds since pσ ≤ 2.
If γ ≤ 2, we can use the inequality |x|γ/2 ≤ 1 + |x| followed by |x|pσ ≤ 1 + |x|γ, which holds
since γ ≥ pσ. The first claim follows now from Gronwall’s inequality. If P (X ∈ · | B) = µ,
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then the above becomes

E
∫
Cd
‖z‖γt µ(dz) = E‖X‖γt

≤ CE
[
|X|γ0 +

∫ t

0

(
1 + 2

∫
Cd
‖z‖γsµ(dz) +

∫
A

|a|γΛs(da)

)
ds

]
.

The second claim now also follows from Gronwall’s inequality.

Next, we state an immensely useful compactness result, the proof of which is deferred to
Appendix B. Recall that p′ > p ≥ 1. The result could likely be sharpened with respect to
uniform integrability requirements, but this will be good enough for our purposes.

Proposition 5.3.2. Let d be a positive integer, and fix c > 0. Let Q ⊂ P(V ×Cd) be the set
of laws of V×Cd-valued random variables (Λ, X) defined on some complete filtered probability

space (Ω̃,F = (Ft)t∈[0,T ], P ) satisfying satisfying

dXt =

∫
A

B(t, a)Λt(da)dt+ Σ(t)dWt,

where the following hold:

1. W is a F-Wiener process of dimension k, and X is a continuous F-adapted d-
dimensional process with P ◦X−1

0 = λ.

2. Σ : [0, T ] × Ω̃ → Rd×k is progressively measurable, and B : [0, T ] × Ω̃ × A → Rd is

jointly measurable with respect to the F-progressive σ-field on [0, T ]× Ω̃ and the Borel
σ-field on A.

3. There exists a nonnegative FT -measurable random variable Z such that, for each
(t, ω, a) ∈ [0, T ]× Ω̃× A,

|B(t, a)| ≤ c (1 + |Xt|+ Z + |a|) , |ΣΣ>(t)| ≤ c (1 + |Xt|pσ + Zpσ)

and

EP
[
|X0|p

′
+ Zp′ +

∫ T

0

∫
A

|a|p′Λt(da)dt

]
≤ c.

(That is, we vary Σ, B, Z, k, and the probability space of definition.) Then Q is a relatively
compact subset of Pp(V × Cd).

Let us put this to use to study the continuity of R. Recall that topological statements
involving a space Pp are meant with respect to the p-Wasserstein metric. Let us define also
some norms on

Lemma 5.3.3. Suppose K ⊂ Ppc [(Ω0,Wλ) Pp(X )× V ] satisfies

sup
Q∈K

EQ
[∫
Cd
‖x‖p

′

T µ
x(dx) +

∫ T

0

∫
A

|a|p′Λt(da)dt

]
<∞. (5.11)
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Then the map R : K → Pp(Ω) is continuous.

Proof. Let Qn → Q in Ppc [(Ω0,Wλ) Pp(X )×V ]. Note that R(Qn) ◦ (X0, B,W, µ,Λ)−1 =
Qn are relatively compact in Pp(Ω0×Pp(X )×V). The integrability hypothesis (5.11) permits
an application of Proposition 5.3.2 to conclude that R(Qn) ◦X−1 are relatively compact in
Pp(Cd), and thus R(Qn) are relatively compact in Pp(Ω) (see Proposition 2.1.8). Let P be
any limit point, so R(Qnk)→ P for some nk. Then

P ◦ (ξ, B,W, µ,Λ)−1 = lim
k→∞
R(Qnk) ◦ (ξ, B,W, µ,Λ)−1 = lim

k→∞
Qnk = Q.

The canonical processes (ξ, B,W, µ,Λ, X) verify the same state equation under each of the
measures Qn, and it follows (see Kurtz and Protter [81], or Jacod and Mémin [70]) that the
canonical processes verify the SDE (5.7) under P . Hence, P = R(Q).

Let us turn now to the objective functional J , the continuity properties of which will
mostly follow from the preliminary material of Section 2.1.1.

Lemma 5.3.4. The map J : Pp(Ω) → R is upper semicontinuous. Moreover, the restric-
tion of J to a set K ⊂ Pp(Ω) is continuous whenever K satisfies the uniform integrability
condition

lim
r→∞

sup
P∈K

EP
[∫ T

0

∫
{|a|>r}

|a|p′Λt(da)dt

]
= 0. (5.12)

In particular, if A is compact, then J is continuous everywhere.

Proof. Since f and g are continuous in (x, µ, a), the upper bounds of f and g (which grow
in order p in (x, µ)) along with Lemma 2.1.10 imply both that Γ is upper semicontinuous
and then also that J is upper semicontinuous from Pp(Ω) to R.

Under the additional assumption, the claimed continuity is intuitively quite clear, but a
proof should be careful of the two exponents p′ > p and the potential discontinuity of f in
t. Let Pn → P∞ in Pp(Ω) with Pn ∈ K for each n. The continuity and growth assumptions
on g imply that EPn [g(XT , µ

x
T )]→ EP [g(XT , µ

x
T )], and the f term causes the only problems.

The convergence Pn → P∞ implies (e.g., by [107, Theorem 7.12])

lim
r→∞

sup
n

EPn
[
‖X‖pT1{‖X‖pT>r} +

∫
Cd
‖z‖pTµ

x(dz)1{∫Cd ‖z‖pTµx(dz)>r}

]
= 0. (5.13)

For 1 ≤ n ≤ ∞, define probability measures Qn on Ω̃ := [0, T ]× Rd × Pp(Rd)× A by

Qn(C) :=
1

T
EPn

[∫ T

0

∫
A

1{(t,Xt,µxt ,a)∈C}Λt(da)dt

]
, C ∈ B(Ω̃).

Certainly Qn → Q∞ weakly in P(Ω̃). Since the [0, T ]-marginal is the same for each Qn, this

implies (by Lemma 2.1.4)
∫
ϕdQn →

∫
ϕdQ∞ for each bounded measurable ϕ : Ω̃ → R

with ϕ(t, ·) continuous for each t. Thus Qn ◦ f−1 → Q∞ ◦ f−1 weakly in P(R), by continuity
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of f(t, ·) for each t. But it follows from (5.12), (5.13), and the growth assumption of A1.5
that

lim
r→∞

sup
n

∫
{|f |>r}

f dQn = 0,

and thus
∫
f dQn →

∫
f dQ∞.

Finally, the following density result is critical, and it is simply a corollary of Proposition
2.1.15.

Definition 5.3.5. For ρ ∈ Ppc [(Ω0,Wλ)  Pp(X )], let Aa(ρ) ⊂ A(ρ) denote the set of
measures of the form

ρ(dω, dν)δϕ(ω,ν)(dq) = ρ ◦ (ξ, B,W, µ, ϕ(ξ, B,W, µ))−1,

where the function ϕ : Ω0 × Pp(X )→ V satisfies the following:

1. ϕ is adapted, in the sense that ϕ−1(C) ∈ F ξ,B,W,µt for each C ∈ FΛ
t and t ∈ [0, T ].

2. ϕ is continuous.

3. ϕ is bounded, in the sense that there exists a compact set K ⊂ A such that
ϕ(ω, ν)([0, T ]×Kc) = 0 for each (ω, ν) ∈ Ω0 × Pp(X ).

4. ϕ takes values in the set of strict controls, {dtδαt(da) : α : [0, T ]→ A measurable}.

Corollary 5.3.6. For each ρ ∈ Ppc [(Ω0,Wλ) Pp(X )], Aa(ρ) is a dense subset of A(ρ) (in
the p-Wasserstein topology).

Proof. This is a consequence of Proposition 2.1.15. For ν ∈ P(X ), define νt := ν ◦
(W·∧t,Λ·∧t, X·∧t)

−1, where we identify as usual the P(A)-valued process (Λs∧t)s∈[0,T ] with
the random measure dsΛs∧t(da). Then set St = (ξ, B·∧t,W·∧t, µ

t).

An important consequence of this result is Proposition 5.3.7 below, which ensures that
in any of the control problems we face we need only to check optimality against the dense
class of strong controls, not against all admissible relaxed controls.

Proposition 5.3.7. Let ρ ∈ Ppc [(Ω0,Wλ)  Pp(X )], and let Q ∈ A(ρ). If J(R(Q)) ≥
J(R(Q′)) for each Q′ ∈ Aa(ρ), then Q ∈ A∗(ρ).

Proposition 5.3.7 follows immediately from Corollary 5.3.6 and the following Lemma
5.3.8, which will be useful again later:

Lemma 5.3.8. Let ρ ∈ Ppc [(Ω0,Wλ) Pp(X )] satisfy

Eρ
∫
Cd
‖x‖p

′

T µ
x(dx) <∞.

For each P ∈ RA(ρ) such that J(P ) > −∞, there exist Pn ∈ RAa(ρ) such that J(P ) =
limn→∞ J(Pn). (As usual RAa(ρ) is the image of Aa(ρ) by R.)
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Proof. This would follow immediately from Corollary 5.3.6 if we could ensure that the ap-
proximations were sufficiently uniformly integrable; see Lemma 5.3.4. We will proceed some-
what differently.

First step. First, assume P ∈ RA(ρ) satisfies

P (Λ([0, T ]×Kc) = 0) = 1,

for some compact set K ⊂ A. That is, Λ is bounded in the sense of Definition 5.3.5.
Thanks to the lower bounds on f and g of assumption A1.4, we know J(P ′) > −∞. Write
P = R(Q), where Q ∈ A(ρ). By Corollary 5.3.6, there exist Qn ∈ RAa(ρ) such that Qn → Q
in Pp(Ω0 × Pp(X ) × V). Since K is compact, J(R(Qn)) → J(R(Q)) = J(P ) by Lemma
5.3.4.

Second step. To prove the general case, assume now that P ∈ RA(ρ) satisfies J(P ) >
−∞. Because of the first step, it suffices to show that there exist Pn ∈ RA(ρ) such that
J(P ) = limn→∞ J(Pn) and such that for each n there exists a compact Kn ⊂ A such that

Pn (Λ([0, T ]×Kc
n) = 0) = 1. (5.14)

First, the upper bounds of f and g of assumption A1.4 imply

J(P ) ≤c2(T + 1)

(
1 + EP‖X‖pT + EP

∫
Cd
‖z‖pTµ(dz)

)
− c3EP

∫ T

0

dt

∫
A

|a|p′Λt(da).

Thanks to our hypothesis and Lemma 5.3.1, we have EP
∫
Cd ‖x‖

p
Tµ(dx) <∞ and EP‖X‖pT <

∞. This implies

EP
∫ T

0

dt

∫
A

|a|p′Λt(da) <∞.

Now fix any compact sets K1 ⊂ K2 ⊂ . . . with ∪nKn = A. Let ιn : A → A denote any
measurable function satisfying ιn(A) ⊂ Kn and ιn(a) = a for all a ∈ An, so that ιn converges
pointwise to the identity. Let Λn

t = Λt ◦ ι−1
n , and as usual identify Λn = dtΛn

t (da). Let Qn :=
P ◦ (ξ, B,W, µ,Λn)−1 and Pn = R(Qn), so that Pn ∈ RA(ρ) satisfies (5.14). Since Λn → Λ
P -a.s., it follows that Qn → Q in Pp(Ω0 × Pp(X ) × V), where Q := P ◦ (ξ, B,W, µ,Λ)−1

satisfies P = R(Q). Now, since |ιn(a)| ≤ |a|, we have∫ T

0

∫
A

|a|p′Λn
t (da)dt ≤

∫ T

0

∫
A

|a|p′Λt(da)dt,

which implies that the sequence (∫ T

0

∫
A

|a|p′Λn
t (da)dt

)∞
n=1
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is uniformly P ′-integrable. By continuity of R and J (see Lemmas 5.3.3 and 5.3.4), Pn =
R(Qn)→ R(Q) = P in Pp(Ω) and thus J(Pn)→ J(P ).

Remark 5.3.9. At the expense of being overly verbose, it is interesting now to note that an
equivalent simplified definition of MFG solution is available which makes no explicit mention
of compatibility. Indeed, a tuple (Ω̃,F, P, B,W, µ,Λ, X) is a weak MFG solution if and only
if it satisfies properties (1-5) of Definition 3.1.1, with the compatibility requirement (i.e.,
conditional independence) removed from (3), and in place of (6) the following optimality

condition: For each FX0,B,W,µ-progressively measurable A-valued process α, defined on Ω̃
and satisfying

E
∫ T

0

|αt|pdt <∞,

we have
E [Γ(µx,Λ, X)] ≥ E [Γ(µx, dtδαt(da), Y )] ,

where

Yt = X0 +

∫ t

0

b(s, Ys, µ
x
s , αs)ds+

∫ t

0

σ(s, Ys, µ
x
s)dWs +

∫ t

0

σ0(s, Ys, µ
x
s)dBs.

The analogous statement is true in the case without common noise; analogs of Lemma 5.1.2
and 5.2.3 hold with the same proofs.

5.4 Proofs of Propositions 3.1.4 and 3.1.5

This section puts some of these preliminary results to use in proving Propositions 3.1.4 and
3.1.5. First, we quote a measurable selection theorem due to Haussmann and Lepeltier [63].
It will be used to construct optimal strict controls from optimal relaxed controls, both in
this section and later in Section 8.1.

Proposition 5.4.1 (Theorem A.9 of [63]). Let (E, E) be a measurable space, let A be a closed
subset of a Euclidean space, and let n be a positive integer. Consider measurable funtions

(ϕ, ψ) : E × A→ Rn × R, (ϕ̃, ψ̃) : E → Rn × R,

such that a 7→ (ϕ, ψ)(x, a) is continuous for each x ∈ E. Suppose finally that for each x ∈ E
we have (ϕ̃(x), ψ̃(x)) ∈ K(x), where

K(x) := {(ϕ(x, a), z) : a ∈ A, z ≤ ψ(x, a)} .

Then there exists a measurable function α̂ : E → A such that

ϕ̃(x) = ϕ(x, α̂(x)), and ψ̃(x) ≤ ψ(x, α̂(x)), for all x ∈ E.
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5.4.1 Proof of Proposition 3.1.4

With the volatilities uncontrolled, we note that for each (t, x) the set

K(t, x,m) := {(b(t, x,m, a), z) : a ∈ A, z ≤ f(t, x,m, a)}

is convex thanks to assumption (Convex). As in [63, Proposition 3.5], K(t, x,m) is a
closed set for each (t, x,m). Thus, since (b, f)(t,Xt, µ

x
t , a) ∈ K(t,Xt, µ

x
t ) for each a ∈ A, we

have
∫
A

Λt(da)(b, f)(t,Xt, µ
x
t , a) ∈ K(t,Xt, µ

x
t ). Consider the completion FX0,B,W,µ,Λ of the

filtration

σ
(
X0, Bs,Ws, µ(C),Λs : s ≤ t, C ∈ FXt

)
, t ∈ [0, T ].

Note that the SDE has a unique strong solution, so X is necessarily adapted to FX0,B,W,µ,Λ.
Using the measurable selection result of Proposition 5.4.1 (choosing the space (E, E) as

[0, T ] × Ω̃ with the FX0,B,W,µ,Λ-progressive σ-field), we may find FX0,B,W,µ,Λ- progressively
measurable processes α and z, taking values in A and [0,∞), respectively, such that∫

A

Λt(da)(b, f)(t,Xt, µ
x
t , a) =(b, f)(t,Xt, µ

x
t , αt)− (0, zt). (5.15)

This implies that the following SDE holds:

dXt = b(t,Xt, µ
x
t , αt)dt+ σ(t,Xt, µ

x
t )dWt + σ0(t,Xt, µ

x
t )dBt.

Moreover,

E [Γ(µx, dtδαt(da), X)] = E
[∫ T

0

dtf(t,Xt, µ
x
t , αt) + g(XT , µ

x
T )

]
≥ E

[∫ T

0

dt

∫
A

Λt(da)f(t,Xt, µ
x
t , a)dt+ g(XT , µ

x
T )

]
= E [Γ(µx,Λ, X)] (5.16)

Now let us define Λ̃ = dtδαt(da), and finally

µ̃ := P ((W, Λ̃, X) ∈ · | B, µ).

Note that by conditioning on µ̃ on both sides, we get

µ̃ := P ((W, Λ̃, X) ∈ · | B, µ̃).

Moreover, we have of course

µ̃x = P (X ∈ · | B, µ) = µx.

It remains to prove that (Ω̃,F, P, B,W, µ̃, Λ̃, X) is indeed a weak MFG solution, which is
done in several steps. The defining properties (1), (2), (4), and (6) of a weak MFG solution
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in Definition 3.1.1 are either obvious or have been verified already. Thanks to Lemma 5.1.2
(see also its corollary, Lemma 5.2.3), the compatibility of the control follows from what we
have already proven; that is, property (3) of Definition 3.1.1 also holds. It remains to check
the optimality condition (5), which we do in two steps.
Step 1: As a preliminary step, let us check next that for each t ∈ [0, T ], up to null sets, we
have

σ(µ̃(C) : C ∈ FXt ) ⊂ FB,µt := σ(Bs, µ(C) : s ≤ t, C ∈ FXt ).

Now if ϕ : X → R is FXt -measurable then∫
X
ϕdµ̃ = E

[
ϕ(W, Λ̃, X)

∣∣∣B, µ] = E
[
E
[
ϕ(W, Λ̃, X)

∣∣∣FX0,B,W,µ
T

]∣∣∣FB,µT

]
= E

[
E
[
ϕ(W, Λ̃, X)

∣∣∣FX0,B,W,µ
t

]∣∣∣FB,µT

]
= E

[
ϕ(W, Λ̃, X)

∣∣∣FB,µt

]
,

The second equality follows from the conditional independence of FΛ
t and FX0,B,W,µ

T given

FX0,B,W,µ
t , and from the adaptedness of Λ̃ and X with respect to FX0,B,W,µ,Λ. The last

equality follows easily from the independence of (X0,W ) and (B, µ). Since this holds for
each ϕ, this step is complete.
Step 2: Thanks to Proposition 5.3.7, we need only check optimality among controls adapted
to the filtration FX0,B,W,µ̃ = (FX0,B,W,µ̃

t )t∈[0,T ] given by

FX0,B,W,µ̃
t = σ

(
X0, Bs,Ws, µ̃(C) : s ≤ t, C ∈ FXt

)
.

Fix a bounded adapted function ϕ : Ω0 × Pp(X ) → V (see Definition 5.3.5). Define the
relaxed control

β = ϕ(X0, B,W, µ̃),

and the corresponding controlled state process

Yt = X0 +

∫ t

0

∫
A

b(s, Ys, µ̃
x
s , a)βs(da)ds+

∫ t

0

σ(s, Ys, µ̃
x
s)dWs +

∫ t

0

σ0(s, Ys, µ̃
x
s)dBs.

The proof will be complete if we show that

E
[
Γ(µ̃x, Λ̃, X)

]
≥ E [Γ(µ̃x, β, Y )] .

Since (βt)t∈[0,T ] is adapted to FX0,B,W,µ̃, it is in fact adapted FX0,B,W,µ as well, thanks to the
result of Step 2. But this follows from (5.16) as follows:

E
[
Γ(µ̃x, Λ̃, X)

]
= E

[
Γ(µx, Λ̃, X)

]
≥ E [Γ(µx,Λ, X)]

≥ E [Γ(µx, β, Y )] = E [Γ(µ̃x, β, Y )] .
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Indeed, the two equalities follow from the fact that µx = µ̃x, the first inequality from (5.16),
and the second inequality from the optimality property satisfied by the given MFG solution.

5.4.2 Proof of Proposition 3.1.5

It suffices to prove the following two statements, for each ρ ∈ Ppc [(Ω0,Wλ) Pp(X )]

(1) If A∗(ρ) is nonempty, it contains a strong control.

(2) A∗(ρ) contains at most one element.

Indeed, then any MFG solution P must have strong control, since P ∈ RA∗(ρ) for some ρ.
We will work on the canonical space Ω for this proof. Fix ρ throughout.

Proof of (1). Suppose P ∈ RA∗(ρ). Under assumption (Linear-Convex), the state
equation writes as

Xt = X0 +

∫ t

0

(
b1(s, µxs)Xs + b2(s, µxs)αs + b3(t, µxs)

)
ds

+

∫ t

0

(
σ1(s, µxs)Xs + σ2(s, µxs)

)
dWs +

∫ t

0

(
σ1

0(s, µxs)Xs + σ2
0(s, µxs)

)
dBs, (5.17)

where we have let αs :=
∫
A
aΛs(da). Assume all of the filtrations are completed throughout

this proof. By optional projection (see [79, Appendix A.3] for a treatment without right-

continuity of the filtration), there exist Fξ,B,W,µ-optional (and thus progressive) processes X̃
and α̃ such that such that, for each t ∈ [0, T ],

X̃t := E
[
Xt|F ξ,B,W,µt

]
, α̃t := E

[
αt|F ξ,B,W,µt

]
, a.s.

In fact, it holds that for each 0 ≤ s ≤ t ≤ T ,

X̃s := E
[
Xs|F ξ,B,W,µt

]
, α̃s := E

[
αs|F ξ,B,W,µt

]
, a.s. (5.18)

Indeed, since (αs, Xs) is F ξ,B,W,µ,Λ,Xs -measurable, and since the solution of the state equation
3.4 is strong, we know that (αs, Xs) is a.s. F ξ,B,W,µ,Λs -measurable. By compatibility, F ξ,B,W,µt

and FΛ
s are conditionally independent given F ξ,B,W,µs (this property not altered by completing

the filtrations). This implies (5.18).
Now, for a given t ∈ [0, T ], take the conditional expectation with respect to F ξ,B,W,µt in

(5.17). Using a conditional version of Fubini’s theorem together with (5.18), we get that for
each t ∈ [0, T ] it holds P -a.s. that

X̃t = ξ +

∫ t

0

(
b1(s, µxs)X̃s + b2(s, µxs)α̃s + b3(t, µxs)

)
ds

+

∫ t

0

(
σ1(s, µxs)X̃s + σ2(s, µxs)

)
dWs +

∫ t

0

(
σ1

0(s, µxs)X̃s + σ2
0(s, µxs)

)
dBs.

(5.19)
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Since the right-hand side is continuous a.s. and the filtration is complete, we replace X̃ with
an a.s.-continuous modification, so that (5.19) holds for all t ∈ [0, T ], P -a.s. That is, the
processes on either side of the equation are indistinguishable.

Now define P̃ := P ◦ (ξ, B,W, µ, dtδα̃t(da), X̃)−1. It is clear from (5.19) that P̃ ∈ RA(ρ).
Jensen’s inequality provides

J(P ) ≤ EP
[∫ T

0

f
(
t,Xt, µ

x
t , αt

)
dt+ g(XT , µ

x
T )

]
(5.20)

= EP
[∫ T

0

EP
[
f
(
t,Xt, µ

x
t , αt

)∣∣F ξ,B,W,µt

]
dt+ EP

[
g(XT , µ

x
T )|F ξ,B,W,µT

]]
≤ EP

[∫ T

0

f(t, X̃t, µ
x
t , α̃t)dt+ g(X̃T , µ

x
T )

]
= J(P̃ ). (5.21)

Hence P̃ ∈ RA?(ρ), and (1) is proven.
Proof of (2). Unless (under P ) Λ is already a strict control, then inequality (5.20) is

strict, and unless αt =
∫
A
aΛt(da) is already Fξ,B,W,µ-adapted, the inequality (5.21) is strict:

J(P̃ ) > J(P ). This proves that all optimal controls must be strict and Fξ,B,W,µ-adapted.
Now suppose we have two strict adapted optimal controls, which without loss of generality
we construct on the same space (Ω0 × P(X ),Fξ,B,W,µ, ρ). That is,

X i
t = X0 +

∫ t

0

[
b1(s, µxs)X

i
s + b2(s, µxs)α

i
s + b3(s, µxs)

]
ds

+

∫ t

0

[
σ1(s, µxs)X

i
s + σ2(s, µxs)

]
dWs

+

∫ t

0

[
σ1

0(s, µxs)X
i
s + σ2

0(s, µxs)
]
dBs, i = 1, 2,

where αi is FX0,B,W,µ
t -adapted. Define

X3
t :=

1

2
X1
t +

1

2
X2
t , α3

t :=
1

2
α1
t +

1

2
α2
t .

Again taking advantage of the linearity of the coefficients, it is straightforward to check that
(X3, α3) also solve the state equation. Unless α1 = α2 holds dt⊗dP -a.e., the strict concavity
and Jensen’s inequality easily imply that this new control achieves a strictly larger reward
than either α1 or α2, which is a contradiction.

Remark 5.4.2. It is interesting to note, as is clear from the proofs, that the full force of
assumption A1 is not needed for either of Propositions 3.1.4 or 3.1.5. Notably, the assump-
tion p′ > p is not needed. In Proposition 3.1.4 the coefficients (b, σ, f) should be continuous
in a to ensure that the set K(t, x, µ) is closed, but continuity in (x, µ) is unnecessary.
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Chapter 6

Proofs of the limit theorems

This chapter is devoted to the proofs of the main convergence results, Theorem 3.2.4, its
converse Theorem 3.2.10, and finally the analogous results of Theorem 4.2.2 for the setting
without common noise. At the end of the section, we will finally prove Propositions 3.2.2
and 4.2.1, neither of which is used in the proofs of the other three theorems. The notation
developed in Section 3.2 for the n-player games now returns to the spotlight.

6.1 Proof of main limit Theorem 3.2.4

Let us begin with the proof of Theorem 3.2.4. Throughout the section, we work with the
assumptions and notation of Theorem 3.2.4. In particular, assumptions A1, A2, and A3 are
in force throughout this section. The strategy is to prove the claimed relative compactness,
then that any limit is a MFG pre-solution using the characterization of Lemma 5.2.3, and
then finally that any limit corresponds to an optimal control. First, we establish some
standard but useful estimates for the n-player systems, very much analogous to Lemma
5.3.1.

6.1.1 Estimates

The first estimate below, Lemma 6.1.1, is fairly standard (and the proof is similar to that
of Lemma 5.3.1), but it is important that it is independent of the number of agents n. The
second estimate, Lemma 6.1.2, will be used to establish some uniform integrability of the
equilibrium controls, and it is precisely where we need the coercivity of the running cost
f . Note in the following proofs that the initial states X i

0[Λ] = X i
0 = ξi and the initial

empirical measure µ̂x0 [Λ] = µ̂x0 = 1
n

∑n
i=1 δξi do not depend on the choice of control. Recall

the definition of the truncated supremum norm (5.10).

Lemma 6.1.1. There exists a constant c5 ≥ 1, depending only on p, p′, T , and the constant
c1 of assumption A1.4 such that, for each γ ∈ [p, p′], β = (β1, . . . , βn) ∈ Ann(En), and
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1 ≤ k ≤ n,

EPn [‖Xk[β]‖γT ] ≤ c5EPn
[
1 + |ξ1|γ +

∫ T

0

∫
A

|a|γβkt (da)dt

+
1

n

n∑
i=1

∫ T

0

∫
A

|a|γβit(da)dt

]
,

and

EPn
∫
Cd
‖z‖γT µ̂

x[β](dz) =
1

n

n∑
i=1

EPn [‖X i[β]‖γT ]

≤ c5EPn

[
1 + |ξ1|γ +

1

n

n∑
i=1

∫ T

0

∫
A

|a|γβit(da)dt

]
.

Proof. We omit [β] from the notation throughout the proof, as well as the superscript Pn
which should appear above the expectations. Abbreviate Σ := σσ> + σ0σ

>
0 . Apply the

Burkholder-Davis-Gundy inequality and the growth assumption A1.4 to find a universal
constant C > 0 (which will change from line to line) such that, for all γ ∈ [p, p′],

E[‖Xk‖γt ]

≤ E

[
|ξk|γ +

(∫ t

0

∫
A

|b(s,Xk
s , µ̂

x
s , a)|βks (da)ds

)γ
+

(∫ t

0

∣∣Σ(s,Xk
s , µ̂

x
s)
∣∣ ds)γ/2]

≤ C E

{
1 + |ξk|γ +

∫ t

0

[
‖Xk‖γs +

(∫
Cd
‖z‖psµ̂x(dz)

)γ/p
+

∫
A

|a|γβks (da)

]
ds

}

+ C E


[∫ t

0

(
‖Xk‖pσs +

(∫
Cd
‖z‖psµ̂x(dz)

)pσ/p)
ds

]γ/2
≤ C E

{
1 + |ξk|γ +

∫ t

0

[
‖Xk‖γs +

∫
Cd
‖z‖γs µ̂x(dz) +

∫
A

|a|γβks (da)

]
ds

}
.

The last line follows from the bound (
∫
‖z‖psν(dz))γ/p ≤

∫
‖z‖γsν(dz) for ν ∈ P(Cd), which

holds because γ ≥ p. To deal with the γ/2 outside of the time integral, we used the following
argument. If γ ≥ 2, we simply use Jensen’s inequality to pass γ/2 inside of the time integral,
and then use the inequality |x|pσγ/2 ≤ 1 + |x|γ, which holds because pσ ≤ 2. The other case
is 1 ∨ pσ ≤ p ≤ γ < 2, and we use then the inequalities |x|γ/2 ≤ 1 + |x| and |x|pσ ≤ 1 + |x|γ.
By Gronwall’s inequality,

E[‖Xk‖γt ] ≤ CE
{

1 + |ξk|γ +

∫ t

0

[∫
Cd
‖z‖γs µ̂x(dz) +

∫
A

|a|γβks (da)

]
ds

}
(6.1)
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Note that EPn [|ξk|γ] = EPn [|ξ1|γ] for each k, and average over k = 1, . . . , n to get

E
∫
Cd
‖z‖γt µ̂x(dz) =

1

n

n∑
i=1

E[‖X i‖γt ]

≤ CE

{
1 + |ξ1|γ +

∫ t

0

[∫
Cd
‖z‖γs µ̂x(dz) +

1

n

n∑
i=1

∫
A

|a|γβis(da)

]
ds

}
.

Apply Gronwall’s inequality once again to prove the second claimed inequality. The first
claim follows from the second and from (6.1).

Lemma 6.1.2. There exist constants c6, c7 > 0, depending only p, p′, T , and the constants
c1, c2, c3 of assumption A1, such that for each β = (β1, . . . , βn) ∈ Ann(En), the following hold:

1. For each 1 ≤ k ≤ n,

EPn
∫ T

0

∫
A

(|a|p′ − c6|a|p)βkt (da)dt

≤ c7EPn

[
1 + |ξ1|p +

1

n

n∑
i 6=k

∫ T

0

∫
A

|a|pβit(da)

]
− c7Jk(β).

2. If for some n ≥ k ≥ 1, ε > 0, and β̃k ∈ An(En) we have

Jk(β̃
k) ≥ sup

β̃∈An(En)

Jk((β
−k, β̃))− ε,

then

EPn
∫ T

0

∫
A

(|a|p′ − c6|a|p)β̃kt (da)dt ≤ c7EPn

[
1 + ε+ |ξ1|p +

1

n

n∑
i 6=k

∫ T

0

∫
A

|a|pβit(da)

]
.

3. If β is an ε-Nash equilibrium for some ε = (ε1, . . . , εn) ∈ [0,∞)n, then

1

n

n∑
i=1

EPn
∫ T

0

∫
A

(|a|p′ − c6|a|p)βit(da)dt ≤ c7

(
1 + EPn|ξ1|p +

1

n

n∑
i=1

εi

)
.

Proof. Recall that EPn [|ξ1|p] <∞ and that every β̃ ∈ An(En) is required to satisfy

EPn
∫ T

0

∫
A

|a|pβ̃t(da)dt <∞.

Moreover, if EPn
∫ T

0

∫
A
|a|p′ β̃t(da)dt = ∞ then the upper bound on f of assumption A1.5

implies that Jk((β
−k, β̃)) = −∞, for each β ∈ Ann(En) and 1 ≤ k ≤ n.
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Proof of (1): First, use the upper bounds of f and g from assumption A1.5 to get

Jk(β) ≤ c2(T + 1)EPn
[
1 +

∥∥Xk[β]
∥∥p
T

+

∫
Cd
‖z‖pT µ̂

x[β](dz)

]
− c3EPn

∫ T

0

∫
A

|a|p′βkt (da)dt

≤ 3c5c2(T + 1)EPn

[
1 + |ξ1|p +

∫ T

0

∫
A

|a|pβkt (da)dt+
1

n

n∑
i=1

∫ T

0

∫
A

|a|pβit(da)dt

]

− c3EPn
∫ T

0

∫
A

|a|p′βkt (da)dt,

where the last inequality follows from Lemma 6.1.1 (and c5 ≥ 1). This proves the first claim,
with c6 := 6c5c2(T + 1)/c3 and c7 := c6 ∨ (1/c3).

