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Abstract

This paper characterizes equilibrium outcomes of extensive form games with incomplete in-

formation in which players can sign renegotiable contracts with third-parties. Our aim is to un-

derstand the extent to which third-party contracts can be used as commitment devices when it

is impossible to commit not to renegotiate them. We characterize renegotiation-proof contracts

and strategies for general extensive form games with incomplete information and apply our re-

sults to two-stage games. If contracts are observable, then the second mover obtains her best

possible payoff given that she plays a renegotiation-proof strategy and the first mover best re-

sponds. If contracts are unobservable, then a “folk theorem” type result holds: Any outcome in

which the second mover best responds to the first mover’s action on the equilibrium path and the

first mover receives at least his “individually rational payoff”, can be supported. We also apply our

results to games with monotone externalities and to a model of credibility of monetary policy and

show that in both cases renegotiation-proofness imposes a very simple restriction.
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1 Introduction

Could an incumbent firm deter entry by contracting with third parties, such as a bank or a labor

union? Could a central bank (or a government in a union) credibly commit to monetary policy (or

fiscal policy) through a contract with the government (or supranational body)? More generally can

contracts with third parties change the outcome of a game to the advantage of the contracting player?

When contracts are non-renegotiable, the answer to this question is in general yes.1 In fact, there are

several “folk theorem” type results for different classes of games with observable and non-renegotiable

third-party contracts.2 The effects of unobservable and non-renegotiable third-party contracts are

also well-understood: Nash equilibrium outcomes of a game with and without third-party contracts

are identical (Katz (1991)). In fact, all (and only) Nash equilibrium outcomes of the original game

can be supported as a sequential equilibrium outcome of the game with unobservable and non-

renegotiable contracts (Koçkesen and Ok (2004) and Koçkesen (2007)).3

In this paper we seek an answer to this question for renegotiable contracts. When a player in a

game lacks the reputation to commit to a course of action that is not sequentially rational, writing a

contract with a third-party is a natural way to achieve such a commitment. However, if the contract-

ing parties also lack the reputation to commit not to renegotiate the contract, one has to consider

renegotiable contracts. We analyze if and how renegotiable third-party contracts change the equilib-

rium outcomes of extensive form games with incomplete information. In the main body of the paper

we consider only two-player two-stage games where the second mover (player 2) has some payoff rel-

evant private information. In what we call the original game, Nature moves first and determines the

state of the world θ. After that, player 1 chooses an action a1 without observing θ. Player 2 observes

both θ and a1, chooses a2, and the game ends. Payoff function of player i = 1,2 is ui (a1, a2,θ). Player

1’s strategy is simply a choice of action a1 whereas player 2’s strategy is a function b2(a1,θ).

In the game with contracts we let player 2 sign a contract with a neutral third-party before the

original game starts. A contract specifies transfers between player 2 and the third-party as a function

of the contractible outcomes, which we assume to be the action choices of the two players, (a1, a2).

The underlying and crucial assumption is that the private information of player 2 is not observable

by any other player, including the third-party, and thus non-contractible. Given a contract f , the

third-party’s payoff is f (a1, a2) whereas player 2’s is u2(a1, a2,θ)− f (a1, a2).

Our main objective is to understand the outcomes of the original game that can be supported in

some equilibrium of the game with contracts. The first question that we need to answer is the type

of strategies b2(a1,θ) that can be supported by a contract, i.e., incentive compatible strategies. Since

contracts cannot depend on θ, incentive compatibility imposes some restrictions on b2. In order to

get a handle on these restrictions, we assume that player 2’s payoff function exhibits increasing dif-

ferences in (θ, a2). It then follows that strategy b2 is incentive compatible if and only if it is increasing

in θ (This is Proposition 2 on page 9).

1See, among many others, Vickers (1985), Fershtman and Judd (1987), Sklivas (1987), Koçkesen et.al. (2000), Brander and
Lewis (1986), Bolton and Scharfstein (1990), Snyder (1996), Spencer and Brander (1983), Brander and Spencer (1985), Eaton
and Grossman (1986), Walsh (1995).

2See Fershtman, Judd, and Kalai (1991), Polo and Tedeschi (2000), and Katz (2006).
3Prat and Rustichini (2003) and Jackson and Wilkie (2005) analyze related models in which players can write action

contingent contracts before the game is played. Unlike the current paper, in these papers contractual relationships are not
exclusive and the focus is on the efficiency properties of the equilibrium set. Also related is Bhaskar (2009), in which players
need to pay a price to a supplier in order to play certain actions that are controlled by the supplier.
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The second important step is to characterize the restrictions imposed by renegotiation. We model

renegotiation as a game form: After player 1 moves, player 2 can make a renegotiation offer to the

third-party, who knows a1, but not θ, and can either accept the offer or reject it. We define rene-

gotiation-proof equilibrium as a perfect Bayesian equilibrium in which the equilibrium contract is

not renegotiated after any (θ, a1) and characterize the renegotiation-proof contracts and strategies

(This is Theorem 1 on page 11). We also provide necessary and sufficient conditions for a strategy

to be renegotiation-proof (Propositions 3 and 4).4 These results generalize quite readily to arbitrary

extensive form games with incomplete information where players are free to use mixed strategies,

to environments in which the third-party is not neutral, and to stronger notions of renegotiation-

proofness (See Section 4).

In Section 5 we present the implications of the above results in terms of the outcomes of the

original game. We allow contracts to be observable or unobservable (by player 1) and renegotiable or

non-renegotiable. We show that if contracts are observable, then player 2 can commit credibly to his

Stackelberg payoff, i.e., the best payoff that he can achieve given that player 1 plays a best response.

If the contracts are non-renegotiable, then the only restriction on the Stackelberg payoff is that player

2 uses an increasing strategy (Proposition 6). If contracts are renegotiable, then they also have to

be renegotiation-proof (Proposition 8). We also show that these are the only outcomes that can be

supported (Propositions 7 and 9). In other words, as long as one respects the restrictions imposed by

incentive compatibility and renegotiation-proofness, contracts indeed serve as credible commitment

devices.

We next consider unobservable contracts. We show that if contracts are non-renegotiable, then

any Bayesian Nash equilibrium of the original game in which player 2’s strategy is increasing can be

supported (Proposition 10). In fact, we prove a folk theorem type result: any outcome (a∗
1 , a∗

2 (θ)) of

the original game in which a∗
2 (θ) is a best response to a∗

1 for each θ and player 1’s payoff is at least as

large as his “individually rational” payoff, can be supported (Corollary 1). Definition of individually

rational payoff is different from the standard one in that player 2, in minimizing player 1’s payoff, is

restricted to using increasing strategies. Similar results hold for renegotiable contracts except that in

the definition of the individually rational payoff player 2’s strategy is restricted to be increasing and

renegotiation-proof (Proposition 11 and Corollary 2).

Note that renegotiation affects the games with observable and with unobservable contracts in the

same way: In both cases the only additional restriction is that the strategies used by the contracting

party must be renegotiation-proof. This means that the difference between what can be supported

with observable and unobservable contracts does not depend on renegotiation. In particular, if the

Stackelberg payoff obtained with observable contracts is a Bayesian Nash equilibrium, then unob-

servable and renegotiation-proof contracts may still serve as commitment devices, but the Stackel-

berg payoff is not the only equilibrium outcome anymore. On the other hand, if the Stackelberg payoff

obtained with observable contracts is not a Bayesian Nash equilibrium, then unobservable contracts

might not serve as commitment devices. Using a distinction introduced by Schelling (1960), with

unobservable contracts (renegotiable or not) we can only commit to a threat, while with observable

4Our assumption that the third-party cannot observe θ during renegotiation is crucial. Otherwise, the result is trivial:
One can only support the perfect Bayesian equilibria of the original game. This is because, if both a1 and θ are common
knowledge, then player 2 and the third-party would renegotiate away any strategy of player 2 that does not maximize the
joint surplus, i.e., player 2’s payoff in the original game.
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contracts (renegotiable or not) we can also commit to a promise.5 We illustrate this point with two

applications: entry-deterrence and credibility of monetary policy. We show that it is possible to deter

entry with renegotiation-proof contracts even when they are unobservable, whereas, in the monetary

policy game, commitment to a low inflation rate is possible only with observable contracts.

Entry-deterrence game is an example of a more general class of games, which we call games with

monotone externalities and analyze in Section 6.1. In games with monotone externalities, player 1’s

payoff is increasing or decreasing in Player 2’s action for a given action a1. Suppose, for concreteness,

that player 1’s payoff is increasing in a2. If contracts are non-renegotiable, then player 2 can obtain

a favorable outcome by punishing player 1 by playing the smallest a2 whenever he plays an unfa-

vorable action. Since a constant strategy is increasing, incentive compatibility does not bring any

further restrictions on the outcomes that can be supported with non-renegotiable contracts. On the

other hand, renegotiation-proofness imposes a very specific type of constraint on the kind of punish-

ment player 2 can inflict upon player 1: The highest type of player 2 must play a best response while

the other types could keep playing the smallest action (Corollary 3).6 In other words, the additional

restriction renegotiation-proofness brings about depends on the probability of the highest type: The

lower this probability, the less severe is the effect of renegotiation.

The class of games with monotone externalities is large and contains many economic models.

The canonical example, of course, is the Stackelberg competition. We show that in this game, the

follower firm indeed benefits from renegotiation-proof third-party contracts. This game can also be

construed as an entry deterrence game, in which case we show that entry can always be deterred with

non-renegotiable contracts but only under certain conditions with renegotiation-proof contracts, i.e.,

renegotiation has real bite in these games.

In Section 6.2, we apply our results to the well-known problem of credibility of monetary policy:

Once the public forms expectations of inflation, the government has an incentive to create surprise

inflation in order to decrease unemployment. This implies that inflation is inefficiently high in the

rational expectations equilibrium (Kydland and Prescott (1977), Barro and Gordon (1983)). Contracts

with central banks have been suggested as a possible solution to this problem (Walsh (1995), Persson

and Tabellini (1993)). In fact, in many countries central banks have mandates in the form of inflation-

ary targets, which may be interpreted as contracts. With observable and non-renegotiable contracts

we obtain a result that is well-known in the literature: The equilibrium outcome of the game with

contracts has no inflationary bias and induces the socially optimal policy (Proposition 14). If the con-

tracts are observable and renegotiable, the inflationary bias cannot be eliminated completely but is

lower than the one resulting from discretionary monetary policy (Proposition 15). In other words,

the possibility to renegotiate the contract reduces the commitment role played by contracts but does

not eliminate it. Also in this application, renegotiation-proofness imposes a very specific type of con-

straint on the equilibrium strategies of the contracting party (monetary authority): The inflation rate

chosen by the monetary authority in the “worst” state of the world (e.g., a financial crisis) is the same

as the inflation rate chosen without contracts (i.e., higher), while the inflation rate chosen in all other

states is the same as the inflation rate chosen in the game with non-renegotiable contracts. There-

5In other words, with unobservable contracts we can support non-sequentially rational strategies only off the equilib-
rium path while with observable contracts, we can support non-sequentially rational strategies also on the equilibrium
path (See Koçkesen and Ok (2004) and Koçkesen (2007)).

6This is true when player 1’s payoff is increasing in player 2’s action. If his payoff is decreasing, then the harshest punish-
ment player 2’s can impose is to play the highest action for all types other than the lowest, who must play a best response.

3



fore, in this case too, the higher the probability of the worst state, the more severe is the effect of

renegotiation.

These two applications have also an interesting implication about optimal credible commitments.

A commitment (or a contract) that is optimal to carry out in every state of the world will never be rene-

gotiated and therefore is very credible. However, such contracts are rarely optimal ex ante because in

many situations it is beneficial to commit to a different strategy. Monetary policy is a case in point.

Another way to achieve high credibility is to make renegotiation very difficult. For example, in many

countries central banks have a mandate to hit a particular inflation target, which cannot be altered.

Such contracts, however, may turn out to be suboptimal ex post, for example when a small probabil-

ity event such as a financial crisis occurs. This is exactly what happened in many countries including

England, where the government has an incentive to create some inflation in order to escape the liq-

uidity trap but cannot do so because of the aforementioned mandate of the central bank.7 Our results

suggest that in order to achieve optimal commitments that are also credible, one needs to allow flex-

ibility in some states of the world. For example, optimal monetary rule that is also credible would

need to allow for a higher inflation rate in case of a serious crisis.

RELATIONSHIP TO THE LITERATURE

The general message of this paper is that while renegotiation does limit the commitment value of

third-party contracts (in general, renegotiation has bite), it does not completely destroy it. This mes-

sage complements and clarifies the results in the existing literature. Dewatripont (1988) analyzes an

entry-deterrence game in which the incumbent signs a contract with a labor union before the game

begins. A potential entrant observes the contract and then decides whether to enter or not. Rene-

gotiation takes place after the entry decision is made, during which the union offers a new contract

to the incumbent. The crucial assumption is that the incumbent has some payoff relevant private

information during the renegotiation process. Dewatripont (1988) shows that commitment effects

exist in such a model and may deter entry when contracts are publicly observable. One contribu-

tion of our paper is to show that commitment effects exist in arbitrary two-stage games: For example

oligopoly models with price competition and games in which credible commitment to monetary and

fiscal policy is valuable. Furthermore, we show that commitment effects exist even if the contracts

are unobservable and hence they exist also if we allow the contracts to be renegotiated immediately

after they are signed. In fact, allowing for secret renegotiation right after the contracts are signed has

no effect on the results if the game is with unobservable contracts and reduces the case of observable

contracts to unobservable ones.8

Caillaud et al. (1995) applies Dewatripont’s (1988) idea to a game between two principal-agent

hierarchies. In the first stage of their game each principal decides whether to publicly offer a con-

tract to the agent; in the second stage each principal offers a secret contract to the agent, which, if

accepted, overwrites the public contract that might have been offered in stage 1; in the third stage

each agent receives payoff relevant information, decides whether to quit, and if he does not quit, he

plays a normal form game with the other agent. Their main question is whether there exist equilibria

of this game in which the principals choose not to offer a public contract in stage 1. If the answer

7See Tim Harford’s article in Financial Times on March 1, 2013 for more on this issue.
8There is another difference between our model and Dewatripont (1988): In our renegotiation protocol, the informed

party makes the new contract offer, whereas in Dewatripont’s, it is the uninformed party who makes the offer. This turns
out to make a difference as we discuss in Section 6.1 (Proposition 12)
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to this question is no, then the interpretation is that contracts have commitment value. They show

that contracts have commitment value if the market game stage is of Cournot type, but not if it is

of Bertrand type. Moreover, when contracts have commitment value, they reduce the payoff of the

contracting parties. The received message of Caillaud et al. (1995), in comparison with Dewatripont

(1988), is that by allowing secret renegotiation, Caillaud et al. (1995) enhanced the realism of the

model and clarified the role of strategic contracting.9 The crucial difference between our model and

Caillaud et al. is that they assume that agents play a simultaneous move game (and principals offer

contracts to the agents simultaneously) whereas we focus on sequential move games. Therefore, one

contribution of our paper is to show that the differences between the results of Caillaud et al. (1995)

and Dewatripont (1988) do not depend on allowing secret renegotiation right after the contracts are

signed, but instead depend on the fact that Dewatripont (1988) studies a sequential move game while

Caillaud et al. (1995) a simultaneous move game.

In a related paper, Gerratana and Koçkesen (2012) also study the effects of renegotiation-proof

third-party contracts in two-stage games. However, that paper assumes that the original game is with

perfect information whereas the current one assumes it is a game with incomplete information. Some

aspects of the analyses of these two models are similar and use similar tools, namely theorems of the

alternative. Indeed, results on renegotiation-proof contracts and strategies in Section 3 (Theorem 1

and Propositions 3 and 4) are exact analogs of their counterparts in Gerratana and Koçkesen (2012).

However, the games to which these are applied are completely different, and so are the effects of

renegotiation. For the class of games for which Gerratana and Koçkesen (2012) obtain sharp results,

renegotiation has no bite, that is, the outcomes of games with unobservable and non-renegotiable

contracts are robust to the introduction of renegotiation.10 This is not true in the current paper, where

renegotiation, in general, has a bite. Furthermore, in the current paper we extend our results to (1)

arbitrary extensive form games and mixed strategies; (2) to non-neutral third-parties; and (3) to the

case of observable contracts.

In addressing the question of how renegotiation affects the commitment value of third-party con-

tracts we assumed that in the renegotiation stage the contracting party and the third-party have asym-

metric information.11 This choice seems natural in settings where the original game has incomplete

information. Therefore, we hope that the analysis developed in this paper could be used for other

applications not considered in this paper.

2 The Model

Our aim is to understand the effects of renegotiation-proof third-party contracts in extensive form

games. In this section, we will do this in a particularly simple environment: two-stage games with

private information, which we call the original game. The main reason we present our results for

two-stage games is ease of exposition. Still, we should note that many models in economics such as

the entry game, the Stackelberg game, and monopolistic screening belong to this class of games. Fur-

thermore, we show in Section 4.1 that our main characterization results extend to arbitrary extensive

9See Bolton and Dewatripont (2005) pages 631-636.
10See Gerratana and Koçkesen (2012) Section 6.
11This modeling choice follows Dewatripont (1988) and Caillaud et al. (1995). However, other researchers analyzed differ-

ent kind of frictions in the renegotiation stage (see for example Bensaid and Gary-Bobo (1993), who find that renegotiable
contract have commitment effects in a model with non-transferable utility).
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form games with incomplete information as long as they satisfy an increasing differences property

(see Definition 8).

We allow one of the players to sign a contract with a third-party before the original game begins

and call this new game the game with third-party contracts. The contract specifies a transfer between

the player and the third-party as a function of the contractible outcomes of the original game. The

crucial aspect of our model is the presence of asymmetric information between this player and the

third-party during the renegotiation phase.

More precisely, we define the original game, denoted G , as follows: Nature chooses θ ∈ Θ ac-

cording to probability distribution p ∈∆(Θ). After the move of Nature, player 1, without observing θ,

chooses a1 ∈ A1. Lastly, player 2 observes (θ, a1) and chooses a2 ∈ A2. We assume that A1, A2, and Θ

are finite and let p(θ) denote the probability of Nature choosing θ. Payoff function of player i ∈ {1,2}

is given by ui : A×Θ→R, where A = A1 × A2.

The game with third-party contracts is a three player extensive form game described by the follow-

ing sequence of events: Player 2 offers a contract f : A → R to a third-party. The third-party accepts

(denoted y) or rejects (denoted n) the contract. In case of rejection the game ends and the third-party

receives a fixed payoff of δ ∈R while player 2 receives −∞.12 In case of acceptance, player 1 and 2 play

the original game. We assume that throughout the entire game θ remains the private information of

player 2.

Since offering a contract that is rejected yields player 2 a very small payoff, the contract offer will

be accepted in all equilibria. Therefore, for simplicity, we omit the third-party’s acceptance decision

from histories and represent an outcome of the game with third-party contracts as ( f ,θ, a1, a2). The

payoff functions in the game with contracts are given by v1
(

f , a1, a2,θ
)
= u1 (a1, a2,θ) , v2

(
f , a1, a2,θ

)
=

u2 (a1, a2,θ)− f (a1, a2) , v3
(

f , a1, a2,θ
)
= f (a1, a2), where v3 is the payoff function of the third-party.

Note that the payoff function of the third-party assumes that he is neutral towards the outcome of

the game, i.e., he cares only about the transfer. In Section 4.2 we relax this assumption and allow the

third-party also to have intrinsic preferences over the outcomes of the original game.

The game is with renegotiable contracts if the contracting parties can renegotiate the contract

after player 1 plays a1 and before player 2 chooses a2. We assume that player 2, who is the informed

party, initiates the renegotiation process by offering a new contract, which the third-party may accept

or reject. If the third-party rejects the renegotiation offer g , then player 2 chooses a2 ∈ A2 and the

outcome is payoff equivalent to
(

f ,θ, a1, a2
)
. If he accepts, then player 2 chooses a2 ∈ A2 and the

outcome is payoff equivalent to
(
g ,θ, a1, a2

)
.

We say that the game is with observable contracts if the initial contract is observed by player 1.

Otherwise, we say that the game is with unobservable contracts. In other words, there are four pos-

sible games with third-party contracts depending upon whether the contract is renegotiable or non-

renegotiable and observable or unobservable. Given an original game G , we will denote the game

with non-renegotiable and observable contracts with ΓNO(G), non-renegotiable and unobservable

contracts with ΓNU (G), renegotiable and observable contracts with ΓRO(G), and renegotiable and un-

observable contracts with ΓRU (G).

A behavior strategy for player i ∈ {1,2,3} is defined as a set of probability measures βi ≡ {βi (I ) :

I ∈ Ii }, where Ii is the set of information sets of player i and βi (I ) is defined on the set of actions

available at information set I . One may write βi (h) for βi (I ) for any history h ∈ I . By a system of

12This assumption is made only to eliminate equilibria in which no contract has been signed and can easily be relaxed.
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beliefs, we mean a set µ ≡ {µ(I ) : I ∈ Ii for some i }, where µ(I ) is a probability measure on I . A

pair (β,µ) is called an assessment. An assessment (β,µ) is said to be a perfect Bayesian equilibrium

(PBE) if (1) each player’s strategy is optimal at every information set given her beliefs and the other

players’ strategies; and (2) beliefs at every information set are consistent with observed histories and

strategies.13

We will limit our analysis to pure behavior strategies, and hence a strategy profile of the origi-

nal game G is given by (b1,b2) ∈ A1 × A
A1×Θ

2 .14 For any behavioral strategy profile (b1,b2) of G , de-

fine the expected payoff of player i = 1,2 as Ui (b1,b2) =
∑

θ∈Θ p(θ)ui (b1,b2(b1,θ),θ) and the best

response correspondences as BR1(b2) = argmaxa1∈A1
U1(a1,b2) for all b2 ∈ A

A1×Θ

2 and BR2(a1,θ) =

argmaxa2∈A2
u2(a1, a2,θ) for all (a1,θ) ∈ A1 ×Θ. We say that a strategy profile (b∗

1 ,b∗
2 ) is a Bayesian

Nash equilibrium of G if b∗
1 ∈ BR1(b∗

2 ) and b∗
2 (b∗

1 ,θ) ∈ BR2(b∗
1 ,θ) for all θ. The difference between a

perfect Bayesian equilibrium and a Bayesian Nash equilibrium, of course, is that the former requires

player 2 to best respond to every action of player 1, whereas the latter requires best response to only

the equilibrium action. Therefore, every perfect Bayesian equilibrium is a Bayesian Nash equilibrium

but not conversely.

For any behavior strategy profile (b1,b2) in G , we say that an assessment (β,µ) in Γk (G), k =

NO, NU ,RO,RU , induces (b1,b2) if in Γk (G) player 1 plays according to b1 and, after the equilibrium

contract, player 2 plays according to b2.15

Our ultimate aim is to characterize renegotiation-proof equilibria, in which the equilibrium con-

tract is not renegotiated after any history.16 More precisely,

Definition 1 (Renegotiation-Proof Equilibrium). A perfect Bayesian equilibrium (β∗,µ∗) of ΓRO(G)

and ΓRU (G) is renegotiation-proof if the equilibrium contract is not renegotiated after any a1 ∈ A1

and θ ∈Θ.

We say that a strategy profile (b1,b2) of the original game G can be supported with observable

and non-renegotiable contracts if there exists a perfect Bayesian equilibrium of ΓNO(G) that induces

(b1,b2). Similarly, a strategy profile (b1,b2) of the original game G can be supported with observ-

able renegotiation-proof contracts if there exists a renegotiation-proof perfect Bayesian equilibrium

of ΓRO(G) that induces (b1,b2). Similarly for unobservable and non-renegotiable and unobservable

renegotiation-proof contracts.

One important question is whether we are “missing” equilibria by restricting the analysis to rene-

gotiation-proof equilibria. The following result, known as renegotiation-proofness principle, shows

that the answer is no.

Proposition 1 (Renegotiation-Proofness Principle). If there is a perfect Bayesian equilibrium of the

game ΓRO(G) (resp. ΓRU (G)) that induces a strategy profile (b1,b2) of the original game G, then there

exist a renegotiation-proof perfect Bayesian equilibrium ofΓRO(G) (resp. ΓRU (G)) that induces the same

strategy profile (b1,b2).

13See Fudenberg and Tirole (1991) for a precise definition of perfect Bayesian equilibrium.
14In Section 4.1 we relax this and allow also mixed strategies. This introduces some technical difficulties but our main

results go through.
15Note that in ΓRO (G) and ΓRU (G), player 2 may choose an action a2 ∈ A2 either without renegotiating the initial contract

or after attempting renegotiation.
16We follow the previous literature in our definition of renegotiation-proof equilibrium. See, for example, Maskin and

Tirole (1992) and Beaudry and Poitevin (1995).
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Proof. In Section 8.

AN EXAMPLE: ENTRY DETERRENCE

In order to illustrate our main query as well as some of our results later on, we introduce a very

simple entry game in this section (See Figure 1). Player 1 is a potential entrant, who may enter (E ) or

stay out (O) and player 2, who is the incumbent, may fight (F ) or accommodate (A) entry.

1

0,m

N

2 2

−1, y 2, x −1, w 2, z

O E

cl ch

F A F A

Figure 1: Entry Game

We assume that fighting is costly, and it is costlier for the high cost incumbent (type ch) than for

the low cost (type cl ): z−w > x−y > 0. The entrant believes that the incumbent’s type is low cost with

probability p ∈ (0,1).

The unique perfect Bayesian equilibrium (PBE) of this game is (E , A A), i.e., the entrant enters

and both types of the incumbent accommodate. We assume that the monopoly profit is larger than

the highest possible profit following entry, i.e., m > x. In other words, the incumbent would ben-

efit from deterring entry, and one way of achieving this would be to sign a contract with a third-

party that makes fighting optimal. For example, the following contract makes playing F F optimal:

f (F ) = δ, f (A) = δ+ (z −w ). Is such a contract renegotiation-proof? If not, can entry still be deterred

with renegotiation-proof contracts? In what follows we will answer these questions and also char-

acterize the equilibrium outcomes that can be supported with third-party contracts under different

assumptions regarding their observability and renegotiation-proofness.

3 Renegotiation-Proof Contracts

In this section we will provide results that help identify the set of outcomes of any original game G

that can be supported by renegotiation-proof perfect Bayesian equilibria of the game with observable

(or unobservable) and renegotiable contracts.

In order to decide whether to accept a new contract offer in the renegotiation phase of the game

with renegotiable contracts, the third-party forms beliefs regarding player 2’s strategy under the new

contract and compares his payoffs from the old and the new contracts. In equilibrium, these beliefs
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must be such that player 2’s strategies are sequentially rational, i.e., incentive compatible, under the

new contract. Let the contract space be C = R
A1×A2 and define incentive compatibility as a property

of any contract-strategy pair ( f ,b2)∈C × A
A1×Θ

2 .

Definition 2 (Incentive Compatibility). ( f ,b2) ∈C × A
A1×Θ

2 is incentive compatible if

u2(a1,b2(a1,θ),θ)− f (a1,b2(a1,θ)) ≥ u2(a1,b2(a1,θ′),θ)− f (a1,b2(a1,θ′)) for all a1 ∈ A1 and θ,θ′ ∈Θ.

We say that a strategy b2 is incentive compatible if there is a contract f such that ( f ,b2) is incentive

compatible. We can obtain a sharp characterization of incentive compatible strategies if we impose

more structure on the original game. To this end, let %θ be a linear order on Θ and %2 a linear order

on A2, and denote their asymmetric parts by ≻θ and ≻2, respectively.

Definition 3 (Increasing Differences). u2 : A1 × A2 ×Θ → R is said to have increasing differences in

(%θ,%2) if for all a1 ∈ A1, θ%θ θ
′ and a2 %2 a′

2 imply that u2(a1, a2,θ)−u2(a1, a2,θ′) ≥ u2(a1, a′
2,θ)−

u2(a1, a′
2,θ′). It is said to have strictly increasing differences if θ≻θ θ

′ and a2 ≻2 a′
2 imply that u2(a1, a2,θ)−

u2(a1, a2,θ′)> u2(a1, a′
2,θ)−u2(a1, a′

2,θ′).

Definition 4 (Increasing Strategies). b2 : A1 ×Θ→ A2 is called increasing in (%θ ,%2) if for all a1 ∈ A1,

θ%θ θ
′ implies that b2(a1,θ)%2 b2(a1,θ′). Denote the set of all increasing b2 by B+

2 .

For the rest of the paper, we restrict attention to games G in which there exist a linear order on Θ

and a linear order on A2 such that u2 has strictly increasing differences in (%θ ,%2). Standard argu-

ments show that under increasing differences, incentive compatibility implies that b2 is increasing.

The following proposition states this result and shows that its converse also holds.

Proposition 2. If u2 : A1×A2×Θ→R has strictly increasing differences, then a strategy b2 : A1×Θ→ A2

is incentive compatible if and only if it is increasing.

Proof. Omitted.

The only if part follows from a standard argument in contract theory. In order to prove the if

part fix an arbitrary a1 ∈ A1, let the number of elements of Θ be n, and order its elements so that

θn %θ θ
n−1 %θ · · ·θ

2 %θ θ
1. For any contract-strategy pair ( f ,b2), define f (a1) j = f (a1,b2(a1,θ j )), j =

1, . . . ,n, and let, with an abuse of notation, f (a1) ∈ R
n be the vector whose j th component is given

by f (a1) j . When u2 has increasing differences, incentive compatibility of ( f ,b2) is equivalent to the

local upward and downward constraints:17

f (a1) j − f (a1) j+1 ≤ u2(a1,b2(a1,θ j ),θ j )−u2(a1,b2(a1,θ j+1),θ j ), j = 1, . . . ,n −1

− f (a1) j−1 + f (a1) j ≤ u2(a1,b2(a1,θ j ),θ j )−u2(a1,b2(a1,θ j−1),θ j ), j = 2, . . . ,n

For any a1 ∈ A1, we can write these inequalities in matrix form as D f (a1) ≤ ~U2(a1,b2), where D is a

matrix of coefficients and ~U2(a1,b2) a column vector with 2(n −1) components, whose component

2 j −1 is given by

~U2(a1,b2)2 j−1 = u2(a1,b2(a1,θ j ),θ j )−u2(a1,b2(a1,θ j+1),θ j )

17See, for example, Bolton and Dewatripont (2005), p. 78.
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and component 2 j is given by

~U2(a1,b2)2 j = u2(a1,b2(a1,θ j+1),θ j+1)−u2(a1,b2(a1,θ j ),θ j+1)

Therefore, the proof will be completed if we can show that if u2 has strictly increasing differences

and b2 increasing, then there exists f (a1) ∈R
n such that D f (a1) ≤ ~U2(a1,b2). This follows easily from

Gale’s theorem for linear inequalities (Mangasarian (1994), p. 33).

We next define our renegotiation-proofness concept, which follows from the definition of rene-

gotiation-proof perfect Bayesian equilibrium (Definition 1).

Definition 5 (Renegotiation-Proofness). We say that ( f ,b∗
2 ) ∈C × A

A1×Θ

2 is renegotiation-proof if for

all a1 ∈ A1 and θ ∈Θ for which there exists an incentive compatible (g ,b2) such that

u2(a1,b2(a1,θ),θ)− g (a1,b2(a1,θ)) > u2(a1,b∗
2 (a1,θ),θ)− f (a1,b∗

2 (a1,θ)) (1)

there exists a θ′ ∈Θ such that

f (a1,b∗
2 (a1,θ′)) ≥ g (a1,b2(a1,θ′)) (2)

In words, if, for some (θ, a1), there is a contract g and an incentive compatible continuation play

b2 such that player 2 prefers g over f (i.e., (1) holds), there must exist a belief of the third-party (over

θ) under which it is optimal to reject g , which is implied by (2).18

Finally, we define a renegotiation-proof strategy as,

Definition 6 (Renegotiation-Proof Strategy). A strategy b2 ∈ A
A1×Θ

2 is renegotiation-proof if there ex-

ists an f ∈ C such that ( f ,b2) is incentive compatible and renegotiation-proof. Denote the set of all

renegotiation-proof strategies by B R
2 .

Definitions 5 and 6 are indeed the correct definitions to work with, in the sense that they identify

the conditions that any contract f and strategy b2 must satisfy to be part of a renegotiation-proof

perfect Bayesian equilibrium of ΓRO(G) or ΓRU (G). Indeed, if a strategy b2 of the original game is

not renegotiation-proof, then there is no perfect Bayesian equilibrium (of the game with renegotiable

contracts) in which a contract f is offered and b2 is played without renegotiating f . This simply

follows from the fact that if ( f ,b2) is not renegotiation-proof, then there is (a1,θ) and a contract g

that would be accepted for any belief of the third-party at the renegotiation stage and increase player

2’s payoff. In other words, f will be renegotiated after (a1,θ) and therefore the equilibrium is not

renegotiation-proof. In fact, the converse of that statement also holds: If b2 is renegotiation-proof,

we can construct a perfect Bayesian equilibrium of the game with renegotiable contracts in which the

equilibrium contract is not renegotiated after any a1 and θ. Of course, the equilibrium contract and

b2 will also have to satisfy other conditions for them to be part of an equilibrium, but these would

depend on whether the contracts are observable or unobservable, an issue which we will address in

Section 5.