Proof of (2): Fix a0 ∈ A arbitrarily. Abuse notation somewhat by writing a0 in place of
the constant strict control (δa0)t∈[0,T ] ∈ An(En). Lemma 6.1.1 implies

EPn
[∥∥Xk[(β−k, a0)]

∥∥p
T

]
≤ c5EPn

[
1 + |ξ1|p + T

(
1 +

1

n

)
|a0|p +

1

n

n∑
i 6=k

∫ T

0

∫
A

|a|pβit(da)dt

]

and

EPn
∫
Cd
‖z‖pT µ̂

x[(β−k, a0)](dz)

≤ c5EPn

[
1 + |ξ1|p +

T

n
|a0|p +

1

n

n∑
i 6=k

∫ T

0

∫
A

|a|pβit(da)dt

]
.

Use the hypothesis along with the lower bounds on f and g from assumption A1.5 to get

Jk((β
−k, β̃k)) + ε

≥ Jk((β
−k, a0))

≥ −c2(T + 1)EPn
[
1 +

∥∥Xk[(β−k, a0)]
∥∥p
T

+

∫
Cd
‖z‖pT µ̂

x[(β−k, a0)](dz) + |a0|p
′
]

≥ −CEPn

[
1 + |ξ1|p +

1

n

n∑
i 6=k

∫ T

0

∫
A

|a|pβit(da)dt

]
,

where C > 0 depends only on c2, c5, T , and |a0|p
′
. Applying this with the first result with

β replaced by (β−k, β̃k) proves (2), replacing c7 by c7(1 + C).
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Proof of (3): If β is an ε-Nash equilibrium, then applying (2) with β̃k = βk gives

EPn
∫ T

0

∫
A

(|a|p′ − c6|a|p)βkt (da)dt ≤ c7EPn

[
1 + εk + |ξ1|p +

1

n

n∑
i=1

∫ T

0

∫
A

|a|pβit(da)

]
.

The proof is completed by averaging over k = 1, . . . , n, rearranging terms, and replacing c6

by c6 + c7.

6.1.2 Relative compactness and pre-solutions

This section proves that (Pn)∞n=1, defined in (3.7), is relatively compact and that each limit
point is a MFG pre-solution. For this we will need a tailor-made tightness result for Itô
processes which generalizes our previous result of Proposition 5.3.2. It is essentially an
application of Aldous’ criterion, but the proof is deferred to Appendix B.

Proposition 6.1.3. Fix c > 0. For each κ ≥ 0, let Qκ ⊂ P(V × Cd) denote the set of laws
P ◦ (Λ, X)−1 of V × Cd-valued random variables (Λ, X) defined on some filtered probability

space (Ω̃,F = (Ft)t∈[0,T ], P ) satisfying

dXt =

∫
A

B(t, a)Λt(da)dt+ Σ(t)dWt,

where the following hold:

1. W is a F-Wiener process of dimension k, and X is a continuous F-adapted d-
dimensional process with P ◦X−1

0 = λ.

2. Σ : [0, T ] × Ω̃ → Rd×k is progressively measurable, and B : [0, T ] × Ω̃ × A → Rd is

jointly measurable with respect to the F-progressive σ-field on [0, T ]× Ω̃ and the Borel
σ-field on A.

3. There exists a nonnegative FT -measurable random variable Z such that, for each
(t, ω, a) ∈ [0, T ]× Ω̃× A,

|B(t, a)| ≤ c (1 + |Xt|+ Z + |a|) , |ΣΣ>(t)| ≤ c (1 + |Xt|pσ + Zpσ)

and

EP
[
|X0|p

′
+ Zp′ +

∫ T

0

∫
A

|a|p′Λt(da)dt

]
≤ κ.

(That is, we vary over Σ, B, Z, k, and the probability space.) Then, for any triangular array
{κn,i : 1 ≤ i ≤ n} ⊂ [0,∞) with supn

1
n

∑n
i=1 κn,i <∞, the set

Q :=

{
1

n

n∑
i=1

Pi : n ≥ 1, P i ∈ Qκn,i for i = 1, . . . , n

}

is relatively compact in Pp(V × Cd).

97



Lemma 6.1.4. (Pn)∞n=1 is relatively compact in Pp(Ω), and

sup
n

EPn
[
‖X‖p

′

T +

∫
Cd
‖z‖p

′

T µ(dz) +

∫ T

0

∫
A

|a|p′Λt(da)dt

]
<∞. (6.2)

Proof. We first establish (6.2). Since Λn is a εn-Nash equilibrium, part (3) of Lemma 6.1.2
implies

1

n

n∑
k=1

EPn
∫ T

0

∫
A

(|a|p′ − c6|a|p)Λn,k
t (da)dt ≤ c7

(
1 + EPn [|ξ1|p] +

1

n

n∑
k=1

εnk

)
.

The right-hand side above is bounded in n, because of hypothesis (3.6) and because Pn ◦
(ξ1)−1 = λ ∈ Pp(Rd) for each n. Since p′ > p, it follows that

sup
n

1

n

n∑
k=1

EPn
∫ T

0

∫
A

|a|p′Λn,k
t (da)dt <∞. (6.3)

Lemma 6.1.1 implies

EPn
∫
Cd
‖z‖p

′

T µ̂
x[Λn](dz) ≤ c5EPn

[
1 + |ξ1|p′ + 1

n

n∑
k=1

∫ T

0

∫
A

|a|p′Λn,k
t (da)dt

]
=: κn.

Thus

EPn
[
‖X‖p

′

T +

∫
Cd
‖z‖p

′

T µ(dz) +

∫ T

0

∫
A

|a|p′Λt(da)dt

]
=

1

n

n∑
k=1

EPn
[
‖Xk[Λn]‖p

′

T +

∫
Cd
‖z‖p

′

T µ̂
x[Λn](dz) +

∫ T

0

∫
A

|a|p′Λn,k
t (da)dt

]

≤ c5EPn

[
2 + 2|ξ1|p′ + 3

n

n∑
k=1

∫ T

0

∫
A

|a|p′Λn,k
t (da)dt

]
≤ 3κn.

Recall in the last line that c5 ≥ 1. From (6.3) we conclude that supn κn < ∞, and (6.2)
follows.

To prove that (Pn)∞n=1, it suffices to show that each family of marginals is relatively
compact (see Lemma 2.1.8). Since (Pn◦(ξ, B,W )−1)∞n=1 is a singleton, it is trivially compact.
We may apply Proposition 6.1.3 to show that

Pn ◦ (Λ, X)−1 =
1

n

n∑
i=1

Pn ◦ (Λn,i, Xn,i[Λn])−1

forms a relatively compact sequence. Indeed, in the notation of Proposition 6.1.3, we use Z =
(
∫
Cd ‖z‖

p
T µ̂

x[Λn](dz))1/p and c = c1 of assumption A1.4 to check that Pn ◦ (Λn,i, Xn,i[Λn])−1
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is in Qκn,i for each 1 ≤ i ≤ n, where

κn,i = κn + EPn
[
|ξi|p′ +

∫ T

0

∫
A

|a|p′Λn,i
t (da)dt

]
.

Since c5 ≥ 1, we have 1
n

∑n
i=1 κn,i ≤ 2κn, and so supn

1
n

∑n
i=1 κn,i < ∞. Thus, Propo-

sition 6.1.3 establishes the relative compactness of (Pn ◦ (Λ, X)−1)∞n=1. Next, note that
Pn ◦ (W,Λ, X)−1 is the mean measure of Pn ◦ µ−1 for each n, since for each bounded mea-
surable ϕ : X → R we have

EPn [ϕ(W,Λ, X)] =
1

n

n∑
i=1

EPn
[
ϕ(W i,Λn,i, X i[Λn])

]
= EPn

∫
X
ϕdµ̂[Λn] = EPn

∫
X
ϕdµ.

(See Section 2.1.2 for a discussion of mean measures and their use for deriving compactness.)
Since also

sup
n

EPn
[
‖W‖p

′

T +

∫ T

0

∫
A

|a|p′Λt(da)dt+ ‖X‖p
′

T

]
<∞,

the relative compactness of (Pn◦µ−1)∞n=1 in Pp(Pp(X )) follows from the relative compactness
of (Pn ◦ (W,Λ, X)−1)∞n=1 in Pp(X ); see Corollary 2.1.13. This completes the proof.

Finally, the following Lemma shows that the limits of Pn are MFG pre-solution. It is
interesting to note that this proof is new even when specialized to the McKean-Vlasov case,
which is of course the special case when the control problem degenerates in the sense that A
is a singleton. Refer back to Section 2.2 and Theorem 2.2.3 for more discussion of McKean-
Vlasov limits. In particular, the complete proof of Theorem 2.2.3 is nearly identical to that
of the following lemma:

Lemma 6.1.5. Any limit point P of (Pn)∞n=1 in Pp(Ω) is a MFG pre-solution.

Proof. We abuse notation somewhat by assume that Pn → P , with the understanding that
this is along a subsequence. We check that P satisfies the four conditions of Lemma 5.2.3.

1. Of course,

Pn ◦ (ξ, B,W )−1 =
1

n

n∑
i=1

Pn ◦ (ξi, B,W i)−1 = λ×Wm0 ×Wm,

where Wk denotes Wiener measure on Ck. Thus P ◦ (ξ, B,W )−1 = λ ×Wm0 ×Wm

as well. On Ωn, we know σ(W i
s − W i

t , Bs − Bt : i = 1, . . . , n, s ∈ [t, T ]) is Pn-
independent of Fnt for each t ∈ [0, T ]. It follows that, on Ω, σ(Ws − Wt, Bs − Bt :
s ∈ [t, T ]) is Pn-independent of F ξ,B,W,µ,Λ,Xt . Hence B and W are Wiener processes on
(Ω,Fξ,B,W,µ,Λ,X , P ).

2. Fix bounded continuous functions ϕ : Rd × Cm → R and ψ : Cm0 ×Pp(X )→ R. Since
(ξ1,W 1), . . . , (ξn,W n) are i.i.d. under Pn with common law P ◦ (ξ,W )−1 for each n,
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the law of large numbers implies

lim
n→∞

EPn

[∣∣∣∣∣ 1n
n∑
i=1

ϕ(ξi,W i)− EP [ϕ(ξ,W )]

∣∣∣∣∣ψ(B, µ̂[Λn])

]
= 0.

This implies

EP [ϕ(ξ,W )ψ(B, µ)] = lim
n→∞

1

n

n∑
i=1

EPn
[
ϕ(ξi,W i)ψ(B, µ̂[Λn])

]
= EP [ϕ(ξ,W )] lim

n→∞

1

n

n∑
i=1

EPn [ψ(B, µ̂[Λn])]

= EP [ϕ(ξ,W )]EP [ψ(B, µ)] .

This shows (B, µ) is independent of (ξ,W ) under P . Since ξi and W i are independent
under Pn, it follows that ξ and W are independent under Pn, for each n. Thus ξ and
W are independent under P , and we conclude that ξ, W , and (B, µ) are independent
under P .

3. Let ϕ : X → R and ψ : Cm0 × Pp(X )→ R be bounded and continuous. Then

EP [ψ(B, µ)ϕ(W,Λ, X)] = lim
n→∞

EPn

[
ψ(B, µ̂[Λn])

1

n

n∑
i=1

ϕ(W i,Λn,i, X i[Λn])

]

= lim
n→∞

EPn
[
ψ(B, µ̂[Λn])

∫
X
ϕdµ̂[Λn]

]
= EP

[
ψ(B, µ)

∫
X
ϕdµ

]
.

4. Since (ξi, B,W i, µ̂[Λn],Λn,i, X i[Λn]) verify the state SDE under Pn, the canonical pro-
cesses (ξ, B,W, µ,Λ, X) verify the state equation (5.7) under each Pn, for each n. This
property is preserved in the limit Pn → P , thanks to well known results on weak
convergence of stochastic integrals (e.g., Kurtz and Protter [81]).

6.1.3 Modified finite-player games

The last step of the proof, executed in the next Section 6.1.4, is to show that any limit
P of Pn is optimal. This step is more involved, and we devote this subsection to studying
a useful technical device which we call the k-modified n-player game, in which agent k is
removed from the empirical measures. Intuitively, if the n-player game is modified so that
the empirical measure (present in the state process dynamics and objective functions) no
longer includes agent k, then the optimization problem of agent k de-couples from that of
the other agents; agent k may then treat the empirical measure of the other n − 1 agents
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as fixed and thus faces exactly the type of control problem encountered in the MFG. Let us
make this idea precise.

For β = (β1, . . . , βn) ∈ Ann(En), define Y −k[β] = (Y −k,1[β], . . . , Y −k,n[β]) to be the unique
strong solution on (Ωn,Fn,Pn) of the SDE

Y −k,it [β] = ξi +

∫ t

0

∫
A

b(s, Y −k,is [β], µ̂−k,xs [β], a)βis(da)dt

+

∫ t

0

σ(s, Y −k,is [β], µ̂−k,xs [β])dW i
s

+

∫ t

0

σ0(s, Y −k,is [β], µ̂−k,xs [β])dBs,

µ̂−k,x[β] :=
1

n− 1

n∑
i 6=k

δY −k,i[β].

Define also

µ̂−k[β] =
1

n− 1

n∑
i 6=k

δ(W i,βi,Y −k,i[β]).

Intuitively, Y −k,i is agent i’s state process in an analog of the n-player game, in which agent
k has been removed from the empirical measure. Naturally, for fixed k, the k-modified state
processes Y −k[β] should not be far from the true state processes X[β] if n is large, and we
will quantify this precisely. We will need to be somewhat explicit about the choice of metric
on V , so we define dV by

dpV(q, q′) := T`[0,T ]×A,p(q/T, q
′/T )

= inf
γ

∫
[0,T ]2×A2

(|t− t′|p + |a− a′|p)γ(dt, dt′, da, da′),

where the infimum is over measures γ on [0, T ]2 × A2 with marginals q and q′. By choosing
γ = dtδt(dt

′)qt(da)q′t(da
′), we note that

dpV(q, q′) ≤ 2p−1

∫ T

0

∫
A

|a|pqt(da)dt+ 2p−1

∫ T

0

∫
A

|a|pq′t(da)dt. (6.4)

Define the p′-Wasserstein distance `X ,p′ on Pp′(X ) with respect to the metric on X given by

dX ((w, q, x), (w′, q′, x′)) := ‖w − w′‖T + dV(q, q′) + ‖x− x′‖T . (6.5)
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Lemma 6.1.6. There exists a constant c8 > 0 such that, for each n ≥ k ≥ 1 and β =
(β1, . . . , βn) ∈ Ann(En), we have

EPn
[
`p
′

X ,p′(µ̂
−k[β], µ̂[β]) +

∥∥Xk[β]− Y −k,k[β]
∥∥p′
T

]
≤ c8(1 +M [β])/n, where

M [β] := EPn

[
|ξ1|p′ + 1

n

n∑
i=1

∫ T

0

∫
A

|a|p′βit(da)dt

]
.

Proof. Throughout the proof, n is fixed, expected values are all with respect to Pn, and the
notation [β] is omitted. Define the truncated p′-Wasserstein distance `t on Pp′(Cd) by

`t(µ, ν) := inf

{∫
Cd×Cd

‖x− y‖p
′

t γ(dx, dy) : γ ∈ P(Cd × Cd) has marginals µ, ν

}1/p′

(6.6)

Apply the Doob’s maximal inequality and Jensen’s inequality (using p′ ≥ 2, which was part
of assumption A3) to find a constant C > 0 (which will change from line to line but depends
only on d, p, p′, T , c1, and c5) such that

E
[
‖X i − Y −k,i‖p

′

t

]
≤CE

∫ t

0

∫
A

|b(s,X i
s, µ̂

x
s , a)− b(s, Y −k,is , µ̂−k,xs , a)|p′βis(da)ds

+ CE
∫ t

0

∣∣σ(s,X i
s, µ̂

x
s)− σ(s, Y −k,is , µ̂−k,xs )

∣∣p′ ds
+ CE

∫ t

0

∣∣σ0(s,X i
s, µ̂

x
s)− σ0(s, Y −k,is , µ̂−k,xs )

∣∣p′ ds
≤CE

∫ t

0

(
‖X i − Y −k,i‖p′s + `p

′

s (µ̂x, µ̂−k,x)
)
ds.

The last line followed from the Lipschitz assumption A3, along with the observation that

`Rd,p(ν
1
s , ν

2
s ) ≤ `Rd,p′(ν

1
s , ν

2
s ) ≤ `s(ν

1, ν2),

for each ν1, ν2 ∈ Pp(Cd) and s ∈ [0, T ]. By Gronwall’s inequality (updating the constant C),

E
[
‖X i − Y −k,i‖p

′

t

]
≤ CE

∫ t

0

`p
′

s (µ̂x, µ̂−k,x)ds. (6.7)

Now we define a standard coupling of the empirical measures µ̂x and µ̂−k,x: first, draw a
number j from {1, . . . , n} uniformly at random, and consider Xj to be a sample from µ̂x. If
j 6= k, choose Y −k,j to be a sample from µ̂−k,x, but if j = k, draw another number j′ from
{1, . . . , n}\{k} uniformly at random, and choose Y −k,j

′
to be a sample from µ̂−k,x. This

yields

`p
′

t (µ̂x, µ̂−k,x) ≤ 1

n

n∑
i 6=k

‖X i − Y −k,i‖p
′

t +
1

n(n− 1)

n∑
i 6=k

‖Xk − Y −k,i‖p
′

t (6.8)
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We know from Lemma 6.1.1 that

1

n− 1

n∑
i 6=k

E[‖X i‖p
′

T ] ≤ c5(1 +M),

It should be clear that an analog of Lemma 6.1.1 holds for Y −k,i as well, with the same
constant. In particular,

1

n− 1

n∑
i 6=k

E[‖Y −k,i‖p
′

T ] ≤ c5(1 +M).

Combine the above four inequalities, averaging (6.7) over i 6= k, to get

E
[
`p
′

t (µ̂x, µ̂−k,x)
]
≤ CE

∫ t

0

`p
′

s (µ̂x, µ̂−k,x)ds+ 2p
′
c5(1 +M)/n.

Gronwall’s inequality yields a new constant such that

E
[
`p
′

T (µ̂x, µ̂−k,x)
]
≤ C(1 +M)/n.

Return to (6.7) to find

E
[
‖X i − Y −k,i‖p

′

T

]
≤ C(1 +M)/n, for i = 1, . . . , n. (6.9)

The same coupling argument leading to (6.8) also yields

`p
′

X ,p′(µ̂, µ̂
−k) ≤ 1

n

n∑
i 6=k

‖X i − Y −k,i‖p
′

T

+
1

n(n− 1)

n∑
i 6=k

dp
′

X ((W i, βi, Y −k,i), (W k, βk, Xk)) (6.10)

Using (6.4), we find yet another constant such that

E
[
dp
′

X ((W i, βi, Y −k,i), (W k, βk, Xk))
]

≤ 3p
′−1E

[
‖W i −W k‖p

′

T + dp
′

V (βi, βk) + ‖Y −k,i −Xk‖p
′

T

]
≤ CE

[∫ T

0

∫
A

|a|p′(βit + βkt )(da)dt+ ‖W 1‖p
′

T + |Y −k,i‖p
′

T + ‖Xk‖p
′

T

]
≤ C

(
2nM + 2nc5(1 +M) + E[‖W 1‖p

′

T ]
)
.
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Thus

1

n− 1

n∑
i 6=k

E
[
dp
′

X ((W i, βi, Y −k,i), (W k, βk, Xk))
]
≤ C(1 +M).

Applying this bound and (6.9) to (6.10) completes the proof.

6.1.4 Optimality in the limit

Before we complete the proof, recall the definitions of R, A, and A∗ from Section 5.2. The
final step is to show that P ∈ RA∗(P ◦ (ξ, B,W, µ)−1), for any limit P of (Pn)∞n=1. The idea
of the proof is to use the density of adapted controls (see Corollary 5.3.6) to construct nearly
optimal controls for the MFG with nice continuity properties. From these controls we build
admissible controls for the n-player game, and it must finally be argued that the inequality
obtained from the εn-Nash assumption on Λn may be passed to the limit.

Proof of Theorem 3.2.4. Let P be a limit point of (Pn)∞n=1, which we know exists by Lemma
6.1.4, and again abuse notation by assuming that Pn → P . Let ρ := P ◦ (ξ, B,W, µ)−1. We
know from Lemma 6.1.5 that P is a MFG pre-solution, so we need only to check that P is
optimal. By Proposition 5.3.7, it suffices to show that J(P ) ≥ J(R(Q̃)) for all Q̃ ∈ Aa(ρ)

(see Definition 5.3.5). Fix arbitrarily some Q̃ ∈ Aa(ρ), and recall that Q̃ ∈ Aa(ρ) means
that there exist bounded, continuous, adapted functions ϕ̃ : Ω0 × Pp(X )→ V such that

Q̃ := ρ ◦ (ξ, B,W, µ, ϕ̃(ξ, B,W, µ))−1.

For 1 ≤ k ≤ n, let
ρn,k := Pn ◦ (ξk, B,W k, µ̂−k[Λn])−1,

and

Qn,k := ρn,k ◦ (ξ, B,W, µ, ϕ̃(ξ, B,W, µ))−1

= Pn ◦
(
ξk, B,W k, µ̂−k[Λn], ϕ̃(ξk, B,W k, µ̂−k[Λn])

)−1
.

It follows from Lemma 6.1.6 that

lim
n→∞

1

n

n∑
k=1

ρn,k = lim
n→∞

1

n

n∑
k=1

Pn ◦ (ξk, B,W k, µ̂[Λn])−1 = ρ.

Since
1

n

n∑
k=1

ρn,k ◦ (ξ, B,W )−1 = P ◦ (ξ, B,W )−1

does not depend on n, the continuity of ϕ̃ implies

Q̃ = lim
n→∞

1

n

n∑
k=1

Qn,k.
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It is fairly straightforward to check thatR is a linear map, and it is even more straightforward
to check that J is linear. Moreover, note that ϕ̃ is bounded (i.e., concentrated on a compact
subset of [0, T ]× A, as in Definition 5.3.5), and thus Lemma 6.1.6 yields

sup
n,k

EQn,k
∫
Cd
‖x‖p

′

T <∞.

Hence, the continuity of R and J of Lemmas 5.3.3 and 5.3.4 imply

lim
n→∞

1

n

n∑
k=1

J(R(Qn,k)) = lim
n→∞

J

(
R

(
1

n

n∑
k=1

Qn,k

))
= J(R(Q̃)). (6.11)

Now, for k ≤ n, define βn,k ∈ An(En) by

βn,k := ϕ̃
(
ξk, B,W k, µ̂−k[Λn]

)
.

For β ∈ An(En), abbreviate (Λn,−k, β) := ((Λn)−k, β). Since agent k is removed from the
empirical measure in the k-modified system, we have µ̂−k[Λn] = µ̂−k[(Λn,−k, β)] for each
β ∈ An(En). The key point is that for each k ≤ n,

Pn ◦
(
ξk, B,W k, µ̂−k[(Λn,−k, βn,k)], βn,k, Y −k,k[(Λn,−k, βn,k)]

)−1
= R(Qn,k). (6.12)

To prove (6.12), let P ′ ∈ P(Ω) denote the measure on the left-hand side. Since µ̂−k[Λn] =
µ̂−k[(Λn,−k, βn,k)], we have

P ′ ◦ (ξ, B,W, µ,Λ)−1 = Qn,k.

Since the processes(
ξk, B,W k, µ̂−k[(Λn,−k, βn,k)], βn,k, Y −k,k[(Λn,−k, βn,k)]

)
verify the state SDE (5.7) on (Ωn,Fn,Pn), the canonical processes (ξ, B,W, µ,Λ, X) verify
the state SDE (5.7) under P ′. Hence, P ′ = R(Qn,k). With (6.12) in hand, by definition of
J the equation (6.11) then translates to

lim
n→∞

1

n

n∑
k=1

EPn
[
Γ
(
µ̂−k,x[(Λn,−k, βn,k)], βn,k, Y −k,k[(Λn,−k, βn,k)]

)]
= J(R(Q̃)). (6.13)

One more technical ingredient is needed before we can complete the proof. Namely, we
would like to substitute Xk[(Λn,−k, βn,k)] for Y −k,k[(Λn,−k, βn,k)] in (6.13), by proving

0 = lim
n→∞

1

n

n∑
k=1

EPn
[
Γ
(
µ̂−k,x[(Λn,−k, βn,k)], βn,k, Y −k,k[(Λn,−k, βn,k)]

)
−Γ
(
µ̂x[(Λn,−k, βn,k)], βn,k, Xk[(Λn,−k, βn,k)]

)]
. (6.14)
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Indeed, it follows from Lemma 6.1.1 (and an obvious analog for the modified state processes
Y ) that

Zn,k := EPn
[
‖Xk[(Λn,−k, βn,k)]‖p

′

T + ‖Y −k,k[(Λn,−k, βn,k)]‖p
′

T

+

∫
Cd
‖z‖p

′

T µ̂
x[(Λn,−k, βn,k)](dz) +

∫
Cd
‖z‖p

′

T µ̂
−k,x[(Λn,−k, βn,k)](dz)

]
≤ 4c4EPn

[
|ξ1|p′ + 1

n

n∑
i=1

∫ T

0

∫
A

|a|p′Λn,i
t (da)dt+

∫ T

0

∫
A

|a|p′βn,kt (da)dt

]
.

Lemma 6.1.4 says that

sup
n

EPn

[
1

n

n∑
i=1

∫ T

0

∫
A

|a|p′Λn,i
t (da)dt

]
<∞.

Boundedness of ϕ̃ implies that there exists a compact set K ⊂ A such that β̃n,kt (Kc) = 0 for
a.e. t ∈ [0, T ] and all n ≥ k ≥ 1. Thus

sup
n

1

n

n∑
k=1

Zn,k <∞,

and we have the uniform integrability needed to deduce (6.14) from Lemma 6.1.6 and from
the continuity and growth assumptions A1.5 on f and g.

A simple manipulation of the definitions yields J(Pn) = 1
n

∑n
k=1 Jk(Λ

n). Then, since
Pn → P , the upper semicontinuity of J (proven in Lemma 5.3.4) implies

J(P ) ≥ lim sup
n→∞

1

n

n∑
k=1

Jk(Λ
n).

Finally, use the fact that Λn is a relaxed εn-Nash equilibrium to get

J(P ) ≥ lim inf
n→∞

1

n

n∑
k=1

[
Jk((Λ

n,−k, βn,k))− εnk
]

= lim inf
n→∞

1

n

n∑
k=1

EPn
[
Γ
(
µ̂x[(Λn,−k, βn,k)], βn,k, Xk[(Λn,−k, βn,k)]

)]
= lim inf

n→∞

1

n

n∑
k=1

EPn
[
Γ
(
µ̂−k,x[(Λn,−k, βn,k)], βn,k, Y −k,k[(Λn,−k, βn,k)]

)]
= J(R(Q̃))

The second line is simply writing out the definition of Jk and dropping the εnk , which is
permitted by hypothesis (3.6). The third line comes from (6.14), and the last is from (6.13).
This completes the proof.
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6.2 Proof of converse limit Theorem 3.2.10

This section is devoted to the proof of Theorem 3.2.10, which we split into two pieces.

Theorem 6.2.1. Suppose assumptions A1, A2, A3, and A4 hold. Let P ∈ P(Ω) be a
weak MFG solution. Then there exist, for each n,

1. εn ≥ 0,

2. an n-player environment En = (Ωn, (Fnt )t∈[0,T ],Pn, ξ, B,W ), and

3. a relaxed (εn, . . . , εn)-Nash equilibrium Λn = (Λn,1, . . . ,Λn,n) on En,

such that limn→∞ εn = 0 and Pn → P in Pp(Ω), where

Pn :=
1

n

n∑
i=1

Pn ◦
(
ξi, B,W i, µ̂[Λn],Λn,i, X i[Λn]

)−1
.

Theorem 6.2.1 is nearly the same as Theorem 3.2.10, except that the equilibria Λn are
now relaxed instead of strong, and the environments En are now part of the conclusion of
the theorem instead of the input. We will prove Theorem 6.2.1 by constructing a convenient
sequence of environments En, which all live on the same larger probability space supporting
an i.i.d. sequence of state processes corresponding to the given MFG solution. This kind of
argument is known as trajectorial propagation of chaos in the literature on McKean-Vlasov
limits, and the Lipschitz assumption in the measure argument is useful here. The precise
choice of environments also facilitates the proof of the following Proposition. Recall the
definition of a strong ε-Nash equilibrium from Remark 3.2.1 and the discussion preceding it.

Proposition 6.2.2. Let En be the environments defined in the proof of Theorem 6.2.1 (in
Section 6.2.1). Let Λ0 = (Λ0,1, . . . ,Λ0,n) ∈ Ann(En). Then there exist strong strategies Λk =
(Λk,1, . . . ,Λk,n) ∈ Ann(En) such that:

1. In Pp
(
Cm0 × (Cm)n × Vn × (Cd)n

)
,

lim
k→∞

Pn ◦
(
B,W,Λk, X[Λk]

)−1
= Pn ◦

(
B,W,Λ0, X[Λ0]

)−1
,

2. limk→∞ Ji(Λ
k) = Ji(Λ

0), for i = 1, . . . , n,

3.
lim sup
k→∞

sup
β∈An(En)

Ji((Λ
k,−i, β)) ≤ sup

β∈An(En)

Ji((Λ
0,−i, β)), for i = 1, . . . , n.

In particular, if Λ0 is a relaxed ε0 = (ε01, . . . , ε
0
n)-Nash equilibrium, then Λk is a strong

(ε0 + εk)-Nash equilibrium, where

εki :=

[
sup

β∈An(En)

Ji((Λ
k,−i, β))− Ji(Λk)− ε0i

]+

→ 0 as k →∞.
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Proof of Theorem 3.2.10. Recall that strong strategies are insensitive to the choice of n-
player environment (see Remark 3.2.11), and so it suffices to prove the theorem on any
given sequence of environments, such as those provided by Theorem 6.2.1. By Theorem
6.2.1 we may find εn → 0 and a relaxed (εn, . . . , εn)-Nash equilibrium Λn for the n-player
game, with the desired convergence properties. Then, by Proposition 6.2.2, we find for each
n each k a strong εn,k = (εn + εn,k1 , . . . , εn + εn,kn )-Nash equilibrium Λn,k ∈ Ann(En) with the
convergence properties defined in Proposition 6.2.2. For each n, choose kn large enough to
make εn,kni ≤ 2−n for each i = 1, . . . , n and so that the sequences in (1-3) of Proposition 6.2.2
are each within 2−n of their respective limits.

6.2.1 Construction of environments

Fix a weak MFG solution P . We will work on the space

Ω := [0, 1]× Cm0 × Pp(X )×X∞.

Let (U,B, µ, (W i,Λi, Y i)∞i=1) denote the identity map (i.e., coordinate processes) on Ω. For
n ∈ N ∪ {∞}, consider the complete filtration Fn = (Fnt )t∈[0,T ] generated by U , B, µ, and
(W i,Λi, Y i)ni=1, that is the completion of

σ
{(
U,Bs, µ(C1), (W i

s ,Λ
i(C2), Y i

s )ni=1

)
: s ≤ t, C1 ∈ FXt , C2 ∈ B([0, t]× A)

}
.

Let PB,µ := P ◦ (B, µ)−1, and define the probability measure P on (Ω,F∞T ) by

P := duPB,µ(dβ, dν)
∞∏
i=1

ν(dwi, dqi, dyi).

By construction,
P ◦ (Y i

0 , B,W
i, µ,Λi, Y i)−1 = P, for each i,

and (W i,Λi, Y i)∞i=1 are conditionally i.i.d. with common law µ given (B, µ). Moreover,
U and (B, µ, (W i,Λi, Y i)∞i=1) are independent under P. We will work with the n-player
environments

En :=
(
Ω,Fn,P, (Y 1

0 , . . . , Y
n

0 ), B, (W 1, . . . ,W n)
)
,

and we will show that the canonical process (Λ1, . . . ,Λn) is a relaxed (εn, . . . , εn)-Nash equi-
librium for some εn → ∞. Including the seemingly superfluous random variable U makes
the class An(En) of admissible controls as rich as possible, in a sense which will be more clear
later; until the proof of Proposition 6.2.2, U will be behind the scenes.