In this section we present a result that characterizes renegotiation-proof contracts and strategies.

In order to understand this result one should first realize that condition (2) in Definition 5 is satisfied

18This definition allows beliefs to be arbitrary following an off-the-equilibrium renegotiation offer. An alternative defi-
nition would be to require the beliefs to satisfy intuitive criterion. In Section 4.3 we show that our results go through with
minor modifications when we adopt this stronger version.
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trivially if the strategy b2 does not lead to a higher surplus for the contracting parties after (a1,θ).

In other words, for each a1 and i = 1, . . .n, we need to check renegotiation-proofness of ( f ,b∗
2 ) only

against strategies that belong to the following set:

B(a1, i ,b∗
2 ) = {b2 ∈ A

A1×Θ

2 : b2 is increasing and u2(a1,b2(a1,θi ),θi ) >u2(a1,b∗
2 (a1,θi ),θi )}. (3)

By Definition 5, ( f ,b∗
2 ) is not renegotiation-proof if and only if there exist a1 ∈ A1, i = 1, . . .n, and

incentive compatible (g ,b2) such that u2(a1,b2(a1,θi ),θi )−g (a1)i > u2(a1,b∗
2 (a1,θi ),θi )− f (a1)i and

g (a1) j > f (a1) j for all j = 1, . . . ,n. As we have discussed after Proposition 2, when u2 has increasing

differences, incentive compatibility of (g ,b2) is equivalent to Dg (a1) ≤ ~U2(a1,b2). Therefore, ( f ,b∗
2 ) is

not renegotiation-proof if and only if there exist a1, i , b2 and ε∈R
n such that

D( f (a1)+ε) ≤ ~U2(a1,b2), εi < u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ), ε≫ 0.

These conditions can be written as [Ax ≫ 0,C x ≥ 0 has a solution x], once the vector x and ma-

trices A and C are appropriately defined. Motzkin’s theorem of the alternative then implies that

the necessary and sufficient condition for being renegotiation-proof is [A′y1 +C ′y2 = 0, y1 > 0, y2 ≥

0 has a solution y1, y2]. The fact that u2 has increasing differences can then be used to prove the

equivalence of this condition to the one stated in the following theorem.

Theorem 1. ( f ,b∗
2 )∈C ×A

A1×Θ

2 is renegotiation-proof if and only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there exists a k ∈ {1,2, . . . , i −1} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

i−1∑

j=k

~U2(a1,b2)2 j−1 ≤ f (a1)k − f (a1)i (4)

or there exists an l ∈ {i +1, i +2, . . . ,n} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

l∑

j=i+1

~U2(a1,b2)2( j−1) ≤ f (a1)l − f (a1)i (5)

Proof. Omitted.

Theorem 1 characterizes the conditions for which
(

f ,b∗
2

)
is renegotiation-proof. Our next step is

to find conditions for a strategy b∗
2 to be supported with renegotiation-proof contracts. The following

definition facilitates the exposition.

Definition 7. For any a1, i = 1, . . . ,n and b2 ∈B(a1, i ,b∗
2 ) we say that m(b2) ∈ {1,2, . . . ,n} is a blocking

type if

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ) ≤

i−1∑

j=m(b2)

[
~U2(a1,b∗

2 )2 j−1 − ~U2(a1,b2)2 j−1
]

(6)

or

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ) ≤

m(b2)∑

j=i+1

[
~U2(a1,b∗

2 )2( j−1) − ~U2(a1,b2)2( j−1)
]

(7)

We obtain the following necessary conditions for a strategy b∗
2 to be renegotiation-proof.
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Proposition 3. A strategy b∗
2 ∈ A

A1×Θ

2 is renegotiation-proof only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there is a blocking type.

Proof. Omitted.

The above condition becomes also sufficient for renegotiation-proofness with an additional re-

quirement about the relation of blocking types for different renegotiation opportunities.

Proposition 4. A strategy b∗
2 ∈ A

A1×Θ

2 is renegotiation-proof if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there is a blocking type m(bi

2) such that k < l , m(bk
2 ) > k, and m(bl

2) < l imply m(bk
2 ) ≤

m(bl
2).

Proof. Omitted.

The conditions given in Proposition (3) and (4) coincide when player 2 has only two types. There-

fore, Proposition (3) is a full characterization result for such games. Although, they fall short of pro-

viding a full characterization in games with more than two types, they help us do so in environments

with more structure as we demonstrate in Section 6.

EXAMPLE: ENTRY DETERRENCE

Let ch ≻θ cl and A ≻2 F and observe that z−w > x− y implies that u2 has strictly increasing differ-

ences. Proposition 2 therefore implies that the set of incentive compatible strategies are {F F,F A, A A}.

Are these strategies renegotiation-proof? A A is clearly renegotiation-proof because both types are

best responding and hence B(E ,cl , A A) =B(E ,ch , A A) = ;. How about F F ? For both types playing

A is a better response and hence B(E ,cl ,F F ) = {A A} and B(E ,ch ,F F ) = {F A, A A}. Is there a blocking

type for cl , i.e., does (7) hold for m(b2) = ch? Since

u2(E , A,cl )−u2(E ,F,cl ) = x − y > u2(E ,F,ch)−u2(E ,F,ch)− (u2(E , A,ch)−u2(E , A,ch)) = 0

the answer is no, i.e., F F is not renegotiation-proof. Is F A renegotiation-proof? In this caseB(E ,cl ,F A)=

{A A} and B(E ,ch ,F A)=;. Is there a blocking type for cl ? Since

u2(E , A,cl )−u2(E ,F,cl ) = x − y ≤ u2(E , A,ch)−u2(E ,F,ch)− (u2(E , A,ch)−u2(E , A,ch)) = z −w

the answer is yes. Therefore, the set of renegotiation-proof strategies is {F A, A A}. In other words,

renegotiation-proofness in this example is satisfied whenever the high cost type best responds. Also

note that for the high cost type, not best responding is costlier, i.e., z −w > x − y . Credible commit-

ment, in this example, requires best responding when it is very costly no to do so. Finally, an example

of a contract that supports F A is f (F ) = δ, f (A) = δ+ (x − y).

4 Extensions

So far we have assumed that the original game has only two stages and conducted the equilibrium

analysis in pure strategies. Furthermore, we have assumed that the third-party is neutral. In this

section we show that all our main results can be generalized to a much more general class of extensive

form games with incomplete information and they are true in mixed strategy equilibria as well. We
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also discuss how our results are modified when third-parties are not neutral. Finally, we present the

implications of a stronger definition of renegotiation-proofness.

4.1 General Extensive Form Games

Although we have stated our results for two stage games in which only player 2 has private informa-

tion and has the right to sign a contract with a third-party, we can generalize them to arbitrary finite

extensive form games with incomplete information and perfect recall. The only restriction we impose

is that players’ payoff functions in the original game exhibit increasing differences in a sense that we

will make precise.

Define the original game G as an extensive form game with incomplete information in which

player i ∈ {1, . . . ,n} privately learns his type θi ∈Θi at the beginning of the game. Assume that Nature

chooses types independently and let |Θi | = ni . After the types are determined players start taking

actions. We denote the set of histories (excluding the moves of Nature at the beginning) by H and

denote a typical history by h = (a0, a1, a2, . . . , ak ), where a0 is the initial node (or empty history) and

a j denotes the j th action taken in this history. Payoff function of player i is given by ui : Z ×Θ→ R,

where Z is the set of (finite) terminal histories and Θ is the set of all type profiles θ = (θ1, . . . ,θn ).

The set of pure strategies of player i is given by Si and a mixed strategy for player i is a probability

distribution over Si for each θi , i.e., a mapping σi : Θi →∆(Si ). A pure strategy profile is denoted by s

and mixed strategy profile by σ. Denote the set of all information sets at which player i moves by Ii

and the set of all information sets in the game by I . At any information set I ∈Ii , player i has a set of

pure strategies available for the rest of the game, denoted Si |I and defined as the restriction of Si to

information sets of player i that follows (and includes) I . A belief system is a collection of probability

measures m = {m(I ) : I ∈ I }, where m(I ) for I ∈ Ii is defined over I ×Θ−i . A pair (σ,m) is called an

assessment.19 We say that an assessment is consistent if beliefs at every information set are derived

from prior beliefs, observed histories, and strategies using Bayes’ Law whenever possible.

We assume that for every player i and information set I ∈Ii , Si |I is a chain. In other words, there

is a binary relation %i on Θi and%si on Si that is reflexive, antisymmetric, transitive, and complete.20

We denote the asymmetric parts of %i and %si by ≻i and ≻si , respectively.

Fix a player i and an information set I ∈Ii . Given an history h ∈ I , if the type profile is θ, player i

plays si ∈ Si |I , and other players play s−i ∈ S−i |I , payoff of player i can be written as ui (h, si , s−i ,θi ,θ−i ).21

Definition 8 (Increasing Differences). We say that an original game G has increasing differences if for

any i ∈ N , I ∈Ii , θi %i θ
′
i

and si %si s′
i

imply that

ui (h, si , s−i ,θi ,θ−i )−ui (h, s′i , s−i ,θi ,θ−i ) ≥ ui (h, si , s−i ,θ′i ,θ−i )−ui (h, s′i , s−i ,θ′i ,θ−i )

for all h ∈ I , s−i ∈ S−i |I , and θ−i ∈ Θ−i . It is said to have strictly increasing differences if θi ≻i θ
′
i

and

19The original game as well as the games with contracts that we will define shortly have perfect recall and therefore for
every behavior strategy there is an outcome equivalent mixed strategy and vice versa. Therefore, we are free to work with
either the behavior or mixed strategies, whichever more convenient.

20Note that any chain is a lattice. Also, we omit the dependence of %si on I to avoid notational clutter.
21We can do that by finding the terminal history z(h, si , s−i ) that is reached when players play according to (si , s−i ) after

h and defining ui (h, si , s−i ,θi ,θ−i ) = ui (z(h, si , s−i ),θi ,θ−i ).
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si ≻si s′
i

imply that

ui (h, si , s−i ,θi ,θ−i )−ui (h, s′i , s−i ,θi ,θ−i ) > ui (h, si , s−i ,θ′i ,θ−i )−ui (h, s′i , s−i ,θ′i ,θ−i )

for all h ∈ I , s−i ∈ S−i |I , and θ−i ∈Θ−i .

In other words, an original game G has increasing differences if the payoff functions have increas-

ing differences in (si ,θi ) ∈ Si |I ×Θi at every information set I irrespective for how the other players

play and what the types of the other players are. We assume that the original game G has strictly

increasing differences. Examples of games with increasing differences include repeated ultimatum

bargaining and chain store games.

The induced game with non-renegotiable and renegotiable contracts are straightforward gener-

alizations of their counterparts for two stage games. Each player i independently offers a contract

fi : Z → R to a distinct third-party ti , who accepts or rejects it. In case of rejection the game ends, ti

receives a fixed payoff of δi ∈ R, and player i receives −∞. In case of acceptance Nature chooses θ

and players in N play G .

We assume that only player i observes his type θi , and that this is the only source of asymmetric

information between i and the third-party ti . In other words, at any point in the game both the main

player and his third-party observe the same histories. The payoff functions are given by vi ( f , z,θ) =

ui (z,θ)− fi (z), vti
( f , z,θ) = fi (z).

One of the conditions that strategies must satisfy in any perfect Bayesian equilibrium of the game

with contracts, is that player i ’s strategy must be sequentially rational, or incentive compatible, under

the contract. Increasing differences imply that this is equivalent to strategies being increasing. Define

a mixed strategy as increasing if any pure strategy in its support is increasing in the type. We have the

following counterpart to Proposition 2.

Proposition 5. If the original game G has strictly increasing differences, then a mixed strategy is incen-

tive compatible if and only if it is increasing.

Proof. Omitted.

The game is with renegotiable contracts if the contracting parties can renegotiate the contract at

any point throughout the game. At any information set I ∈ Ii player i either offers a new contract

gi : Z →R to the third-party ti or chooses an action. If player i offers a new contract, the third-party

either accepts or rejects it.

We retain the same definition of renegotiation-proofness. Fix a consistent assessment (σ,m). We

say that a contract strategy pair ( fi ,σi ) is renegotiation-proof at (σ−i ,m), if whenever there is a con-

tract gi and an incentive compatible continuation play σ′
i

such that player i of type θi strictly prefers

(gi ,σ′
i
) over ( fi ,σi ) at information set I , there must exist a type θ′

i
for which expected transfers under

( fi ,σi ) at least as high as the transfers under (gi ,σ′
i
).

In order to state the counterpart to our main result for renegotiation-proof contracts we need a

few more definitions. Fix a consistent assessment (σ,m) and let Uσ,m
i

(σ′
i
,θi |I ) be the expected payoff

of player i of type θi to playing mixed strategy σ′
i
∈∆(Si |I ) conditional on reaching information set I .

Similarly, let Fσ,m
i

(σ′
i
|I ) be the expected transfers.

For any i ∈ N , I ∈ Ii , consistent assessment (σ,m), and σ′
i

: Θi → ∆(Si |I ) define ~Uσ,m
i

(σ′
i
|I ) as a

column vector with 2(ni −1) components, where component 2 j −1 is given by Uσ,m
i

(σ′
i
(θ

j

i
),θ j |I )−
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Uσ,m
i

(σ′
i
(θ

j+1
i

),θ j |I ) and component 2 j is given by Uσ,m
i

(σ′
i
(θ

j+1
i

),θ j+1, |I )−Uσ,m
i

(σ′
i
(θ

j

i
),θ j+1|I ), j =

1,2, . . . ,ni−1. Similarly, define~Fσ,m
i

(σ′
i
|I ) as the ni vector whose j th component is given by Fσ,m

i
(σ′

i
(θ

j

i
)|I ),

j = 1,2, . . . ,ni −1.22 Let

Σ̂i (I , j ,σi ) = {σ′
i :Θi →Σi |I : σ′

i is increasing and Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )>Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )}

be the set of all mixed strategies at information set I that is increasing and increases the payoff of

player i type j over his payoff under σi .

Theorem 1 generalizes in a quite straightforward way:

Theorem 2. Fix a consistent assessment (σ,m) and i ∈ N . ( fi ,σi ) ∈ C ×Σi is renegotiation-proof at

(σ−i ,m) if and only if for any I ∈ Ii , j = 1, . . . ,ni , and σ′
i
∈ Σ̂i (I , j ,σi ) there exists a k ∈ {1,2, . . . , j −1}

such that

Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )+

j−1∑

t=k

~Uσ,m
i

(σ′
i |I )2t−1 ≤~Fσ,m

i
(σi |I )k −~Fσ,m

i
(σi |I ) j (8)

or there exists an l ∈ { j +1, j +2, . . . ,ni } such that

Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )+

l∑

t= j+1

~Uσ,m
i

(σ′
i |I )2(t−1) ≤~Fσ,m

i
(σi |I )l −~Fσ,m

i
(σi |I ) j (9)

Proof. Omitted.

Once the definition of a blocking type is appropriately modified (see Definition 7), Propositions 3

and 4 also generalize in a straightforward manner.

4.2 Interested Third-Party

In our model we assumed that the third-party has no interest in the outcome of the original game

other than the transfer from (or to) player 2. This is not always the case with third-party contracts. For

example, the government in its contractual relationship with a central bank is likely to be interested in

the outcome of the game between the central bank and the public. Similarly, the European Union in

its contractual relationships with Airbus is interested in the entry game played by Airbus and Boeing.

We can easily think of many other instances of games with third-party contracts in which the third-

party itself is interested in the outcome of the game. How do our results change if this is the case? The

answer turns out to be straightforward and intuitive.

Let u3(a1, a2,θ) be the third-party’s payoff function so that under contract f his payoff would be

u3(a1, a2,θ)+ f (a1, a2). We say that ( f ,b∗
2 ) is renegotiation-proof if for all a1 ∈ A1 and θ ∈Θ for which

there exists an incentive compatible (g ,b2) such that

u2(a1,b2(a1,θ),θ)− g (a1,b2(a1,θ)) > u2(a1,b∗
2 (a1,θ),θ)− f (a1,b∗

2 (a1,θ))

22Note that independence of types across players implies that the beliefs of player i over h and θ−i , i.e., m(h,θ−i |I ), do
not depend on θi . For the same reason expected transfers to pure strategy si do not depend on θi .
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there exists a θ′ ∈Θ such that

u3(a1,b∗
2 (a1,θ′),θ′)+ f (a1,b∗

2 (a1,θ′)) ≥ u3(a1,b2(a1,θ′),θ′)+ g (a1,b2(a1,θ′))

In the model with neutral third-party a renegotiation opportunity arises whenever there is an in-

creasing strategy that increases player 2’s payoff u2(a1, a2,θ), which is the total surplus available to

player 2 and the third-party in that model. When the third-party is no longer neutral, total surplus

available becomes u2(a1, a2,θ)+u3(a1, a2,θ). Accordingly, a renegotiation opportunity arises when-

ever there is an increasing strategy that increases total surplus u2(a1, a2,θ)+u3(a1, a2,θ). Therefore,

we modify the definition of B(a1, i ,b∗
2 ) as the set of strategies b2 that are increasing and satisfy

u2(a1,b2(a1,θi ),θi )+u3(a1,b2(a1,θi ),θi )> u2(a1,b∗
2 (a1,θi ),θi )+u3(a1,b∗

2 (a1,θi ),θi )}.

We can now state the modified version of Theorem 1:

Theorem 3. ( f ,b∗
2 ) is renegotiation-proof if and only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and b2 ∈

B(a1, i ,b∗
2 ) there exists a k ∈ {1,2, . . . , i −1} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+u3(a1,b2(a1,θk ),θk )−u3(a1,b∗

2 (a1,θk ),θk )+

i−1∑

j=k

~U2(a1,b2)2 j−1 ≤ f (a1)k − f (a1)i (10)

or there exists an l ∈ {i +1, i +2, . . . ,n} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+u3(a1,b2(a1,θl ),θl )−u3(a1,b∗

2 (a1,θl ),θl )

l∑

j=i+1

~U2(a1,b2)2( j−1) ≤ f (a1)l − f (a1)i (11)

Proof. Omitted.

Note that an interested third-party introduces two changes into the result: First, a renegotiation

opportunity arises only if it increases the total surplus rather than just player 2’s payoff. This might

in fact help a contract become renegotiation-proof, if, for example, the third-party and player 2 have

completely opposite preferences. Second, compared with (4) and (5), inequalities (10) and (11) have

extra terms on the left hand side, which might help or hurt a contract become renegotiation-proof

depending upon the sign of those terms.

Again, once the definition of a blocking type is appropriately modified, Propositions 3 and 4 can

be easily generalized to the case of non-neutral third-party.

4.3 Strong Renegotiation-Proofness

Our definition of renegotiation-proofness follows directly from the assumed game form for the rene-

gotiation procedure, i.e., player 2, who is the the informed party, makes a new contract offer and the

third-party, who is uninformed, accepts or rejects. In a renegotiation-proof equilibrium, the contract

is never renegotiated, and therefore any renegotiation offer is an out-of-equilibrium event. This al-

lows us to specify the beliefs of the third-party freely after a new contract offer. This may be found
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unreasonable and a more plausible alternative could be to require beliefs satisfy the conditions spec-

ified in the intuitive criterion introduced by Cho and Kreps (1987).

In our setting, intuitive criterion requires that, given an equilibrium contract strategy pair ( f ,b∗
2 )

and following a renegotiation offer (g ,b2), beliefs put positive probability only on types for which

(g ,b2) is not equilibrium-dominated, i.e., only on those types θ′ for which

u2(a1,b2(a1,θ′),θ′)− g (a1,b2(a1,θ′)) ≥ u2(a1,b∗
2 (a1,θ′),θ′)− f (a1,b∗

2 (a1,θ′))

This leads to the following definition.

Definition 9 (Strong Renegotiation-Proofness). We say that ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is strongly renegoti-

ation-proof if for all a1 ∈ A1 and θ ∈ Θ for which there exists an incentive compatible (g ,b2) such

that

u2(a1,b2(a1,θ),θ)− g (a1,b2(a1,θ)) > u2(a1,b∗
2 (a1,θ),θ)− f (a1,b∗

2 (a1,θ)) (12)

there exists a θ′ ∈Θ such that

f (a1,b∗
2 (a1,θ′)) ≥ g (a1,b2(a1,θ′)) (13)

and

u2(a1,b2(a1,θ′),θ′)− g (a1,b2(a1,θ′)) ≥ u2(a1,b∗
2 (a1,θ′),θ′)− f (a1,b∗

2 (a1,θ′)) (14)

This is exactly the same as renegotiation-proofness except that it adds condition (14), which al-

lows us to construct beliefs that satisfy intuitive criterion after any renegotiation offer. It can be shown

that when we work with this definition, Theorem 1 needs to be modified as follows.

Theorem 4. ( f ,b∗
2 ) is strongly renegotiation-proof if and only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there exists a k ∈ {1,2, . . . , i −1} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )−min{0,u2(a1,b2(a1,θk ),θk )−u2(a1,b∗

2 (a1,θk ),θk )}

+

i−1∑

j=k

~U2(a1,b2)2 j−1 ≤ f (a1)k − f (a1)i (15)

or there exists an l ∈ {i +1, i +2, . . . ,n} such that

u2(a1,b2(a1,θi ),θi )−u2(a1b∗
2 (a1,θi ),θi )−min{0,u2(a1,b2(a1,θl ),θl )−u2(a1,b∗

2 (a1,θl ),θl )}

+

l∑

j=i+1

~U2(a1,b2)2( j−1) ≤ f (a1)l − f (a1)i (16)

Proof. Omitted.

It is also easy to show Propositions 3 and 4 go through with a minor modification similar to the

one made in Theorem 4.

5 Equilibrium Outcomes of Games with Contracts

There may be legal or technological constraints that might render contracts non-renegotiable and

therefore outcomes that can be supported by non-renegotiable contracts are of interest on their own.
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Furthermore, understanding non-renegotiable contracts will help place our results within the litera-

ture and allow us to isolate the effects of renegotiation. Similarly, and irrespective of whether a con-

tract is renegotiable, there may be valid reasons why a contract maybe observable or unobservable.

Legal contracts between a firm and a bank, or a government and an international body, and many

compensation contracts are observable yet subject to renegotiation if the parties find it in their ben-

efit to do so. Other contracts can be either secret or subject to renegotiation before the game begins,

i.e., they can be unobservable. In this section we will present results regarding the outcomes that can

be supported under different assumptions about the contracts.

5.1 Observable Contracts

Let us assume that the contract signed between player 2 and the third-party before the game begins

is observable to player 1 but may or may not be renegotiated after player 1 moves in the game.

5.1.1 Non-renegotiable Contracts

If the contracts are observable but not renegotiable, then we can show that player 2 can obtain the

best payoff possible given that player 2 plays an increasing strategy and player 1 best responds. More

precisely, define the best Stackelberg payoff of player 2 as Ū B
2 = maxb2∈B+

2
maxb1∈BR1(b2)U2(b1,b2) and

the worst Stackelberg payoff as Ū W
2 = maxb2∈B+

2
minb1∈BR1(b2)U2(b1,b2).

Proposition 6. If contracts are observable, then Ū B
2 −δ can be supported with non-renegotiable con-

tracts.

Proof. In Section 8.

The proof of this result is quite easy. In the definition of the best Stackelberg payoff, player 2 is

playing the best increasing strategy, say b∗
2 , given that player 1 is playing a best response that is most

favorable for player 2. Proposition 2 implies that b∗
2 is incentive compatible, i.e., there is a contract,

say f ∗, that makes it optimal to play. It is easy to show that there is a perfect Bayesian equilibrium of

the game with observable and non-renegotiable contracts in which player 2 offers f ∗ with expected

value δ, player 1 plays the most favorable best response to that, say b∗
1 , and player 2 plays b∗

2 (b∗
1 ,θ)

after ( f ∗,b∗
1 ,θ). Expected payoff of player 2 in such an equilibrium is Ū B

2 −δ.

We can also show that player 2 cannot get a payoff that is smaller than his worst Stackelberg payoff.

Proposition 7. If contracts are observable, then Ū W
2 −δ is the smallest payoff that can be supported

with non-renegotiable contracts.

Proof. In Section 8.

In order to see why let b̂2,a1 argminb2∈B+
2

U (a1,b2) for any a1 ∈ A1. In other words, for any a1,

b̂2,a1 is the worst increasing strategy for player 1 that player 2 can play. Since b̂2,a1 is increasing,

it can be shown that there is a contract that makes it uniquely optimal to play. Now let b∗
1 (b2) ∈

argminb1∈BR1(b2) U2(b1,b2), b∗
2 ∈ argmaxb2∈B+

2
U2(b∗

1 (b2),b2), and a∗
1 = b∗

1 (b∗
2 ). Note that U2(a∗

1 ,b∗
1 ) =

Ū W
2 and suppose, for contradiction, that player 2 gets a payoff that is strictly smaller than Ū W

2 −δ.

We show that there exists a contract that makes it uniquely optimal to play b∗
2 (a∗

1 ,θ) after a∗
1 and

b̂2,a1(a1,θ) after any other a1. If Player 2 offers this contract, player 1 must play a best response to
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b∗
2 . This is because for any a1 ∉ BR1(b∗

1 ), we have U1(br1(b∗
2 ),b∗

2 ) >U1(a1,b∗
2 ) ≥U1(a1, b̂2,a1 ). There-

fore, deviation to such a contract yields a gross payoff of at least U2(a∗
1 ,b∗

1 ) = Ū W
2 and a net payoff

arbitrarily close to Ū W
2 −δ, a contradiction.

Of course, we have full characterization if player 1’s best response correspondence is single-valued,

i.e., BR1(b2) is a singleton for any b2 ∈ B+
2 : The unique equilibrium payoff of player 2 that can be sup-

ported with observable and non-renegotiable contracts is Ū B
2 −δ.

5.1.2 Renegotiable Contracts

If the contracts are observable and renegotiable, then player 2 can again achieve his Stackelberg pay-

off, except that the definition of this payoff must reflect the fact that player 2 plays a renegotiation-

proof strategy. Define the best and worst renegotiation-proof Stackelberg payoffs of player 2 as Ū BR
2 =

maxb2∈B R
2

maxb1∈BR1(b2)U2(b1,b2) and the worst Stackelberg payoff asŪ W R
2 = maxb2∈B R

2
minb1∈BR1(b2)U2(b1,b2)

and note that the difference in the definitions comes from the fact that player 2 has to play a renego-

tiation-proof strategy.

Proposition 8. If contracts are observable, then Ū BR
2 −δ can be supported with renegotiation-proof

contracts.

Proof. In Section 8.

The proof of this result also constructs an equilibrium in which player 2 receives the best Stack-

elberg payoff that he can get by playing a renegotiation-proof strategy. There is however a compli-

cation in the proof compared with the proof of Proposition 6. When contracts are non-renegotiable

any deviation from the contract that induces the best Stackelberg outcome under increasing strate-

gies must still induce an increasing strategy. This implies that no deviation can yield a higher payoff.

When contracts are renegotiable a deviation may or may not induce a renegotiation-proof strategy

and hence we cannot tell whether such a deviation can yield a payoff that is strictly higher than the

best Stackelberg payoff that can be obtained by a renegotiation-proof strategy. However, in the proof

of Proposition 8 we construct an equilibrium in which any deviation obtained via renegotiation can

also be obtained via a renegotiation-proof strategy, and this gives us the desired result.

We can again show that player 2 cannot get a payoff that is smaller than his worst Stackelberg

payoff that can be obtained with renegotiation-proof strategies.

Proposition 9. If contracts are observable, then Ū W R
2 −δ is the smallest payoff that can be supported

with non-renegotiable contracts.

Proof. Proof of this result is similar to that of Proposition 7 and omitted.

The above results provide sharp predictions for equilibrium outcomes of the games with observ-

able contracts. In particular, they show that third-party contracts play the role of a commitment

device to the extent that player 2’s strategy respects the constraints brought about by incentive com-

patibility, in the case of non-renegotiable contracts, and renegotiation-proofness, in the case of rene-

gotiable contracts. The implications of these results in terms of the equilibrium outcomes depend on

the specifics of the original game. We present some of these implications in our running example and

further in Section 6.
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EXAMPLE: ENTRY DETERRENCE

Assume that p 6= 2/3 so that player 1’s best response correspondence is single-valued:

br1(F F ) =O,br1(A A) = E ,br1(F A) =





O, p > 2/3

E , p < 2/3

Remember that the set of incentive compatible strategies is B+
2 = {F F,F A, A A} and the set of rene-

gotiation-proof strategies is B R
2 = {F A, A A}. Therefore, the Stackelberg payoff of player 2 given that

he plays an incentive compatible strategy is m, which he achieves by playing F F . Proposition 6 and

7 imply that this is the unique payoff that can be supported with observable and non-renegotiable

contracts. In other words, entry-deterrence is the unique equilibrium outcome. How about with RP

contracts? If p > 2/3, then the Stackelberg payoff is m, obtained by playing F A, whereas if p < 2/3, F A

does not deter entry and the best player 2 can do in this case is to play A A, with payoff px + (1−p)z.

In other words, if p > 2/3 unique equilibrium outcome is entry-deterrence and if p < 2/3 unique

equilibrium outcome is entry and accommodate.

5.2 Unobservable Contracts

We now assume that the initial contract between player 2 and the third party is not observable to

player 1. Again there are two possibilities: the contract could be renegotiable or non-renegotiable.

5.2.1 Non-Renegotiable Contracts

If contracts are non-renegotiable, we have the following characterization.

Proposition 10. A strategy profile (b∗
1 ,b∗

2 ) of the original game G can be supported with unobservable

and non-renegotiable contracts if and only if (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G and b∗
2 is

increasing in (%θ ,%2).

Proof. In Section 8

This result shows that unobservable third-party contracts potentially enlarges the set of outcomes

that can arise in equilibrium. Furthermore, while earlier papers showed that, when there is no asym-

metric information, any Nash equilibrium of the original game can be supported with unobserv-

able contracts, this result shows that only the subset of Bayesian Nash equilibria in which the second

player plays an increasing strategy can be supported if, instead, there is asymmetric information.

This result also has an immediate corollary in terms of the outcomes that can be supported. For

any strategy profile (b1,b2) ∈ A1 × A
A1×Θ

2 , we define an outcome (a1, a2) ∈ A1 × AΘ

2 of G as a1 = b1 and

a2(θ) = b2(b1,θ). Define the individually rational payoff of player 1 as

U+
1 = max

a1∈A1

min
b2∈B+

2

U1(a1,b2). (17)

This is the best payoff player 1 can guarantee for herself in game G , given that player 2 plays an in-

creasing strategy.23 The following easily follows from Proposition 10.

23We should also note that this is different from the definition of individually rational payoff used in the repeated games
literature, which is the minmax payoff rather than the maxmin payoff. The maxmin payoff is at most equal to the minmax
payoff.
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Corollary 1. An outcome (a∗
1 , a∗

2 ) of the original game G can be supported with unobservable and non-

renegotiable contracts if and only if (1) a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ and (2) U1(a∗
1 , a∗

2 ) ≥U+
1 .

Again, note that, in general, outcomes that are not perfect Bayesian equilibrium outcomes of the

original game can also be supported. This can be achieved by writing a contract that leads player 2 to

punish player 1 when he deviates from his equilibrium action. Since contracts cannot be conditioned

on θ and u2 has increasing differences, player 2 can only use punishment strategies that are increasing

in θ. The best that player 1 can do by deviating is therefore given by U 1, and his equilibrium payoff

cannot be smaller than this payoff. This is condition (2). Condition (1), on the other hand, simply

follows from the requirement that only Bayesian Nash equilibrium outcomes can be supported, and

hence, player 2 must be best responding along the equilibrium path.

Note that if θ were contractible as well, we would not need to limit the punishment strategies

to be increasing. In this case, condition (2) would have the individually rational payoff defined as

maxa1∈A1 min
b2∈A

A1×Θ
2

U1(a1,b2). In that case, the result would be the exact analog of those in models

without asymmetric information, i.e., Koçkesen and Ok (2004) and Koçkesen (2007).

We should also note that there are interesting environments in which non-contractibility of θ

does not restrict the set of outcomes that can be supported with non-renegotiable contracts. For

example if player 1’s payoff does not depend on θ, then the punishment does not have to depend on

θ either. Therefore, one can simply use a constant punishment after each deviation, which would be

increasing by construction. A second environment is games with monotone externalities, in which u1

is increasing (or decreasing) in a2. In this case, after any a1, the harshest punishment is the lowest (or

highest) a2, which is constant and hence increasing.