Define X[β] and µ̂[β] for β ∈ Ann(En) as usual, as in Section 3.2. For each F∞-progressive
P(A)-valued process β on Ω and each i ≥ 1, define Y i[β] to be the unique solution of the
SDE

dY i
t [β] =

∫
A

b(t, Y i
t [β], µxt , a)βt(da) + σ(t, Y i

t [β], µxt )dW
i
t + σ0(t, Y i

t [β], µxt )dBt,
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with Y i
0 [β] = Y i

0 . Note that if β = (β1, . . . , βn) ∈ Ann(En) then X i[β] differs from Y i[βi] only
in the measure flow which appears in the dynamics; X i[β] depends on the empirical measure
flow of (X1[β], . . . , Xn[β]), whereas Y i[βi] depends on the random measure µ coming from
the MFG solution. Define the canonical n-player strategy profile by

Λ
n

= (Λ
n,1
, . . . ,Λ

n,n
) := (Λ1, . . . ,Λn) ∈ Ann(En).

This abbreviation serves in part to indicate which n we are working with at any given
moment, so that we can suppress the index n from the rest of the notation. Note that

Y i[Λ
n,i

] = Y i[Λi] = Y i.

6.2.2 Trajectorial propagation of chaos

Intuition from the theory of propagation of chaos suggests that the state processes
(Y 1, . . . , Y n) and (X1, . . . , Xn) should be close in some sense, and the purpose of this
section is to make this quantitative. For β ∈ An(En), abbreviate

(Λ
n,−i

, β) := ((Λ
n
)−i, β) ∈ Ann(En).

Recall the definition of the metric dX on X from (6.5), and again define the p′-Wasserstein
metric `X ,p′ on Pp(X ) relative to the metric dX .

Lemma 6.2.3. Fix i and a F∞-progressive P (A)-valued process β, and define

ν̂n,i[β] :=
1

n

(
n∑
k 6=i

δ(Wk,Λk,Y k) + δ(W i,β,Y i[β])

)
.

There exists a sequence δn > 0 converging to zero such that

EP
[
`p
′

X ,p′(ν̂
n,i[β], µ)

]
≤ δn

(
1 + EP

∫ T

0

∫
A

|a|p′βt(da)dt

)
.

Proof. Expectations are all with respect to P throughout the proof. For 1 ≤ i ≤ n define

ν̂n :=
1

n

n∑
k=1

δ(Wk,Λk,Y k).

Using the obvious coupling, we find

`p
′

X ,p′(ν̂
n,i[β], ν̂n) ≤ 1

n
dp
′

X
(
(W i,Λi, Y i), (W i, β, Y i[β])

)
.
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Using (6.4), we find a constant C > 0, depending only on p, p′, and T , such that

E
[
dp
′

X
(
(W i,Λi, Y i), (W i, β, Y i[β])

)]
≤ CE

[∫ T

0

∫
A

|a|p′(βt + Λi
t)(da)dt+ ‖Y i‖p

′

T + ‖Y i[β]‖p
′

T

]
Analogously to Lemma 6.1.1, it holds that

E[‖Y i[β]‖p
′

T ] ≤ c5E
[
1 + |Y i

0 |p
′
+

∫
Cd
‖z‖p

′

T µ
x(dz) +

∫ T

0

∫
A

|a|p′βt(da)dt

]
. (6.15)

Note that E
∫
Cd ‖z‖

p′

T µ
x(dz) <∞ and that E[|Y i

0 |p
′
] = E[|Y 1

0 |p
′
] <∞. Apply (6.15) also with

β = Λi, we find a new constant, still called C and still independent of n, such that

E
[
dp
′

X
(
(W i,Λi, Y i), (W i, β, Y i[β])

)]
≤ C

(
1 + E

∫ T

0

∫
A

|a|p′βt(da)dt

)
.

Finally, recall that (W k,Λk, Y k)∞k=1 are conditionally i.i.d. given (B, µ) with common con-
ditional law µ. Since also they are p′-integrable, it follows from the law of large numbers
that

lim
n→∞

E
[
`p
′

X ,p′(ν̂
n, µ)

]
= 0.

Complete the proof by using the triangle inequality to get

E
[
`p
′

X ,p′(ν̂
n,i[β], µ)

]
≤ C2p

′−1

n

(
1 + E

∫ T

0

∫
A

|a|p′βt(da)dt

)
+ 2p

′−1E
[
`p
′

X ,p′(ν̂
n, µ)

]
.

Lemma 6.2.4. There is a sequence δn > 0 converging to zero such that for each 1 ≤ i ≤ n
and each β ∈ An(En),

EP
[
`p
′

X ,p′(µ̂[(Λ
n,−i

, β)], µ) +
∥∥∥X i[(Λ

n,−i
, β)]− Y i[β]

∥∥∥p′
T

]
≤ δn

(
1 + EP

∫ T

0

∫
A

|a|p′βt(da)dt

)
.

Proof. The proof is similar to that of Lemma 6.1.6, and we work again with the truncated p′-
Wasserstein distances `t on Cd defined in (6.6). Throughout this proof, n and i are fixed, and

expectations are all with respect to P. Abbreviate X
k

= Xk[(Λ
n,−i

, β)] and µ̂ = µ̂[(Λ
n,−i

, β)]

throughout. Define Y
i

:= Y i[β] and Y
k

:= Y k for k 6= i. As in the proof of Lemma 6.1.6,
we use the Burkholder-Davis-Gundy inequality followed by Gronwall’s inequality to find a
constant C1 > 0, depending only on c1, p′, and T , such that

E
[
‖Xk − Y k‖p

′

t

]
≤ C1E

∫ t

0

`p
′

s (µ̂x, µx)ds, for 1 ≤ k ≤ n. (6.16)
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Define ν̂n,i = ν̂n,i[β] as in Lemma 6.2.3, and write ν̂n,i,x := (ν̂n,i)x for the empirical distribu-

tion of (Y
1
, . . . , Y

n
). Use (6.16) and the triangle inequality to get

1

n

n∑
k=1

E
[
‖Xk − Y k‖p

′

t

]
≤ 2p

′−1C1E
∫ t

0

(
`p
′

s (µ̂x, ν̂n,i,x) + `p
′

s (ν̂n,i,x, µx)
)
ds

≤ 2p
′−1C1E

∫ t

0

(
1

n

n∑
k=1

‖Xk − Y k‖p′s + `p
′

s (ν̂n,i,x, µx)

)
ds

By Gronwall’s inequality and Lemma 6.2.3, with C2 := 2p
′−1C1e

2p
′−1C1T we have

1

n

n∑
k=1

E
[
‖Xk − Y k‖p

′

t

]
≤ C2E

∫ t

0

`p
′

s (ν̂n,i,x, µx)ds ≤ C2TE
[
`p
′

X ,p′(ν̂
n,i, µ)

]
≤ C2Tδn

(
1 + E

∫ T

0

∫
A

|a|p′βt(da)dt

)
. (6.17)

The obvious coupling yields the inequality

`p
′

X ,p′(µ̂, ν̂
n,i) ≤ 1

n

n∑
k=1

‖Xk − Y k‖p
′

T ,

and then the triangle inequality implies

E
[
`p
′

X ,p′(µ̂, µ)
]
≤ 2p

′−1 1

n

n∑
k=1

E
[
‖Xk − Y k‖p

′

T

]
+ 2p

′−1E
[
`p
′

X ,p′(ν̂
n,i, µ)

]
.

Conclude from Lemma 6.2.3 and (6.17).

6.2.3 Proof of Theorem 6.2.1

With Lemma 6.2.4 in hand, we begin the proof of Theorem 6.2.1. The convergence Pn → P
follows immediately from Lemma 6.2.4, and it remains only to check that Λ

n
is a relaxed

(εn, . . . , εn)-Nash equilibrium for some εn → 0. Define

εn :=
n

max
i=1

[
sup

β∈An(En)

Ji((Λ
n,−i

, β))− Ji(Λ
n
)

]
= sup

β∈An(En)

J1((Λ
n,−1

, β))− J1(Λ
n
),

where the second equality follows from exchangeability, or more precisely from the fact that
(using the notation of Remark 3.2.5) the measure

P ◦
(
ξπ, B,Wπ, µ̂[Λ

n

π],Λ
n

π, X[Λ
n

π]π
)−1
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does not depend on the choice of permutation π. Recall that P ∈ P(Ω) was the given
MFG solution, and define ρ := P ◦ (ξ, B,W, µ)−1 so that P ∈ RA∗(ρ). For each n, find
βn ∈ An(En) such that

J1((Λ
n,−1

, βn)) ≥ sup
β∈An(En)

J1((Λ
n,−1

, β))− 1/n. (6.18)

To complete the proof, it suffices to prove the following:

lim
n→∞

J1(Λ
n
) = EP [Γ(µx,Λ1, Y 1)

]
, (6.19)

lim
n→∞

∣∣∣EP
[
Γ(µ̂x[(Λ

n,−1
, βn)], βn, X1[(Λ

n,−1
, βn)])− Γ(µx, βn, Y 1[βn])

]∣∣∣ = 0. (6.20)

To see this, note that P ◦ (ξ1, B,W 1, µ,Λ1, Y 1)
−1

= P holds by construction. Since

P ′n := P ◦
(
ξ1, B,W 1, µ, βn, Y 1[βn]

)−1

is in RA(ρ) for each n, and since P is in RA∗(ρ), we have

EP [Γ(µx, βn, Y 1)
]

= J(P ) ≥ J(P ′n) = EP [Γ(µx, βn, Y 1[βn])
]
, for all n.

Thus, from (6.19) and (6.20) it follows that

lim
n→∞

J1(Λ
n
) ≥ lim sup

n→∞
EP [Γ(µx, βn, Y 1[βn])

]
= lim sup

n→∞
J1((Λ

n,−1
, βn))

= lim sup
n→∞

sup
β∈An(En)

J1((Λ
n,−1

, β)),

where of course in the last step we have used (6.18). Since εn ≥ 0, this shows εn → 0.

Proof of (6.19):

First, apply Lemma 6.2.4 with β = Λ1 (so that (Λ
n,−1

, β) = Λ
n
) to get

lim
n→∞

P ◦
(
Y 1

0 , B,W
1, µ̂[Λ

n
],Λ1, X1[Λ

n
]
)−1

= P ◦
(
Y 1

0 , B,W
1, µ,Λ1, Y 1

)−1
,

where the limit is taken in Pp(Ω). Moreover, by Lemma 6.1.2 we must have EP ∫ T
0

∫
A
|a|p′Λ1

t (da)dt <
∞, while Lemma 6.1.1 and symmetry imply that

sup
n

EP
∫
Cd
‖x‖p

′

T µ̂
x[Λ

n
](dx) ≤ c5

[
1 + EP|ξ1|p′ + EP

∫ T

0

∫
A

|a|p′Λ1
t (da)dt

]
<∞.
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This verifies the additional integrability conditions required of the continuity result Lemma
5.3.4 for the functional J , and we conclude that

lim
n→∞

J1(Λ
n
) = lim

n→∞
EP [Γ(µ̂x[Λ

n
],Λ1, X1[Λ

n
])
]

= EP [Γ(µx,Λ1, Y 1)
]
.

Proof of (6.20):

This step is fairly involved and is thus divided into several steps. The first two steps identify
a relative compactness for the laws of the empirical measure and state process pairs, crucial
for the third and fourth steps below. Step (3) focuses on the g term, and Step (4) uses the
additional assumption A4 to deal with the f term.

Proof of (6.20), Step (1):

We show first that

sup
n

E
∫ T

0

∫
A

|a|p′βnt (da)dt <∞. (6.21)

Using (6.18) to apply Lemma 6.1.2(2), we get

E
∫ T

0

∫
A

(|a|p′ − c6|a|p)βnt (da)dt ≤ c7E

[
1 +

1

n
+ |ξ1|p +

1

n

n∑
i=2

∫ T

0

∫
A

|a|pΛi
t(da)dt

]

= c7E
[
1 +

1

n
+ |ξ1|p +

n− 1

n

∫ T

0

∫
A

|a|pΛ1
t (da)dt

]
,

where the second line follows from symmetry. Since E
∫ T

0

∫
A
|a|pΛ1

t (da)dt <∞ and E[|ξ1|p] <
∞, we have proven (6.21).

Proof of (6.20), Step (2):

Define AR for R > 0 to be the set of F∞-progressive P(A)-valued processes β such that

E
∫ T

0

∫
A

|a|p′βt(da)dt ≤ R.

According to (6.21), there exists R > 0 such that βn ∈ AR for all n. Define also

SR :=

{
P ◦
(
µ̂x[(Λ

n,−1
, β)], X1[(Λ

n,−1
, β)]

)−1

: n ≥ 1, β ∈ AR
}
.

We show next that SR is relatively compact in Pp(Pp(Cd) × Cd). Note first that it follows
from Lemma 6.1.1 that

sup

{
EP
∫
Cd
‖z‖p

′

T µ̂
x[(Λ

n,−1
, β)](dz) : n ≥ 1, β ∈ AR

}
<∞. (6.22)
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By Proposition 6.1.3 the set{
1

n

n∑
k=1

P ◦ (Xk[(Λ
n,−k

, β)])−1 : n ≥ 1, β ∈ AR

}

is relatively compact in Pp(Cd). By symmetry, this set is identical to{
P ◦ (X1[(Λ

n,−1
, β)])−1 : n ≥ 1, β ∈ AR

}
.

For β ∈ AR, the mean measure of P ◦ (µ̂x[(Λ
n,−1

, β)])−1 is exactly

1

n

n∑
k=1

P ◦ (Xk[(Λ
n,−1

, β)])−1,

and it follows again from Proposition 6.1.3 that the family{
1

n

n∑
k=1

P ◦ (Xk[(Λ
n,−1

, β)])−1 : n ≥ 1, β ∈ AR

}

is relatively compact in Pp(Cd). From this and (6.22) we conclude that P ◦ (µ̂x[(Λ
n,−1

, β)])−1

are relatively compact in Pp(Pp(Cd)), by Lemma 2.1.13. Since each family of marginals is
relatively compact, so is SR (see Lemma 2.1.8).

Proof of (6.20), Step (3):

Since βn ∈ AR for each n, to prove (6.20) it suffices to show that

sup
β∈AR

Iβn → 0, (6.23)

where

Iβn := E
[
Γ(µ̂x[(Λ

n,−1
, β)], β,X1[(Λ

n,−1
, β)])− Γ(µx, β, Y 1[β])

]
= E

[∫ T

0

∫
A

(
f(t,X1

t [(Λ
n,−1

, β)], µ̂xt [(Λ
n,−1

, β)], a)− f(t, Y 1
t [β], µxt , a)

)
βt(da)dt

]
+ E

[
g(X1

T [(Λ
n,−1

, β)], µ̂xT [(Λ
n,−1

, β)])− g(Y 1
T [β], µxT )

]
.

We start with the g term. Define

Qβ
n := P ◦ (µ̂x[(Λ

n,−1
, β)], X1[(Λ

n,−1
, β)])−1,

Qβ := P ◦ (µx, Y 1[β])−1.
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Using the metric on Pp(Cd)× Cd given by

((µ, x), (µ′, x′)) 7→
[
`pCd,p(µ, µ

′) + ‖x− x′‖pT
]1/p

,

we define the p-Wasserstein metric `Pp(Cd)×Cd,p on Pp(Pp(Cd) × Cd). By Lemma 6.2.4, we
have

`p
′

Pp(Cd)×Cd,p(Q
β
n, Q

β) ≤ E
[
`pCd,p

(
µ̂x[(Λ

n,−1
, β)], µx

)
+ ‖X1[(Λ

n,−1
, β)]− Y 1[β]‖pT

]p′/p
≤ 2p

′/p−1E
[
`p
′

X ,p′

(
µ̂[(Λ

n,−1
, β)], µ

)
+ ‖X1[(Λ

n,−1
, β)]− Y 1[β]‖p

′

T

]
≤ 2p

′/p−1δn(1 +R),

and thus Qβ
n → Qβ in Pp(Pp(Cd)× Cd), uniformly in β ∈ AR. The function

Pp(Pp(Cd)× Cd) 3 Q 7→
∫
Q(dν, dx)g(xT , νT )

is continuous, and so its restriction to the closure of SR is uniformly continuous. Thus, since
{Qβ

n : n ≥ 1, β ∈ AR} ⊂ SR,

lim
n→∞

sup
β∈AR

∣∣∣E [g(X1
T [(Λ

n,−1
, β)], µ̂xT [(Λ

n,−1
, β)])− g(Y 1

T [β], µxT )
]∣∣∣ = 0.

Proof of (6.20), Step (4):

To deal with the f term in Iβn it will be useful to define G : Pp(Cd)× Cd → R by

G
(
(µ1, x1), (µ2, x2)

)
:=

∫ T

0

sup
a∈A

∣∣f(t, x1
t , µ

1
t , a)− f(t, x2

t , µ
2
t , a)

∣∣ dt
With the g term taken care of in Step (3) above, the proof of (6.23) and thus the theorem
will be complete if we show that

0 = lim
n→∞

sup
β∈AR

E
[
Zn
β

]
, where (6.24)

Zn
β := G

(
(µ̂x[(Λ

n,−1
, β)], X1[(Λ

n,−1
, β)]), (µx, Y 1[β])

)
.

Fix η > 0, and note that by relative compactness of SR we may find (e.g., by Proposition
2.1.7) a compact set K ⊂ Pp(Cd)× Cd such that, if the event Kβ is defined by

Kβ :=
{(
µ̂x[(Λ

n,−1
, β)], X1[(Λ

n,−1
, β)]

)
∈ K

}
,

then

E
[(

1 +

∫
Cd
‖z‖pT µ̂

x[(Λ
n,−1

, β)](dz) + ‖X1[(Λ
n,−1

, β)‖pT
)

1Kc
β

]
≤ η,
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for all n ≥ 1 and β ∈ AR. Sending n→∞, it follows from Lemma 6.2.4 that also

E
[(

1 +

∫
Cd
‖z‖pTµ

x(dz) + ‖Y 1[β]‖pT
)

1Kc
β

]
≤ η.

Hence, the growth condition on f of assumption A4 implies

E
[
1Kc

β
Zn
β

]
≤ c4η, (6.25)

for all n ≥ 1 and β ∈ AR. Assumption A4 implies that G is continuous, and thus uniformly
continuous on K × K. We will check next that E[1KβZ

n
β ] converges to zero, uniformly in

β ∈ AR. Indeed, by uniform continuity there exists η0 > 0 such that if (µ1, x1), (µ2, x2) ∈ K
and G((µ1, x1), (µ2, x2)) > η then ‖x1 − x2‖T + `Cd,p(µ

1, µ2) > η0. Thus, since G is bounded
on K ×K, say by C > 0, we use Markov’s inequality and Lemma 6.2.4 to conclude that

E
[
1KβZ

n
β

]
≤ η + CP

{∥∥∥X1[(Λ
n,−1

, β)]− Y 1[β]
∥∥∥
T

+ `Cd,p

(
µ̂x[(Λ

n,−1
, β)], µx

)
> η0

}
≤ η + 2p

′−1Cη−p
′

0 E
[∥∥∥X1[(Λ

n,−1
, β)]− Y 1[β]

∥∥∥p′
T

+ `p
′

Cd,p

(
µ̂x[(Λ

n,−1
, β)], µx

)]
≤ η + 2p

′−1Cη−p
′

0 δn

(
1 + E

∫ T

0

∫
A

|a|p′βt(da)dt

)
≤ η + 2p

′−1Cη−p
′

0 δn(1 +R),

whenever β ∈ AR, where δn → 0 is from Lemma 6.2.4. Combining this with (6.25), we get

lim sup
n→∞

sup
β∈AR

E
[
Zn
β

]
≤ (1 + c4)η.

This holds for each η > 0, completing the proof of (6.24) and thus of the theorem.

6.2.4 Proof of Proposition 6.2.2

Throughout the section, the number of agents n is fixed, and we work on the n-player
environment En specified in Section 6.2.1. The proof of Proposition 6.2.2 is split into two
main steps. In this first step, we approximate the relaxed strategy Λ0 by bounded strong
strategies, and we check the convergences (1) and (2) claimed in Proposition 6.2.2. The idea
behind this approximation is to view the product

∏
i Λ

0,i
t as a relaxed control on An, and use

the density of strong controls as in Proposition 2.1.15. The second step verifies the somewhat
more subtle inequality (3) of Proposition 6.2.2. First, we need the following lemma, which
is a simple variant of a standard result:

Lemma 6.2.5. Suppose Λ̃k = (Λ̃k,1, . . . , Λ̃k,n) ∈ Ann(En) is such that

lim
k→∞

P ◦ (ξ, B,W, Λ̃k)−1 = P ◦ (ξ, B,W,Λ0)−1,
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with the limit taken in Pp((Rd)n × Cm0 × (Cm)n × Vn). Then

lim
k→∞

P ◦
(
B,W, Λ̃k, X[Λ̃k]

)−1

= P ◦
(
B,W,Λ0, X[Λ0]

)−1
,

in Pp(Cm0 × (Cm)n × Vn × (Cd)n).

Proof. This is analogous to the proof of Lemma 5.3.3, which is itself an instance of a standard
method proving weak convergence of SDE solutions, so we only sketch the proof. It can be
shown as in Proposition 5.3.2 that {P◦(X[Λ̃k])−1 : k ≥ 1} is relatively compact in Pp((Cd)n),

and thus {P ◦
(
B,W, Λ̃k, X[Λ̃k]

)−1

: k ≥ 1} is relatively compact in Pp(Cm0 × (Cm)n×Vn×
(Cd)n). Using well known results on convergence of stochastic integrals, like those of Kurtz
and Protter [81], it is straightforward to check that under any limit point the canonical
processes satsify a certain SDE, and the claimed convergence follows from uniqueness of the
SDE solution.

Proof of Proposition 6.2.2.
Step 1: Abbreviate V := V [An], the space of relaxed controls on An, as in 2.1.3. Define

Λ
0

t (da1, . . . , dan) :=
n∏
i=1

Λ0,i
t (dai),

and identify this P(An)-valued process with the random element Λ
0

:= dtΛ
0

t (da) of V . By
Proposition 2.1.15, with A replaced by An, there exists a sequence of bounded An-valued
processes αk = (αk,1, . . . , αk,n) such that, if we define

Λ
k

:= dtδαkt (da1, . . . , dan) = dt
n∏
i=1

δαk,it
(dai),

then we have

lim
r→∞

sup
k

EP
[∫ T

0

|αkt |p
′
1{|αkt |>r}dt

]
= 0 (6.26)

and

lim
k→∞

P ◦
(
ξ, B,W,Λ

k
)−1

= P ◦
(
ξ, B,W,Λ

0
)−1

,

in Pp((Rd)n×Cm0 × (Cm)n×V). Defining πi : [0, T ]×An → [0, T ]×A by πi(t, a1, . . . , an) :=
(t, ai), we note that the map V 3 q 7→ q ◦ π−1

i ∈ V is continuous. Define Λk,i
t := δαk,it

and

Λk = (Λk,1, . . . ,Λk,n), and conclude that

lim
k→∞

P ◦
(
ξ, B,W,Λk

)−1
= P ◦

(
ξ, B,W,Λ0

)−1
,
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in Pp((Rd)n × Cm0 × (Cm)n × Vn), for each k. This implies, by Lemma 6.2.5, that

lim
k→∞

P ◦
(
B,W,Λk, X[Λk]

)−1
= P ◦

(
B,W,Λ0, X[Λ0]

)−1
,

in Pp(Cm0× (Cm)n×Vn× (Cd)n), verifying the first claim. Thanks to the state SDE estimate
6.1.1, the uniform p′-integrability of αk implies the p′-moment bound

sup
k

EP
[
‖X[Λk]‖p

′

T +

∫
Cd
‖x‖p

′

T µ̂
x[Λk](dx)

]
<∞.

The validity of the second claim now follows from the continuity of J of Lemma 5.3.4, which
ensures that

lim
k→∞

Ji(Λ
k) = Ji(Λ

0), i = 1, . . . , n.

Step 2: It remains to justify the third claim of Proposition 6.2.2. We prove this only for
i = 1, since the cases i = 2, . . . , n are identical. For each k find βk ∈ An(En) such that

Ji((Λ
k,−1, βk)) ≥ sup

β∈An(En)

Ji((Λ
k,−1, β))− 1

k
. (6.27)

First, use the second part of Lemma 6.1.2 to get

E
∫ T

0

∫
A

(|a|p′ − c6|a|p)βkt (da)dt ≤ c7E

[
1 +

1

k
+ |ξ1|p +

1

n

n∑
i=2

∫ T

0

∫
A

|a|pΛk,i
t (da)dt

]
.

Since E[|ξ1|p] <∞, and since

lim
k→∞

E
∫ T

0

∫
A

|a|pΛk,i
t (da)dt = E

∫ T

0

∫
A

|a|pΛ0,i
t (da)dt <∞,

holds by construction, for i = 2, . . . , n, it follows that

R := sup
k

EP
∫ T

0

∫
A

|a|p′βkt (da)dt <∞.

It follows from Proposition 5.3.2 that the set{
P ◦
(
(Λk,−1, βk), X[(Λk,−1, βk)]

)−1
: k ≥ 1

}
is relatively compact in Pp(Vn × (Cd)n), and so the set{

Pk := P ◦
(
B,W, (Λk,−1, βk), X[(Λk,−1, βk)]

)−1
: k ≥ 1

}
(6.28)
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is relatively compact in Pp(Cm0 × (Cm)n×Vn× (Cd)n). By the following Lemma 6.2.6, every
limit point P of (Pk)

∞
k=1 is of the form

P = P ◦
(
B,W, (Λ0,−1, β), X[(Λ0,−1, β)]

)−1
, for some β ∈ An(En). (6.29)

This and the upper semicontinuity of J imply

lim sup
k→∞

Ji((Λ
k,−1, βk)) ≤ sup

β∈An(En)

Ji((Λ
0,−1, β)).

Because of (6.27), this completes the proof of Proposition 6.2.2.

Lemma 6.2.6. Every limit point P of (Pk)
∞
k=1 (defined in (6.28)) is of the form (6.29).

Proof. Let us abbreviate

Ω(n) := Cm0 × (Cm)n × Vn × (Cd)n.

Let (B,W = (W 1, . . . ,W n),Λ = (Λ1, . . . ,Λn), X = (X1, . . . , Xn)) denote the identity map

on Ω(n), and let (F (n)
t )t∈[0,T ] denote the natural filtration,

F (n)
t = σ ((Bs,Ws,Λ(C), Xs) : s ≤ t, C ∈ B([0, t]× A)) .

Fix a limit point P of Pk. It is easily verified that P satisfies

P ◦
(
X0, B,W, (Λ

2, . . . ,Λn)
)−1

= P ◦
(
X0, B,W, (Λ

0,2, . . . ,Λ0,n)
)−1

. (6.30)

Moreover, for each k, we know that B and W are independent (F (n)
t )t∈[0,T ]-Wiener processes

under Pk, and thus this is true under P as well. Note that (B,W, (Λk,−1, βk), X[(Λk,−1, βk)])
satisfy the state SDE under P, or equivalently under Pk the canonical processes verify the
following SDE system, where i = 1, . . . , n:{

dX i
t =

∫
A
b(t,X i

t , µ̂
x
t , a)Λi

t(da)dt+ σ(t,X i
t , µ̂

x
t )dW

i
t + σ0(t,X i

t , µ̂
x
t )dBt,

µ̂xt = 1
n

∑n
k=1 δXk

t
.

(6.31)

As is becoming familiar, this property passes to the limit (e.g., by [81]): The canonical
processes on Ω(n) verify the same SDE under P .

It remains only to show that there exists β ∈ An(En) such that

P ◦ (X0, B,W, (Λ
0,−1, β))−1 = P ◦ (X0, B,W,Λ)−1. (6.32)

Indeed, from uniqueness in law of the solution of the SDE (6.31) it will then follow that

P ◦ (B,W, (Λ0,−1, β), X[(Λ0,−1, β)])−1 = P.

The independent uniform random variable U built into En now finally comes into play. Using
a well known result from measure theory (e.g., [73, Theorem 6.10]) we may find a measurable
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function
β = (β

1
, . . . , β

n
) : [0, 1]× (Rd)n × Cm0 × (Cm)n → Vn

such that

P ◦
(
X0, B,W, β(U,X0, B,W )

)−1
= P ◦ (X0, B,W,Λ)−1. (6.33)

Since B and W are independent (F (n)
t )t∈[0,T ]-Wiener processes under P , it follows that

(β(U,X0, B,W )s)s∈[0,t] and σ(Bs −Bt,Ws −Wt : s ∈ [t, T ])

are independent under P, for each t ∈ [0, T ]. Thus, (β(U,X0, B,W )t)t∈[0,T ] is progres-
sively measurable with respect to the P-completion of the filtration (σ(U,X0, Bs,Ws : s ≤
t))t∈[0,T ]. In particular, (β(U,X0, B,W ))t∈[0,T ] ∈ Ann(En) and β := (β

1
(U,X0, B,W )t)t∈[0,T ] is

in An(En). Now note that (6.30) and (6.33) together imply

P◦
(
X0, B,W,

(
β

2
(U,X0, B,W ), . . . , β

n
(U,X0, B,W )

))−1

= P ◦
(
X0, B,W, (Λ

2, . . . ,Λn)
)−1

.

On the other hand, (6.33) implies that the conditional law under P of Λ1 given

(X0, B,W,Λ
2, . . . ,Λn) is the same as the conditional law under P of β

1
(U,X0, B,W )

given (
X0, B,W, β

2
(U,X0, B,W ), . . . , β

n
(U,X0, B,W )

)
.

This completes the proof of (6.32).

6.3 Proof of Theorem 4.2.2

This section explains the proof of Theorem 4.2.2, which specializes the main results to the
setting without common noise essentially by means of the following simple observation. Note
that although we assume σ0 ≡ 0 throughout the section, weak MFG solution has the same
meaning as in Definition 3.1.1, distinct from Definition 4.1.1 of weak MFG solution without
common noise.

Lemma 6.3.1. Assume σ0 ≡ 0. If (Ω̃, (Ft)t∈[0,T ], P, B,W, µ,Λ, X) is a weak MFG solution,

then (Ω̃, (Ft)t∈[0,T ], P,W, µ, Λ, X) is a weak MFG solution without common noise. Con-

versely, if (Ω̃, (Ft)t∈[0,T ], P,W, µ,Λ, X) is a weak MFG solution without common noise, then
we may construct (by enlarging the probability space, if necessary) an m0-dimensional Wiener

process B independent of (W,µ,Λ, X) such that (Ω̃, (Ft)t∈[0,T ], P, B,W, µ,Λ, X) is a weak
MFG solution.

Proof. Using the simplified characterization of MFG pre-solution given in Lemma 5.2.3 (see
also Remark 5.3.9), this is nearly immediate. First, suppose we are given a weak MFG so-

lution (Ω̃, (Ft)t∈[0,T ], P, B,W, µ,Λ, X). Since µ = P ((W,Λ, X) ∈ · | B, µ), we may condition
on both sides by µ to get µ = P ((W,Λ, X) ∈ · | µ). The other necessary properties of a weak
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solution without common noise are easy to check; the optimality condition follows simply
from the fact that any FX0,W,µ-progressive control is also FX0,B,W,µ-progressive.

Conversely, given a weak MFG solution without common noise, given that B is indepen-
dent of (W,µ,Λ, X), it follows from µ = P ((W,Λ, X) ∈ · | µ) that also µ = P ((W,Λ, X) ∈
· | B, µ). Here, we should check the optimality condition more carefully. Given any FX0,B,W,µ-
progressive control Λ′ = (Λ′t)t∈[0,T ], the independence of B and (X0,W, µ) implies that

σ(Λ′s : s ≤ t) is conditionally independent of FX0,W,µ
T given FX0,W,µ

t , for each t. Thus,
using the optimality of Λ among compatible controls (property (5) of the Definition 4.1.1),
we know that EP [Γ(µx,Λ, X)] ≥ EP [Γ(µx,Λ′, X ′)], where X ′ is the state process controlled
by Λ′. This verifies the optimality required of weak MFG solutions (with common noise),
thanks to the density of strong (i.e FX0,B,W,µ-progressive) controls in the family of compatible
controls; see Proposition 2.1.15. Again, the remaining properties of a weak MFG solution
are easy to check.