5.2.2 Renegotiable Contracts

Suppose now that the contracts are unobservable and renegotiable. The counterpart to Proposition

10 is the following:

Proposition 11. A strategy profile (b∗
1 ,b∗

2 ) of the original game G can be supported with unobservable

and renegotiation-proof contracts if and only if (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G and b∗
2 is

increasing and renegotiation-proof.

Proof. In Section 8

This result too has an immediate corollary. Define the best payoff player 1 can guarantee for her-

self in game G , given that player 2 plays a renegotiation-proof strategy asU R
1 = maxa1∈A1 minb2∈B R

2
U1(a1,b2).

We have the following corollary.

Corollary 2. An outcome (a∗
1 , a∗

2 ) of the original game G can be supported with unobservable and

renegotiation-proof contracts if and only if (1) a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ and (2) U1(a∗
1 , a∗

2 ) ≥U R
1 .

In order to apply the results on unobservable contracts the crucial piece of information is the

individually rational payoff of player 1 given that player 2 plays an increasing or a renegotiation-proof

strategy. We illustrate how this can be done in Section 6.1 for a large class of games that we call games

with monotone externalities. We show that in those games the only thing that distinguishes the case

of renegotiation-proof contracts from non-renegotiable contracts is that the highest type of player 2
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must play a best response to any a1 under renegotiation-proof contracts, whereas the only restriction

is that he plays an increasing strategy in the case of non-renegotiable contracts.

EXAMPLE: ENTRY DETERRENCE

Individually rational payoffs of player 1 are given by

U+
1 = max

a1∈A1

min
b2∈B+

2

U1(a1,b2) =U1(O,F F ) = 0

U R
1 = max

a1∈A1

min
b2∈B R

2

U1(a1,b2) =





U1(O,F A) = 0, p > 2/3

U1(E , A A) = 2−3p, p < 2/3

Corollary 1 implies that (O,F F ) and (E , A A) can both be supported with unobservable and non-

renegotiable contracts. Corollary 2 implies that if p > 2/3 both (O,F A) and (E , A A) can be supported

with unobservable and RP contracts, whereas if p < 2/3 only (E , A A) can be supported.

6 Applications

6.1 Games with Monotone Externalities

We say that an original game G is a game with monotone externalities if player 1’s payoff is mono-

tonically increasing or decreasing in player 2’s action, i.e., for any a1 and θ, a′
2 %2 a2 implies either

u1(a1, a′
2,θ) ≥ u1(a1, a2,θ) or u1(a1, a′

2,θ) ≤ u1(a1, a2,θ).24 Such positive or negative externalities are

very common in economic models. Indeed, the class of games that satisfy these conditions includes

Stackelberg and entry games, sequential Bertrand games with differentiated products, monopolistic

screening, and ultimatum bargaining, among others.

Assume that contracts are unobservable. Fix a1 ∈ A1, let a2 (a2) be the smallest (largest) element

of A2, and define

b+
2 (a1,θ) =





a2, ∀θ if u1(a1, a2,θ) increasing in a2

a2, ∀θ if u1(a1, a2,θ) decreasing in a2

Note that this strategy is increasing in θ and it is the harshest punishment player 2 can inflict upon

player 1, i.e., b+
2 ∈ argminb2∈B+

2
U1(a1,b2) for all a1. In other words, the individually rational pay-

off of player 1 given that player 2 plays an increasing strategy is given by U+
1 = maxa1 U1(a1,b+

2 ).

We can directly apply Corollary 1 and conclude that an outcome (a∗
1 , a∗

2 ) of the original game G

with monotone externalities can be supported with non-renegotiable contracts if and only if a∗
2 (θ) ∈

BR2(a∗
1 ,θ) for all θ and U1(a∗

1 , a∗
2 ) ≥U+

1 .

Which outcomes can be supported with unobservable and renegotiation-proof contracts? Propo-

sition 3 implies that the harshest punishment strategy b+
2 is not renegotiation proof.25 Using Propo-

sition 4 we can show that, if u1 is increasing in a2, the harshest renegotiation-proof punishment is to

make the highest type of player 2 play a best response, while the other types play the smallest a2 (see

24Note that player 1’s payoff may be increasing in a2 for some a1 and decreasing for others.
25See Lemma 3 in Section 8, which shows that renegotiation-proofness of a strategy b2 ∈ A

A1×Θ

2 implies that the highest
(lowest, resp.) type does not have a profitable deviation to a higher (lower, resp.) action.
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Lemma 2 in Section 8). Similarly, if u1 is decreasing in a2, the harshest renegotiation-proof punish-

ment is to make the smallest type best respond and the other types play the largest a2.

More precisely, let bn
2 (a1) ∈ argmina2∈BR2(a1,θn ) u1(a1, a2,θn) and b1

2(a1)∈ argmina2∈BR2(a1,θ1) u1(a1, a2,θ1).

Define the punishment strategy as

bR
2 (a1,θ) =






a2, if u1(a1, a2,θ) increasing in a2 and θ ≺θ θ
n

bn
2 (a1), if u1(a1, a2,θ) increasing in a2 and θ = θn

a2, if u1(a1, a2,θ) decreasing in a2 and θ ≻ θ1

b1
2(a1), if u1(a1, a2,θ) decreasing in a2 and θ = θ1

(18)

The best payoff that player 1 can achieve against this strategy is U R
1 = maxa1 U1(a1,bR

2 ). We can then

apply Corollary 2 to games with monotone externalities.

Corollary 3. An outcome (a∗
1 , a∗

2 ) of an original game with monotone externalities can be supported

with unobservable and renegotiation-proof contracts if and only if (1) a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ and

(2) U1(a∗
1 , a∗

2 ) ≥U R
1 .

Therefore, the effect of renegotiation in this environment is very clear. If the contracts are un-

observable and non-renegotiable, then any outcome (a1, a2) in which player 2 best responds on the

equilibrium path and punishes player 1 in the harshest possible way off-the-equilibrium can be sup-

ported. With unobservable and renegotiation-proof contracts player 2 cannot punish player 1 in the

harshest possible way anymore: the highest (or the lowest) type must play a best response even off-

the-equilibrium path.

We next apply these results to a game that has been a canonical example for issues related to

commitment: Stackelberg and entry-deterrence games.

QUANTITY COMPETITION AND ENTRY-DETERRENCE

Consider a Stackelberg game in which firm 1 moves first by choosing an output level q1 ∈Q1 and

firm 2, after observing q1, chooses its own output level q2 ∈Q2. Inverse demand function is given by

P(q1, q2) = max{0,α− q1 − q2}, where α > 0, and we assume Qi is a rich enough finite subset of R+

whose largest element is α.26 Cost function of firm 1 is C1(q1) = cq1, where c is common knowledge,

whereas the cost function of firm 2 is C2(q2) = θq2. We assume that θ ∈ {θ1,θ2, . . . ,θn }, where n ≥ 2,

is private information of firm 2 and θ1 < θ2 < ·· · < θn . Firm 1 believes that the probability of θi is

given by p(θi ) and for ease of exposition we assume that expected value of θ is equal to c . The profit

function of firm i is given by πi (q1, q2,θ) = P(q1, q2)qi −Ci (qi ) and we assume that both firms are

profit maximizers.

To ensure positive output levels in equilibrium we assume that α > 2θn − c , in which case the

(Stackelberg) equilibrium outcome of this game is given by

(
q s

1, q s
2(θ)

)
=

(
α−c

2
,
α−2θ+c

4

)

Define the game G as follows: Let A1 = Q1 and A2 = {−q2 : q2 ∈ Q2} and define %i on Ai as ai %i

a′
i
⇔ ai ≥ a′

i
and %θ as θ%θ θ

′ ⇔ θ ≥ θ′. Let the payoff function of player i be given by ui (a1, a2,θ) =

26We introduce this assumption so that player 2 can choose a high enough output level to drive the price to zero.

23



πi (a1,−a2,θ), for any (a1, a2) ∈ A1×A2. The game G is strategically equivalent to the Stackelberg game

defined in the previous paragraph. It is also easy to show that u2 has strictly increasing differences in

(a2,θ) and u1 is increasing in a2.

Let us first assume that contracts are unobservable. Since u2 has strictly increasing differences

and u1 is increasing in a2, we can apply Corollary 1 and Corollary 2 to characterize all the outcomes

that can be supported with non-renegotiable as well as renegotiation-proof third-party contracts. In

order to apply Corollary 1, we need to calculate the individually rational payoff of player 1, i.e., U+
1 as

defined in equation (17). The harshest punishment firm 2 can inflict is to drive the price down to zero

by producing α for any type θ. Since this is a constant (and hence an increasing) strategy, it follows

that U 1 = 0. In other words, any outcome (a∗
1 , a∗

2 (θ)) such that firm 2 best responds to a∗
1 and firm 1

gets at least zero profit can be supported with non-renegotiable contracts. In particular, entry can be

deterred with non-renegotiable contracts.

Can entry be deterred with renegotiation-proof contracts? In order to apply Corollary 2, we need

to first calculate player 1’s individually rational payoff given that player 2 plays a renegotiation-proof

strategy. The discussion above implies that the harshest punishment is obtained when the highest

type of player 2 best responds while the other types choose the lowest a2, i.e., a2 =−α. Player 1’s ex-

pected payoff when player 2 plays this strategy is given by 1
2 p(θn)(α+θn −a1) a1−ca1. Its maximum,

i.e., player 1’s individually rational payoff, is therefore equal to

U R
1 =





0, p(θn)(α+θn )−2c ≤ 0

(p(θn )(α+θn )−2c)2

8p(θn ) , p(θn)(α+θn )−2c > 0

Condition (1) of Corollary 2 requires that a∗
2 (θ) =

a∗
1 +θ−α

2 for all θ, and hence U1(a∗
1 , a∗

2 ) = 1
2 (α− c −

a∗
1 )a∗

1 . Therefore, by condition (2), any outcome such that 1
2 (α−c −a∗

1 )a∗
1 ≥U R

1 can be supported.

Also note that if p(θn)(α+θn )−2c > 0, then U R
1 is strictly positive. This implies that entry cannot

be deterred if p(θn)(α+θn )−2c > 0. Therefore, we have the following result:

Corollary 4. Entry can be deterred with unobservable and non-renegotiable contracts. It can be de-

terred with unobservable and renegotiation-proof contracts if and only if p(θn)(α+θn )−2c ≤ 0.

Now let us assume that contracts are observable. The best payoff that player 2 can obtain in

the original game is the monopoly outcome, i.e., a∗
1 = 0 and a∗

2 (θ) =
a∗

1 +θ−α

2 . If contracts are non-

renegotiable, then Player 2 can obtain this outcome exactly the same way as with unobservable con-

tracts: If player 1 plays any a1 > 0, punish him by flooding the market, i.e., choose a2 =−α. In other

words, with observable and non-renegotiable contracts the unique outcome is the monopoly (entry-

deterrence) outcome.

Could player 2 achieve the monopoly outcome with renegotiation-proof contracts? The above

analysis implies that the answer is yes as long as U R
1 = 0, i.e., p(θn)(α+ θn )− 2c ≤ 0. It is easy to

see that if this condition holds, then the unique equilibrium outcome that can be achieved with ob-

servable and renegotiation-proof contracts is the monopoly outcome. If, on the other hand, p(θn)(α+

θn)−2c > 0, then monopoly outcome can no longer be supported with renegotiation-proof contracts.

However, player 2 can obtain the following outcome: Player 1 plays a∗
1 , where a∗

1 is the smallest a1
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such that

1

2
(α−c −a∗

1 )a∗
1 ≥

(
p(θn)(α+θn )−2c

)2

8p(θn )

and player 2 plays a∗
2 (θ) =

a∗
1 +θ−α

2 for all θ. In this outcome, player 1 produces the smallest amount

consistent with player 2 punishing with the harshest possible renegotiation-proof strategy off-the-

equilibrium and best responding on the equilibrium path.

Dewatripont (1988) has analyzed a similar entry game and showed that entry can be deterred

with renegotiation-proof contracts under certain conditions. His conditions are different from ours

because he uses a different renegotiation-proofness concept, namely durability, first introduced by

Holmstrom and Myerson (1983). A decision rule is durable if and only if the parties involved would

never unanimously approve a change from this decision rule to any other decision rule. Holmstrom

and Myerson showed that this is equivalent to interim incentive efficiency when there is only one

player with private information. In our context, only player 2 has private information and hence a

contract-strategy pair ( f ,b∗
2 ) is interim incentive efficient (and therefore durable) if and only if there

is no a1 ∈ A1 and an incentive compatible (g ,b2) such that after a1 every type of player 2 and the

third-party do better under (g ,b2), with at least one doing strictly better.

We have a characterization of durable strategies for the two-type case, i.e., when Θ = {θ1,θ2},

and even in that case, the relationship between our concept of renegotiation-proofness and dura-

bility turns out to be quite subtle. It is not difficult to show that neither concept implies the other

one in general. However, in games with monotone externalities it can be shown that durability im-

plies renegotiation-proofness. The entry-deterrence game is a game with monotone externalities,

and therefore, if entry can be deterred with durable contracts, it can also be deterred with renegotia-

tion-proof contracts. In fact, in the entry-deterrence game player 2’s payoff function is single-peaked

and for such environments we have a complete characterization of durable outcomes that is particu-

larly easy to apply. Using this characterization, we can show that the relationship between durability

and renegotiation-proofness is strict.

Proposition 12. In the entry-deterrence game with two types, if p1(θ2 +α) > (θ2 −θ1), then entry can

be deterred with renegotiation-proof contracts but not with durable contracts.

Proof. Available upon request.

Remember that the harshest renegotiation-proof punishment strategy of the incumbent is to

flood the market if entry occurs, except for the highest type (type θ2), who has to best respond. Dura-

bility still requires that the highest type best responds. The difference is that flooding the market for

type θ1 is not a durable strategy: There is a restriction on how much the incumbent can produce in

response to entry, which is condition (d) of Proposition 1 in Dewatripont (1988).

6.2 Commitment to monetary policy

In this section we apply our results to the problem of credibility of monetary policy (Kydland and

Prescott (1977), Barro and Gordon (1983)). Consider the following model. Public (player 1) forms

expectations of inflation rate πe after which the economy receives a zero mean shock θ and the policy

maker (player 2) sets the inflation rate π. Unemployment rate is given by an expectation augmented
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Phillips curve with a stochastic shock, U =U∗−α(π−πe )+θ, where α> 0 and U∗ is the natural rate

of unemployment. The policy maker’s objective function is −U 2 −βπ2 whereas the public aims to

accurately forecast the inflation rate.

We can study this model in our framework by defining the following game G . Let a1 = πe , a2 = π,

A1 = A2 =R, θ ∈ {θ1,θ2, . . . ,θn}, and θ1 < θ2 < ·· · < θn .27 Let probability of θi be p(θi ) and
∑

i p(θi )θi =

0. Define %2 on A2 as a2 %2 a′
2 ⇔ a2 ≥2 a′

2 and %θ as θ %θ θ′ ⇔ θ ≥ θ′. Let the payoff functions be

u1(πe ,π,θ) = −(πe −π)2, u2(πe ,π,θ) = −(U∗ −α(π−πe )+θ)2 −βπ2.28 It is easy to show that u2 has

strictly increasing differences in (π,θ).

With an abuse of notation denote the public strategy as πe ∈ R and the policy maker’s strategy as

π(πe ,θ). The literature looks at a particular class of equilibria known as rational expectations equilib-

ria in which the public always predicts the inflation rate accurately: πe =
∑

i p(θi )π(πe ,θi ). In order to

allow comparison with the extant literature, we restrict attention to strategies of policy maker that are

separable in θ andπe , i.e., π(πe ,θ) = π̃(πe )+π̂(θ), and such that dπ̃(πe )
dπe 6= 1.29 The equilibrium outcome

of the original game G , then, is the same as what is known as the rational expectations equilibrium in

the literature:

Proposition 13. The unique perfect Bayesian equilibrium of the original game G is given by πe =
α
βU∗

and π(πe ,θ) = α2

α2+β
πe +

α
α2+β

(U∗+θ), with outcome πe =
α
βU∗ and π(θ)= α

βU∗+
α

α2+β
θ

Proof. Omitted.

As it is well known this outcome is inefficient and the policy maker would rather commit to the

policy π(θ) = α
α2+β

θ, which results in zero expected inflation. Contracts have been shown to achieve

this commitment (Walsh (1995) and Persson and Tabellini (1993)) and our next result reproduces this

result.

Proposition 14. The unique outcome supported by observable and non-renegotiable third party con-

tracts is πe = 0 and π(θ) = α
α2+β

θ.

Proof. In Section 8.

However, the interpretation of this result has been criticized by McCallum (1995, 1997), whose

“second fallacy” argument can be rephrased in terms of renegotiation: How credible can be a com-

mitment through a contract when both parties have an incentive not to enforce it? The next result

states what can be obtained with renegotiable contracts and therefore addresses the criticism by Mc-

Callum.

Proposition 15. The unique outcome supported by observable and renegotiable third party contracts

is

πe
=

αpn

α2(1−pn )+β
U∗ (19)

π(θ) =






α
α2+β

θ, θ < θn

α
α2+β

θ+ αU∗

α2(1−pn )+β , θ = θn
(20)

27In our model we assumed that A1 and A2 are finite. In this application, we are assuming that they have the cardinality
of the continuum. In order for the results of the paper to go through, we need to assume that player 2 is restricted to offer
contracts f after which player 1 and 2’s optimal continuation plays are well defined.

28We assume that the third-party is neutral. If not, we can modify our results as suggested in Section 4.2.
29See Lemma 4 for the reasons behind these restrictions.
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Proof. In Section 8.

Proposition 15 tells us that if contracts can be renegotiated, the inflationary bias cannot be com-

pleted eliminated. However, the average inflation rate is less than the one produced by the discre-

tionary monetary policy (i.e., the one without commitment). In other words, the possibility to rene-

gotiate the contracts reduces the commitment role of contracts, but does not completely eliminate

it.

An interesting feature of the equilibrium outcome with renegotiable contracts is that the real-

ized inflation differ from the non-renegotiable case only in the “worst state” of the world θn . This

implies that the average inflation rate is increasing in the probability pn . As pn approaches one, πe

approaches α
βU∗ (the inflation rate without commitment), while as pn approaches zero, the average

inflation rate approaches zero (the inflation rate under full commitment).

Another observation is that in this model, unlike in the entry-deterrence model, unobservable

contracts (whether they are renegotiable or not) are completely ineffectual in solving the problem of

credibility of monetary policy. Indeed, if the contracts are unobservable, then the only outcome of

the original game that can be supported is the equilibrium outcome of the original game given by the

rational expectations equilibrium without commitment.30

7 Conclusion

In this paper we studied the extent to which renegotiation reduces the commitment value of third-

party contracts in extensive form games with incomplete information. In order to isolate the effect

of renegotiation, we compared the outcomes that can be supported with non-renegotiable contracts

with those that can be supported with renegotiable contracts, and showed that when renegotiation

cannot be excluded the committing party is restricted to choose renegotiation-proof strategies. More

precisely we showed that when the contracts are observable to the first mover, then the second mover

obtains her Stackelberg payoff that can be achieved with renegotiation-proof strategies. When the

contracts are not observable, then some kind of a “folk theorem” is true: Any outcome in which the

second mover best responds to the first mover’s action and the first mover obtains his individually

rational payoff can be supported. In the definition of the individually rational payoff, player 2 is re-

stricted to using increasing and renegotiation-proof strategies.

The restriction imposed by renegotiation-proofness is particularly transparent in some interest-

ing economic applications. In particular, we apply our results to games with monotone externalities,

i.e., games in which the first mover’s payoff is monotonically increasing (or decreasing) in the second

mover’s action, and to a model of credibility of monetary policy (which is not a game with monotone

externalities). The general message is that, while renegotiation does limit the commitment value of

third-party contracts and hence, in general, has bite, renegotiable contracts still have an important

strategic value. In games with monotone externalities, player 2 can induce player 1 to play player 2’s

favorite action by punishing him if he plays some other action. If player 1’s payoff is increasing in

player 2’s action, then the worst punishment is to play the lowest possible action for every type of

player 2. However, this is not a renegotiation-proof strategy. The worst renegotiation-proof punish-

ment is to best respond for the highest type while the others play the smallest action.

30This follows immediately from Propositions 10 and 11 and the restriction in our strategy space.
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In the problem of credibility of monetary policy, it is well-known that with non-renegotiable con-

tracts it is possible to eliminate the inflationary bias and to achieve the socially optimal policy. We

show that if contracts are renegotiable, the rate of inflation in the worst state of the world (e.g., a fi-

nancial crisis) must be the discretionary one, while the rate of inflation in all the other states of the

world are the same as the rate of inflation chosen in the case of non-renegotiable contracts.

The class of games considered in this paper is quite large and we believe that there are many

other interesting models or economic problems that can benefit from the analysis and the methods

developed in this paper.

8 Proofs

In the game with non-renegotiable contracts, player 2 has an information set at the beginning of the

game, which we identify with the null history ;, and an information set for each ( f ,θ, a1) ∈C ×Θ×A1,

where C =R
A1×A2 . Player 3 has an information set for each f ∈C . If contracts are unobservable, then

player 1 has only one information set, given by C . If contracts are observable, then player 1 has

an information set for each f ∈ C . In the game with renegotiable contracts, player 2 has additional

information sets corresponding to each history ( f ,θ, a1, g , y) and ( f ,θ, a1, g ,n) and player 3 has an

additional information set of each ( f , a1, g ), which we denote by I3( f , a1, g ).

Proof of Proposition 1. Take a perfect Bayesian equilibrium (PBE) (β,µ) of the game ΓRO(G) that in-

duces the strategy profile (b∗
1 ,b∗

2 ) of G and let f ∗ be the contract offered by player 2 to the third party

in the first stage, that is β2(;) = f ∗. For each a1, partition the set Θ in two sets, ΘR
a1

and Θ
NR
a1

=Θ−Θ
R
a1

,

where θ ∈ Θ
R
a1

if the contract f ∗ is renegotiated after (a1,θ); that is θ ∈ Θ
R
a1

if β2( f ∗,θ, a1) = g for

some g ∈ C and β3( f ∗,θ, a1, g ) = y . If Θa1 = ; for all a1, then (β,µ) is renegotiation-proof and we

are done. For each a1 and θ ∈ Θ
R
a1

denote with g(θ,a1) the contract that is offered and accepted after

( f ∗,θ, a1), that is β2( f ∗,θ, a1) = g(θ,a1) and β3( f ∗,θ, a1, g(θ,a1)) = y . Also, for each a1 and θ ∈ Θ
R
a1

de-

note with bg(θ,a1) the strategy that player 2 chooses after the contract g(θ,a1) is offered and accepted,

i.e., β2( f ∗,θ, a1, g(θ,a1), y) = bg(θ,a1) . For each a1 and θ ∈ Θ
NR
a1

, denote with b f ∗(a1,θ) the strategy that

player 2 chooses after ( f ∗, a1,θ), that is β2( f ∗,θ, a1) = b f ∗ (a1,θ). Define

h∗(a1, a2) =






f ∗(a1, a2), if ∃θ ∈Θ
NR
a1

such that a2 = b f ∗(a1,θ)

g(θ,a1)(a1, a2), if ∃θ ∈Θ
R
a1

such that a2 = bg(θ,a1) (a1,θ)

∞ otherwise

bh∗ (a1,θ) =





b f ∗(a1,θ), if θ ∈Θ

NR
a1

bg(θ,a1 ) (a1,θ), if θ ∈Θ
R
a1

Consider the following assessment, denoted (β′,µ′), in which player 2 offers h∗ and plays accord-

ing to bh∗ without attempting to renegotiate. Player 1 has the same beliefs as in (β,µ), β′
1(h∗) =β1( f ∗),

and β′
1( f ) = β1( f ) for f 6= h∗; Player 3 has the same beliefs as in (β,µ), β′

3(h∗) = y , and β′
3(I ) = β3(I )

at any other information set I ; β′
2(;) = h∗, β′

2(h∗,θ, a1) = bh∗ (a1,θ), and β′
2(I )=β2(I ) at any the other

information set I .

We will show that (β′,µ′) is a renegotiation-proof PBE of ΓRO(G) and induces (b∗
1 ,b∗

2 ). Since
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β′
1(h∗) = b∗

1 and β′
2(h∗,θ, a1) = bh∗ (a1,θ) = b∗

2 (a1,θ), the assessment (β′,µ′) induces (b∗
1 ,b∗

2 ), and

since h∗ is not renegotiated after any (a1,θ), it is renegotiation-proof.

In order to prove that (β′,µ′) is a PBE, we first show that h∗(a1, a2) is well defined. Indeed, if

there exist a1 ∈ A1, θ ∈Θ
R
a1

and a θ′ ∈Θ
NR
a1

such that b f ∗(a1,θ′) = bg(θ,a1) (a1,θ) = a2, then f ∗(a1, a2) =

g(θ,a1)(a1, a2). Suppose, for contradiction, that f ∗(a1, a2) 6= g(θ,a1)(a1, a2). Assume first that f ∗(a1, a2) >

g(θ,a1)(a1, a2). In the PBE (β,µ), after ( f ∗, a1,θ′), player 2 chooses b f ∗(a1,θ′) = a2 and gets a pay-

off of u2(a1, a2)− f ∗(a1, a2). However by choosing g(θ,a1) and then playing a2, player 2 would get

u2(a1, a2)− g(θ,a1)(a1, a2) > u2(a1, a2)− f ∗(a1, a2).31 This implies that player 2 has a profitable devia-

tion, contradicting that (β,µ) is a PBE.

Assume now that f ∗(a1, a2) < g(θ,a1)(a1, a2). In (β,µ), after ( f ∗, a1,θ), player 2 renegotiates by of-

fering g(θ,a1), which is accepted, and 2 chooses a2. He receives a payoff of u2(a1, a2,θ)−g(θ,a1)(a1, a2),

which is smaller than the payoff he could receive by playing a2. Therefore player 2 has a profitable

deviation contradicting that (β,µ) is a PBE.

Next, we prove that (h∗,bh∗ ) is incentive compatible, that is, for all a1 and θ:

u2(a1,bh∗ (a1,θ),θ)−h∗(a1,bh∗ (a1,θ)) ≥ u2(a1, a2,θ)−h∗(a1, a2) for any a2 ∈ A2 (21)

First, assume θ ∈Θ
NR
a1

so that bh∗(a1,θ) = b f ∗ (a1,θ). If a2 is such that ∃θ′ ∈Θ
NR
a1

, with a2 = bh∗(a1,θ′) =

b f ∗ (a1,θ′), then (21) becomes

u2(a1,b f ∗(a1,θ),θ)− f ∗(a1,b f ∗(a1,θ)) ≥ u2(a1,b f ∗ (a1,θ′),θ)− f ∗(a1,b f ∗(a1,θ′))

which holds by optimality of b f ∗(a1,θ). If a2 is such that there exist θ′ ∈Θ
R
a1

such that a2 = bh∗(a1,θ′) =

bg(θ′ ,a1)
(a1,θ′), then (21) holds because otherwise after (a1,θ) player 2 could offer g(θ′,a1) and once ac-

cepted, play a2 = bg(θ′ ,a1)
(a1,θ′). This yields a payoff of u2(a1, a2,θ)−g(θ′ ,a1)(a1, a2) > u2(a1,b f ∗(a1,θ),θ)−

f ∗(a1,b f ∗(a1,θ)), implying that player 2 has a profitable deviation after ( f ∗,θ, a1) and contradicting

that (β,µ) is a perfect Bayesian equilibrium.32 Finally, if there is no θ′ ∈Θ, with a2 = bh∗(a1,θ′), then

(21) holds trivially.

Next, assume θ ∈ Θ
R
a1

so that bh∗ (a1,θ) = bg(θ,a1) (a1,θ). If a2 is such that ∃θ′ ∈ Θ
NR
a1

, with a2 =

bh∗(a1,θ′) = b f ∗ (a1,θ′), then (21) holds, because, otherwise after (a1,θ) player 2 could choose a2 =

b f ∗ (a1,θ′) (without renegotiating f ∗) and could get a payoff of

u2(a1,b f ∗ (a1,θ′),θ)− f ∗(a1,b f ∗(a1,θ′)) > u2(a1,bg(θ,a1 ) (a1,θ),θ)− g(θ,a1)(a1,bg(θ,a1) (a1,θ)).

This implies that player 2 has a profitable deviation after history ( f ,θ, a1), contradicting that (β,µ) is

a PBE. If a2 is such that there exists a θ′ ∈ Θ
R
a1

with a2 = bh∗(a1,θ′) = bg(θ′ ,a1)
(a1,θ′), then (21) holds,

because, otherwise player 2 could offer g(θ′,a1) after (a1,θ) and once accepted play a2 = bg(θ′ ,a1)
(a1,θ′).

This yields

u2(a1, a2,θ)− g(θ′ ,a1)(a1, a2) >u2(a1,bg(θ,a1) (a1,θ),θ)− g(θ,a1)(a1,bg(θ,a1 ) (a1,θ))

and shows that player 2 has a profitable deviation after history ( f ,θ, a1), contradicting that (β,µ) is a

31Note that g(θ,a1)(a1, a2) is accepted after a1 in (β,µ) since θ ∈Θ
R
a1

by hypothesis.
32Note that g(θ′ ,a1) is accepted by construction.
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PBE.33 Finally, if there is no θ′ ∈Θ, with a2 = bh∗ (a1,θ′), then (21) holds trivially.

We now verify that (β′,µ′) is indeed a perfect Bayesian equilibrium ofΓRO (G). For player 1, β′
1(h∗)=

β1( f ∗) is optimal because for any a1, h∗ and f ∗ induce the same outcome. Similarly, for any f 6= h∗,

β′
−1 andβ−1 induce the same continuation play, which implies that β′

1( f ) =β( f ) is optimal. For player

3, β3(h∗) = y is optimal because β3( f ∗) = y is optimal and h∗ and f ∗ induce the same continuation

play; β′
3( f , a1, g ) =β3( f , a1, g ) is optimal because β′

2( f ,θ, a1, g , x) =β2( f ,θ, a1, g , x), for x = y,n.

For player 2, β′
2( f ,θ, a1, g , x) = β2( f ,θ, a1, g , x), for x = y,n, is optimal by construction. Similarly,

for any f 6= h∗, β′
2( f ,θ, a1) = β2( f ,θ, a1) is optimal since continuation plays after ( f ,θ, a1) are the

same under β and β′. Now consider optimality of β′
2(h∗,θ, a1) = bh∗(a1,θ). Suppose first that θ ∈

Θ
NR
a1

. Incentive compatibility of (h∗,bh∗ ) implies that there is no profitable deviation to a different

action a2. There cannot be a profitable deviation to offering a contract either, because continuation

play after any such contract is the same under β and β′ and hence if there was such a contract, then

playing according to b f ∗ (a1,θ) would not be optimal under β. Now suppose θ ∈Θ
R
a1

. Again, incentive

compatibility of (h∗,bh∗ ) implies that there is no profitable deviation to a different action a2 . Suppose,

for contradiction, that there is a profitable deviation to offering a contract g ′. If g ′ is rejected, then

incentive compatibility of (h∗,bh∗ ) is contradicted. If g ′ is accepted, then it is also accepted in under

β. If this were to bring a higher payoff, then renegotiating to g(θ,a1) would not be optimal in β. Finally,

β′
2(;) = h∗ is optimal because h∗ and f ∗ yield the same expected payoffs and any f 6= h∗ induces the

same continuation play under β′ and β. Consistency of beliefs follows easily.

The proof for a perfect Bayesian equilibrium (β,µ) of the game ΓRU (G) is virtually identical and

omitted.

We first introduce some notation. Let the number of elements in Θ be equal to n and order its

elements so that θn %θ θn−1 %θ · · ·θ2 %θ θ1. Let ei be the i th standard basis row vector for R
n and

define the row vector di = ei − ei+1, i = 1,2, . . . ,n − 1. Let D be the 2(n − 1) ×n matrix whose row

2i −1 is di and row 2i is −di , i = 1, . . . ,n −1. For any a1 ∈ A1 and b2 ∈ A
A1×Θ

2 define ~U2(a1,b2) as a

column vector with 2(n −1) components, where component 2i −1 is given by u2(a1,b2(a1,θi ),θi )−

u2(a1,b2(a1,θi+1),θi ) and component 2i is given by u2(a1,b2(a1,θi+1),θi+1)−u2(a1,b2(a1,θi ),θi+1),

i = 1,2, . . . ,n −1.

Notation 1. Given two vectors x, y ∈ Rn

1. x ≥ y if and only if xi ≥ yi , for all i = 1,2, . . . ,n;

2. x > y if and only if xi ≥ yi , for all i = 1,2, . . . ,n and x 6= y ;

3. x ≫ y if and only if xi > yi , for all i = 1,2, . . . ,n.

Similarly for ≤, <, and ≪.