Proof of Theorem 4.2.2. At this point, the proof is mostly straightforward. The first claim,
regarding the adaptation of Theorem 3.2.4, follows immediately from Theorem 3.2.4 and the
observation of Lemma 6.3.1. The second claim, about adapting Theorem 3.2.10, is not so
immediate but requires nothing new. First, notice that Theorem 6.2.1 remains true if we
replace “weak MFG solution” by “weak MFG solution without common noise,” and if we
define Pn instead by (4.2); this is a consequence of Theorem 6.2.1 and Lemma 6.3.1. Then,
we must only check that Proposition 6.2.2 remains true if we replace “strong” by “very
strong,” and if we replace the conclusion (1) by

(1’) In Pp((Cm)n × Vn × (Cd)n)

lim
k→∞

Pn ◦
(
W,Λk, X[Λk]

)−1
= Pn ◦

(
W,Λ0, X[Λ0]

)−1
.

It is straightforward to check that the proof of Proposition 6.2.2 given in Section 6.2.4
translates mutatis mutandis to this new setting.

6.4 Proofs of Propositions 3.2.2 and 4.2.1

6.4.1 Proof of Proposition 3.2.2

Step 1:

We first show that every strong ε-Nash equilibrium is also a relaxed ε-Nash equilibrium.
Suppose Λ = (Λ1, . . . ,Λn) ∈ Ann(En) is a strong ε-Nash equilibrium on En. Lemma 6.1.2(3)
implies

EPn
∫ T

0

∫
A

|a|p′Λi
t(da)dt <∞, i = 1, . . . , n.

Let δ > 0, and find β∗ ∈ An(En) such that

Ji((Λ
−i, β∗)) ≥ sup

β∈An(En)

Ji((Λ
−i, β))− δ. (6.34)
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Lemma 6.1.2(2) implies EPn
∫ T

0

∫
A
|a|p′β∗t (da)dt <∞. Thus, by Corollary 5.3.6, we may find

a sequence of (F s,nt )t∈[0,T ]-progressively measurable A-valued processes (αkt )t∈[0,T ] such that

lim
r→∞

sup
k

EPn
∫ T

0

|αkt |p
′
1{|αkt |>r}dt = 0, (6.35)

and

Pn ◦ (ξ, B,W, β∗)−1 = lim
k→∞

Pn ◦
(
ξ, B,W, dtδαkt (da)

)−1

,

in Pp((Rd)n × Cm0 × (Cm)n × V). Abbreviate βk = dtδαkt (da). Since Λ is a strong strategy,

we may write Λ = Λ̂(ξ, B,W ) for some measurable function Λ̂, and it follows (using Lemma

2.1.9 to deal with the potential discontinuity of Λ̂) that

Pn ◦
(
ξ, B,W, (Λ−i, β∗)

)−1
= lim

k→∞
Pn ◦

(
ξ, B,W, (Λ−i, βk)

)−1
, (6.36)

Lemma 6.2.5 gives

Pn ◦
(
ξ, B,W, (Λ−i, β∗), X[(Λ−i, β∗)]

)−1
= lim

k→∞
Pn ◦

(
ξ, B,W, (Λ−i, βk), X[(Λ−i, βk)]

)−1
.

Hence, the uniform integrability (6.35) and continuity of J of Lemma 5.3.4 thus imply (noting
that the required p′-moment bound on µx follows easily from the estimates of Lemma 6.1.1)

lim
k→∞

Ji((Λ
−i, βk)) = Ji((Λ

−i, β∗)). (6.37)

Finally, since Λ is a strong ε-Nash equilibrium, it holds for each k that

Ji(Λ) + εi ≥ sup
β∈An(En) strong

Ji
(
(Λ−i, β)

)
≥ Ji

(
(Λ−i, βk)

)
.

Thus, sending k →∞ and applying (6.34) yields

Ji(Λ) + εi ≥ Ji
(
(Λ−i, β∗)

)
≥ sup

β∈An(En)

Ji((Λ
−i, β))− δ.

Sending δ ↓ 0 shows that Λ is in fact a relaxed ε-Nash equilibrium.

Step 2:

The proof that every strict ε-Nash is a relaxed ε-Nash equilibrium follows the same structure;
the only difference is that we construct the sequence αk from β∗ a bit differently. First, let
ιk : A → A be a measurable function satisfying ιk(a) = a for |a| ≤ k and |ιk(a)| ≤ k for all

a ∈ A. Let β̃kt := β∗t ◦ ι−1
k , so that β̃k → β∗ a.s., and clearly∫
{|a|>r}

|a|p′ β̃kt (da) ≤
∫
{|a|>r}

|a|p′β∗t (da), r > 0. (6.38)
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For each k, apply the well known Chattering Lemma [76, Theorem 2.2(b)] to find a sequence
of (Fnt )t∈[0,T ]-progressively measurable A-valued processes αk,jt such that

β̃k = lim
j→∞

dtδαk,jt
(da), a.s. (6.39)

We then find a subsequence jk such that βk := dtδ
α
k,jk
t

(da) converges a.s. to β∗, and (6.36)

holds. It follows also from (6.38) and (6.39) that

lim
r→∞

sup
k,j

EPn
∫ T

0

|αk,jt |p
′
1{|αk,jt |>r}

dt = 0,

so that (6.37) holds as well. The rest of the proof is as in Step 1.

6.4.2 Proof of Proposition 4.2.1

First, note that when σ0 ≡ 0, Lemma 6.2.5 holds true when the common noise B is omitted
everywhere it appears. With this in mind, the proof of Proposition 4.2.1 follows exactly
Step 1 of the proof of Proposition 3.2.2, except of course with the word “strong” replaced
by “very strong,” and with the common noise B removed everywhere it appears.
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Chapter 7

Existence, with common noise

This chapter is devoted to the proof of the main existence result, Theorem 3.3.1, and also
the proofs of the uniqueness results, Proposition 3.3.4 and Theorem 3.3.5.

The proof of existence follows a strategy that was foreshadowed at the end of Section
2.3.4: First, in Section 7.1 we introduce discretized of the MFG problem, in which the
time grid and the range of the common noise are forced into a finite set. This circumvents a
crucial lack of continuity which stems from the operation of conditioning a joint distribution,
allowing us to prove that strong MFG solutions are exist for the discretized problems. Then,
in Section 7.2, the discretization is refined, and it is shown that the discretized solutions
admit limits which must be weak MFG solutions. This is done first under the additional
assumption that the coefficients (b, σ, σ0) are bounded, and the proof of the original theorem
is finally proven by taking weak limits once more.

Quite often, existence of a solution to a mean-field game without common noise is proved
by means of Schauder’s fixed point theorem. See for instance [24, 32]. Schauder’s theorem is
then applied on Pp(Cd) (with p = 2 in most cases), for which compact subsets may be easily
described. In the current setting, the presence of the common noise makes things much more
complicated. Indeed, an equilibrium, denoted by µ in Definitions 3.1.1, could be viewed in
an Lp-space of (equivalence classes of) measurable functions from Cm0 to Pp(X ); this space,
however, is much larger, and the difficulty is to identify compact sets which could be stable
under the transformations we consider. Moving to a discretized form of the problem, in
which the common noise takes only finitely many values, allows us to restrict our attention
to the much more pleasant space Pp(Cd)k for finite k.

7.1 Discretized mean field games

This subsection defines precisely the discretized form of the mean field game. We will begin
the search for MFG solutions by working under the following additional assumption:

Assumption B. The functions b, σ, σ0 are uniformly bounded, and the control space A is
compact.
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Note that assumption A1.5 together with B imply the following bounds on f and g:

|f(t, x, µ, a)|+ |g(x, µ)| ≤ c2

(
1 + |x|p +

∫
Rd
|z|pµ(dz)

)
.

Note also that V is compact since A is.
We work with the following canonical spaces, one of which has been defined already:

Ω0 := Rd × Cm0 × Cm, Ωf := Rd × Cm0 × Cm × V × Cd.

We denote by ξ, B, W , Λ, and X the identity maps on Rd, Cm0 , Cm, V , and Cd respectively. It
is worth now taking a moment to recall the notation and conventions introduced in Section
5.2. For example, with a slight abuse of notation, we will also denote by ξ, B and W
the projections from Ω0 onto Rd, Cm0 and Cm respectively, and by ξ, B, W , Λ and X the
projections from Ωf onto Rd, Cm0 , Cm, V and Cd respectively. The canonical processes B,
W , and X generate obvious natural filtrations on Ωf , denoted FB, FW , and FX . Recall
the definition of FΛ on V from (5.3). As in Section 5.2, we will work often with filtrations
generated by several canonical processes, without necessarily making explicit mention of the
space in consideration. For example, the filtration F ξ,B,Wt = σ(ξ, Bs,Ws :≤ t) may be defined
on Ω0 or on Ωf , and this will be clear from context.

7.1.1 Discretization procedure

To define the discretized MFG problem, we discretize both time and the space of the common
noise B. For each n ≥ 1, let tni = i2−nT for i = 0, . . . , 2n. For each positive integer n,
we choose a partition πn := {Cn

1 , . . . , C
n
n} of Rm0 into n measurable sets of strictly positive

Lebesgue measure, such that πn+1 is a refinement of πn for each n, and B(Rm0) = σ(
⋃∞
n=1 π

n).
For a given n, the time mesh (tni )i=0,...,2n and the spatial partition πn yield a time-space grid
along which we can discretize the trajectories in Cm0 (which is the space carrying the common
noise B). Intuitively, the idea is to project the increments of the trajectories between two
consecutive times of the mesh (tni )i=0,...,2n onto the spatial partition πn. For 1 ≤ k ≤ 2n and

i = (i1, . . . , ik) ∈ {1, . . . , n}k, we thus define Sn,ki as the set of trajectories with increments
up until time tk in Cn

i1
, . . . , Cn

ik
, that is:

Sn,ki = {β ∈ Cm0 : βtnj − βtnj−1
∈ Cn

ij
, ∀j = 1, . . . , k}.

Obviously, the Sn,ki ’s, i ∈ {1, . . . , n}k, form a finite partition (of cardinal nk) of Cm0 , each

Sn,ki writing as a set of trajectories having the same discretization up until tk and having
a strictly positive Wm0-measure. The collection of all the possible discretization classes up
until tk thus reads:

Πn
k :=

{
Sn,ki : i ∈ {1, . . . , n}k

}
.

When k = 0, we let Πn
0 := {Cm0}, since all the trajectories are in the same discretization

class.
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For any n ≥ 0, the filtration (σ(Πn
k))k=0,...,2n is the filtration generated by the discretiza-

tion of the canonical process. Clearly, σ(Πn
k) ⊂ FBtnk and σ(Πn

k) ⊂ σ(Πn+1
k ). For each t ∈ [0, T ],

define
btcn := max {tnk : 0 ≤ k ≤ 2n, tnk ≤ t} .

Let Πn(t) equal Πn
k , where k is the largest integer such that tnk ≤ t, and let Gnt := σ(Πn(t)) =

Gnbtcn . It is straightforward to verify that Gn = (Gnt )t∈[0,T ] is a filtration (i.e., Gns ⊂ Gnt when

s < t) for each n and that, for each t ∈ [0, T ],

FBt = σ

( ∞⋃
n=1

Gnt
)
.

Measures parameterized by discretized trajectories

The purpose of the discretization procedure described right below is to reduce the complexity
of the scenarios upon which an equilibrium µ depends. In a strong MFG solution, the
equilibrium µ is B-measurable, and we will now force µ to depend only on the discretization
of the canonical process B on Cm0 . This is accomplished by restricting our attention to
GnT -measurable functions µ : Cm0 → Pp(Cd). In addition, some adaptedness is needed: Let
Mn denote the set of functions µ : Cm0 → Pp(Cd) that are GnT -measurable such that for each
t ∈ [0, T ] and C ∈ FXt the map β 7→ [µ(β)](C) is Gnt -measurable. In particular, the process
(µt)t∈[0,T ] is Gn-adapted and càdlàg (with values in Pp(Rd)).

Note that any µ ∈Mn is constant on S for each S ∈ Πn
2n in the sense that β 7→ [µ(β)](F )

(which depends on the discretized trajectory) is constant on S for each Borel subset F of
Pp(Cd). Endow Mn with the topology of pointwise convergence, which of course is the
same as the topology of uniform convergence since the common domain of each µ ∈ Mn is
effectively Πn

2n , which is finite. Since GnT = σ(Πn
2n) is finite, the space Mn is homeomorphic

to a closed subset of Pp(Cd)|Πn2n |. Hence,Mn is a metrizable closed convex subset of a locally
convex topological vector space.

Let us emphasize that here we work with µ taking values in Pp(Cd), instead of Pp(X ).
For constructing strong MFG solutions as in Definition 3.1.1, we need only to work with the
conditional law of X as opposed to the full conditional law of (W,Λ, X). The reason for this
will become more clear as we proceed with the proof.

Control problems

Control problems will be described in terms of measures on Ω0×V . Recall that Wk denotes
Wiener measure on Ck for each k, and Wλ = λ×Wm0 ×Wm was defined in (5.4) to denote
the distribution of the given sources of randomness on Ω0. The set of admissible control
rules Af is defined to be the set of Q ∈ P(Ω0 × V) such that B and W are independent
Fξ,B,W,Λ-Wiener processes under Q and Q ◦ (ξ, B,W )−1 =Wλ. Equivalently, Q ∈ P(Ω0×V)
is in Af if Q ◦ (ξ, B,W )−1 = Wλ and (Bt − Bs,Wt −Ws) is Q-independent of F ξ,B,W,Λs for
each 0 ≤ s < t ≤ T . Intuitively, this is just the set of “reasonable” joint laws of the control
process with the given randomness. It is easy to check that Af is closed in the topology of
weak convergence.
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Given µ ∈ Mn and Q ∈ Af , on the completion of the filtered probability space (Ω0 ×
V , (F ξ,B,W,Λt )t∈[0,T ], Q) we may find a process Y such that (ξ, B,W,Λ, Y ) satisfy the SDE

Yt = ξ +

∫ t

0

ds

∫
A

Λs(da)b(s, Ys, µs(B), a)

+

∫ t

0

σ(s, Ys, µs(B))dWs +

∫ t

0

σ0(s, Ys, µs(B))dBs. (7.1)

Define the law of the solution and the interpolated solution by

Rf (µ,Q) := Q ◦ (ξ, B,W,Λ, Y )−1, Rn
f (µ,Q) := Q ◦ (ξ, B,W,Λ, Ŷ n)−1,

where, for an element x ∈ Cd, x̂n is the (delayed) linear interpolation of x along the mesh
(tni )i=0,...,2n :

x̂nt =
2n

T

(
t− tni

)
xtni +

2n

T

(
tni+1 − t

)
xtn

(i−1)+
, for t ∈ [tni , t

n
i+1], i = 0, . . . , 2n − 1. (7.2)

The delay ensures that X̂n is FX-adapted. By Lemma 5.3.1 and compactness of A, Rf (µ,Q)
andRn

f (µ,Q) are in Pp(Ωf ). Note thatRf andRn
f are well-defined; by the uniqueness part in

Lemma 5.3.1, Rf (µ,Q) is the unique element P of P(Ωf ) such that P ◦(ξ, B,W, µ,Λ)−1 = Q
and such that the canonical processes verify the SDE (7.1) under P . Again, as in footnote
1 on page 55, it is no cause for concern that the Q-completion of the canonical filtration
Fξ,B,W,Λ may fail to be right-continuous.

The objective of the discretized control problem is as follows. Recall the definition of the
reward functional Γ : Pp(Cd) × V × Cd → R ∪ {−∞} from (3.3), and define the expected
reward functional Jf :Mn × Pp(Ωf )→ R by

Jf (µ, P ) := EP [Γ(µ(B),Λ, X)] .

For a given µ ∈ Mn, we are then dealing with the optimal control problem (with random
coefficients) consisting in maximizing Jf (µ, P ) over P ∈ Rn

f (µ,Af ). The set of maximizers
is given by

R∗,nf (µ) := arg max
P∈Rnf (µ,Af )

Jf (µ, P ).

The set R∗,nf (µ) represents the optimal controls for the nth discretization corresponding to
µ.

7.1.2 Strong solutions

The main result of this section is the following theorem, which proves the existence of a
strong MFG solution with weak control for our discretized mean field game.
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Theorem 7.1.1. For each n, there exist µ ∈ Mn and P ∈ R∗,nf (µ,Af ) such that µ =

P (X ∈ · | GnT ) (P (X ∈ · | GnT ) being seen as a map from Cm0 to Pp(Cd), constant on each
S ∈ Πn

2n.)

Proof. An MFG equilibrium may be viewed as a fixed point of a set-valued function. Defining
the set-valued map F :Mn → 2Mn (where 2Mn is seen as the collection of subsets of Mn)
by

F (µ) :=
{
P (X ∈ · | GnT ) : P ∈ R∗,nf (µ,Af )

}
,

the point is indeed to prove that F admits a fixed point, that is a point µ ∈ F (µ). Since
the unique event in GnT of null probability under P is the empty set, we notice that G(P ) :=
P (X ∈ · |GnT ) is uniquely defined for each P ∈ Pp(Ωf ). Let Ppf denote those elements
P of Pp(Ωf ) for which P ◦ (ξ, B,W,Λ)−1 is admissible, that is Ppf := {P ∈ Pp(Ωf ) :
P ◦ (ξ, B,W,Λ)−1 ∈ Af}. For P ∈ Ppf , G(P ) is given by

G(P ) : Cm0 3 β 7→
∑
S∈Πn2n

P (X ∈ · |B ∈ S)1S(β) =
∑
S∈Πn2n

P ({X ∈ ·} ∩ {B ∈ S})
Wm0(S)

1S(β).

(7.3)
The very first step is then to check that F (µ) ⊂ Mn for each µ ∈ Mn. The above formula
shows that, for P ∈ Ppf , G(P ) reads as a GnT -measurable function from Cm0 to Pp(Cd). To
prove that G(P ) ∈Mn, it suffices to check the adaptedness condition in the definition ofMn

(see Paragraph 7.1.1). For our purpose, we can restrict the proof to the case when X is P a.s.
piecewise affine as in (7.2). For each t ∈ [0, T ] and C ∈ FXt , we have that 1C(X) = 1C′(X) P
a.s. for some C ′ ∈ FXbtcn . Now, GnT = Gnbtcn∨H, where H ⊂ σ(Bs−Bbtcn : s ∈ [btcn, T ]). Since

H is P -independent of FXbtcn∨G
n
btcn , we deduce that, P a.s., P (X ∈ C |GnT ) = P (X ∈ C ′ |Gnbtcn).

Since the unique event in GnT of null probability under P is the empty set, we deduce that
the process (P (Xbtcn ∈ · |GnT ))t∈[0,T ] is (Gnt )t∈[0,T ]-adapted. This shows that G(P ) ∈Mn and
thus F (µ) ⊂Mn.

We will achieve the proof by verifying the hypotheses the Kakutani’s fixed point theorem
2.3.1. Namely, we will show that F is upper hemicontinuous with nonempty compact convex
values, and we will find a compact convex subset Q ⊂ Mn such that F (µ) ⊂ Q for each
µ ∈ Q.

Step 1: Continuity of set-valued functions. For the necessary background and definitions
of continuity properties for set-valued functions, refer to Section 2.3.1. First, we check the
continuity of the function

Ppf 3 P 7→ P (X ∈ · |B ∈ S) ∈ Pp(Cd), for S ∈ Πn
2n .

This is straightforward, thanks to the finiteness of the conditioning σ-field. Let ϕ : Cd → R
be continuous with |ϕ(x)| ≤ c(1 + ‖x‖pT ) for all x ∈ Cd, for some c > 0. Proposition 2.1.7(3)
in Appendix says that it is enough to prove that EPk [ϕ(X)|B ∈ S] → EP [ϕ(X)|B ∈ S]
whenever Pk → P in Pp(Ωf ). This follows from Lemma 2.1.9, which implies that the
following real-valued function is continuous:

Pp(Ωf ) 3 P 7→ EP [ϕ(X)|B ∈ S] = EP [ϕ(X)1S(B)]
/
Wm0(S).
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Basically, Lemma 2.1.9 handles the discontinuity of the indicator function 1S together with
the fact that ϕ is not bounded. It follows that the function G : Ppf →Mn given by (7.3) is
continuous. The set-valued function F is simply the composition of G with the set-valued
function µ 7→ R∗,nf (µ,Af ). Therefore, to prove that F is upper hemicontinuous, it is sufficient
to prove that µ 7→ R∗,nf (µ,Af ) is upper hemicontinuous.

Step 2: Analysis of the map µ 7→ Rn
f (µ,Af ). Following the first step, the purpose of the

second step is to prove continuity of the set-valued function

Mn 3 µ 7→ Rn
f (µ,Af ) :=

{
Rn
f (µ,Q) : Q ∈ Af

}
∈ 2P

p(Ωf )

Since the map Cd 3 x 7→ x̂n ∈ Cd is continuous (see (7.2)), it suffices to prove continuity
with Rn

f replaced by Rf . To do so, we prove first that Rf (Mn,Af ) is relatively compact by
showing that each of the sets of marginal measures is relatively compact; see Lemma 2.1.8.
Clearly {P ◦ (ξ, B,W )−1 : P ∈ Rf (Mn,Af )} = {Wλ} is compact in Pp(Ω0). Since A is
compact, so is V , and thus {P ◦ Λ−1 : P ∈ Rf (Mn,Af )} is relatively compact in Pp(V).
Since b, σ, and σ0 are bounded, it can be shown using Aldous’ criterion for tightness (see
Proposition 5.3.2 for details) that {P ◦X−1 : Rf (Mn,Af )} is relatively compact in Pp(Cd).

Continuity of the set-valued function Rf (·,Af ) will follow from continuity of the single-
valued function Rf . Since the range is relatively compact, it suffices to show that the graph
of Rf is closed. Let (µk, Qk) → (µ,Q) in Mn ×Af and Pk := Rf (µk, Qk) → P in Pp(Ωf ).
It is clear that

P ◦ (ξ, B,W,Λ)−1 = lim
k→∞

Pk ◦ (ξ, B,W,Λ)−1 = lim
k→∞

Qk = Q.

It follows from the results of Kurtz and Protter [81] that the state SDE (7.1) holds under
the limiting measure P , since it holds under each Pk. Since Rf (µ,Q) is the unique law
on Ωf under which (ξ, B,W,Λ) has law Q and (ξ, B,W,Λ, X) solves (7.1), we deduce that
P = Rf (µ,Q). We finally conclude that Rf (·,Af ) and thus Rn

f (·,Af ) are continuous.
Step 3: Analysis of the map µ 7→ R∗,nf (µ,Af ). As a by-product of the previous analysis,

we notice that, for each µ ∈ Mn, Rf (µ,Af ) is closed and relatively compact and thus
compact. By continuity of the map Cd 3 x 7→ x̂n ∈ Cd (see (7.2)), Rn

f (µ,Af ) is also
compact.

Since f and g are continuous in (x, µ, a) and have p-order growth in (x, µ), the compact-
ness of A implies that the reward functional Γ is continuous (see Lemma 2.1.9). This implies
that the expected reward functional

Mn × Pp(Ωf ) 3 (µ, P ) 7→ Jf (µ, P ) ∈ R

is also continuous. By compactness of Rn
f (µ,Af ) and by continuity of Jf , R∗,nf (µ,Af ) is

not empty and compact. Moreover, from Berge’s theorem 2.3.2, the set-valued function
R∗,nf :Mn → 2P(Ωf ) is upper hemicontinuous.

Step 4: Convexity of R∗,nf (µ,Af ). We now prove that, for each µ ∈ Mn, Rn
f (µ,Af ) is

convex. By linearity of the map Cd 3 x 7→ x̂n ∈ Cd (defined in (7.2)), it is sufficient to
prove that Rf (µ,Af ) is convex. To this end, we observe first that Af is convex. Given
Qi, i = 1, 2, in Af , and c ∈ (0, 1), we notice that (B,W ) is a Wiener process with respect
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to (F ξ,B,W,Λt )t∈[0,T ] under cP 1 + (1 − c)P 2, where P i := Rf (µ,Q
i) for i = 1, 2. (Use the

fact that (B,W ) is a Wiener process under both P 1 and P 2.) Moreover, the state equation
holds under cP 1 + (1 − c)P 2. Since (cP 1 + (1 − c)P 2) ◦ (ξ, B,W,Λ)−1 = cQ1 + (1 − c)Q2,
we deduce that cP 1 + (1 − c)P 2 is the unique probability on Ωf under which (ξ, B,W,Λ)
has law cQ1 + (1 − c)Q2 and (ξ, B,W,Λ, X) solves the state equation. This proves that
cP 1 + (1− c)P 2 = Rf (µ, cQ

1 + (1− c)Q2).
By linearity of the map P 7→ Jf (µ, P ), we deduce that the set-valued function R∗,nf :

Mn → 2P(Ωf ) has nonempty convex values. (Non-emptiness follows from the previous step.)
Step 5: Identifying an invariant compact convex set. The last step is to place ourselves

in a convex compact subset of Mn, by first finding a convex compact set Q0 ⊂ Pp(Cd)
containing {P ◦X−1 : P ∈ Rn

f (Mn,Af )}. To this end, note that the boundedness of (b, σ, σ0)

of assumption (B.1) implies that for each smooth ϕ : Rd → R with compact support,

Cϕ := sup
t,x,µ,a

∣∣∣b(t, x, µ, a)>Dϕ(x) +
1

2
Tr
[
(σσ> + σ0σ

>
0 )(t, x, µ)D2ϕ(x)

]∣∣∣ <∞,
where D and D2 denote gradient and Hessian, respectively. Along the lines of the proof of
the standard estimate Lemma 5.3.1, using the boundedness of (b, σ, σ0) it is straightforward
to show that

M := sup
{
EP‖X‖p

′

T : P ∈ Rn
f (Mn,Af )

}
<∞.

Now, define Q1 to be the set of P ∈ Pp(Cd) satisfying

1. P ◦X−1
0 = λ,

2. EP‖X‖p
′

T ≤M ,

3. for each nonnegative smooth ϕ : Rd → R with compact support, the process ϕ(Xt) +
Cϕt is a P -submartingale.

It is clear that Q1 is convex and contains {P ◦ X−1 : P ∈ Rn
f (Mn,Af )}. Using a well

known tightness criterion of Stroock and Varadhan [102, Theorem 1.4.6], conditions (1) and
(3) together imply that Q1 is tight, and the p′-moment bound of (2) then ensures that it is
relatively compact in Pp(Cd) (see Proposition 2.1.7). It is straightforward to check that Q1

is in fact closed, and thus it is compact. Next, define

Q2 :=
{
P ◦ (X̂n)−1 : P ∈ Q1

}
⊂ Pp(Cd),

and note that Q2 is also convex and compact, since x 7→ x̂n is continuous and linear.
Recalling the definition of Ppf from the first paragraph of the proof, let

Q3 :=
{
P ∈ Ppf : P ◦X−1 ∈ Q2

}
=
{
P ∈ Pp(Ωf ) : P ◦ (ξ, B,W,Λ)−1 ∈ Af , P ◦X−1 ∈ Q2

}
.

It is easily checked that Af is a compact set: closedness is straightforward, and, as in the
second step, Af is relatively compact since A is compact and the (ξ, B,W )-marginal is fixed.
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It follows from compactness of Af and Q2 that Q3 is compact (see Lemma 2.1.8). Similarly,
it follows from convexity of Af and Q2 that Q3 is convex.

Conclusion of the proof. Finally, define Q := G(Q3). Note that Q ⊂ Mn, since we
saw at the beginning of the proof that indeed G(P ) ∈ Mn whenever P ∈ Ppf satisfies

P (X = X̂n) = 1. As emphasized by (7.3), G is linear. Hence, Q is convex and compact
since Q3 is. Moreover, for each µ ∈ Mn, F (µ) = G(R∗,nf (µ,Af )) is convex and compact,
since R∗,nf (µ,Af ) is convex and compact (see the third and fourth steps). Since F (µ) ⊂ Q
for each µ ∈ Q, the proof is complete.

7.2 Weak limits of discretized mean field games

We now aim at passing to the limit in the discretized MFG as the time-space grid is refined,
the limit being taken in the weak sense. To do so, we show that any sequence of solutions
of the discretized MFG is relatively compact, and we characterize the limits. This requires
a lot of precaution, the main reason being that measurability properties are not preserved
under weak limits. In particular, we cannot generally ensure that in the limit, the conditional
measure µ remains B-measurable in the limit. For this reason, the goal is to identify the
limits as weak MFG solutions. The proof follows the same three-step procedure used in the
proof of the main convergence result, Theorem 3.2.4: first we prove relative compactness of
the sequence of discretized solutions, then we show the limit is a MFG pre-solution using
Lemma 5.2.3, and finally we check the optimality of the limiting control.

Lemma 7.2.1. Suppose assumption B holds. For each n, by Theorem 7.1.1 we may find
µn ∈ Mn and Pn ∈ R∗,nf (µn,Af ) such that µn = Pn(X ∈ · | GnT ) (both being viewed as

random probability measures on Cd). Define

µ̄n := Pn ((W,Λ, X) ∈ · | GnT ) ,

so that µ̄n can be viewed as a map from Cm0 into Pp(X ) and µ̄n(B) as a random element of
Pp(X ). Then the probability measures

P n := Pn ◦ (ξ, B,W, µ̄n(B),Λ, X)−1

are relatively compact in Pp(Ω), and every limit point is a MFG pre-solution.

Proof. Step 1. Write Pn = Rn
f (µn, Qn), for some Qn ∈ Af , and define P ′n := Rf (µ

n, Qn).
Let

P
′
n = P ′n ◦ (ξ, B,W, µ̄n(B),Λ, X)−1,

so that P n = P
′
n ◦ (ξ, B,W, µ,Λ, X̂n)−1, where X̂n was defined in (7.2). We first show that

P
′
n are relatively compact in Pp(Ω). Clearly P ′n ◦ (B,W )−1 are relatively compact, and so

are P ′n ◦Λ−1 by compactness of V . Moreover, P ′n ◦X−1 are relatively compact by Proposition
5.3.2. By Corollary 2.1.13, relative compactness of P ′n ◦ (µ̄n(B))−1 follows from that of the
mean measures P ′n ◦ (W,Λ, X)−1 and from the p′-moment bound afforded by Lemma 5.3.1,

i.e. supn EP
′
n‖X‖p

′

T <∞. Precisely, for any point χ0 ∈ X and a metric dX on X compatible
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with the topology,

sup
n

∫
Ω

(∫
X
dp
′

X (χ0, χ)[µ̄n(B)](dχ)

)
dP ′n = sup

n
EP ′n

[
EP ′n

[
dp
′

X
(
χ0, (W,Λ, X)

)
|GnT
]]

= sup
n

EP ′n
[
dp
′

X
(
χ0, (W,Λ, X)

)]
<∞.

Hence P
′
n are relatively compact in Pp(Ω).

Step 2. Next, we check that P n = P
′
n ◦ (ξ, B,W, µ,Λ, X̂n)−1 are relatively compact and

have the same limits as P
′
n. This will follow essentially from the fact that x̂n → x as n→∞

uniformly on compact subsets of Cd. Indeed, for t ∈ [tni , t
n
i+1], the definition of x̂n implies

|x̂nt − xt| ≤ |x̂nt − xtni−1
|+ |xtni−1

− xt| ≤ |xtni − xtni−1
|+ |xtni−1

− xt|.

Since |t− tni−1| ≤ 2 · 2−nT for t ∈ [tni , t
n
i+1], we get

‖x̂n − x‖T ≤ 2 sup
|t−s|≤21−nT

|xt − xs|, ∀x ∈ Cd.

If K ⊂ Cd is compact, then it is equicontinuous by Arzelà-Ascoli, and the above implies
supx∈K ‖x̂n− x‖T → 0. With this uniform convergence in hand, we check as follows that P n

has the same limiting behavior as P
′
n. By Prohorov’s theorem, for each ε > 0 there exists

a compact set Kε ⊂ Cd such that EP
′
n [‖X‖pT1{X∈Kc

ε }] ≤ ε for each n. Using the obvious
coupling and the fact that ‖x̂n‖T ≤ ‖x‖T for all x ∈ Cd,

`Ω,p(P n, P
′
n) ≤ EP

′
n

[
‖X − X̂n‖pT

]1/p

≤ 2ε1/p + sup
x∈Kε
‖x̂n − x‖T .