For any a1 ∈ A1, b2 ∈ A
A1×Θ

2 and f ∈ C , let f (a1,b2) be the column vector with n components,

where i th component is given by f (a1,b2(a1,θi )), i = 1,2, . . . ,n. For any strategy profile (b1,b2) of G

define the expected transfer from player 2 to the third-party as F (b1,b2) =
∑

θ∈Θ p(θ) f (b1,b2(b1,θ)).

Proof of Proposition 6. Let b∗
2 ∈ argmaxb2∈B+

2
maxb1∈BR1(b2)U2(b1,b2) and b∗

1 ∈ argmaxb1∈BR1(b∗
2 ) U2(b1,b∗

2 ).

Note that Ū B
2 = U2(b∗

1 ,b∗
2 ). Since b∗

2 is increasing by construction, there exists a contract f ∗ such

33Again note that g(θ′ ,a1) is accepted under (β,µ) by construction.
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that ( f ∗,b∗
2 ) is incentive compatible and F (b∗

1 ,b∗
2 ) = δ. For any f ∈ C , a1 ∈ A1,θ ∈ Θ choose b2, f ∈

argmaxa2∈A2
u2(a1, a2,θ)− f (a1, a2) and b1, f ∈ argmaxa ′

1∈A1
U1(a′

1,b2, f ).

Consider the following assessment (β,µ) ofΓ(G): β2(;) = f ∗, β3( f ∗) = y ,β3( f ) = y iff F (b1, f ,b2, f ) ≥

δ, β1( f ∗) = b∗
1 , β1( f ) = b1, f , for f 6= f ∗, β2( f ∗,θ, a1) = b∗

2 (a1,θ), β2( f ,θ, a1) = b2, f (a1,θ) for all f 6= f ∗,

a1 ∈ A1, and θ ∈Θ.

If player 2 offers any contract f 6= f ∗, the continuation play will be (b1, f ,b2, f ). If F (b1, f ,b2, f ) < δ

it will be rejected and hence it cannot be a profitable deviation. If F (b1, f ,b2, f ) ≥ δ, then

U2(b∗
1 ,b∗

2 )−F (b∗
1 ,b∗

2 ) =U2(b∗
1 ,b∗

2 )−δ≥U2(b1, f ,b2, f )−F (b1, f ,b2, f )

by construction. Therefore, it is optimal for player 2 to offer f ∗. Sequential rationality at other infor-

mation sets are easily checked and we conclude that this assessment is a perfect Bayesian equilibrium

of the game with observable contracts.

Proof Proposition 7. Let b∗
1 (b2) ∈ argminb1∈BR1(b2)U2(b1,b2), b∗

2 ∈ argmaxb2∈B+
2

U2(b∗
1 (b2),b2), and a∗

1 =

b∗
1 (b∗

2 ). Note that U2(a∗
1 ,b∗

1 ) = Ū W
2 and suppose, for contradiction, that player 2 gets a payoff Ũ2 <

Ū W
2 −δ. We will show that player 2 can offer a contract that supports (a∗

1 ,b∗
2 ) and yields a higher

payoff.

For any a1 choose b̂2,a1 ∈ argminb2∈B+
2

U1(a1,b2). By construction b̂2,a1 is increasing and hence

there exists a contract that makes it optimal to play. We will further show that there exists a contract

that makes it the unique optimal strategy after a1. Assume without loss of generality that b̂2,a1(a1,θ) 6=

b̂2,a1(a1,θ′) whenever θ 6= θ′ and hence b̂2,a1 (a1,θi ) ≻θ b̂2,a1 (a1,θi−1) for all i = 1, . . . ,n.34 Define

~U2(a1, b̂2,a1 ) as usual and note that strictly increasing differences and b̂2,a1 (a1,θi ) ≻θ b̂2,a1 (a1,θi−1)

imply that

~U2(a1, b̂2,a1 )2i−1 + ~U2(a1, b̂2,a1 )2i > 0, ∀i = 1, . . . ,n −1.

We will show that there exists f a1 such that D f a1 ≪ ~U2(a1, b̂2,a1). Define

A =

(
~U2(a1, b̂2) −D

1 0

)

and note that there exists f a1 such that D f a1 ≪ ~U2(a1, b̂2,a1 ) iff there exists x such that Ax ≫ 0.35

By Gordan’s Theorem, this is true iff A′y = 0 implies y ≤ 0. It is easy to show that A′y = 0 implies

y1 = y2, y3 = y4, · · · , y2(n−1)−1 = y2(n−1). Therefore,

A′y = y2(n−1)+1 +

n−1∑

i=1

(~U2(a1, b̂2,a1 )2i−1 + ~U2(a1, b̂2,a1 )2i )y2i−1

~U2(a1, b̂2,a1 )2i−1 + ~U2(a1, b̂2,a1 )2i > 0,∀i = 1, . . . ,n −1, and A′y = 0 imply y ≤ 0.

34If there exist i such that b̂2,a1 (a1,θi ) = b̂2,a1 (a1,θi−1) simply eliminate the incentive compatibility constraint between
them and set f̂a1 (a1, b̂2,a1 (a1,θi )) = f̂a1 (a1, b̂2,a1 (a1,θi−1)).

35To see this let x =

(
ζ

f a1

)
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Let ε> 0 be small and define f (b∗
1 , a2) = δ+ε for all a2. For any a1 6= b∗

1 define

f (a1, a2) =





f

a1

i
, a2 = b̂2,a1 (a1,θi )

∞, otherwise

Under this contract, player 2 plays a best response to a∗
1 and according to b̂2,a1 after any a1 6= a∗

1 .

Player 1, on the other hand, must play a best response to b∗
2 . This is because for any a1 ∉ BR1(b∗

1 ),

we have U1(br1(b∗
2 ),b∗

2 ) >U1(a1,b∗
2 ) ≥ U1(a1, b̂2,a1). Therefore, deviation to such a contract yields a

payoff of U2(b∗
1 ,b∗

2 )−δ−ε> Ũ2, for small enough ε. In other words, player 2 has a profitable deviation,

contradicting that Ũ2 is an equilibrium payoff.

Before we proceed to the proof of Proposition 8 we need to introduce a definition and prove a

supplementary lemma.

Definition 10. We say that a perfect Bayesian equilibrium (β,µ) of the game with renegotiable con-

tracts has conservative beliefs if

β2( f , a1,θ) = g ∈C ,β2( f , a1,θ, g , y) = bg (a1,θ),β2( f , a1,θ, g ,n) = b f (a1,θ),β3(I3( f , a1,θ)) = y

imply g (bg (a1,θ)) ≥ f (b f (a1,θ)).

In other words, whenever, in equilibrium, type θ renegotiates the contract from f to g , the third-

party should not expect a decrease in the transfer from that type.

Lemma 1. Take any a perfect Bayesian equilibrium of the game with renegotiable contracts and assume

that it has conservative beliefs. Suppose that a contract f is renegotiated after some a1 and θ. Then,

there exists a contract strategy pair that is incentive compatible, renegotiation-proof, and induces the

same outcome as f after a1.

This lemma tell us that in any equilibrium with conservative beliefs, one can achieve any outcome

that is achieved via renegotiation after a1 by using a renegotiation-proof contract.

Proof of Lemma 1. Fix a a perfect Bayesian equilibrium with conservative beliefs and suppose that

contract f is renegotiated after some a1 and θ. Let the set of types after which f is renegotiated be

Θ
R and Θ

NR = Θ \ΘR . For any θ ∈ Θ
R , let gθ be the new contract and bgθ

(a1,θ) be the new strategy

of player 2 after a1 and θ. Also let b f (a1,θ) be the equilibrium strategy of player 2 after a1 and θ if

he does not renegotiate f . In other words, we have β2( f ,θ, a1) = b f (a1,θ), ∀θ ∈ Θ
NR ,β2( f ,θ, a1) =

gθ, ∀θ ∈ Θ
R , β2( f ,θ, a1, gθ, y) = bgθ

(a1,θ), β2( f ,θ, a1, gθ,n) = b f (a1,θ), and β3(I3( f , a1, gθ)) = y . For

ease of exposition we will omit the reference to a1 in the following. Consider the following mixture

menu:

{(gθ(bgθ
(θ)),bgθ

(θ))θ∈ΘR }∪ {( f (b f (θ)),b f (θ))θ∈ΘNR }

It is clear that this menu replicates the outcome induced by f after a1. We also claim that this menu

is incentive compatible and renegotiation proof after a1.
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Incentive compatibility of ( f ,b f ) implies that no two types in Θ
NR has an incentive to mimic each

other. Consider θ,θ′ ∈Θ
R and suppose, for contradiction, that

u2(bgθ
(θ),θ)− gθ(bgθ

(θ)) < u2(bgθ′
(θ′),θ)− gθ′ (bgθ′

(θ′))

But then type θ could increase her payoff after ( f , a1) by offering gθ′ and playing bgθ′
(θ′) rather than

offering gθ and playing bgθ
(θ).36

Now let θ′ ∈Θ
NR and θ ∈Θ

R , and suppose for contradiction that

u2(b f (θ′),θ′)− f (b f (θ′)) < u2(bgθ
(θ),θ′)− gθ(bgθ

(θ))

This implies that after ( f , a1) offering gθ, which is accepted in equilibrium, and playing bgθ
(θ) is a

profitable deviation for type θ′.

Finally, let θ′ ∈Θ
NR and θ ∈Θ

R and suppose, for contradiction, that

u2(bgθ
(θ),θ)− gθ(bgθ

(θ)) <u2(b f (θ′),θ)− f (b f (θ′))

But then type θ could play b f (θ′) after ( f , a1) and receive a higher payoff rather than offering gθ, which

is accepted, and playing bgθ
(θ). This proves that the mixture menu is incentive compatible.

Suppose now, for contradiction, that the mixture menu is not renegotiation-proof after a1. Then,

there exists θ and an incentive compatible contract strategy pair (h,bh) such that if θ ∈Θ
NR , then,

u2(bh(θ),θ)−h(bh (θ)) >u2(b f (θ),θ)− f (b f (θ)) (22)

if θ ∈Θ
R , then

u2(bh(θ),θ)−h(bh (θ)) > u2(bgθ
(θ),θ)− gθ(bgθ

(θ)) (23)

and

h(bh(θ̂)) > f (b f (θ̂)),∀θ̂ ∈Θ
NR (24)

h(bh(θ̂)) > gθ̂(bg θ̂
(θ̂)),∀θ̂ ∈Θ

R (25)

Since gθ̂ is accepted for all θ̂ ∈Θ
R and the equilibrium has conservative beliefs,

gθ̂(bg θ̂
(θ̂)) ≥ f (b f (θ̂)), ∀θ̂ ∈Θ

R (26)

which, together with (24) and (25), implies that

h(bh(θ̂)) > f (b f (θ̂)),∀θ̂ ∈Θ (27)

Suppose first that θ ∈Θ
NR . Inequalities (22) and (27) imply that after ( f , a1) type θ could offer h, which

would be accepted, and increase her payoff, a contradiction that in equilibrium she plays b f (θ) after

( f , a1).

Similarly, if θ ∈ Θ
R , then (23) and (27) imply that after ( f , a1) type θ could offer h, which would

36Note that gθ′ is accepted after ( f , a1) in equilibrium by assumption.
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be accepted, and increase her payoff, rather than offering gθ , a contradiction. Therefore, the mixture

menu is renegotiation-proof.

Since the mixture is incentive compatible we can easily extend it to a contract whose domain is

the entire A2 rather than just the range of b f and bgθ
. Define the new contract as

h(a2) =






f (a2), ∃θ : a2 = b f (θ)

gθ(a2), ∃θ : a2 = bgθ
(θ)

∞, otherwise

and note that h is well-defined since incentive compatibility of the mixture menu implies that when-

ever b f (θ′) = bgθ
(θ) = a2 for some θ ∈Θ

R and θ′ ∈Θ
NR we must also have f (a2) = gθ(a2).

Proof of Proposition 8. Let b∗
2 ∈ argmaxb2∈B R

2
maxb1∈BR1(b2)U2(b1,b2) and b∗

1 = argmaxb1∈BR1(b∗
2 )U2(b1,b∗

2 ).

Note that Ū BR
2 =U2(b∗

1 ,b∗
2 ). Since b∗

2 is increasing and renegotiation-proof, there exists f ∗ ∈ C such

that ( f ∗,b∗
2 ) is incentive compatible and renegotiation-proof with F∗(b∗

1 ,b∗
2 ) = δ. For any f ∈C , a1,

and θ, let b2, f (a1,θ) ∈ argmaxa2
u2(a1, a2,θ)− f (a1, a2) and g( f ,θ,a1) ∈ argmaxg u2(a1,b2,g (a1,θ),θ)−

g (a1,b2,g (a1,θ)) subject to g (a1,b2,g (a1,θ′)) ≥ f (a1,b2, f (a1,θ′)) for all θ′.

Consider the following assessment (β,µ): β2(;) = f ∗; β1( f ∗) = b∗
1 , β3( f ∗) = y , β2( f ∗,θ, a1) =

b∗
2 (a1,θ) for all (a1,θ);

β2( f ,θ, a1)=






g( f ,θ,a1), if
u2(a1,b2,g( f ,θ,a1 ) (a1,θ),θ)− g( f ,θ,a1 )(a1,b2,g( f ,θ,a1 ) (a1,θ))

> u2(a1,b2, f (a1,θ),θ)− f (a1,b2, f (a1,θ))

b2, f (a1,θ), otherwise

for any f 6= f ∗ and (θ, a1); β2( f ,θ, a1, g , y) = b2,g (a1,θ) and β2( f ,θ, a1, g ,n) = b2, f (a1,θ) for all f 6= f ∗

and (a1,θ, g ); β2( f ∗,θ, a1, g ,n)= b∗
2 (a1,θ) for all (a1,θ, g );

β3(I3( f ∗, a1, g )) =





y, g (a1,b2,g (a1,θ)) > f ∗(a1,b∗

2 (a1,θ)) ∀θ

n, otherwise

and

β3(I3( f , a1, g )) =





y, if g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) ∀θ

n, otherwise

for any a1, g and f 6= f ∗. Obviously, any f 6= f ∗ induces a continuation strategy b
f
2 for player 2, which

may involve renegotiation after some θ. Let player 1 play the same best response to the continu-

ation play irrespective of the contract that induces it. Let the third-party accept f iff continuation

play yields expected transfers at least equal to δ. Specify beliefs as follows: µ(I3( f ∗, a1, g ))(θ) = p(θ)

if g (a1,b2,g (a1,θ)) > f ∗(a1,b∗
2 (a1,θ)) for all θ and µ(I3( f ∗, a1, g ))(θ′) = 1 if there exists θ′ such that

f ∗(a1,b∗
2 (a1,θ′)) ≥ g (a1,b2,g (a1,θ′)); For any f 6= f ∗ and (a1, g ), µ(I3( f , a1, g ))(θ) = p(θ) if g (a1,b2,g (a1,θ)) ≥

f (a1,b2, f (a1,θ)) for all θ and µ∗(I3( f , a1, g ))(θ′) = 1 if there exists θ′ such that f (a1,b2, f (a1,θ′)) >

g (a1,b2,g (a1,θ′)).

Now consider any contract f 6= f ∗. If ( f ,b2, f ) is renegotiation-proof, then b2, f ∈ B R
2 and hence f

cannot yield a higher payoff than f ∗. Therefore, suppose that ( f ,b2, f ) is not renegotiation-proof and
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let b
f
2 be the induced strategy, which includes renegotiation after some a1 and θ. Sinceβ3(I3( f , a1, g )) =

y iff g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) for all θ ∈ Θ, the equilibrium constructed above has conser-

vative beliefs. Lemma 1 therefore implies that there exists (h,b2,h) which is incentive compatible and

renegotiation-proof and induces the same outcome as ( f ,b
f
2 ). But no renegotiation-proof strategy

can yield a payoff that is higher than Ū BR
2 and hence deviation to f cannot be profitable.

Sequential rationality at other information sets and consistency of beliefs can be checked easily

to show that the above assessment is a perfect Bayesian equilibrium.

Proof. (Proof of Proposition 10) (Only if ) Suppose that (b∗
1 ,b∗

2 ) can be supported. Then, there exists

a perfect Bayesian equilibrium (β∗,µ∗) that induces (b∗
1 ,b∗

2 ), i.e., β∗
2 (;) = f ∗, β3( f ∗) = y , β∗

1 (C )= b∗
1 ,

β∗
2 ( f ∗,θ, a1) = b∗

2 (a1,θ) for all a1 ∈ A1 and θ ∈Θ. The fact that (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium

of G is a direct consequence of sequential rationality of players 1 and 2. It must also be the case that

it is optimal to play according to b∗
2 under f ∗. Increasing differences and Proposition 2 implies that

b∗
2 is increasing.