Send n→∞ and then ε ↓ 0.
Step 3. It remains to check that any limit point P of P n (and thus of P

′
n) is a MFG

pre-solution, and we will do this by checking the four requirements of Lemma 5.2.3. Note
first that (B, µ), ξ, and W are independent under P , since µ̄n(B) is B-measurable and since
B, ξ, and W are independent under Pn. Moreover, (B,W ) is an Fξ,B,W,µ,Λ,X Wiener process
(of dimension m0 +m) under P since it is under Pn. In particular, ρ := P ◦ (ξ, B,W, µ)−1 ∈
Ppc [(Ω0,Wλ)  Pp(X )]. Since (µ̄n(B))x = µn(B), the canonical processes (ξ, B,W, µ,Λ, X)

verify the state equation 5.7 under P
′
n for each n. Hence, it follows from the results of Kurtz

and Protter [81] that (5.7) holds under the limiting measure P as well.
We now check that µ = P ((W,Λ, X) ∈ · | FB,µT ). Let P nk be a subsequence converging

to P . Fix n0 ∈ N and S ∈ Gn0
T , and let ψ : P(X ) → R and ϕ : X → R be bounded and

continuous. Then, since µ̄n = Pn((W,Λ, X) ∈ · | GnT ) and Gn0
T ⊂ GnT for n ≥ n0, we compute
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(using Lemma 2.1.9 to handle the indicator function)

EP [1S(B)ψ(µ)ϕ(W,Λ, X)] = lim
k→∞

EPnk [1S(B)ψ(µ̄nk)ϕ(W,Λ, X)]

= lim
k→∞

EPnk
[
1S(B)ψ(µ̄nk)

∫
ϕdµ̄nk

]
= EP

[
1S(B)ψ(µ)

∫
ϕdµ

]
.

Conclude by noting that σ (
⋃∞
n=1 GnT ) = σ(B).

7.2.1 Existence of a weak solution under Assumption B

The goal of this section is to prove that the limit points constructed in the previous paragraph
are not only MFG pre-solutions but are weak MFG solutions:

Theorem 7.2.2. Assume that B holds and keep the notation of Lemma 7.2.1. Then, every
limit point of (P n)∞n=1 is a weak MFG solution with weak control.

In order to check the optimality condition at the limit, the idea is to approximate any al-
ternative MFG control by a sequence of particularly well-behaved controls for the discretized
game. The crucial technical device is Proposition 2.1.15, or more specifically its corollary
Proposition 5.3.7, but the following point is also worth breaking off into its own lemma:

Lemma 7.2.3. Define Πn : P(Ω)→ P(Ω) by

Πn(P ) := P ◦
(
ξ, B,W, µ,Λ, X̂n

)−1

.

(See (7.2) for the definition of X̂n.) If Pn → P in Pp(Ω), then Πn(Pn)→ P in Pp(Ω).

Proof. This was essentially already proven in the second step of the proof of Lemma 7.2.1.
Note that

`Ω,p (Πn(Pn), P ) ≤ `Ω,p (Pn, P ) + `Ω,p (Pn,Πn(Pn)) .

The first term tends to zero by assumption. Fix ε > 0. Since {Pn : n ≥ 1} is relatively
compact in Pp(Ω), by Prohorov’s theorem there exists a compact set K ⊂ Cd such that
EPn [‖X‖pT1{X/∈K}] ≤ ε for all n. Use the obvious coupling and the fact that ‖x̂n‖T ≤ ‖x‖T
for all x ∈ Cd to get

`Ω,p (Pn,Πn(Pn)) ≤ EPn
[
‖X − X̂n‖pT

]1/p

≤ (ε2p−1)1/p + sup
x∈K
‖x− x̂n‖T .

We saw in the second step of the proof of Lemma 7.2.1 that x̂n → x as n → ∞ uniformly
on compact subsets of Cd, and so the proof is complete.

Proof of Theorem 7.2.2. Let µn, µ̄n, Pn, and P n be as in Lemma 7.2.1, and let P denote
any limit point. Relabel the subsequence, and assume that P n itself converges. Let ρ :=
P ◦ (ξ, B,W, µ)−1. By Lemma 7.2.1, ρ is in Ppc [(Ω0,Wλ)  Pp(X )], and P ∈ RA(ρ) is an
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MFG pre-solution, and it remains only to show that P is optimal, or P ∈ RA∗(ρ). According

to Proposition 5.3.7, it suffices to check that J(P ) ≥ J(P̃ ) for each P̃ in RAa(ρ).

Fix any Q̃ in Aa(ρ), and note that we may write

Q̃ = ρ ◦ (ξ, B,W, µ, ϕ(ξ, B,W, µ))−1

for some Fξ,B,W,µ-adapted continuous function ϕ : Ω0 × Pp(X ) → V (see Definition 5.3.5).
Define Qn ∈ Af (see Paragraph 7.1.1 for the definition of Af ) by

Q̃n :=Wλ ◦
(
ξ, B,W,ϕ(ξ, B,W, µ̄n(B))

)−1
.

Note that P n → P implies

ρ = lim
n→∞

P n ◦ (ξ, B,W, µ)−1 = lim
n→∞

Wλ ◦
(
ξ, B,W, µ̄n(B)

)−1
,

where the second equality comes from the definition of P n in Lemma 7.2.1. Since ϕ is
continuous,

Q̃ = lim
n→∞

Wλ ◦ (ξ, B,W, µ̄n(B), ϕ(ξ, B,W, µ̄n(B)))−1

= lim
n→∞

Q̃n ◦ (ξ, B,W, µ̄n(B),Λ)−1. (7.4)

Now let P̃n := Rn
f (µn, Q̃n). Since Pn is optimal for Jf (µ

n, ·),

Jf (µ
n, P̃n) ≤ Jf (µ

n, Pn).

Since A is compact, Lemma 5.3.4 assures us that J is continuous, and so

lim
n→∞

Jf (µ
n, Pn) = lim

n→∞
EPn [Γ(µn(B),Λ, X)] = lim

n→∞
J(P n) = J(P ),

where the second equality follows simply from the definition of J . We will complete the
proof by showing that, on the other hand,

J(R(Q̃)) = lim
n→∞

Jf (µ
n, P̃n), (7.5)

and both limits exist. Define Πn as in Lemma 7.2.3. Applying the basic definition of the
different objects, notice that

P̃n ◦ (ξ, B,W, µ̄n(B),Λ, X)−1 = Πn

(
R
(
Q̃n ◦ (ξ, B,W, µ̄n(B),Λ)−1

))
,

Jf (µ
n, P̃n) = J

(
P̃n ◦ (ξ, B,W, µ̄n(B),Λ, X)−1

)
.
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Continuity of R (see Lemma 5.3.3), Lemma 7.2.3, and (7.4) together yield

lim
n→∞

P̃n ◦ (ξ, B,W, µ̄n(B),Λ, X)−1 = lim
n→∞

Πn

(
R
(
Q̃n ◦ (ξ, B,W, µ̄n(B),Λ)−1

))
= R(Q̃).

Finally, (7.5) follows from continuity of J .

7.2.2 Unbounded coefficients

Finally, with existence in hand for bounded state coefficients (b, σ, σ0) and compact control
space A, we turn to the general case. The goal is thus to complete the proof of Theorem
3.3.1 under assumptions A1 and A2 instead of B.

The idea of the proof is to approximate the data (b, σ, σ0, A) by data satisfying Assump-
tion B. Let (bn, σn, σn0 ) denote the projection of (b, σ, σ0) into the ball centered at the origin
with radius n in Rd×Rd×m×Rd×m0 , respectively. Let An denote the intersection of A with
the ball centered at the origin with radius n. For sufficiently large n0, An is nonempty and
compact for all n ≥ n0, and thus we will always assume n ≥ n0 in what follows. Note that
the data (bn, σn, σn0 , f, g, An) satisfy Assumption B. Moreover, A1.4 and A1.5 hold for each
n with the same constants c1, c2, c3; this implies that the estimate of Lemma 5.3.1 holds with
the same constant c4 for each set of data, i.e. independent of n.

Define Vn as before in terms of An, but now view it as a subset of V . That is,

Vn := {q ∈ V : q([0, T ]× Acn) = 0}. (7.6)

Then define An(ρ) to be the set of admissible controls with values in An:

An(ρ) := {Q ∈ A(ρ) : Q(Λ ∈ Vn) = 1} . (7.7)

Finally, defineRn(Q) to be the unique element P of P(Ω) such that P ◦(ξ, B,W, µ,Λ)−1 = Q
and the canonical processes verify the SDE

dXt =

∫
A

bn(t,Xt, µ
x
t , aΛt(da))dt+ σn(t,Xt, µ

x
s tdWt + σn0 (t,Xt, µ

x
t )dBt. (7.8)

Now, of course,
RnA∗n(ρ) := arg max

P∈RnAn(ρ)
J(P ).

By Theorem 7.2.2, there exists for each n an MFG solution corresponding to the nth trunca-
tion of the data. In the present notation, this means there exist ρn ∈ Ppc [(Ω0,Wλ) Pp(X )]
and Pn ∈ RnA∗n(ρn) such that

µ = Pn

(
(W,Λ, X) ∈ · | FB,µT

)
, P n − a.s. (7.9)

Once again, the strategy of the proof is to show first that Pn are relatively compact and then
that each limit point is an MFG solution.
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Relative compactness

We begin with a compactness result:

Lemma 7.2.4. The measures Pn are relatively compact in Pp(Ω). Moreover,

sup
n

EPn
∫ T

0

∫
A

|a|p′Λt(da)dt <∞, sup
n

EPn‖X‖p
′

T <∞. (7.10)

Proof. The proof of the moment estimates is quite similar to Lemma 6.1.2. Noting that
the coefficients (bn, σn, σn0 ) satisfy A1.1-5 with the same constants (independent of n), the
estimates of Lemma 5.3.1 and the fixed point (7.9) together imply

EPn
∫
Cd
‖y‖pTµ

x(dy) = EPn‖X‖pT ≤ c4

(
1 + EPn

∫ T

0

∫
A

|a|pΛt(da)dt

)
. (7.11)

Fix a0 ∈ An0 . Let Rn denote the unique element of RnAn(ρn) satisfying Rn(Λt =
δa0 for a.e. t) = 1. That is Rn is the law of the solution of the state equation arising from
the constant control equal to a0, in the nth truncation. The first part of Lemma 5.3.1 implies

ERn‖X‖pT ≤ c4

(
1 + ERn

∫
Cd
‖y‖pTµ

x(dy) + T |a0|p
)
. (7.12)

Noting that Rn ◦ µ−1 = Pn ◦ µ−1, we combine (7.12) with (7.11) to get

ERn‖X‖pT ≤ C0

(
1 + EPn

∫ T

0

∫
A

|a|pΛt(da)dt

)
, (7.13)

where C0 > 0 depends only on c4, T , and |a0|p. Use the optimality of Pn, the lower bounds
on f and g, and then (7.11) and (7.13) to get

J(Pn) ≥ J(Rn) ≥ −c2(T + 1)

(
1 + ERn‖X‖pT + ERn

∫
Cd
‖y‖pTµ

x(dy) + |a0|p
′
)

≥ −C1

(
1 + EPn

∫ T

0

∫
A

|a|pΛt(da)dt

)
, (7.14)

where C1 > 0 depends only on c2, c4, T , |a0|p
′
, and C0. On the other hand, we may use the

upper bounds on f and g along with (7.11) to get

J(Pn) ≤ c2(T + 1)

(
1 + EPn‖X‖pT + EPn

∫
Cd
‖y‖pTµ

x(dy)

)
− c3EPn

∫ T

0

∫
A

|a|p′Λt(da)dt

≤ C2

(
1 + EPn

∫ T

0

∫
A

|a|pΛt(da)dt

)
− c3EPn

∫ T

0

∫
A

|a|p′Λt(da)dt, (7.15)
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where C2 > 0 depends only on c2, c3, c4, and T . Combining (7.14) and (7.15) and rearranging,
we find two constants, κ1 ∈ R and κ2 > 0, such that

EPn
∫ T

0

∫
A

(
|a|p′ + κ1|a|p

)
Λt(da)dt ≤ κ2.

(Note that EPn
∫ T

0

∫
A
|a|pΛt(da)dt < ∞ for each n.) These constants are independent of n,

and the first bound in (7.10) follows from the fact that p′ > p. Combined with Lemma 5.3.1,
this implies the second bound in (7.10).

To show that Pn are relatively compact, we check that each of the sets of marginals is
relatively compact; see Lemma 2.1.8. Compactness of Pn ◦ (B,W )−1 is obvious. Moreover,
by (7.10),

sup
n

EPn
[
‖W‖p

′

T +

∫ T

0

∫
A

|a|p′Λt(da)dt+ ‖X‖p
′

T

]
<∞.

It follows from Proposition 5.3.2 that Pn ◦ (Λ, X)−1 are relatively compact. The mean
measures of Pn ◦ µ−1 are Pn ◦ (W,Λ, X)−1, which we have shown are relatively compact.
Hence, by Corollary 2.1.13, Pn ◦ µ−1 are relatively compact in Pp(Pp(X )).

Limit points

Now that we know Pn are relatively compact, we may fix P ∈ Pp(Ω) and a subsequence nk
such that Pnk → P in Pp(Ω). Define ρ := P ◦ (ξ, B,W, µ)−1, and note that ρnk → ρ.

Lemma 7.2.5. The limit point P is an MFG pre-solution and satisfies

EP
∫ T

0

∫
A

|a|p′Λt(da)dt ≤ lim inf
k→∞

EPnk
∫ T

0

∫
A

|a|p′Λt(da)dt <∞.

Proof. Fatou’s lemma and Lemma 7.2.4 imply the stated inequality. We now check the
conditions of Lemma 5.2.3. Since (B, µ), ξ and W are independent under Pn, the same is
true under the limit P , which gives. By passage to the limit, it is well checked that (B,W ) is
a Wiener process with respect to the filtration (F ξ,B,W,µ,Λ,Xt )t∈[0,T ] under P (which implies in
particular that ρ ∈ Ppc [(Ω0 × Pp(X ), ρ) V ]). Moreover, it must also hold P (X0 = ξ) = 1.
Let us next check the consistency condition. If ψ : Cm0 × Pp(X ) → R and ϕ : X → R are
bounded and continuous, we have

EP [ψ(B, µ)ϕ(W,Λ, X)] = lim
k→∞

EPnk [ψ(B, µ)ϕ(W,Λ, X)]

= lim
k→∞

EPnk
[
ψ(B, µ)

∫
X
ϕdµ

]
= EP

[
ψ(B, µ)

∫
X
ϕdµ

]
.

Thus µ = P ((W,Λ, X) ∈ · | B, µ) a.s.
It remains to check that the state equation is satisfied under P . Define processes (Zq

t )t∈[0,T ]

on Ω by

Zq
t := 1 + |Xt|q +

(∫
Rd
|y|pµxt (dy)

)q/p
, q > 0.

137



Using the growth assumptions on b of A1.4, note that b(t, y, ν, a) 6= bn(t, y, ν, a) if and only
if

n < |b(t, y, ν, a)| ≤ c1

(
1 + |y|+

(∫
Rd
|z|pν(dz)

)1/p

+ |a|
)
,

so that

EPn
∣∣∣∣∫ t

0

ds

∫
A

Λs(da)(bn − b)(s,Xs, µ
x
s , a)

∣∣∣∣
≤ 2c1EPn

∫ t

0

ds

∫
A

Λs(da)
(
Z1
s + |a|

)
1{c1(Z1

s+|a|)>n}.

By Lemma 7.2.4, this tends to zero as n→∞. Similarly, σ(t, y, ν) 6= σn(t, y, ν) if and only
if

n2 < |σ(t, y, ν)|2 ≤ c1

(
1 + |y|pσ +

(∫
Rd
|z|pν(dz)

)pσ/p)
,

so that the Burkholder-Davis-Gundy inequality yields

EPn
∣∣∣∣∫ t

0

(σn − σ)(s,Xs, µ
x
s)dWs

∣∣∣∣ ≤ 2(c1)1/2EPn
[(∫ t

0

Zpσ
s 1{c1Zpσs >n2}ds

)1/2]
.

This tends to zero as well, as does EPn|
∫ t

0
(σn0 − σ0)(s,Xs, µ

x
s)dBs|. It follows that

0 = lim
n→∞

EPn sup
0≤t≤T

∣∣∣∣Xt −X0 −
∫ t

0

ds

∫
A

Λs(da)b(s,Xs, µ
x
s , a)

−
∫ t

0

σ(s,Xs, µ
x
s)dWs −

∫ t

0

σ0(s,Xs, µ
x
s)dBs

∣∣∣∣ .
Finally, combine this with the results of Kurtz and Protter [81] to conclude that the state
SDE (5.7) holds under P .

Optimality

It remains to show the limit point P in Lemma 7.2.4 is optimal. Let ρ := P ◦ (ξ, B,W, µ)−1.
Thanks to Proposition 5.3.7, it suffices to show that J(P ) ≥ J(P ′) for every P ′ in the dense
subclass RAa(ρ), where Aa(ρ) was defined in Definition 5.3.5. If we can prove that for each
such P ′ there exist P ′n ∈ RnAn(ρn) such that J(P ′n)→ J(P ′), then, by optimality of Pn for
each n, it holds that J(Pn) ≥ J(P ′n). Since J is upper semicontinuous by Lemma 5.3.4, we
then get

J(P ) ≥ lim sup
k→∞

J(Pnk) ≥ lim
k→∞

J(P ′nk) = J(P ′).
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Since P ′ ∈ RAa(ρ) was arbitrary, we conclude from Proposition 5.3.7 that P is optimal, or
P ∈ RA∗(ρ), which completes the proof of Theorem 3.3.1. Hence, it remains to prove the
following lemma:

Lemma 7.2.6. For each P ′ ∈ RAa(ρ), there exist P ′n ∈ RnAn(ρn) such that J(P ′) =
limn→∞ J(P ′n).

Proof. Find Q′ ∈ Aa(ρ) such that P ′ = R(Q′). By definition of Aa(ρ), there exists a
bounded, continuous, adapted function ϕ : Ω0 × Pp(X )→ V such that

Q′ := ρ ◦ (ξ, B,W, µ, ϕ(ξ, B,W, µ))−1 .

Boundedness of ϕ means precisely that there exists m such that the range of ϕ is contained
in Vm, which was defined in (7.6). Recalling that ρn = Pn ◦ (ξ, B,W, µ)−1, define

Q′n := ρn ◦ (ξ, B,W, µ, ϕ(ξ, B,W, µ))−1 .

Note that Q′n(Λ ∈ Vm) = 1. Hence Q′n ∈ An(ρn) for n ≥ m. It follows from boundedness
and continuity of ϕ that Q′n → Q′. The proof will be complete if we can show

Rn(Q′n)→ P ′, in Pp(Ω). (7.16)

Indeed, since Am is compact, we may then use the continuity of J (see Lemma 5.3.4) to
complete the proof. We prove (7.16) with exactly the same argument as in Lemma 5.3.3:
Since Rn(Qn)◦ (ξ, B,W, µ,Λ)−1 = Qn are relatively compact in Pp(Ω0×Pp(X )×V), we can
show (using Proposition 5.3.2) that Rn(Q′n) ◦ X−1 are relatively compact in Pp(Cd). Thus
Rn(Q′n) are relatively compact in Pp(Ω). Conclude exactly as in the proof of Lemma 5.3.3
that any limit point must equal P ′.

7.3 Uniqueness

This section proves both the Yamada-Watanabe type result, Proposition 3.3.4, and the
uniqueness result, Theorem 3.3.5. We begin with Proposition 3.3.4, the proof of which will
essentially just apply an abstract form of the Yamada-Watanabe theorem that can be found
in the papers of Jacod and Mémin [69] or Kurtz [80]. This abstract framework is discussed
in more detail in Appendix A.3.

Proof of Proposition 3.3.4. Corollary A.1.4 of the appendix tells us that, in the definition of
a coupling of MFG solution bases, it is redundant to require that B is a (Gt)t∈[0,T ]-Wiener
process. The claim now follows from the abstract form of the Yamada-Watanabe result,
quoted in Theorem A.3.1.

Let us now turn to the proof of Theorem 3.3.5. Now that more notation is at our disposal,
we will instead prove a more general result. Consider

Assumption U’. Assumption U.1-3 hold, along with
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(U’.4) For any ρ ∈ Ppc [(Ω0,Wλ) Pp(X )] the set A?(ρ) is a singleton, which means that the
maximization problem in the environment ρ has a unique (relaxed) solution. See (5.9)
for the definition of A∗(ρ).

Theorem 7.3.1. Suppose assumptions A1, A2, and U hold. Then there exists a unique in
law weak MFG solution with weak control, and it is in fact a strong MFG solution with weak
control.

Remark 7.3.2. In the proof of Proposition 3.1.5 in Section 5.4, it is shown that assumption
(Linear-Convex) implies (U.4’). Thus, Theorem 7.3.1 and Proposition 3.1.5 together imply
Theorem 3.3.5.

Proof of Theorem 7.3.1.
First step. Let γ1 and γ2 be two MFG solution bases, and define

ρi := (Mγi) ◦ (ξ, B,W, µ)−1.

Let (Θ, (Gt)t∈[0,T ], Q,B, µ
1, µ2) be any coupling of γ1 and γ2. In view of Proposition 3.3.4,

we will prove µ1 = µ2 a.s. In fact, we may assume without loss of generality that

Θ = Cm0 × Pp(X )× Pp(X ), Gt = FBt ⊗F
µ
t ⊗F

µ
t ,

and Q is the joint distribution of the canonical processes B, µ1, and µ2 on Θ. For each
i = 1, 2, there is a kernel

Ω0 × Pp(X ) 3 ω 7→ Ki
ω ∈ P(V × Cd).

such that
Mγi = ρi(dω)Ki

ω(dq, dx).

The key point is that Ki is necessarily adapted to the completed filtration Fξ,B,W,µ, which
means that, for each t ∈ [0, T ] and each FΛ,X

t -measurable ϕ : V × Cd → R, the map
ω 7→

∫
ϕdKi

ω is F ξ,B,W,µt -measurable. The proof is as follows. Since Mγi is a weak MFG so-

lution, the σ-fields F ξ,B,W,µT and FΛ
t are conditionally independent under Mγi given F ξ,B,W,µt .

Since the solution of the state equation (3.4) is strong, F ξ,B,W,µ,Λ,Xt is included in the Mγi-
completion of F ξ,B,W,µ,Λt , from which we deduce that F ξ,B,W,µT and FΛ,X

t are conditionally
independent under Mγi given F ξ,B,W,µt . Therefore, for each t ∈ [0, T ] and each FΛ,X

t -
measurable ϕ : V × Cd → R, we have∫

ϕdKi = EMγi
[
ϕ(Λ, X)| F ξ,B,W,µT

]
= EMγi

[
ϕ(Λ, X)| F ξ,B,W,µt

]
, a.s.

Second step. Define now the extended probability space:

Ω := Θ× (Rd × Cm)× (V × Cd)2, F t := Gt ⊗F ξ,Wt ⊗FΛ,X
t ⊗FΛ,X

t ,
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endowed with the probability measure:

P := Q(dβ, dν1, dν2)λ(dξ)Wm(dw)
2∏
i=1

Ki
ξ,β,w,νi(dq

i, dxi).

Let (B, µ1, µ2, ξ,W,Λ1, X1,Λ2, X2) denote the coordinate maps on Ω. Let µi,x = (µi)x. In
words, we have constructed P so that the following hold:

1. (B, µ1, µ2), W , and ξ are independent.

2. (Λ1, X1) and (Λ2, X2) are conditionally independent given (B, µ1, µ2, ξ,W ).

3. The state equation holds, for each i = 1, 2:

X i
t = ξ +

∫ t

0

ds

∫
A

Λi
s(da)b(s,X i

s, a)ds+

∫ t

0

σ(s,X i
s)dWs +

∫ t

0

σ0(s,X i
s)dBs.

For i, j = 1, 2, define

P i,j := P ◦ (ξ, B,W, µi,Λj, Xj)−1.

By assumption U’.4, P i,i is the unique element of RA?(ρi), for each i = 1, 2. On the other
hand, we will verify that

P 1,2 ∈ RA(ρ1) and P 2,1 ∈ RA(ρ2). (7.17)

Indeed, defining

Q1,2 := P 1,2 ◦ (ξ, B,W, µ,Λ)−1 = P ◦ (ξ, B,W, µ1,Λ2)−1,

it is clear that P 1,2 = R(Q1,2) because of the lack of mean field terms in the state equation
(by assumption U.1). It remains only to check that Q1,2 is compatible with ρ1, in the

sense that, under P , F ξ,B,W,µ
1

T and FΛ2

t are conditionally independent given F ξ,B,W,µ
1

t . Given
three bounded real-valued functions ϕ1

t , ϕ
1
T and ψ2

t , where ϕ1
t and ϕ1

T are both defined on
Ω0×Pp(X ) and are F ξ,B,W,µt -measurable and F ξ,B,W,µT -measurable (respectively), and where
ψ2
t is defined on V and is FΛ

t -measurable, we have

EP
[(
ϕ1
tϕ

1
T

)
(ξ, B,W, µ1)ψ2

t (Λ
2)
]

= EP
[(
ϕ1
tϕ

1
T

)
(ξ, B,W, µ1)

∫
V
ψ2
t (q)K

2
ξ,B,W,µ2(dq)

]
= EP

[(
ϕ1
tϕ

1
T

)
(ξ, B,W, µ1)EP

[∫
V
ψ2
t (q)K

2
ξ,B,W,µ2(dq)

∣∣F ξ,B,WT

]]
,

where the last equality follows from the fact that µ1 and µ2 are conditionally inde-

pendent given (ξ, B,W ). Since (B,W ) is an (F ξ,B,W,µ
2

t )t∈[0,T ]-Wiener process and∫
V ψ

2
t (q)K

2
ξ,B,W,µ2(dq) is F ξ,B,W,µ

2

t -measurable by the argument above, the conditioning

141



in the third line can be replaced by a conditioning by F ξ,B,Wt . Then, using once again
the fact that µ1 and µ2 are conditionally independent given (ξ, B,W ), the conditioning by

F ξ,B,Wt can be replaced by a conditioning by F ξ,B,W,µ
1

t , which proves the required property
of conditional independence. This shows that Q1,2 ∈ A(ρ1) and thus P 1,2 ∈ RA(ρ1). The
proof that P 2,1 ∈ RA(ρ2) is identical.

Third step. Note that (X i,Λi,W ) and µj are conditionally independent given (B, µi), for
i 6= j, and thus

P ((W,Λi, X i) ∈ · | B, µ1, µ2) = P ((W,Λi, X i) ∈ · | B, µi) = µi, i = 1, 2. (7.18)

Now suppose it does not hold that µ1 = µ2 a.s. Suppose that both

P 1,1 = P 1,2, i.e P ◦ (ξ, B,W, µ1,Λ1, X1)−1 = P ◦ (ξ, B,W, µ1,Λ2, X2)−1, (7.19)

P 2,2 = P 2,1, i.e. P ◦ (ξ, B,W, µ2,Λ2, X2)−1 = P ◦ (ξ, B,W, µ2,Λ1, X1)−1. (7.20)

It follows that

P ((W,Λ2, X2) ∈ · |B, µ1) = P ((W,Λ1, X1) ∈ · |B, µ1) = µ1,

P ((W,Λ1, X1) ∈ · |B, µ2) = P ((W,Λ2, X2) ∈ · |B, µ2) = µ2.

Combined with (7.18), this implies

EP [µ2|B, µ1] = EP [P ((W,Λ2, X2) ∈ · |B, µ1, µ2) |B, µ1] = µ1,

EP [µ1|B, µ2] = EP [P ((W,Λ1, X1) ∈ · |B, µ1, µ2) |B, µ2] = µ2.

These conditional expectations are understood in terms of mean measures. By conditional
independence, EP [µi|B, µj] = EP [µi|B] for i 6= j, and thus

EP [µ2|B] = µ1, and EP [µ1|B] = µ2.

Thus µ1 and µ2 are in fact B-measurable and equal, which is a contradiction. Hence, one of
the distributional equalities (7.19) or (7.20) must fail. By optimality of P 1,1 and P 2,2 and
by (7.17), we have the following two inequalities, and assumption U’.4 implies that at least
one of them is strict:

0 ≤ J(P 2,2)− J(P 2,1), and 0 ≤ J(P 1,1)− J(P 1,2).
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Writing out the definition of J and using the special form of f from assumption U.2,

0 ≤ EP
∫ T

0

dt

∫
A

Λ2
t (da)

[
f1(t,X2

t , a) + f2(t,X2
t , µ

2,x
t )
]

− EP
∫ T

0

dt

∫
A

Λ1
t (da)

[
f1(t,X1

t , a)− f2(t,X1
t , µ

2,x
t )
]

+ EP
[
g(X2

T , µ
2,x
T )− g(X1

T , µ
2,x
T )
]
,

0 ≤ EP
∫ T

0

dt

∫
A

Λ1
t (da

[
f1(t,X1

t , a) + f2(t,X1
t , µ

1,x
t )
]

− EP
∫ T

0

dt

∫
A

Λ2
t (da)

[
f1(t,X2

t , a)− f2(t,X2
t , µ

1,x
t )
]

+ EP
[
g(X1

T , µ
1,x
T )− g(X2

T , µ
1,x
T )
]
,

where one of the two inequalities is strict. Add these inequalities to get

0 < EP
[∫ T

0

(
f2(t,X2

t , µ
2,x
t )− f2(t,X2

t , µ
1,x
t ) + f2(t,X1

t , µ
1,x
t )− f2(t,X1

t , µ
2,x
t )
)
dt

]
+ EP

[
g(X2

T , µ
2,x
T )− g(X2

T , µ
1,x
T ) + g(X1

T , µ
1,x
T )− g(X1

T , µ
2,x
T )
]

(7.21)

Then, conditioning on (B, µ1, µ2) inside of (7.21) and applying (7.18) yields

0 < EP
∫
Cd

(µ2,x − µ1,x)(dx)

[∫ T

0

(
f2(t, xt, µ

2,x
t )− f2(t, xt, µ

1,x
t )
)
dt

+ g(xT , µ
2,x
T )− g(xT , µ

1,x
T )

]
.

This contradicts assumption U.3, and so µ1 = µ2 a.s.

7.4 Counterexamples

In this section, simple examples are presented to illustrate two points. First, we demonstrate
why we cannot expect existence of a strong MFG solution at the level of generality allowed
by assumption A1. Second, by providing an example of a mean field game which fails to
admit even a weak solution, we show that the exponent p in both the upper and lower bounds
of f and g cannot be relaxed to p′.

7.4.1 Nonexistence of strong solutions

Suppose σ is constant, g ≡ 0, p′ = 2, p = 1, A = Rd, and choose the following data:

b(t, x, µ, a) = a, f(t, x, µ, a) = a>f̃(t, µ̄)− 1

2
|a|2, σ0(t, x, µ) = σ̃0(t, µ̄),
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for some bounded continuous functions f̃ : [0, T ] × Rd → Rd and σ̃0 : [0, T ] × Rd → Rd×m0 .
Here we have abbreviated µ̄ :=

∫
R zµ(dz) for µ ∈ P1(R). Theorem 3.3.1 and Proposition 3.1.5

ensure that there exists a weak MFG solution P with strong control, (Ω̃,F, P, B,W, µ,Λ, X).
In particular, there exists a FX0,B,W,µ-progressive Rd-valued process α∗ such that

P (Λ = dtδα∗t (da)) = 1, EP
∫ 1

0

|α∗t |2dt <∞.

If α is any bounded FX0,B,W,µ-progressive Rd-valued processes, then the optimality of α∗

implies

E
∫ 1

0

(
(α∗t )

>f̃(t, µ̄xt )−
1

2
|α∗t |2

)
dt ≥ E

∫ 1

0

(
α>t f̃(t, µ̄xt )−

1

2
|αt|2

)
dt.

Hence, α∗t = f̃(t, µ̄xt ) holds dt⊗ dP -a.e. The state process thus satisfies the SDE

dXt = f̃(t, µ̄xt )dt+ σdWt + σ̃0(t, µ̄xt )dBt.

Conditioning on (B, µ) and using the fixed point property µ̄xt = E[Xt|B, µ] yields

dµ̄xt = f̃(t, µ̄xt )dt+ σ̃0(t, µ̄xt )dBt, µ̄x0 = E[X0].

We have only assumed that f̃ and σ̃0 are bounded and continuous. For the punchline, note
that uniqueness in distribution may hold for such a SDE even if it fails to possess a strong
solution, in which case µ̄xt cannot be adapted to the completion of FBt and the MFG solution
cannot be strong. Such cases are not necessarily pathological; see Barlow [10] for examples
in dimension d = 1 with f̃ ≡ 0 and σ̃0 bounded above and below away from zero.

7.4.2 Nonexistence of weak solutions

It is a bit disappointing that assumption A1 excludes linear-quadratic models with objectives
which are quadratic in both a and x. That is, we do not allow

f(t, x, µ, a) = −|a|2 − c |x+ c′µ̄|2 , c, c′ ∈ R,

where we have again abbreviated µ̄ :=
∫
R zµ(dz) for µ ∈ P1(R). On the one hand, if c < 0

and |c| is large enough, then it may hold for each µ that there exists no solution to the
corresponding control problem, and obviously non-existence of optimal controls prohibits
the existence of MFG solutions. The goal now is to demonstrate that even when f and g are
bounded from above, we cannot expect a general existence result if p′ = p. We are certainly
not the first to notice what can go wrong in linear-quadratic mean field games when the
constants do not align properly; see, for example, [34, Theorem 3.1]. Of course, the refined
analyses of [15, 34] give many positive results on linear-quadratic mean field games, but we
simply wish to provide a tractable example of nonexistence to show that this edge case p′ = p
requires more careful analysis.
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Consider constant volatilities σ and σ0 (possibly equal to zero), d = 1, p′ = p = 2, A = R,
and the following data:

b(t, x, µ, a) = a,

f(t, x, µ, a) = −a2,

g(x, µ) = −(x+ cµ̄)2, c ∈ R.

With great foresight, choose T > 0, c ∈ R, and λ ∈ P2(R) such that

c = −(1 + T )/T, and λ̄ 6= 0.

Assumption A1 and (Convex) hold with the one exception that the assumption p′ > p is
violated. Proposition 3.1.4 still applies (see Remark 5.4.2), and we conclude that if there
exists a weak MFG solution (we work here with common noise, but the same argument is
valid for solutions without common noise), then there must exist a weak MFG solution with

control. Suppose there exists a weak MFG solution (Ω̃,F = (Ft)t∈[0,T ], P, B,W, µ,Λ, X), and
find a F-progressive real-valued process α∗ satisfying P (Λ = dtδα∗t (da)) = 1 and

E
∫ 1

0

|α∗t |2dt <∞,

where E denotes expectation under P . The state equation becomes

Xt = X0 +

∫ t

0

α∗sds+ σWt + σ0Bt, t ∈ [0, T ]. (7.22)

In particular, α∗ is the unique minimizer among F-progressive square-integrable real-valued
processes α of

J(α) := E
[∫ T

0

|αt|2dt+ (Xα
T + cµ̄T )2

]
,

where

Xα
t = X0 +

∫ t

0

αsds+ σWt + σ0Bt, t ∈ [0, T ].

Expand the square

(Xα
T + cµ̄T )2 =

(
X0 +

∫ T

0

αtdt+ σWT + σ0BT + cµ̄T

)2

and discard the terms which do not involve α to see that minimizing J(α) is equivalent to
minimizing

J̃(α) = E

[∫ T

0

[
|αt|2 + 2 (X0 + σWT + σ0BT + cµ̄T )αt

]
dt+

(∫ T

0

αtdt

)2
]
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Since α∗ is the unique minimizer, for any other α it holds that

0 =
d

dε
J̃ (α∗ + εα)

∣∣∣
ε=0

= 2E
[∫ T

0

[αtα
∗
t + (X0 + σWT + σ0BT + cµ̄T )αt] dt+

∫ T

0

αtdt

∫ T

0

α∗tdt

]
.

In particular, if α is deterministic, then

0 =

∫ T

0

αtE
[
α∗t +X0 + σWT + σ0BT + cµ̄T +

∫ T

0

α∗sds

]
dt

Since this holds for every deterministic square-integrable α, it follows that

0 = E
[
α∗t +X0 + σWT + σ0BT + cEµ̄T +

∫ T

0

α∗sds

]
.

Noting that µ̄0 = EX0, we get

−Eα∗t = µ̄0 + cEµ̄T +

∫ T

0

Eα∗sds.

In particular, Eα∗t is constant in t. Defining ᾱ = Eα∗t for all t, we must have

ᾱ = − µ̄0 + cEµ̄T
1 + T

.

Take expectations in (7.22) to get Eµ̄t = µ̄0 + ᾱt. But then

Eµ̄T = µ̄0 + ᾱT = µ̄0 −
µ̄0 + cEµ̄T

1 + T
T

=
µ̄0

1 + T
+ Eµ̄T ,

where in the last line we finally used the particular choice of c = −(1 + T )/T . This implies
µ̄0 = 0, which contradicts λ̄ 6= 0 since µ̄0 = λ̄. Hence, for this particular choice of data, there
is no solution.

It would be interesting to find additional structural conditions under which existence of a
solution holds in the case p′ = p. This question has been addressed in [32] when p′ = p = 2,
b is linear, σ is constant, f and g are convex in (x, α) and without common noise. Therein,
the strategy consists in solving approximating equations, for which the related p is indeed
less than 2, and then in passing to the limit. In order to guarantee the tightness of the
approximating solutions, the authors introduce a so-called weak mean-reverting condition,
which reads 〈x, ∂xg(0, δx)〉 ≤ c(1 + |x|) and 〈x, ∂xf(t, 0, δx, 0)〉 ≤ c(1 + |x|). This clearly
imposes some restriction on the coefficients as, in full generality (when p = p′ = 2), we
should expect ∂xg(0, δx) and ∂xf(t, 0, δx, 0) to be of order 1 in x. The weak mean-reverting
condition provides yields a crucial moment bound on the approximating solutions, which in
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turn provides the needed compactness. The same strategy could conceivably be adapted for
a proof of existence in the common noise setting, with the help of the discretization argument
of Section 7.1, but this is not pursued in this thesis.
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Chapter 8

Existence, without common noise

We now develop a framework for studying strong solutions of MFGs without common noise,
built on controlled martingale problems. Ultimately, this will culminate in the proof of
Theorem 4.6.1. This framework is quite versatile, and the closing Section 8.4 of this chapter
will elaborate on some possible extensions. Throughout the chapter, we assume σ0 ≡ 0, and
strong MFG solutions are understood in the sense of Definition 4.1.1. Moreover, assumption
A1 is in force throughout the chapter.

In many ways, the proof of existence in this chapter is analogous to but simpler than
the proof of existence in the previous Chapter 7. However, the approach and some of the
notation used in this chapter, where the focus is on strong solutions, is rather different from
the past three Chapters which dealt primarily with the common noise setting.

It will be useful at times to indicate the dependence of various notation on the choice of
data (b, σ, f, g, A). For example, we may write V = V [A] to make it clear which underlying
space A is involved in the definition of the relaxed control space V . This will be useful
because the proof of the main existence theorem is done first for bounded coefficients and
compact control space A, and the general case is proven by approximation. It will be useful
in the latter step to keep track of this dependence. When the choice of data is clear, as it
will be before Section 7.2.2, we will typically omit these parameters from the notation. In
this chapter, we will work with the canonical space

Ξ[A] := V [A]× Cd.

The identity maps on V [A] and Cd are denoted Λ and X, respectively, and the notational
conventions of Chapter 5 are in place. In particular, Λ and X will also denote the projections
from Ξ[A] to V [A] and Cd, respectively. The filtration on the canonical space Ξ[A] is always
FΛ,X = (FΛ,X

t )t∈[0,T ], given by

FΛ,X
t = σ(Xs,Λs : s ≤ t) = σ (Xs,Λ(C) : s ≤ t, C ∈ B([0, t]× A)) .

See Lemma 2.1.14 for some details on the filtration generated by relaxed controls.
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8.1 Controlled martingale problems

The goal of this first section is to simplify and reformulate the definition of strong MFG
solution. For example, we will work with the consistency condition µ = P ◦X−1, rather than
working with the full joint law of (W,Λ, X). Moreover, in the spirit of martingale problems,
by parametrizing our admissible controls merely by joint laws of (X,Λ), we will avoid keeping
track of the driving noise W . Let us begin by describing the controlled martingale problem
framework, and then in Lemma 8.1.5 we will connect it with the original Definition 4.1.1 of
MFG solution.

The controlled state process will be described by way of its infinitesimal generator. Let
C∞0 (Rd) denote the set of infinitely differentiable functions ϕ : Rd → R with compact
support, and let Dϕ and D2ϕ denote the gradient and Hessian of ϕ, respectively. Define the
generator L = L[b, σ, A] on ϕ ∈ C∞0 (Rd) by

Lϕ(t, x, µ, a) = b(t, x, µ, a)>Dϕ(x) +
1

2
Tr
[
σσ>(t, x, µ, a)D2ϕ(x)

]
,

for (t, x, µ, a) ∈ [0, T ]× Rd × Pp(Rd)× A. For ϕ ∈ C∞0 (Rd) and µ ∈ Pp(Cd), define Mµ,ϕ
t =

Mµ,ϕ
t [b, σ, A] : Ξ→ R by

Mµ,ϕ
t (q, x) := ϕ(xt)−

∫
[0,t]×A

q(ds, da)Lϕ(s, xs, µs, a).

Define the objective functional Γµ = Γµ[f, g, A] : Ξ→ R by

Γµ(q, x) := g(xT , µT ) +

∫
[0,T ]×A

q(dt, da)f(t, xt, µt, a).

Definition 8.1.1. For a measure µ ∈ Pp(Cd), let R[b, σ, A](µ) denote the set of P ∈ P(Ξ)
satisfying the following:

1. P ◦X−1
0 = λ

2. EP
∫ T

0

∫
A
|a|pΛt(da)dt <∞.

3. For each ϕ ∈ C∞0 (Rd), the process Mµ,ϕ = (Mµ,ϕ
t )t∈[0,T ] is a P -martingale.

As before, we abbreviate R[b, σ, A](µ) to R(µ) when the data is clear; this is the set of
admissible joint laws of control-state pairs (Λ, X). Define J = J [f, g, A] : Pp(Cd)×Pp(Ξ)→
R ∪ {−∞} and R∗ = R∗[b, σ, f, g, A] : Pp(Cd)→ 2P(Ξ) by

J(µ, P ) :=

∫
Ξ

Γµ dP,

R∗(µ) := arg max
P∈R(µ)

J(µ, P ).

Note that when µ ∈ Pp(Cd) and P ∈ Pp(Ξ), the upper bounds on f and g of assumption A1.5
ensure that the positive part of Γµ is P -integrable. Hence, J is well-defined. Using the growth
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assumptions A1.4 on the coefficients (b, σ), Lemma 8.2.3 below shows that R(µ) ⊂ Pp(Ξ)
for each µ ∈ Pp(Cd), so that R∗(µ) is also well-defined. A priori, R∗(µ) may be empty.

Definition 8.1.2. We say P ∈ Pp(Ξ) is a relaxed mean field game (MFG) solution if
P ∈ R∗(P ◦ X−1). We may also refer to the measure P ◦ X−1 on Cd itself as a relaxed
MFG solution. In other words, a relaxed MFG solution can be seen as a fixed point of the
set-valued map

Pp(Cd) 3 µ 7→
{
P ◦X−1 : P ∈ R∗(µ)

}
∈ 2P

p(Cd).

We say a measure P ∈ P(Ξ) corresponds to a strict control if its V-marginal is concentrated
on the set of strict controls; that is, there exists an FΛ,X-progressively measurable A-valued
process αt on Ξ such that P (Λ = dtδαt) = 1. On the other hand, P corresponds to a relaxed
Markovian control if there exists a measurable function q̂ : [0, T ] × Rd → P(A) such that
P (Λ = dtq̂(t,Xt)(da)) = 1. Finally, P corresponds to a strict Markovian control if there
exists a measurable function α̂ : [0, T ] × Rd → A such that P (Λ = dtδα̂(t,Xt)(da)) = 1. If
a relaxed MFG solution P corresponds to a relaxed Markovian (resp. strict Markovian)
control, then we say P is a relaxed Markovian MFG soluiton (resp. strict Markovian MFG
solution).

Remark 8.1.3. In fact, the existence theorem for relaxed MFG solutions, Theorem 8.1.6,
can be extended to include more general objective structures, such as risk-sensitive or mean-
variance objectives. See Remark 8.2.7. For the sake of simplicity, we stick with the more
standard running-terminal objective structure.

It is sometimes more convenient to represent R(µ) in terms of stochastic differential
equations. To do this in general with control in the volatility requires some use of martingale
measures. The few facts about martingale measures we need (namely their stochastic calculus
and martingale problems) are summarized in Appendix A.4, the content of which is borrowed
from the paper of El Karoui and Méléard [74] and the monograph of Walsh [108]. If one is
willing to assume σ is uncontrolled, then there is no need for martingale measures, and one
may replace N(da, dt) with dWt in the following proposition. The following proposition is
an immediate consequence of Theorem A.4.3, which is itself quoted from Theorem IV-2 of
[74].

Proposition 8.1.4. For µ ∈ Pp(Cd), R(µ) is precisely the set of laws P ′ ◦ (Λ, X)−1, where:

1. (Ω′, (F ′t)t∈[0,T ], P
′) is a filtered probability space supporting a d-dimensional adapted

process X as well as m continuous orthogonal martingale measures N = (N1, . . . , Nm)
on A, each with intensity Λt(da)dt.

2. P ′ ◦X−1
0 = λ.

3. EP ′
∫ T

0

∫
A
|a|pΛt(da)dt <∞.

4. The state equation holds:

dXt =

∫
A

b(t,Xt, µt, a)Λt(da)dt+

∫
A

σ(t,Xt, µt, a)N(da, dt). (8.1)
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Similarly, the subset of R(µ) corresponding to strict controls is the set of laws P ′ ◦
(dtδαt(da), X)−1,

1’. (Ω′, (F ′t)t∈[0,T ], P
′) is a filtered probability space supporting a d-dimensional adapted pro-

cess X, an progressively measurable A-valued process α, and a m-dimensional Wiener
process W .

2’. P ′ ◦X−1
0 = λ.

3’. EP ′
∫ T

0
|αt|pdt <∞.

4’. The state equation holds:

dXt = b(t,Xt, µt, αt)dt+ σ(t,Xt, µt, αt)dWt. (8.2)

It is worth noting that on any filtered probability space satisfying (1-3) (resp. (1’-3’)),
of Proposition 8.1.4, the Lipschitz and growth assumptions of A1 ensure that there exists a
unique strong solution of (8.1) (resp. (8.2)).

Lemma 8.1.5. Suppose P ∈ Pp(Ξ) is a relaxed MFG solution corresponding to a strict
control. Then there exists a strong MFG solution (without common noise) with strict control

(Ω̃, (F̃t)t∈[0,T ], P̃ ,W, µ̃,Λ, X) such that P̃ ◦ (Λ, X)−1 = P̃ . Conversely, given any strong MFG

solution with strict control (Ω̃, (F̃t)t∈[0,T ], P̃ ,W, µ̃,Λ, X), the law P̃ ◦ (Λ, X)−1 is a relaxed
MFG solution with strict control.

Proof. Note that the compatibility requirement (i.e., the conditional independence) required
in point (3) of Definition 4.1.1 is vacuous when the measure µ is deterministic, i.e. we are
dealing with strong solutions. The proof of the converse is quite straightforward. For the
first statement, let P be a relaxed MFG solution with strict control, and apply Proposition
8.1.4 to find a filtered probability space (Ω̃, (F̃t)t∈[0,T ], P̃ ) supporting (W,Λ, X) satisfying
properties (1’-4’) of Proposition 8.1.4. Now set

µ̃ = P̃ ◦ (W,dtδαt(da), X)−1.

Then, since P is a relaxed MFG solution, we have

µ̃x = P ◦X−1 = µ.

Thus the state equation in point (4) of Definition 4.1.1 holds, and the rest of the points of

the definition are easy to check by transferring laws from Ω̃ to the canonical space Ξ.

With Lemma 8.1.5 in mind, existence for strong MFG solutions follows from existence
of relaxed MFG solutions. The following two theorems are the key results of this chapter,
and the main existence Theorem 4.6.1 follows immediately from Corollary 8.1.8. The rest of
this section contains the proof of Theorem 8.1.7, while Sections 8.2 and 7.2.2 are devoted to
proving Theorem 8.1.6.

Theorem 8.1.6. Under assumption A1, there exists a relaxed MFG solution.

151



Theorem 8.1.7. Suppose A1 holds. Let µ ∈ Pp(Cd) and P ∈ R(µ). Then there exist a
measurable function q̂ : [0, T ]× Rd → P(A) and P0 ∈ R(µ) such that:

1. P0(Λ = dtq̂(t,Xt)(da)) = 1.

2. J(µ, P0) ≥ J(µ, P ).

3. P0 ◦X−1
t = P ◦X−1

t for all t ∈ [0, T ].

If also (Convex) holds, we can choose q̂ of the form q̂(t, x) = δα̂(t,x), for some measurable
function α̂ : [0, T ]× Rd → A.

In words, Theorem 8.1.7 says that for any control (1) there exists a Markovian control
(2) producing a greater reward (3) without altering the marginal distributions of the state
process. When (Convex) holds, the new Markovian control can also be taken to be strict.

Corollary 8.1.8. Under assumption A1, there exists a relaxed Markovian MFG solution.
Under assumptions A1 and (Convex), there exists a strict Markovian MFG solution.

Proof. Let P be a relaxed MFG solution. Let P0 be as in Theorem 8.1.7. Since P ∈ R∗(µ)
and J(µ, P0) ≥ J(µ, P ), we have P0 ∈ R∗(µ). Let µ0 := P0 ◦X−1. Then µ0

t = P0 ◦X−1
t =

P ◦ X−1
t = µt for all t ∈ [0, T ], and it follows that R(µ) = R(µ0), J(µ0, ·) ≡ J(µ, ·), and

R∗(µ) = R∗(µ0). Thus P0 ∈ R∗(µ0).

Proof of Theorem 8.1.7. As in [75, Theorem 2.5(a)], we may find m̄ and a measurable func-
tion σ̄ : [0, T ]×Rd×Pp(Rd)×P(A)→ Rd×m̄ such that σ̄(t, x, µ, q) is continuous in (x, µ, q)
for each t,

σ̄σ̄>(t, x, µ, q) =

∫
A

q(da)σσ>(t, x, µ, a),

and σ̄(t, x, µ, δa) = σ(t, x, µ, a) for each (t, x, µ, a); moreover, we may find a filtered proba-
bility space (Ω1, (F1

t )t∈[0,T ], Q1) supporting a m̄-dimensional Wiener process W , a Rd-valued
adapted process X1, and a progressively measurable P(A)-valued process Λt such that

dX1
t =

∫
A

b(t,X1
t , µt, a)Λt(da)dt+ σ̄(t,X1

t , µt,Λt)dWt, and

P = Q1 ◦ (dtΛt(da), X1)−1. (8.3)

We claim that there exists a (jointly) measurable function q̂ : [0, T ]×Rd → P(A) such that

q̂(t,X1
t ) = EQ1

[
Λt|X1

t

]
, Q1 − a.s., a.e. t ∈ [0, T ].

More precisely, we mean that for each bounded measurable function ϕ : [0, T ]×Rd×A→ R,
it holds Q1-almost surely for a.e. t ∈ [0, T ] that∫

A

ϕ(t,Xt, a) q̂(t,X1
t )(da) = EQ1

[∫
A

ϕ(t,X1
t , a) Λt(da)

∣∣∣∣X1
t

]
. (8.4)
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To see this, define a probability measure η on [0, T ]× Rd × A by

η(C) :=
1

T
EQ1

[∫ T

0

∫
A

1C(t,X1
t , a)Λt(da)dt

]
.

Construct q̂ by disintegration by writing η(dt, dx, da) = η1,2(dt, dx)[q̂(t, x)](da), where η1,2

denotes the [0, T ] × Rd-marginal of η and q̂ : [0, T ] × Rd → P(A) is measurable. Then, for
each bounded measurable h : [0, T ]× Rd → R,

EQ1

[∫ T

0

h(t,X1
t )

∫
A

ϕ(t,Xt, a)[q̂(t,X1
t )](da)dt

]
= T

∫
[0,T ]×Rd

h(t, x)

∫
A

ϕ(t, x, a) [q̂(t, x)](da)η1,2(dt, dx)

= T

∫
[0,T ]×Rd×A

h(t, x)ϕ(t, x, a)η(dt, dx, da)

= EQ1

[∫ T

0

h(t,X1
t )

∫
A

ϕ(t,X1
t , a) Λt(da)dt

]
.

This is enough to establish (8.4), thanks to [23, Lemma 5.2].
With q̂ in hand, note that∫

A

q̂(t,X1
t )(da)b(t,X1

t , µt, a) = EQ1

[∫
A

Λt(da)b(t,X1
t , µt, a)

∣∣∣∣X1
t

]
,

and

σ̄σ̄>(t,X1
t , µt, q̂(t,X

1
t )) =

∫
A

q̂(t,X1
t )(da)σσ>(t,X1

t , µt, a)

= EQ1

[∫
A

Λt(da)σσ>(t,X1
t , µt, a)

∣∣∣∣X1
t

]
.

The mimicking result of Brunick and Shreve [23, Corollary 3.7] tells us that there exists
another filtered probability space (Ω2, (F2

t )t∈[0,T ], Q2) supporting a m̄-dimensional Wiener
process W 2 and a Rd-valued adapted process X2 such that

dX2
t =

∫
A

b(t,X2
t , µt, a)q̂(t,X2

t )(da)dt+ σ̄(t,X2
t , µt, q̂(t,X

2
t ))dW 2

t , and (8.5)

Q2 ◦ (X2
t )−1 = Q1 ◦ (X1

t )−1 = P ◦X−1
t , for all t ∈ [0, T ]. (8.6)
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It follows from Itô’s formula that P2 := Q2 ◦ (dtq̂(t,X2
t ), X2)−1 is in R(µ). Finally, compute

J(µ, P2) = EQ2

[∫ T

0

∫
A

f(t,X2
t , µt, a)[q̂(t,X2

t )](da)dt+ g(X2
T , µT )

]
= EQ1

[∫ T

0

∫
A

f(t,X1
t , µt, a)[q̂(t,X1

t )](da)dt+ g(X1
T , µT )

]
= EQ1

[∫ T

0

∫
A

f(t,X1
t , µt, a)Λt(da)dt+ g(X1

T , µT )

]
= J(µ, P ).

The second line follows from Fubini’s theorem and (8.6). The third line follows from Fubini’s
theorem and the tower property of conditional expectations. This completes the proof of
the first part of the theorem; set P0 = P2, and note that we have in fact proven (2) with
equality, not inequality.

Now suppose assumption (Convex) holds. As in [63, Proposition 3.5], K(t, x, µt) is a
closed set for each (t, x). Since K(t, x, µt) is closed and convex with

(
b, σσ>, f

)
(t, x, µt, a) ∈

K(t, x, µt) for each a ∈ A, we have

(
b, σσ>, f

)
(t, x, µt, q̂(t, x)) =

∫
A

[q̂(t, x)](da)
(
b, σσ>, f

)
(t, x, µt, a) ∈ K(t, x, µt),

for each (t, x) ∈ [0, T ] × Rd. Applying the measurable selection result of Proposition 5.4.1
(taking (E, E) to be [0, T ] × Rd with its Borel σ-field), there exist measurable functions
α̂ : [0, T ]× Rd → A and ẑ : [0, T ]× Rd → [0,∞) such that∫

A

q̂(t, x)(da)
(
b, σσ>, f

)
(t, x, µt, a) =

(
b, σσ>, f

)
(t, x, µt, α̂(t, x))− (0, 0, ẑ(t, x)) , (8.7)

for all (t, x) ∈ [0, T ]× Rd. In particular,

b(t, x, µt, α̂(t, x)) =

∫
A

q̂(t, x)(da)b(t, x, µt, a), and

σσ>(t, x, µt, α̂(t, x)) =

∫
A

q̂(t, x)(da)σσ>(t, x, µt, a)

= σ̄σ̄>(t, x, µt, q̂(t, x)) (8.8)

Now define
P0 := Q2 ◦ (dtδα̂(t,X2

t )(da), X2)−1.

Using the equality (8.8) and Itô’s formula, we conclude that P0 is in R(µ). Intuitively, we
are exploiting here the fact that the law of the solution of an SDE does not depend on the
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choice of square root of the volatility matrix. Finally,

J(µ, P0) = EQ2

[∫ T

0

f(t,X2
t , µt, α̂(t,X2

t ))dt+ g(X2
T , µT )

]
≥ EQ2

[∫ T

0

∫
A

f(t,X2
t , µt, a)q̂(t,X2

t )(da)dt+ g(X2
T , µT )

]
= EQ1

[∫ T

0

∫
A

f(t,X1
t , µt, a)q̂(t,X1

t )(da)dt+ g(X1
T , µT )

]
= EQ1

[∫ T

0

∫
A

f(t,X1
t , µt, a)Λt(da)dt+ g(X1

T , µT )

]
= J(µ, P ).

The second line follows from (8.7). The third line comes from Fubini’s theorem and Q2 ◦
(X2

t )−1 = Q1 ◦ (X1
t )−1, t ∈ [0, T ]. The fourth line follows from Fubini’s theorem and the

tower property of conditional expectations. The last step is just (8.3).

Remark 8.1.9. It should be noted that the control produced by Theorem 8.1.7 is called
Markovian because of its form α̂(t,Xt), but it does not necessarily render the state process
X a Markov process. Although the dynamics appear to be Markovian, the process X is
a solution of a potentially ill-posed martingale problem, and it is well-known (see [102,
Chapter 12]) that uniqueness in law is required to guarantee the solution is Markovian. It
is well known that if the volatility σ is uncontrolled and uniformly nondegenerate, then the
martingale problem is indeed well-posed, and thus X is a strong Markov process (a Feller
process, in fact).

8.2 Bounded coefficients

In this section, Theorem 8.1.6 is proven in the case that the coefficients are bounded and the
control space compact. The general case is proven in Section 7.2.2 by a limiting argument.
The general strategy and is the same as the proof of Theorem 3.3.1, existence of solutions
with common noise. No discretization procedure is needed here, and some care is needed
in dealing with the martingale measures that arise because of the controlled volatility, but
otherwise many of the arguments are the same. Again we will make use of assumption B,
which says simply that (b, σ) is bounded and A is compact.

Theorem 8.2.1. Under assumptions A1 and B, there exists a relaxed MFG solution.

Remark 8.2.2. In fact, under assumptions A1 and B, we may take p′ = p = 0 in assumption
A1, and Theorem 8.2.1 is true with an even simpler proof.

The proof of Theorem 8.2.1 is broken up into several lemmas. First, we state yet another
version of a standard estimate.

Lemma 8.2.3. Assume A1 holds, and fix γ ∈ [p, p′]. Then there exists a constant c4 > 0,
depending only on γ, |λ|p′, T , and the constant c1 of A1.4 such that for any µ ∈ Pp(Cd) and
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P ∈ R[b, σ, A](µ) we have

EP‖X‖γT ≤ c4

(
1 +

∫
Cd
‖x|γTµ(dx) + EP

∫ T

0

∫
A

|a|γΛt(da)dt

)
.

In particular, P ∈ Pp(Ω). Moreover, if P ◦X−1 = µ, then we have∫
Cd
‖x‖γTµ(dx) = EP‖X‖γT ≤ c4

(
1 + EP

∫ T

0

∫
A

|a|γΛt(da)dt

)
.

Proof. There is a constant C > 0 (which will change from line to line) such that

|Xt|γ ≤C|X0|γ + C

∫ t

0

ds

∫
A

Λs(da)|b(s,Xs, µs, a)|γ

+ C

∣∣∣∣∫ t

0

∫
A

σ(s,Xs, µs, a)N(da, ds)

∣∣∣∣γ .
The Burkholder-Davis-Gundy inequality and the growth assumptions on b and σ yield

EP‖X‖γt ≤CEP
[
|X0|γ +

∫ t

0

ds

∫
A

Λs(da) sup
0≤u≤s

|b(u,Xu, µu, a)|γ

+

(∫ t

0

ds

∫
A

Λs(da) sup
0≤u≤s

|σ(s,Xs, µs, a)|2
)γ/2]

≤CEP
[
|X0|γ +

∫ t

0

ds

∫
A

Λs(da)cγ1

(
1 + ‖X‖γs +

∫
Cd
‖x‖γsµ(dx) + |a|γ

)

+

(∫ t

0

ds

∫
A

Λs(da)c1

(
1 + ‖X‖pσs +

(∫
Cd
‖x‖psµ(dx)

)pσ/p
+ |a|pσ

))γ/2


≤CEP
[
1 + |X0|γ +

∫ t

0

ds

∫
A

Λs(da)(1 + ‖X‖γs +

∫
Cd
‖x‖γsµ(dx) + |a|γ)

]
We used Jensen’s inequality for the second line to get

(∫
Cd ‖x‖

p
sµ(dx)

)γ/p ≤ ∫Cd ‖x‖γsµ(dx).

If γ ≥ 2, the last line follows from Jensen’s inequality and the inequality |x|pσγ/2 ≤ 1 + |x|γ
for x ∈ R, which holds since pσ ≤ 2. If γ/2 ≤ 1, the last line follows from the inequality
|x|γ/2 ≤ 1 + |x| followed by |x|pσ ≤ 1 + |x|γ, which holds since γ ≥ pσ. The first claim follows
now from Gronwall’s inequality. If P ◦X−1 = µ, then the above becomes∫

Cd
‖x‖γt µ(dx) = EP‖X‖γt

≤ CEP
[
|X|γ0 +

∫ t

0

(
1 + 2

∫
Cd
‖x‖γsµ(dx) +

∫
A

|a|γΛt(da)

)
ds

]
.

The second claim now also follows from Gronwall’s inequality.
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We will need a new tightness result as well, and the proof is deferred to Appendix B.

Proposition 8.2.4. Fix c > 0. Let p, p′, pσ and λ be as in assumption A1, and let A be
a compact metric space. Let Qc ⊂ P(Ξ[A]) be the set of laws P ◦ (Λ, X)−1 of Ξ[A]-valued

random variables (Λ, X) defined on some filtered probability space (Ω̃, (Ft)t∈[0,T ], P ) satisfying
the SDE

dXt =

∫
A

b(t,Xt, a)Λt(da)dt+

∫
A

σ(t,Xt, a)N(da, dt),

where the following hold:

1. N = (N1, . . . , Nm) are continuous orthogonal martingale measures on A with intensity
Λt(da)dt.

2. X is a continuous d-dimensional adapted process with P ◦X−1
0 = λ.

3. σ : [0, T ]× Rd × A→ Rd×d and b : [0, T ]× Rd × A→ Rd are jointly measurable.

4. For each (t, x, a) ∈ [0, T ]× Rd × A,

|b(t, x, a)| ≤ c (1 + |x|+ |a|) ,
|σσ>(t, x, a)| ≤ c (1 + |x|pσ + |a|pσ) .

5. Lastly,

EP
[
|X0|p

′
+

∫ T

0

∫
A

|a|p′Λt(da)dt

]
≤ c.

(That is, we vary over σ, b, and the probability space of definition.) Then Qc is relatively
compact in Pp(Ξ[A]).

The proof of Theorem 8.2.1 is again an application of Kakutani’s fixed point theorem. See
Section 2.3.1 for a statement of this theorem and for the necessary background on set-valued
functions.

Lemma 8.2.5. Under assumptions A1 and B, the range R(Pp(Cd))) := {P ∈ R(µ) : µ ∈
Pp(Cd)} is relatively compact in Pp(Ξ), and the set-valued function R is continuous.

Proof. When A is compact, so is V = V [A], and the topology of Pp(V) is that of weak
convergence. Thus {P ◦ Λ−1 : P ∈ R(Pp(Cd))} is relatively compact in Pp(V). From
Proposition 5.3.2 and boundedness of b and σ it follows that {P ◦ X−1 : P ∈ R(Pp(Cd))}
is relatively compact in Pp(Cd). Thus R(Pp(Cd)) is relatively compact in Pp(Ξ), by Lemma
2.1.8.

To show R is upper hemicontinuous, it suffices show its graph is closed, since its range is
relatively compact. Let µn → µ in Pp(Cd) and P n → P in Pp(Ω) with P n ∈ R(µn). Clearly
P ◦ X−1

0 = limn P
n ◦ X−1

0 = λ. Now fix s < t, ϕ ∈ C∞0 (Rd), and a bounded, continuous,
and FΛ,X

s -measurable function h : Ξ→ R. Note that (µ, q, x) 7→ Mµ,ϕ
t (q, x) is bounded and

continuous by Lemma 2.1.4. Since Mµn,ϕ
t is a P n-martingale for each n,

EP [(Mµ,ϕ
t −Mµ,ϕ

s )h] = lim
n→∞

EPn
[
(Mµn,ϕ

t −Mµn,ϕ
s )h

]
= 0.
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Hence Mµ,ϕ
t is a P -martingale, and so P ∈ R(µ).

To showR is lower hemicontiuous, let µn → µ and P ∈ R(µ). By Proposition 8.1.4, there
exists a filtered probability space (Ω′, (F ′t)t∈[0,T ], P

′) supporting a d-dimensional adapted
process X as well as m orthogonal martingale measures N = (N1, . . . , Nm) on A with
intensity Λt(da)dt, such that P ′ ◦ (Λ, X)−1 = P and the state equation (8.1) holds on Ω′.
The Lipschitz assumption A1.4 ensures that for each n we may strongly solve the SDE

dXn
t =

∫
A

b(t,Xn
t , µ

n
t , a)Λt(da)dt+

∫
A

σ(t,Xn
t , µ

n
t , a)N(da, dt), Xn

0 = X0.

Let γ ≥ 2. A standard estimate using the Lipschitz assumption and the Burkholder-Davis-
Gundy inequality yields a constant C > 0 independent of n (which may change from line to
line) such that

EP ′‖Xn −X‖γt ≤ CEP ′
∫ t

0

∫
A

|b(s,Xn
s , µ

n
s , a)− b(s,Xs, µs, a)|γΛs(da)ds

+ CEP ′
∫ t

0

∫
A

|σ(s,Xn
s , µ

n
s , a)− σ(s,Xs, µs, a)|γ Λs(da)ds

≤ CEP ′
∫ t

0

‖Xn −X‖γsds

+ CEP ′
∫ t

0

∫
A

|b(s,Xs, µ
n
s , a)− b(s,Xs, µs, a)|γΛs(da)ds

+ CEP ′
∫ t

0

∫
A

|σ(s,Xs, µ
n
s , a)− σ(s,Xs, µs, a)|γΛs(da)ds.

Since b and σ are bounded and continuous in µ, Gronwall’s inequality and the dominated
convergence theorem yield EP ′‖Xn −X‖γT → 0. Let P n := P ′ ◦ (Λ, Xn)−1, and check using
Itô’s formula that P n ∈ R(µn). Choosing γ ≥ p implies P n → P in Pp(Ξ), and the proof is
complete.

Lemma 8.2.6. Suppose assumption A1 holds. Then J is upper semicontinuous. If also B
holds, then J is continuous.

Proof. It follows from Corollary 2.1.10 and the upper bounds of f and g of assumption A1.5
that Pp(Cd) × V × Cd 3 (µ, q, x) 7→ Γµ(q, x) is upper semicontinuous. Hence, J is upper
semicontinuous. When A is compact, then Γ is continuous by Lemma 2.1.9, and so J is
continuous.

Proof of Theorem 8.2.1. Since R is continuous and has nonempty compact values (Lemma
8.2.5), and since J is continuous (Lemma 8.2.6), it follows from Berge’s theorem 2.3.2 that
R∗ is upper hemicontinuous. It is clear that R(µ) is convex for each µ, and it follows from
linearity of P 7→ J(µ, P ) that R∗(µ) is convex for each µ. The map Pp(Ξ) 3 P 7→ P ◦X−1 ∈
Pp(Cd) is linear and continuous, and it follows that the set-valued map

Pp(Cd) 3 µ 7→ F (µ) :=
{
P ◦X−1 : P ∈ R∗(µ)

}
⊂ Pp(Cd)
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is upper hemicontinuous and has nonempty compact convex values. To apply a fixed point
theorem, we must place the range F (Pp(Cd)) inside of a convex compact subset of a nice
topological vector space. To this end, define

M := sup

{∫
Cd
‖x‖p

′

T µ(dx) : µ ∈ F (Pp(Cd))
}
<∞.

By assumption, b and σ are bounded, so for each ϕ ∈ C∞0 (Rd) we may find Cϕ > 0 such that

|Lϕ(t, x, µ, a)| ≤ Cϕ,

for all (t, x, µ, a). Moreover, Cϕ depends only on Dϕ and D2ϕ. Let Q denote the set of
probability measures P on Cd satisfying the following:

1. P ◦X−1
0 = λ,

2. EP‖X‖p
′

T ≤M ,

3. For each nonnegative ϕ ∈ C∞0 (Rd), the process ϕ(Xt) + Cϕt is a P -submartingale.

It is clear both that Q is convex and that F (Pp(Cd)) is contained in Q. A well known
tightness criterion of Stroock and Varadhan [102, Theorem 1.4.6] implies that Q is tight,
and the p′-moment bound (2) ensures that it is relatively compact in Pp(Cd). In fact, it is
straightforward to check that Q is closed in Pp(Cd), and thus it is compact.

Now note thatQ is a subset of the spaceM(Cd) of bounded signed measures on Cd. When
endowed with the topology τw of weak convergence, i.e. the topology τw = σ(M(Cd), Cb(Cd))
induced by bounded continuous functions,M(Cd) is a locally convex Hausdorff space. Since
Q is relatively compact in Pp(Cd), the p-Wasserstein metric dCd,p on Pp(Cd) and the topology
τw onM(Cd) both induce the same topology on Q. Hence, Q is τw-compact. The set-valued
function F maps Q into itself, it is upper hemicontinuous with respect to τw (equivalently,
its graph is closed), and its values are nonempty, compact, and convex. Existence of a fixed
point now follows from Kakutani’s theorem 2.3.1.

Remark 8.2.7. If one is not interested in Markovian solutions, it is evident from the proofs of
this section that a relaxed existence result holds with much more general objective structures,
as indicated in Remark 8.1.3. In particular, we only used the fact that J : Pp(Cd)×Pp(Ξ)→
R is continuous and concave in its second argument.

8.3 Unbounded coefficients

This section is devoted to the proof of Theorem 8.1.6, without assuming that b, σ, and A are
bounded. The truncation argument is very similar to that of Section 7.2.2, but the details
of the proof are quite different since we are working here with martingale problems. Assume
throughout this section that assumption A1 holds. Naturally, the idea is to approximate the
data (b, σ, A) with truncated versions which satisfy B. Let bn and σn denote the (pointwise)
projections of b and σ into the ball centered at the origin with radius n in Rd and Rd×m,
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respectively. Let An denote the intersection of A with the ball centered at the origin with
radius rn, where

rn := [n/(2c1)]1/2. (8.9)

(Recall that the constant c1 comes from assumption A1.2.) For sufficiently large n0, An
is nonempty and compact for all n ≥ n0, and thus we will always assume n ≥ n0 in what
follows. Note that the truncated data (bn, σn, f, g, An) satisfy B as well as A1. Moreover,
A1.4 and A1.5 hold with the same constants c1, c2, c3.

By Theorem 8.2.1 there exists for each n a corresponding MFG solution, which is techni-
cally a measure on Ξ[An] = V [An]×Cd but may naturally be viewed as a measure on Ξ = Ξ[A],
since An ⊂ A. To clarify: Since An ⊂ A there is a natural embedding V [An] ↪→ V [A]. Define
Rn(µ) to be the set of P ∈ P(Ξ[A]) satisfying the following:

1. P (Λ([0, T ]× Acn) = 0) = 1.

2. P ◦X−1
0 = λ.

3. Mµ,ϕ[bn, σn, A] is a P -martingale for each ϕ ∈ C∞0 (Rd).

Define
R∗n(µ) := arg max

P ′∈Rn(µ)
Jµ[f, g, A](P )

Then it is clear that Rn(µ) (resp. R∗n(µ)) is exactly the image of the set R[bn, σn, f, g, An](µ)
(resp. R∗[bn, σn, f, g, An](µ)) under the natural embedding P(Ξ[An]) ↪→ P(Ξ[A]). Hence-
forth, we identify these sets. By Theorem 8.2.1, there exist corresponding MFG solutions
which may be interpreted as µn ∈ Pp(Cd) and Pn ∈ R∗n(µn) with µn = Pn ◦X−1.

8.3.1 Relative compactness of the approximations

The strategy of the proof is to show that Pn are relatively compact and then character-
ize the limit points as MFG solutions for the original data (b, σ, f, g, A, λ). The following
Lemma 8.3.1 makes crucial use of the upper bound on f of assumption A1.5 along with the
assumption p′ > p, in order to establish some uniform integrability of the controls.

Lemma 8.3.1. The measures Pn are relatively compact in Pp(Ω[A]). Moreover,

sup
n

EPn
∫ T

0

∫
A

|a|p′Λt(da)dt <∞ (8.10)

sup
n

EPn‖X‖p
′

T = sup
n

∫
Cd
‖x‖p

′

T µ
n(dx) <∞. (8.11)

Proof. Noting that the coefficients (bn, σn) satisfy A1 with the same constants (independent
of n), the second conclusion of Lemma 8.2.3 implies∫

Cd
‖x‖pTµ

n(dx) = EPn‖X‖pT ≤ c4

(
1 + EPn

∫ T

0

∫
A

|a|pΛt(da)dt

)
. (8.12)
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Fix a0 ∈ An0 . For n ≥ n0, let Qn denote the unique element of Rn(µn) satisfying Qn(Λt =
δa0 for a.e. t) = 1. That is, Qn is the law of the solution of the state equation arising from
the constant control equal to a0. The first part of Lemma 8.2.3 implies

EQn‖X‖pT ≤ c4

(
1 +

∫
Cd
‖x‖pTµ

n(dx) + T |a0|p
)
≤ C0

(
1 + EPn

∫ T

0

∫
A

|a|pΛt(da)dt

)
,

(8.13)

where the constant C0 > 0 depends only on c4, T , p, and a0. Use the optimality of Pn, the
lower bounds on f and g, and then (8.12) and (8.13) to get

J(µn, Pn) ≥ J(µn, Qn) ≥ −c2(T + 1)

(
1 + EQn‖X‖pT +

∫
Cd
‖x‖pTµ

n(dx) + |a0|p
′
)

≥ −C1

(
1 + EPn

∫ T

0

∫
A

|a|pΛt(da)dt

)
, (8.14)

where C1 > 0 depends only on c2, c4, T , p, p′, and a0. On the other hand, we may use the
upper bounds on f and g along with (8.12) to get

J(µn, Pn)

≤ c2(T + 1)

(
1 + EPn‖X‖pT +

∫
Cd
‖x‖pTµ

n(dx)

)
− c3EPn

∫ T

0

∫
A

|a|p′Λt(da)dt

≤ C2

(
1 + EPn

∫ T

0

∫
A

|a|pΛt(da)dt

)
− c3EPn

∫ T

0

|
∫
A

|a|p′Λt(da)dt, (8.15)

where C2 > 0 depends only on c2, c3, c4, T , p, and a0. Combining (8.14) and (8.15) and
rearranging, we find two constants, κ1 ∈ R and κ2 > 0, such that

EPn
∫ T

0

∫
A

(|a|p′ + κ1|a|p)Λt(da)dt ≤ κ2.

(Note that EPn
∫ T

0
|Λt|pdt <∞ for each n.) Crucially, these constants are independent of n.

Since p′ > p, it holds for all sufficiently large x that xp
′
+ κ1x

p ≥ xp
′
/2, and (8.10) follows.

Combined with the second conclusion of Lemma 8.2.3, this implies (8.11). Finally, relative
compactness of Pn is proven by an application of Aldous’ criterion, detailed in Proposition
8.2.4.

8.3.2 Limiting state process dynamics

Now that we know Pn are relatively compact, we may fix P ∈ Pp(Ξ[A]) and a subsequence nk
such that Pnk → P in Pp(Ξ[A]). Define µ := P ◦X−1, and note that µnk → µ in Pp(Cd). The
next result provides a first description of the limit points of Pn and is very much analogous
to Lemma 7.2.5, used in the proof of existence with common noise.

161



Lemma 8.3.2. The limit point P satisfies P ∈ R[b, σ, A](µ), µ = P ◦X−1, and also

EP
∫ T

0

∫
A

|a|p′Λt(da)dt <∞.

Proof. It is immediate that µ = limk µ
nk = limk Pnk ◦ X−1 = P ◦ X−1, and in particular

P ◦X−1
0 = λ. Fatou’s lemma and (7.10) imply

EP
∫ T

0

∫
A

|a|p′Λt(da)dt ≤ lim inf
k→∞

EPnk
∫ T

0

∫
A

|a|p′Λt(da)dt <∞.

We must only prove P ∈ R[b, σ, A](µ). Fix ϕ ∈ C∞0 (Rd), and note that Mµn,ϕ
t [bn, σn, An] is

a Pn martingale for each n. We must show that Mµ,ϕ
t [b, σ, A] is a P -martingale.

Note thatMµn,ϕ
t [bn, σn, A] may be identified withMµn,ϕ

t [bn, σn, An], since Pn-almost surely
Λ is concentrated on [0, T ]×An. Letting Ln denote the generator associated to (bn, σn), we
have

Mµn,ϕ
t [bn, σn, A](q, x)−Mµn,ϕ

t [b, σ, A](q, x)

=

∫ t

0

ds

∫
A

Λs(da) (Lnϕ(s, xs, µ
n
s , a)− Lϕ(s, xs, µ

n
s , a))

=

∫ t

0

ds

∫
A

Λs(da) (bn(s, xs, µ
n
s , a)− b(s, xs, µns , a))>Dϕ(xs)

+
1

2
Tr
[(
σnσ

>
n (s, xs, µ

n
s , a)− σσ>(s, xs, µ

n
s , a)

)
D2ϕ(xs)

]
. (8.16)

By construction, bn(s, xs, µ
n
s , a) 6= b(s, xs, µ

n
s , a) implies |b(s, xs, µns , a)| > n, which by as-

sumption A1.4 implies

n < c1

(
1 + |xs|+

(∫
Rd
|z|pµns (dz)

)1/p

+ |a|

)
. (8.17)

Moreover, |bn(s, xs, µ
n
s , a) − b(s, xs, µns , a)| is bounded above by twice the right-hand side of

(8.17). For γ ∈ (0, p′], denote

Zγ := 1 + ‖X‖γT +

(
sup
n

∫
Cd
‖z‖pTµ

n(dz)

)γ/p
,

noting that the supremum is finite by Lemma 8.3.1. Let C > 0 bound the first two derivatives
of ϕ. Because of the definition (8.9) of rn, for n ≥ 2c1 and γ ∈ [0, 2] we have

Λ{(t, a) : 2c1|a|γ > n} ≤ Λ{(t, a) : 2c1|a|2 > n} = 0, Pn − a.s.
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Hence ∫ t

0

ds

∫
A

Λs(da)
∣∣∣(bn(s,Xs, µ

n
s , a)− b(s,Xs, µ

n
s , a))>Dϕ(Xs)

∣∣∣
≤ C

∫ t

0

ds

∫
A

Λs(da)2c1(Z1 + |a|)1{c1(Z1+|a|)>n}

≤ 2Cc1

∫ t

0

ds

∫
A

Λs(da) (Z1 + |a|)
(
1{2c1Z1>n} + 1{2c1|a|>n}

)
≤ 2Cc1

(
tZ1 +

∫ t

0

|Λs|ds
)

1{2c1Z1>n}, Pn − a.s.

We have a similar bound for the σnσ
>
n − σσ> term:∫ t

0

ds

∫
A

Λs(da)
∣∣Tr
[(
σnσ

>
n (s,Xs, µ

n
s , a)− σσ>(s,Xs, µ

n
s , a)

)
D2ϕ(xs)

]∣∣
≤ C

∫ t

0

ds

∫
A

Λs(da)2c1(Zpσ + |a|pσ)1{c1(Zpσ+|a|pσ )>n}

≤ 2Cc1

(
tZpσ +

∫ t

0

|Λs|pσds
)

1{2c1Zpσ>n}, Pn − a.s.

Note that (8.11) implies

sup
n

∫
Cd
‖x‖pTµ

n(dx) <∞.

Returning to (8.16), it holds Pn-a.s. that∣∣∣Mµn,ϕ
t [bn, σn, A]−Mµn,ϕ

t [b, σ, A]
∣∣∣ ≤ 2Cc1

[(
TZ1 +

∫ T

0

∫
A

|a|Λs(da)ds

)
1{2c1Z1>n}

+

(
TZpσ +

∫ T

0

∫
A

|a|pσΛsds

)
1{2c1Zpσ>n}

]
for all t ∈ [0, T ]. Since 1 ∨ pσ ≤ p < p′, and since Lemma 8.3.1 yields

sup
n

EPn
[
‖X‖p

′

T +

∫ T

0

∫
A

|a|p′Λt(da)dt

]
<∞,

we have

lim
n→∞

EPn
∣∣∣Mµn,ϕ

t [bn, σn, A]−Mµn,ϕ
t [b, σ, A]

∣∣∣ = 0. (8.18)

On the other hand, the map

Pp(Cd)× Ξ[A] 3 (ν, q, x) 7→Mν,ϕ
t [b, σ, A](q, x) ∈ R

is jointly continuous for each t, by Lemma 2.1.9. Fix s < t and a bounded, continuous, and
FΛ,X
s -measurable h : Ξ[A] → R. Then, since Pnk → P in Pp(Ξ[A]), and since Mµ,ϕ grows
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with order 1 ∨ pσ ≤ p, we have (by Proposition 2.1.7)

lim
k→∞

EPnk
[(
Mµnk ,ϕ

t [b, σ, A]−Mµnk ,ϕ
s [b, σ, A]

)
h
]

= EP [(Mµ,ϕ
t [b, σ, A]−Mµ,ϕ

s [b, σ, A])h] . (8.19)

Since Mµn,ϕ
t [bn, σn, A] is a Pn-martingale, combining (8.18) and (8.19) yields

0 = lim
k→∞

EPnk
[(
Mµnk ,ϕ

t [bnk , σnk , A]−Mµnk ,ϕ
s [bnk , σnk , A]

)
h
]

= EP [(Mµ,ϕ
t [b, σ, A]−Mµ,ϕ

s [b, σ, A])h] .

Hence Mµ,ϕ
t [b, σ, A] is a P -martingale, and the proof is complete.

8.3.3 Optimality of the limiting control

It remains to show that the limit point P is optimal, or P ∈ R∗[b, σ, f, g, A](µ). The crucial
tool is the following lemma, of course plays the same role here as Lemma 5.3.8 did in the
proof of existence with common noise.

Lemma 8.3.3. For each P ′ ∈ R[b, σ, A](µ) such that J [f, g, A](µ, P ′) > −∞, there exists
P ′n ∈ Rn(µn) such that

J [f, g, A](µ, P ′) = lim
k→∞

J [fnk , gnk , Ank ](µ
nk , P ′nk). (8.20)

Proof. First, the upper bounds of f and g imply

J [f, g, A](µ, P ′) ≤c2(T + 1)

(
1 + EP ′‖X‖pT +

∫
Cd
‖x‖pTµ(dx)

)
− c3EP

′
∫ T

0

∫
A

|a|p′Λt(da)dt.

Since
∫
Cd ‖x‖

p
Tµ(dx) <∞ and EP ′‖X‖pT <∞, the assumption J [f, g, A](µ, P ′) > −∞ implies

EP ′
∫ T

0

∫
A

|a|p′Λt(da)dt <∞. (8.21)

By Proposition 8.1.4, we may find a filtered probability space (Ω′, (F ′t)t∈[0,T ], Q
′) supporting

a d-dimensional adapted process X as well as m orthogonal martingale measures N =
(N1, . . . , Nm) on A with intensity Λt(da)dt, such that Q′ ◦ (Λ, X)−1 = P ′ and the state
equation (8.1) holds. Find a measurable map ιn : A → A such that ιn(A) ⊂ An and
ιn(a) = a for all a ∈ An, so that ιn converges pointwise to the identity. Let Xn denote the
unique strong solution of

dXn
t =

∫
A

bn(t,Xn
t , µ

n
t , ιn(a))Λt(da)dt+

∫
A

σn(t,Xn
t , µ

n
t , ιn(a))N(da, dt), Xn

0 = X0.
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Let Λn denote the image of Λ under the map (t, a) 7→ (t, ιn(a)). Then Q′(Λn ∈ V [An]) = 1,
and it is easy to check that P ′n := Q′ ◦ (Λn, Xn)−1 is in Rn(µn). Note that Λn → Λ holds
Q′-a.s., and we will show also that EQ′‖Xnk −X‖pT → 0. To this end, note that

Xn
t −Xt =

∫
[0,t]×A

bn(s,Xn
s , µ

n
s , ιn(a))− bn(s,Xs, µ

n
s , ιn(a))Λs(da)ds

+

∫
[0,t]×A

bn(s,Xs, µ
n
s , ιn(a))− b(s,Xs, µs, a)Λs(da)ds

+

∫
[0,t]×A

σn(s,Xn
s , µ

n
s , ιn(a))− σn(s,Xs, µ

n
s , ιn(a))N(da, ds)

+

∫
[0,t]×A

σn(s,Xs, µ
n
s , ιn(a))− σ(s,Xs, µs, a)N(da, ds).

Use Jensen’s inequality, the Lipschitz estimate, and the Burkholder-Davis-Gundy inequality
to find a constant C > 0, independent of n, such that

EQ′‖Xn −X‖pt ≤ In + IIn + IIIn + IVn,

where

In := CEQ′
∫ t

0

‖Xn −X‖psds

IIn := CEQ′
∫

[0,t]×A
|bn(s,Xs, µ

n
s , ιn(a))− b(s,Xs, µs, a)|p Λs(da)ds

IIIn := CEQ′
[(∫ t

0

‖Xn −X‖2
sds

)p/2]

IVn := CEQ′
[(∫

[0,t]×A
|σn(s,Xs, µ

n
s , ιn(a))− σ(s,Xs, µs, a)|2 Λs(da)ds

)p/2]
.

Recall that p ≥ 1, by assumption A1.5. If p ≥ 2, note that IIIn ≤ CIn, for some new
constant C. On the other hand, if p ∈ [1, 2), we use Young’s inequality in the form of
|xy| ≤ εq|x|q/q + ε−q

′ |y|q′/q′, where q = 2/(2− p), q′ = 2/p, and ε > 0. We deduce that

EQ′
[(∫ t

0

‖Xn −X‖2
sds

)p/2]

≤ EQ′
[
‖Xn −X‖(2−p)p/2

t

(∫ t

0

‖Xn −X‖psds
)p/2]

≤ ε
2

2−p

(
1− p

2

)
EQ′‖Xn −X‖pt +

p

2εp/2
EQ′

∫ t

0

‖Xn −X‖psds.
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By choosing ε sufficiently small, we deduce

EQ′‖Xn −X‖pt ≤ C(In + IIn + IVn),

for a new constant C. Now, once we show that IInk and IVnk tend to zero, we may conclude
from Gronwall’s inequality that EQ′‖Xnk −X‖pT → 0. Since |ιn(a)| ≤ |a| for all a ∈ A, there
is another constant (again called) C such that∫ t

0

ds

∫
A

Λs(da) |bn(t,Xt, µ
n
t , ιn(a))− b(t,Xt, µt, a)|p

≤ C

(
1 + ‖X‖pT +

∫
Cd
‖x‖pT (µn + µ)(dx) +

∫ T

0

∫
A

|a|pΛt(da)dt

)
.

A similar bound is available for the term involving σ, using pσ ≤ 2 and the same argument as
in the proof of Lemma 8.2.3. Lemma 8.2.3 implies that the right side above is Q′-integrable,
and recall from (8.11) that supn

∫
Cd ‖x‖

p
Tµ

n(dx) <∞. Since µnk → µ and ιn(a)→ a for each
a ∈ A, the dominated convergence theorem shows that IInk and IVnk tend to zero.

With the convergence EQ′‖Xnk −X‖pT → 0 now established, the proof of the Lemma is
nearly complete. Note that ‖Xnk‖pT are uniformly Q′-integrable, and∫ T

0

∫
A

|a|p′Λn
t (da)dt ≤

∫ T

0

∫
A

|a|p′Λt(da)dt,

and the latter is Q′-integrable, as in (8.21). The growth assumption A1.5 and (8.11) then
imply that the random variables g(Xn

T , µ
n
T ) and∫ T

0

dt

∫
A

Λn
t (da)f(t,Xn

t , µ
n
t , a) =

∫ T

0

dt

∫
A

Λt(da)fn(t,Xn
t , µ

n
t , ιn(a))

are uniformly Q′-integrable. Since µnk → µ and ιn(a) → a, continuity of f and g and the
convergence of Xnk imply that

g(Xnk
T , µnkT )− g(XT , µT ) +

∫ T

0

dt

∫
A

Λt(da) (f(t,Xnk
t , µnkt , ιnk(a))− f(t,Xt, µt, a))→ 0

in Q′-measure. Now (8.20) follows from the dominated convergence theorem, after a trans-
formation to the space (Ω′, (F ′t)t∈[0,T ], Q

′):

J [f, g, A](µ, P ′) = EQ′
[
g(XT , µT ) +

∫ T

0

dt

∫
A

Λt(da)f(t,Xt, µt, a)

]
= lim

k→∞
EQ′

[
g(Xnk

T , µnkT ) +

∫ T

0

dt

∫
A

Λt(da)f(t,Xnk
t , µnkt , ιnk(a))

]
= lim

k→∞
J [f, g, Ank ](µ

nk , P ′nk).
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Proof of Theorem 8.1.6. Fix P ′ ∈ R[b, σ, A]. Find P ′n as in Lemma 8.3.3. Optimality of Pn
for each n imlies that

J [fn, gn, An](µn, P ′n) ≤ J [fn, gn, An](µn, Pn).

Use Lemma 8.3.3 and the upper semicontinuity of J (see Lemma 8.2.6) to get

J [f, g, A](µ, P ) ≥ lim sup
k→∞

J [fnk , gnk , Ank ](µ
nk , Pnk)

≥ lim
k→∞

J [fnk , gnk , Ank ](µ
nk , P ′nk)

= J [f, g, A](µ, P ′).

Since P ′ was arbitrary, this implies that P is optimal, or P ∈ R∗[b, σ, f, g, A](µ). Since also
P = P ◦X−1 by Lemma 8.3.2, it follows that P is a relaxed MFG solution.

8.4 A general framework

This short stand-alone section outlines a possible generalization of the strategy presented
in this section, in an effort to simplify the structure and key ingredients of the argument.
Additionally, this is a promising avenue for extensions of the results to jump processes as
well as state processes which cannot (as easily) be described by SDEs. The ideas here are
very much inspired by the work of Kurtz and Stockbridge [82], who prove the existence of
an optimal Markovian control for a large class of stochastic optimal control problems, with
Markovian state processes in general state spaces.

Let E and A be compact metric spaces. (Locally compact, complete and separable
should be fine, but let us keep the presentation as simple as possible.) Suppose we are given
an operator L mapping from a subspace D(L) of C(E) into C(E × A × P(E)). We are
given also an initial distribution λ ∈ P(E). This generator L should satisfy some fairly
standard assumptions (dense domain, positive maximum principle, etc.) as in [82], but let
us keep this discussion informal. Finally, we are given jointly continuous reward functions
f : E × A× P(E)→ R and g : E × P(E)→ R.

Define V in the same manner as before, and define also D := D([0, T ];Rd) to be the
Skorohod space endowed with the usual metric. Our canonical space will be Ξ := V × D,
with canonical process (Λ, X) and the natural filtration. For each ϕ ∈ D(L) and µ ∈ P(D),
define a process Mµ,ϕ on Ξ by

Mµ,ϕ
t (q, x) := f(xt)−

∫
[0,t]×A

Lϕ(xs, a, µs)q(ds, da).

We will say that P ∈ P(Ξ) is a solution to the controlled martingale problem for µ if
P ◦X−1

0 = λ and if Mµ,ϕ is a P -martingale for every ϕ ∈ D(L). Let R(µ) denote the set of
solutions of the controlled martingale problem for µ. For µ ∈ P(D) and P ∈ P(Ω), let

J(µ, P ) :=

∫
Ξ

[∫
[0,T ]×A

f(xs, a, µs)q(ds, da) + g(xT , µT )

]
P (dq, dx).
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The set of optimal laws corresponding to µ is denoted

R∗(µ) := arg max
P∈R(µ)

J(µ, P ).

A solution of the mean field game is any µ ∈ P(D) satisfying µ = P ◦ X−1 for some
P ∈ R∗(µ), or equivalently a fixed point of the map ϕ : P(D)→ 2P(D) given by

ϕ(µ) :=
{
P ◦X−1 : P ∈ R∗(µ)

}
.

To prove existence of a fixed point, one must show the following:

1. ϕ maps a compact convex set into itself.

2. The graph of ϕ is closed.

3. The values ϕ(µ) are convex compact nonempty.

It is typically straightforward to show that the set R(µ) is convex, compact, and nonempty
for each µ; using this along with the continuity and linearity of J(µ, ·) we deduce that (3)
holds. Under appropriate boundedness assumptions, the first condition (1) should not be
too much of a problem; indeed, we first restricted to bounded coefficients, and then used a
truncation argument to remove this restriction. Arguing (2) appears to be the more difficult
step, or at least the one requiring the heaviest assumptions. As a consequence of Berge’s
theorem [5, Theorem 17.31], the following conditions suffice for proving (2):

(2.1) J is jointly continuous.

(2.2) The set-valued map R has a closed graph.

(2.3) The set-valued map R is lower hemicontinuous.

Again, (2.1) should be no problem. It is well known that weak limits of solutions of mar-
tingale problems remain solutions of martingale problems, under appropriate continuity as-
sumptions, and thus (2.2) should also pose few problems. The technical crux of the argument
appears to come from point (2.3), because lower hemicontinuity will require uniqueness of
the controlled martingale problems in some sense. Recall that lower hemicontinuity means
that if µn → µ and P ∈ R(µ), we should be able to find a subsequence µnk along with
Pnk ∈ R(µnk) such that Pnk → P . The natural way to proceed is to construct Pn ∈ R(µn)
which correspond to the same choice of control process as P . If we could formalize and
justify the statement for each choice of control process, there is a unique solution of the con-
trolled martingale problem, then we could derive this lower semicontinuity. This was quite
possible in the setting of stochastic differential equations, which are well understood even
when they depend on random coefficients. Weak uniqueness results for martingale problems
with random coefficients appear to be quite limited in the literature, and this obstructs a
satisfying general result in this direction.

As a final remark on this approach, let us note that the Markovian selection argument
adapts nicely even in this abstract framework. Theorem 4.1 of Kurtz and Stockbridge [82]
plays the role of the Brunick and Shreve [23] mimicking result, and permits the construction
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of a Markovian (relaxed) MFG solution from a generic relaxed MFG solution, assuming the
latter exists.
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Appendix A

Elements of stochastic analysis

This section summarizes some supplementary topics in stochastic analysis. First, there is a
general discussion of the notion of compatibility discussed repeatedly throughout the thesis.
Additionally, some results on weak solutions of stochastic differential equations with random
coefficients are discussed in detail, as they arise naturally in stochastic control problem.
These results are often used implicitly throughout the thesis and indeed in many papers,
but concise sources can be difficult to locate. The discussion of Yamada-Watanabe-type
theorems serves the dual purposes of completing the discussion on SDEs and laying the
groundwork for our uniqueness theory for mean field games developed in Section 7.3. Lastly,
we compile some results on martingale measures needed in Chapter 8.

A.1 Enlargements of filtered probability spaces

This section elaborates on the notion of compatibility defined loosely in Section 3.1. The point
of this section is both to demystify this concept and to prepare for the subsequent sections
of the appendix, where compatibility plays a role in rigorously defining weak solutions for
SDEs with random coefficients. Let us now define a general notion of compatibility, which
includes as special cases both of the seemingly distinct notions defined just before Remark
5.2.1.

Definition A.1.1. Let (Ω,F , P ) be a probability space, and let F = (Ft)t∈[0,T ] and G =
(Gt)t∈[0,T ] be two filtrations on Ω, with Ft ⊂ Gt for each t. We say that G is compatible with
F if Gt is conditionally independent of FT given Ft, for each t ∈ [0, T ].

This is sometimes known as the H-hypothesis [22], or that F is immersed in G. Alterna-
tively, this can be seen as a property of an extension of a filtered probability space, known as
a very good extension [70] or natural extension [75]. The term compatible is borrowed from
Kurtz [80]. The following Proposition summarizes some equivalent definitions, borrowed
from [22, 70, 80].

Lemma A.1.2 (Lemma 2.17 of [70], Theorem 3 of [22]). Fix a probability space (Ω,F , P )
with two filtrations F = (Ft)t∈[0,T ] and G = (Gt)t∈[0,T ] satisfying Ft ⊂ Gt for each t. The
following are equivalent:
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1. G is compatible with F.

2. Every F-martingale is a G-martingale.

3. For each t ∈ [0, T ] and each bounded FT -measurable random variable Z,

E[Z|Gt] = EQ[Z|Ft], a.s.

4. For each A ∈ Gt and t ∈ [0, T ], the random variable P (A|FT ) is measurable with respect
to the P -completion of Ft.

In the case that F is generated by a Rk-valued process (Yt)t∈[0,T ] with independent increments,
properties (1-4) are equivalent to

5. For each 0 ≤ s < t ≤ T , the increment Yt − Ys is independent of Gs.

Let us explain how this notion of compatibility relates to those of Section 5.2, discussed
before Remark 5.2.1. The notation Ppc [(Ω0,Wλ)  Pp(X )] and its variants used in that
section were instances of the following, more systematic definition. Fix two filtered spaces
(Ωi,Fi = (F it )t∈[0,T ]). Given a probability measure P 1 on (Ω1,F1

T ), let Pc[(Ω1, P 1)  Ω2]
denote the set of probability measures P on Ω1 × Ω2 satisfying:

1. The first marginal of P is P 1, i.e. P 1 = P (· × Ω2).

2. Under P , the filtration (F1
t ⊗F2

t )t∈[0,T ] is compatible with F1.

If Ω1 and Ω2 are separable metric spaces, and if p ≥ 1, we may also write

Ppc [(Ω1, P 1) Ω2] := Pc[(Ω1, P 1) Ω2] ∩ Pp(Ω1 × Ω2).

It is clear now that this notation is consistent with the definition of Ppc [(Ω0×Pp(X ), ρ) V ]
provided on Page 80. This is also consistent with the definition of Ppc [(Ω0,Wλ)  Pp(X )],
thanks to part (5) of Lemma A.1.2. In this product space setting, the following lemma is
useful even though it essentially just rewrites the fourth condition of Lemma A.1.2, and its
corollary below will be useful in Section A.3.

Lemma A.1.3 (Lemma 2.17 of [70]). Suppose Q ∈ P(Ω1×Ω2) is of the form Q(dω1, dω2) =
P (dω1)Kω1(dω2), for some P ∈ P(Ω1) and some kernel K. Then Q is in Pc[(Ω1, P )  Ω2]
if and only if for each t ≥ 0 and C ∈ F2

t the map ω1 7→ Kω1(C) is measurable with respect
to the P -completion of F1

t .

Corollary A.1.4 (c.f. Lemma 2.10 of [80]). Let (Ω, (Ft)t∈[0,T ]) and (Ωi, (F it )t∈[0,T ]) be fil-
tered spaces for i = 1, 2. Suppose P i ∈ Pc[(Ω, P )  Ωi] is of the form P i(dω, dωi) =
P (dω)Ki

ω(dωi), for i = 1, 2. Define

Q(dω, dω1, dω2) := P (dω)K1
ω(dω1)K2

ω(dω2).

Then Q is in Pc[(Ω, P ) Ω1 × Ω2].
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A.2 Existence and uniqueness for SDEs

The basic setup is the following. We are given a probability space (Ω,F , P ) with a filtration
F = (Ft)t∈[0,T ] and an m-dimensional F-Brownian motion W . The basic object of study will
be the following stochastic differential equation:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = ξ. (A.1)

The coefficients b and σ map are specified by

b : [0, T ]× Ω× Rd → Rd,

σ : [0, T ]× Ω× Rd → Rd×m.

As usual, we supress the argument in Ω from the notation. We assume throughout that b
and σ satisfy the following hypotheses:

Assumption (SDE). 1. For each x ∈ R, the process (b(t, x))t∈[0,T ] is progressively mea-
surable.

2. There exists C > 0 such that, for each x, y ∈ Rd and (t, ω) ∈ [0, T ]× Ω,

|b(t, ω, x)− b(t, ω, y)|+ |σ(t, ω, x)− σ(t, ω, y)| ≤ C|x− y|,

3. For some p ≥ 1, we have

E
[
|ξ|p +

∫ T

0

|b(t, 0)|pdt
]
<∞.

4. ξ is F0-measurable.

The following existence and uniqueness result is well known, at least when p = 2. Note
that we have not assumed the filtration to be complete or right-continuous, and we refer
to Stroock and Varadhan [102] for a careful treatment of stochastic integration without the
usual hypotheses.

Theorem A.2.1. Under assumptions (SDE), there exists a unique continuous F-adapted
process X on Ω satisfying the SDE (A.1) and

E
[

sup
0≤t≤T

|Xt|p
]
<∞.

The uniqueness in the above theorem is strong sense, in the sense that it is specific to the
probability space Ω. Frequently, we will work on an enlarged probability space, in which the
meaning of a “unique” solution of (A.1) must be clarified. To this end, we must first develop
some terminology. The ultimate goal is to define uniqueness in law and pathwise uniqueness
for (A.1), state a suitable form of the celebrated Yamada-Watanabe theorem, and conclude
that essentially all kinds of uniqueness hold for the SDE (A.1).
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First, let us recall some notational conventions introduced Section 5.2. Any function ϕ
defined on Ω naturally extends to any product space Ω × Ω′ by setting ϕ(ω, ω′) = ϕ(ω).
Similarly, any σ-field G on Ω is extended naturally to the σ-field G ⊗ {∅,Ω′} on Ω × Ω′.
Similarly, any filtration on Ω extends canonically to a product space as well. The path space
for the solution process will be denoted Cd := C([0, T ];Rd), that is the space of continuous
functions from [0, T ] to Rd. The path space is endowed with the supremum norm and the
corresponding Borel σ-field. Let X denote the canonical process on Cd, that is X(x) = x
and Xt(x) = x(t) for x ∈ Cd. We will describe a solution of the SDE (A.1) by specifying a
compatible probablity measure on Ω× Cd:

Definition A.2.2. A solution measure is an element of Pc[(Ω, P )  Cd] (see Section A.1)
under which the SDE (A.1) holds almost surely. We say a solution measure P is strong if
it is of the form P = P ◦ ϕ−1, where ϕ : Ω → Ω is given by ϕ(ω) = (ω,X(ω)) for some
continuous F-adapted process X defined on Ω.

The following uniqueness theorem is proven in the next section, after we discuss a suitable
form of the Yamada-Watanabe theorem. It also follows from the results of Jacod & Mémin
[70], but again we include the proof both for the sake of completeness and also to illustrate
how to apply the abstract form of the Yamada-Watanabe result given in Theorem A.3.1.

Theorem A.2.3. Assume Ω is a Polish space. Under assumption (SDE), there exists a
unique solution measure, and it is strong.

A.3 Yamada-Watanabe theorems

The ideas of this section are largely borrowed from a paper of Kurtz [80] and Jacod and
Mémin [69, Theorem 3.20], which distill the essence of the Yamada-Watanabe theorem. We
extend the results slightly in a way which will be useful in establishing pathwise uniqueness
for mean field games with common noise. Because of this modest extension of the results,
we will use slightly different terminology from Kurtz.

Consider the following simple model. Fix two Polish spaces E and F . We are given
µ ∈ P(E) and a subset S of P(E × F ) satisfying γ(· × F ) = µ for each γ ∈ S. That is,
µ is the first marginal of each element of S. We think of S as corresponding to some set
of constraints. A weak solution is any probability measure in S. A strong solution is any
solution of the form γ(dx, dy) = µ(dx)δF (x)(dy), where F : E → F is Borel measurable. We
say uniqueness in law holds if S has at most one element.

We will define two slightly different pathwise uniqueness notions, which turn out to be
often equivalent. First, pathwise uniqueness holds if whenever X is an E-valued random
variable and Y1, Y2 are F valued random variables defined on a common probability space
(Ω,F , P ), then P ◦ (X, Y1)−1 ∈ S and P ◦ (X, Y2)−1 ∈ S together imply P (Y1 = Y2) = 1.
On the other hand, we say independent pathwise uniqueness holds if whenever X is an
E-valued random variable and Y1, Y2 are F valued random variables defined on a common
probability space (Ω,F , P ), and Y1 and Y2 are conditionally independent given X, then again
P ◦ (X, Y1)−1 ∈ S and P ◦ (X, Y2)−1 ∈ S together imply P (Y1 = Y2) = 1. The only difference
between these two notions of uniqueness is the conditional independence restriction.

173



The following theorem is an abstract form of the Yamada-Watanabe result. The proof
can be found in either of the references provided, but since this is a slight extension of these
results we include the proof for the sake of completeness.

Theorem A.3.1 (Theorem 1.5 of [80], Theorem 3.20 of [69]). The following are equivalent:

1. S 6= ∅ and pathwise uniqueness holds.

2. S 6= ∅ and independent pathwise uniqueness holds.

3. There exists a strong solution, and uniqueness in law holds.

Proof. Clearly (1) implies (2). Let us check next that (3) implies (1). Assumption (3) im-
mediately implies that S is a singleton, and its unique element is of the form γ(dx, dy) =
µ(dx)δF (x)(dy) for a measurable function F : E → F . Suppose we are given a probabil-
ity space (Ω,F , P ) supporting an E-valued random variable X and two F valued random
variables Y1, Y2, with P ◦ (X, Y1)−1 ∈ S and P ◦ (X, Y2)−1 ∈ S. Since S = {γ}, we have

P ◦ (X, Y1)−1 = P ◦ (X, Y2)−1 = γ.

Thus Y1 = F (X) = Y2 almost surely, and so pathwise uniqueness holds.
Lastly, we show that (2) implies (3). Fix γ1, γ2 ∈ S. Disintegrate each γi into γi(dx, dy) =

µ(dx)Ki
x(dy). Consider the space Ω = E×F×F , with the product σ-field and the probability

measure
P (dx, dy1, dy2) = µ(dx)K1

x(dy1)K2
x(dy2).

Define the canonical random variables X, Y1, and Y2 by X(x, y1, y2) = x and Yi(x, y1, y2) = yi
for i = 1, 2. By construction, we have P ◦ (X, Yi)

−1 = γi, and thus our assumption of
independent pathwise uniqueness implies P (Y1 = Y2) = 1, and so K1 = K2. Thus S is
a singleton. Since Y1 = Y2 a.s. it follows that for µ-a.e. x ∈ E the measure K1

x × K1
x is

concentrated on the diagonal {(y, y) : y ∈ F}. This implies that K1
x is a point mass for each

such x, which in turn implies that the unique element of S is a strong solution.

While this result is remarkably straightforward, there is often some work to be done in its
application. In particular, in the definition of independent pathwise uniqueness, we would
prefer to restrict our attention to couplings with even better properties (for example, “joint
compatibility” in the language of [80]). Corollary A.1.4 allows us to do this in a sense which
is particularly useful for SDEs and for the MFG uniqueness results of Chapter 7.3. Let us
illustrate this by example by proving Theorem A.2.3:

Proof of Theorem A.2.3. To apply Theorem A.3.1 we prove that independent pathwise
uniqueness holds, identifying E = Ω and F = Cd. Suppose we are given a probability
measure P̃ on Ω̃ := Ω × Cd × Cd. Let (ζ,X, Y ) : Ω̃ → Cd × Cd denote the identity map,

(ζ,X, Y )(ω, x, y) = (ω, x, y). Assume X and Y are conditionally independent of ζ under P̃ ,

and assume P̃ ◦ (ζ,X)−1 and P̃ ◦ (ζ, Y )−1 are both solution measures. Both X and Y must
then satisfy the same SDE (A.1), driven by the same Brownian motion, the same initial
state, and the same random parameter in the coefficients.
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At this point, we would like to use the usual arguments, using the Lipschitz assumption
and Gronwall’s inequality, to show that X = Y almost surely. But to do this, we need to
show that the SDEs are defined with respect to the same filtration on Ω̃. For this it suffices to
just check that W (defined originally on Ω) is a Wiener process with respect to the filtration

Ft ∨ σ(Xs, Ys : s ≤ t), where Ft was originally defined on Ω but is extended to Ω̃ in the
natural way. That this holds true is exactly the conclusion of Corollary A.1.4, and is also
not difficult to prove directly.

A.4 Martingale measures and martingale problems

In Chapter 8, we make some use of martingale measures in order to represent solutions of
certain martingale problems in terms of stochastic differential equations. This appendix
summarizes the basic definitions and results on martingale measures. All of the material we
need is from [74], but Walsh [108] for a thorough introduction Fix throughout the section a
filtered probability space (Ω,F ,F = (Ft)t∈[0,T ], P ) and a Polish space E with Borel σ-field
B(E). Let A be a subring of B(E), meaning that A ∪ B ∈ A and A\B ∈ A whenever
A,B ∈ A.

Definition A.4.1. An L2-valued σ-finite measure is a function U : A → L2(Ω,F , P ) such
that E[U(A)2] < ∞ for all A ∈ A and U(A ∪ B) = U(A) + U(B) a.s. for disjoint sets
A,B ∈ A. We say U is σ-finite if there exist E1 ⊂ E2 ⊂ · · · in E such that ∪nEn = E and,
for all n, we have E|En := {B ∩ En : B ∈ E} ⊂ A and

sup
A∈E|En

E[U(A)2] <∞.

Definition A.4.2. We say M = {Mt(A) : t ≥ 0, A ∈ A} is a F-martingale measure on E
if:

1. M0(A) = 0 for all A ∈ A.

2. (Mt(A))t≥0 is a F-martingale for each A ∈ A.

3. For each t ≥ 0, Mt is a L2-valued σ-finite measure.

4. For disjoint sets A,B ∈ A, the martingales (Mt(A))t≥0 and (Mt(B))t≥0 are orthogonal,
i.e. the product (Mt(A)Mt(B))t≥0 is a martingale.

We say two martingale measures M and N are orthogonal if (Mt(A)Nt(B))t≥0 is a martingale
for each A,B ∈ A.

It is known [74, Theorem I-4] that martingale measures admit intensity measures : Given
a martingale measure M , we can associate to it a random σ-finite positive measure µ on
R+ × E such that (µ([0, t] × A))t≥0 is the (predictable) quadratic variation of (Mt(A))t≥0,
for each A. We say M is continuous if t 7→ Mt(A) is a.s.-continuous, for each A; this is
equivalent to saying µ({t} × A) = 0 a.s. for all A.
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Let us finally construct a stochastic integral with respect to M . Consider the set of
simple integrands S, consisting of functions h : Ω× R+ × E → R of the form

h(ω, t, x) =
n∑
i=1

ϕi(ω)1(ti−1,ti](t)1Ai(x),

where 0 = t0 < t1 < · · · < tn, ϕi is Fti-measurable, and Ai ∈ A for each i. The stochastic
integral of such an h with respect to M is defined as the martingale measure h ·M satisfying

(h ·M)t(B) =
n∑
i=1

ϕi
(
Mti−1∧t(B ∩ Ai)−Mti∧t(B ∩ Ai)

)
.

It is straightforward to check that S is dense in the space L2
µ, consisting of those functions

h : Ω × R+ × E → R which are measurable with respect to the product of the predictable
σ-field and B(E) and satisfy

E
∫
R+×E

|h(t, x)|2µ(dt, dx) <∞,

where we have suppressed the argument ω in both h and µ. Thus (using the isometry result
stated more generally in (A.2) below) we may extend the linear map h 7→ h ·M from S to
L2
µ in the usual way. For h ∈ L2

µ and A ⊂ E, we may write∫
[0,t]

∫
E

h(s, x)M(ds, dx) := (h ·M)t(E).

Given a vector M = (M1, . . . ,Mm) of orthogonal martingale measures, and given a d ×m
matrix of elements (hi,k) of L2

µ, define the stochastic integral
∫

[0,t]

∫
E
h(s, x)M(ds, dx) as the

d-dimensional process with ith component

m∑
k=1

∫
[0,t]

∫
E

hi,k(s, x)Mk(ds, dx).

There are two results we use in Chapter 8. First, if f, g ∈ L2
µ and M is a martingale

measure, then the quadratic covariation of (f ·M)·(A) and (g ·M)·(B) at time t is∫
(0,t]

∫
A∩B

f(s, x)g(s, x)µ(ds, dx).

In particular, the following isometry formula holds:

E

[(∫
[0,t]

∫
E

f(s, x)M(ds, dx)

)2
]

= E
[∫

[0,t]

∫
E

|f(s, x)|2µ(ds, dx)

]
. (A.2)
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The second important result is the following theorem of El Karoui and Méléard pertaining
to martingale problems, which generalizes the classical results on the correspondence be-
tween weak solutions of SDEs and solutions of martingale problems. Suppose we are given
measurable functions

(b, σ) : R+ × Rd × E → Rd × Rd×m.

Define the operator L on functions ϕ ∈ C∞0 (Rd) by

Lϕ(x, e) := b(x, e)>Dϕ(x) +
1

2
Tr
[
σσ>(x, e)D2ϕ(x)

]
.

Assume, for simplicity, that (b, σ) is bounded, although we can move beyond this case via
localization.

Theorem A.4.3 (Theorem IV-2 of [74]). Suppose we are given a filtered probability space
(Ω,F , (Ft)t≥0, P ) supporting a continuous d-dimensional adapted process X and a P(E)-
valued predictable process Λ. Suppose that for each ϕ ∈ C∞0 (Rd) the process

ϕ(Xt)−
∫ t

0

∫
E

Lϕ(Xs, e)Λs(de)ds

is a martingale. Then, perhaps on an extension of the probability space, there exist m con-
tinuous orthogonal martingale measures M = (M1, . . . ,Mm), each with intensity dtΛt(de),
such that X satisfies the SDE

Xt = X0 +

∫ t

0

∫
E

b(Xs, e)Λs(de)ds+

∫
[0,t]×E

σ(Xs, e)M(ds, de).

The SDE above may alternatively be written in differential form,

dXt =

∫
E

b(Xt, e)Λs(de)dt+

∫
E

σ(Xt, e)M(dt, de).

As a sanity check, suppose E = {e0} is a singleton. Then to say that M has intensity
dtδe0(de) means that Wt := M([0, t]×{e0}) is a martingale with quadratic variation t, which
implies that it is a Wiener process thanks to Lévy’s characterization. The stochastic integral
then reduces to the usual Brownian integral,∫

[0,t]×E
h(s, e)M(ds, de) =

∫ t

0

h(s, e0)dWs,

and the martingale problem of Theorem A.4.3 is a classical one, of the form studied by
Stroock and Varadhan [102].
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Appendix B

Tightness results for Itô processes

This section proves the three tightness results for Itô processes stated throughout the body
of the thesis: Proposition 5.3.2, the more general Proposition 6.1.3, and finally Proposition
8.2.4. Indeed, the first of these follows quickly from the second, and both work under the
assumption of uncontrolled volatility. The third, on the other hand, works with controlled
volatility and must thus employ martingale measures. Nonetheless, its proof is quite similar,
but some more careful estimates are required.

Proof of Proposition 5.3.2. Simply note that the set Q defined in Proposition 5.3.2 is con-
tained in the set Q defined in Proposition 6.1.3 by choosing the constants κn,i = c for each
n, i, where c is the constant from the statement of Proposition 5.3.2.

Proof of Proposition 6.1.3. For each 1 ≤ i ≤ n and P ∈ Qκn,i , apply the Burkholder-Davis-
Gundy inequality and the growth assumption to find a constant C > 0 (which will change
from line to line but depends only on c, T , and p′) such that

EP [‖X‖p
′

t ] ≤CEP
[
|X0|p

′
+

(∫ t

0

∫
A

|B(s, a)|Λs(da)ds

)p′
+

(∫ t

0

∣∣ΣΣ>(s)
∣∣ ds)p′/2]

≤C EP
{

1 + |X0|p
′
+ Zp′ +

∫ t

0

(
‖X‖p′s +

∫
A

|a|p′Λs(da)

)
ds

}
,

where we used also p′ ≥ 2 and Jensen’s inequality. By Gronwall’s inequality,

EP [‖X‖p
′

T ] ≤ CEP
[
1 + |X0|p

′
+ Zp′ +

∫ T

0

∫
A

|a|p′Λt(da)dt

]
≤ C(1 + κn,i).

Thus

sup
P∈Q

EP [‖X‖p
′

T ] = sup
n

sup

{
1

n

n∑
i=1

EPi [‖X‖p
′

T ] : Pi ∈ Qκn,i for i = 1, . . . , n

}

≤ C sup
n

1

n

n∑
i=1

(1 + κn,i) <∞. (B.1)
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By assumption, we have also

sup
P∈Q

EP
∫ T

0

∫
A

|a|p′Λt(da)dt ≤ sup
n

1

n

n∑
i=1

κn,i <∞. (B.2)

It follows from B.2, Lemma 2.1.16, and Lemma 2.1.13 that {P ◦ Λ−1 : P ∈ Q} is relatively
compact. In light of (B.1) and Proposition 2.1.7, it remains to show that {P ◦ X−1 : P ∈
Q} ⊂ P(Cd) is tight. To check this, we will verify Aldous’ criterion for tightness [73, Lemma
16.12], or

lim
δ↓0

sup
P∈Q

sup
τ

EP [|X(τ+δ)∧T −Xτ |p] = 0, (B.3)

where the supremum is over stopping times τ valued in [0, T ]. The Burkholder-Davis-Gundy
inequality implies that there exists a constant C ′ > 0 (which again depends only on c, T ,
and p and will change from line to line) such that, for any i and any P ∈ Qκn,i ,

EP [|X(τ+δ)∧T −Xτ |p]

≤ C ′EP
∣∣∣∣∣
∫ (τ+δ)∧T

τ

∫
A

B(t, a)Λt(da)dt

∣∣∣∣∣
p

+

∣∣∣∣∣
∫ (τ+δ)∧T

τ

dt|Σ(t)|2
∣∣∣∣∣
p/2


≤ C ′EP
[∣∣∣∣∣c
∫ (τ+δ)∧T

τ

(
1 + |Xt|+ Z +

∫
A

|a|Λt(da)

)
dt

∣∣∣∣∣
p]

+ C ′EP
∣∣∣∣∣c

∫ (τ+δ)∧T

τ

(1 + |Xt|pσ + Zpσ) dt

∣∣∣∣∣
p/2


≤ C ′EP
[

(δp + δp/2) (1 + ‖X‖pT + Zp) +

∣∣∣∣∣
∫ (τ+δ)∧T

τ

∫
A

|a|Λt(da)dt

∣∣∣∣∣
p]
.

Since p′ > p, we have EP [Zp] ≤ EP [Zp′ ]p/p
′ ≤ κ

p/p′

n,i for P ∈ Qκn,i , and thus by assumption

sup
P∈Q

EP [Zp] = sup
n

sup

{
1

n

n∑
i=1

EPi [Zp] : Pi ∈ Qκn,i for i = 1, . . . , n

}

≤ sup
n

1

n

n∑
i=1

κ
p/p′

n,i <∞.

This and (B.1) imply

lim
δ↓0

sup
P∈Q

(δp + δp/2)EP [1 + ‖X‖pT + Zp] = 0.
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To control the term with Λ, note that p′ > p and (B.2) imply

lim
δ↓0

sup
P∈Q

sup
τ

EP
∫ (τ+δ)∧T

τ

∫
A

|a|pΛt(da)dt = 0.

Putting this all together proves (B.3).

Proof of Proposition 8.2.4. For each P ∈ Qc with corresponding probability space (Ω,Ft, P )
and coefficients b, σ, standard estimates as in Lemma 5.3.1 yield

EP‖X‖p
′

T ≤ CEP
[
1 + |X0|p

′
+

∫ T

0

∫
A

|a|p′Λt(da)dt

]
.

where C > 0 does not depend on P . Hence assumption (6) implies

sup
P∈Qc

EP‖X‖p
′

T ≤ C(1 + c) <∞. (B.4)

It follows from the hypothesis (6), from Lemma 2.1.16, and from Corollary 2.1.13 that
{P ◦ Λ−1 : P ∈ Qc} is relatively compact. In light of (B.4) (and Proposition 2.1.7), it
remains only to show that {P ◦X−1 : P ∈ Qc} ⊂ P(Cd) is tight. To check this, we will again
verify Aldous’ criterion for tightness [73, Theorem 16.10],

lim
δ↓0

sup
P∈Qc

sup
τ

EP |X(τ+δ)∧T −Xτ |p = 0, (B.5)

where the innermost supremum is over stopping times τ valued in [0, T ]. The Burkholder-
Davis-Gundy inequality implies that there exists C ′ > 0 such that, for each P ∈ Qc and
each τ ,

EP |X(τ+δ)∧T −Xτ |p ≤ C ′EP
[∣∣∣∣∣
∫ (τ+δ)∧T

τ

dt

∫
A

Λt(da)b(t,Xt, a)

∣∣∣∣∣
p]

+ C ′EP
(∫ (τ+δ)∧T

τ

dt

∫
A

Λt(da)|σσ>(t,Xt, a)|

)p/2


≤ C ′EP
[∣∣∣∣∣
∫ (τ+δ)∧T

τ

dt

∫
A

Λt(da)c(1 + ‖X‖T + |a|)

∣∣∣∣∣
p]

+ C ′EP
(∫ (τ+δ)∧T

τ

dt

∫
A

Λt(da)c(1 + ‖X‖pσT + |a|pσ)

)p/2
 .

Now note that if 1 ≤ p < 2 and x, y ≥ 0 then (x + y)p/2 ≤ xp/2 + yp/2, and if p ≥ 2 then
(x + y)p/2 ≤ 2p/2−1(xp/2 + yp/2). In either case, we find another constant C ′′ such that, for
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each P ∈ Qc and each τ ,

EP |X(τ+δ)∧T −Xτ |p

≤ C ′′EP
[
|δc(1 + ‖X‖T )|p + cp

∫ (τ+δ)∧T

τ

∫
A

|a|pΛt(da)dt

]

+ C ′′EP
|δc(1 + ‖X‖pσT )|p/2 +

∣∣∣∣∣c
∫ (τ+δ)∧T

τ

∫
A

|a|pσΛt(da)dt

∣∣∣∣∣
p/2
 (B.6)

The first term of each line poses no problems, in light of (B.4); that is, since pσ ≤ 2 and
p < p′,

lim
δ↓0

sup
P∈Qc

sup
τ

EP
[
|δc(1 + ‖X‖T )|p + |δc(1 + ‖X‖pσT )|p/2

]
= 0.

On the other hand, note that

sup
P∈Qc

EP
∫ T

0

∫
A

|a|p′Λt(da)dt ≤ c <∞,

by assumption. It follows that for any γ ∈ [0, p′),

lim
δ↓0

sup
P∈Qc

sup
τ

EP
∫ (τ+δ)∧T

τ

∫
A

|a|γΛt(da)dt = 0,

and in particular this holds for γ = p. Hence, if p ≥ 2 then Jensen’s inequality along with
pσ ≤ 2 implies

lim
δ↓0

sup
P∈Qc

sup
τ

EP
∣∣∣∣∣
∫ (τ+δ)∧T

τ

∫
A

|a|pσΛt(da)dt

∣∣∣∣∣
p/2

≤ lim
δ↓0

sup
P∈Qc

sup
τ

EP
∣∣∣∣∣
∫ (τ+δ)∧T

τ

∫
A

|a|pΛt(da)dt

∣∣∣∣∣ = 0,

On the other hand, if p < 2, then Jensen’s inequality in the other direction implies

lim
δ↓0

sup
P∈Qc

sup
τ

EP
∣∣∣∣∣
∫ (τ+δ)∧T

τ

∫
A

|a|pσΛt(da)dt

∣∣∣∣∣
p/2

≤ lim
δ↓0

sup
P∈Qc

sup
τ

(
EP
∫ (τ+δ)∧T

τ

∫
A

|a|pσΛt(da)dt

)p/2

= 0,

since pσ ≤ p < p′. Putting this together and returning to (B.6) proves (B.5).
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Flour XIX - 1989, Lecture Notes in Mathematics, vol. 1464, Springer Berlin / Heidel-
berg, 1991, pp. 165–251.

[105] H. Uhlig, A law of large numbers for large economies, Economic Theory 8 (1996),
no. 1, 41–50.

[106] J. Vaillancourt, On the existence of random McKean-Vlasov limits for triangular arrays
of exchangeable diffusions, Stochastic Analysis and Applications 6 (1988), no. 4, 431–
446.

188



[107] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, Amer-
ican Mathematical Society, 2003.

[108] J.B. Walsh, An introduction to stochastic partial differential equations, Springer, 1986.

[109] T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential
equations, J. Math. Kyoto Univ 11 (1971), no. 1, 155–167.

189


	Abstract
	Contents
	1 Introduction
	1.1 From particle systems to mean field games
	1.1.1 Interacting diffusion models
	1.1.2 The McKean-Vlasov limit
	1.1.3 Mean field games
	1.1.4 Convergence to the mean field game limit
	1.1.5 Existence
	1.1.6 Uniqueness

	1.2 Common noise
	1.2.1 Interacting diffusion models
	1.2.2 Mean field games

	1.3 Extensions of the mean field game framework
	1.4 Continuum games in economics
	1.5 Outline of the thesis

	2 Preliminaries
	2.1 Spaces of probability measures
	2.1.1 Wasserstein distances
	2.1.2 Mean measures and compactness
	2.1.3 Relaxed controls

	2.2 McKean-Vlasov limits
	2.2.1 No common noise
	2.2.2 Common noise
	2.2.3 An unorthodox derivation

	2.3 Static mean field games
	2.3.1 Elements of set-valued analysis
	2.3.2 The deterministic case
	2.3.3 The stochastic case with independent noises
	2.3.4 The stochastic case with common noise


	3 Stochastic differential mean field games
	3.1 MFG solution concepts
	3.2 Limits of finite games
	3.2.1 Equilibrium concepts
	3.2.2 The limit theorem
	3.2.3 The converse limit theorem

	3.3 Existence and uniqueness

	4 Stochastic differential mean field games without common noise
	4.1 MFG solution concepts
	4.2 The limit theorem
	4.3 An illuminating example
	4.4 Supports of weak solutions
	4.5 Applications of Theorem 4.4.2
	4.6 Existence and uniqueness

	5 Properties of mean field game solutions
	5.1 Pre-solutions
	5.2 Canonical space
	5.3 Continuity results
	5.4 Proofs of Propositions 3.1.4 and 3.1.5
	5.4.1 Proof of Proposition 3.1.4
	5.4.2 Proof of Proposition 3.1.5


	6 Proofs of the limit theorems
	6.1 Proof of main limit Theorem 3.2.4
	6.1.1 Estimates
	6.1.2 Relative compactness and pre-solutions
	6.1.3 Modified finite-player games
	6.1.4 Optimality in the limit

	6.2 Proof of converse limit Theorem 3.2.10
	6.2.1 Construction of environments
	6.2.2 Trajectorial propagation of chaos
	6.2.3 Proof of Theorem 6.2.1
	6.2.4 Proof of Proposition 6.2.2

	6.3 Proof of Theorem 4.2.2
	6.4 Proofs of Propositions 3.2.2 and 4.2.1
	6.4.1 Proof of Proposition 3.2.2
	6.4.2 Proof of Proposition 4.2.1


	7 Existence, with common noise
	7.1 Discretized mean field games
	7.1.1 Discretization procedure
	7.1.2 Strong solutions

	7.2 Weak limits of discretized mean field games
	7.2.1 Existence of a weak solution under Assumption B
	7.2.2 Unbounded coefficients

	7.3 Uniqueness
	7.4 Counterexamples
	7.4.1 Nonexistence of strong solutions
	7.4.2 Nonexistence of weak solutions


	8 Existence, without common noise
	8.1 Controlled martingale problems
	8.2 Bounded coefficients
	8.3 Unbounded coefficients
	8.3.1 Relative compactness of the approximations
	8.3.2 Limiting state process dynamics
	8.3.3 Optimality of the limiting control

	8.4 A general framework

	A Elements of stochastic analysis
	A.1 Enlargements of filtered probability spaces
	A.2 Existence and uniqueness for SDEs
	A.3 Yamada-Watanabe theorems
	A.4 Martingale measures and martingale problems

	B Tightness results for Itô processes
	Bibliography