[If] Let (b∗
1 ,b∗

2 ) be a Bayesian Nash equilibrium of G such that b∗
2 is increasing. Proposition 2 implies

that there exists a contract f ′ such that ( f ′,b∗
2 ) is incentive compatible. It is not difficult to show that

we can find such a contract whose expected value under (b∗
1 ,b∗

2 ) is equal to δ. So assume F ′(b∗
1 ,b∗

2 ) =

δ. For any b2 ∈ A
A1×Θ

2 and a1 ∈ A1, let b2(a1,Θ) be the image of Θ under b2(a1, .). Define

f ∗(a1, a2) =





f ′(a1, a2), if a2 ∈ b∗

2 (a1,Θ)

∞, otherwise

for any (a1, a2) ∈ A1 × A2, and

b∗
2, f (a1,θ) =





b∗

2 (a1,θ), f = f ∗

∈ argmaxa2
u2(a1, a2,θ)− f (a1, a2), f 6= f ∗

for any f ∈ C , a1 ∈ A1, and θ ∈ Θ. Consider the assessment (β∗,µ∗) of Γ(G), where β∗
2 [;] = f ∗,

β3[ f ] = y iff F (b∗
1 ,b∗

2, f
) ≥ δ, β∗

1 [C ] = b∗
1 , β∗

2 [ f ,θ, a1] = b∗
2, f

(a1,θ) for all f ∈ C , a1 ∈ A1, and θ ∈ Θ,

and µ∗[C ]( f ∗) = 1. It is easy to check that this assessment induces (b∗
1 ,b∗

2 ) and is a perfect Bayesian

equilibrium of Γ(G).

Proof of Proposition 11. [If] Let (b∗
1 ,b∗

2 ) be a Bayesian Nash equilibrium of G such that b∗
2 is increas-

ing and renegotiation-proof. This implies that there exists f ′ ∈C such that ( f ′,b∗
2 ) is incentive com-

patible and renegotiation-proof. Let f ∗(a1, a2) = f ′(a1, a2)− F ′(b∗
1 ,b∗

2 )+δ for all (a1, a2) and note

that F∗(b∗
1 ,b∗

2 ) = δ. Furthermore, using Theorem 1, it can be easily checked that ( f ∗,b∗
2 ) is incentive

compatible and renegotiation-proof. For any f ∈C , a1, and θ, let b2, f (a1,θ) ∈ argmaxa2
u2(a1, a2,θ)−

f (a1, a2) and g( f ,θ,a1) ∈ argmaxg u2(a1,b2,g (a1,θ),θ)− g (a1,b2,g (a1,θ)) subject to g (a1,b2,g (a1,θ′)) ≥

f (a1,b2, f (a1,θ′)) for all θ′.

Consider the following assessment (β∗,µ∗) of ΓR (G): β∗
2 (;) = f ∗; β3( f ) = y iff continuation play
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yields an expected transfer of at least δ, β∗
1 (C )= b∗

1 , β∗
2 ( f ∗,θ, a1) = b∗

2 (a1,θ) for all (a1,θ);

β∗
2 ( f ,θ, a1) =






g( f ,θ,a1), if
u2(a1,b2,g( f ,θ,a1 ) (a1,θ),θ)− g( f ,θ,a1)(a1,b2,g( f ,θ,a1) (a1,θ))

> u2(a1,b2, f (a1,θ),θ)− f (a1,b2, f (a1,θ))

b2, f (a1,θ), otherwise

for any f 6= f ∗ and (θ, a1); β∗
2 ( f ,θ, a1, g , y) = b2,g (a1,θ) and β2( f ,θ, a1, g ,n) = b2, f (a1,θ) for all f 6= f ∗

and (a1,θ, g ); β2( f ∗,θ, a1, g ,n)= b∗
2 (a1,θ) for all (a1,θ, g );

β∗
3 (I3( f ∗, a1, g )) =





y, g (a1,b2,g (a1,θ)) > f ∗(a1,b∗

2 (a1,θ)) ∀θ

n, otherwise

and

β∗
3 (I3( f , a1, g )) =





y, if g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) ∀θ

n, otherwise

for any a1, g and f 6= f ∗; µ∗(C )( f ∗) = 1; µ∗(I3( f ∗, a1, g ))(θ) = p(θ) if g (a1,b2,g (a1,θ)) > f ∗(a1,b∗
2 (a1,θ))

for all θ and µ∗(I3( f ∗, a1, g ))(θ′) = 1 if there exists θ′ such that f ∗(a1,b∗
2 (a1,θ′)) ≥ g (a1,b2,g (a1,θ′));

For any f 6= f ∗ and (a1, g ), µ∗(I3( f , a1, g ))(θ) = p(θ) if g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) for all θ and

µ∗(I3( f , a1, g ))(θ′) = 1 if there exists θ′ such that f (a1,b2, f (a1,θ′)) > g (a1,b2,g (a1,θ′)). This assess-

ment induces (b∗
1 ,b∗

2 ) and is a renegotiation-proof perfect Bayesian equilibrium.

[Only if] Suppose that ΓR (G) has a renegotiation-proof perfect Bayesian equilibrium (β∗,µ∗) that

induces (b∗
1 ,b∗

2 ). Letting β∗
2 (;) = f ∗, we have β∗

1 (C ) = b∗
1 , β2( f ∗,θ, a1) = b∗

2 (a1,θ) for all (a1,θ), and

µ∗(C )( f ∗) = 1. Sequential rationality of player 1 implies that

b∗
1 ∈ argmax

a1

U1(a1,b∗
2 ) (28)

whereas that of player 2 implies u2(a1,b∗
2 (a1,θ),θ)− f ∗(a1,b∗

2 (a1,θ)) ≥ u2(a1,b∗
2 (a1,θ′),θ)− f ∗(a1,b∗

2 (a1,θ′))

for all a1 and θ,θ′, which, together with increasing differences, implies that b∗
2 is increasing.

We also claim that

b∗
2 (b∗

1 ,θ) ∈ argmax
a2

u2(b∗
1 , a2,θ) ∀θ. (29)

Suppose, for contradiction, that this is not the case for θ′ and let â2 ∈ argmaxa2
u2(b∗

1 , a2,θ′) and define

ε= u2(b∗
1 , â2,θ′)−u2(b∗

1 ,b∗
2 (b∗

1 ,θ′),θ′) > 0. Define f ′(a1, a2) = F∗(b∗
1 ,b∗

2 )+ε/2 and note that the third-

party accepts f ′. Assume first that f ′ is not renegotiated after b∗
1 and note that sequential rationality

of player 2 implies that β∗
2 ( f ′,θ,b∗

1 ) ∈ argmaxa2
u2(b∗

1 , a2,θ). Let b2, f ′(a1,θ) = β∗
2 ( f ′,θ, a1). Player 2’s

expected payoff under f ′ is

U2(b∗
1 ,b2, f ′)−F∗(b∗

1 ,b∗
2 )−ε/2 >U2(b∗

1 ,b∗
2 )−F∗(b∗

1 ,b∗
2 )

contradicting that (β∗,µ∗) is a PBE. A similar argument goes through if f ′ is renegotiated after b∗
1 .

Therefore, by (28) and (29), (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G and b∗
2 is increasing. Fi-

nally, suppose that b∗
2 is not renegotiation-proof. This implies that for any contract f such that ( f ,b∗

2 )

is incentive compatible, there exist a′
1, θ′, and an incentive compatible (g ,b2) such that u2(a′

1,b2(a′
1,θ′),θ′)−
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g (a′
1,b2(a′

1,θ′)) > u2(a′
1,b∗

2 (a′
1,θ′),θ′)− f (a′

1,b∗
2 (a′

1,θ′)) and g (a′
1,b2(a′

1,θ)) > f (a′
1,b∗

2 (a′
1,θ)) for all θ.

This implies that, in any perfect Bayesian equilibrium, after history ( f ,θ′, a′
1) player 2 strictly prefers

to renegotiate and offer g and the third-party accepts it. In other words, there exists no renegotiation-

proof perfect Bayesian equilibrium which induces (b∗
1 ,b∗

2 ), completing the proof.

Proof of Corollary 3. Given Corollary 2, we only need to prove that U R
1 = maxa1 U1(a1,bR

2 ). We first

need the following definition

Definition 11. For any b2 ∈ A
A1×Θ

2 we say that (a1, i ), i ∈ {1,2, . . . ,n} has right deviation (left devia-

tion) at b2 if there exists an a2 ∈ A2 such that a2 %2 b2(a1,θi ) (b2(a1,θi ) %2 a2) and u2(a1, a2,θi ) >

u2(a1,b2(a1,θi )θi ). Otherwise, we say that i has no right deviation (no left deviation)at b2.

For any b2 ∈ A
A1×Θ

2 and (a1, i ), i ∈ {1, · · ·,n}, that has right deviation at b2, define

R(a1, i ) = {k > i : b2(a1,θk )∈ BR2(a1,θk ) and i < j < k implies that (a1, j ) has no left deviation at b2}

Similarly, for any (a1, i ) with i ∈ {1, · · ·,n}, that has a left deviation at b2, define

L(a1, i ) = {k < i : b2(a1,θk ) ∈ BR2(a1,θk ) and k < j < i implies that (a1, j ) has no right deviation at b2},

We need the following lemma:

Lemma 2. b∗
2 is renegotiation-proof if for any (a1, i1) that has right deviation and any (a1, i2) that has

left deviation at b∗
2 , R(a1, i1) 6= ;, L(a1, i2) 6= ;, and i1 < i2 implies R(a1, i1)∩L(a1, i2) 6= ;.

Proof of Lemma 2. Similar to the proof of Lemma 6 in Gerratana and Koçkesen (2012) and omitted.

We can now proceed to the proof of Corollary 3. We first prove that bR
2 is renegotiation proof. Fix

a1 and assume u1 is increasing in a2. Then, there is no (a1, i ) with left deviation by construction of bR
2 .

For any (a1, i ) with right deviation, we have n ∈ R(a1, i ). Similarly, if u1 is decreasing in a2. Lemma 2,

therefore, implies that bR
2 is renegotiation-proof.

We next prove that for any a1 and renegotiation-proof strategy b2 ∈ B R
2 , we have U1(a1,b2) ≥

U1(a1,bR
2 ). We will use the following lemma

Lemma 3. If b2 ∈ A
A1×Θ

2 is renegotiation-proof, then (a1,θn) has no right deviation at b2 for any a1 ∈ A1

Proof of Lemma 3. Similar to the proof of Lemma 7 in Gerratana and Koçkesen (2012) and omitted.

Fix a1 and assume that u1 is increasing in a2. Let b2 ∈ B R
2 . Lemma 3 implies that b2(a1,θn) %2

bn
2 (a1) and hence u1(a1,b2(a1,θn),θn )≥ u1(a1,bn

2 (a1),θn ) =u1(a1,bR
2 (a1,θn),θn). Also, u1(a1,b2(a1,θ),θ) ≥

u1(a1, a2,θ) for all θ, which implies that U1(a1,b2)≥U1(a1,bR
2 ). Therefore, U R

1 =maxa1 U1(a1,bR
2 ).

Proof of Proposition 14. Denote with B+
2 the set of strategies of player 2, π(πe ,θ), that are increasing

in θ. To avoid notational clutter, we denote such strategies simply with π. Recall that we denote with
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Ū B
2 the best Stackelberg payoff, and with Ū W

2 the worst Stackelberg payoff, which are given in the

monetary policy example by

Ū B
2 = max

π∈B+
2

max
πe∈BR1(π)

{−
∑

θ∈Θ

[U∗
+θ−α(π−πe )]2p(θ)−β

∑

θ∈Θ

π2}

Ū W
2 = max

π∈B+
2

min
πe∈BR1(π)

{−
∑

θ∈Θ

[U∗
+θ−α(π−πe )]2p(θ)−β

∑

θ∈Θ

π2}

First, we prove that for any πe ∈ BR1(π)

Ū2 = max
π∈B+

2

{−
∑

θ∈Θ

[U∗
+θ−α(π−πe )]2p(θ)−β

∑

θ∈Θ

π2}

is unique and therefore Ū B
2 = Ū W

2 . In order to do this we need the lemmata (4)-(5)

Lemma 4. If π(πe ,θ) = π̃(πe )+π̂(θ) with π(πe ,θ) differentiable and dπ̃(πe )
dπe 6= 1, then BR1(π) ⊂ {πe :πe =

π̃(πe )+
∑

θ∈Θ π̂(θ)p(θ)}

Proof of Lemma 4. Since we assumed π(πe ,θ) = π̃(πe )+ π̂(θ), the set BR1(π) is

BR1(π)= argmax
πe

−
∑

θ∈Θ

[πe
− π̃(πe )− π̂(θ)]2p(θ)

The first order condition of the maximization problem for player 1 is

−2
∑

θ∈Θ

[πe
− π̃(πe )− π̂(θ)]p(θ)(1−

d π̃(πe )

dπe
) = 0

Since we assumed dπ̃(πe )
dπe 6= 1, the first order condition is satisfied if πe − π̃(πe ) =

∑
θ∈Θ π̂(θ)p(θ). It,

then, follows that

BR1(π) ⊂ {πe
|πe

− π̃(πe )=
∑

θ∈Θ

π̂(θ)p(θ)}

Lemma 5. The following problem:

V̄ = max
{π̃(πe ),π̂(θ)}

V (π̃(πe ), π̂(θ)) =−
∑

θ∈Θ

{U∗
+θ−α[π̃(πe )−πe

+π̂(θ)]}2p(θ)−β
∑

θ∈Θ

{π̃(πe )+π̂(θ)}2p(θ) (30)

subject to

π̂(θ) increasing (31)

πe
− π̃(πe )=

∑

θ∈Θ

π̂(θ)p(θ) (32)

has solution π̃(πe )+ π̂(θ) = α
α2+β

θ

Proof of Lemma 5. We first solve the relaxed problem, obtained by dropping the constraint π̂(θ) in-

creasing, and then verify that the solution to the relaxed problem is indeed increasing in θ.

By substituting (32) in (30) the relaxed problem is equivalent to:

max
{πe ,π̂(θ)}

{−
∑

θ∈Θ

{U∗
+θ−α[π̂(θ)−

∑

θ∈Θ

π̂(θ)p(θ)]}2p(θ)−β
∑

θ∈Θ

{πe
+ π̂(θ)−

∑

θ∈Θ

π̂(θ)p(θ)}2p(θ)} (33)
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which has the solution

π̂(θ) = k +
α

α2 +β
θ (34)

πe
= 0 (35)

In order to obtain the solution to the original problem we substitute (34) and (35) in (32), obtain-

ing π̃(πe ) =−k , which implies

π̃(πe )+ π̂(θ) =
α

α2 +β
θ

Since π̂(θ) defined by this equation is increasing in θ, it solves the problem (30).

By Lemma 4, we have V̄ ≥Ū2(πe ). Moreover when π̃(πe )+ π̂(θ) = α
α2+β

θ,

BR1(π) = {πe
|πe

− π̃(πe ) =
∑

θ∈Θ

π̂(θ)p(θ)} = {πe
= 0}

This implies that Ū2(πe )= V̄ , hence Ū2(πe ) is unique and therefore Ū B
2 = Ū W

2 .

Since we established Ū B
2 = Ū W

2 , Propositions 6 and 7 imply that the only equilibrium payoff of

player 2 that can be supported with observable and non-renegotiable contracts is Ū B
2 −δ. Moreover

by Lemma 5 we know that Ū B
2 −δ is achieved by player 2 committing to the strategy π(πe ,θ) = α

α2+β
θ.

Therefore the unique outcome supported by observable and non-renegotiable third party contracts

is πe = 0 and π(θ) = α
α2+β

θ.

Proof of Proposition 15. Denote with B R
2 the set of strategies of player 2 that are increasing in θ and

renegotiation-proof. Recall that we denote with Ū BR
2 the best renegotiation-proof Stackelberg payoff,

and with Ū W R
2 the worst renegotiation-proof Stackelberg payoff, that in the monetary policy example

are respectively

Ū BR
2 = max

π∈B R
2

max
πe∈BR1(π)

{−
∑

θ∈Θ

[U∗
+θ−α(π−πe )]2p(θ)−β

∑

θ∈Θ

π2}

Ū W R
2 = max

π∈B R
2

min
πe∈BR1(π)

{−
∑

θ∈Θ

[U∗
+θ−α(π−πe )]2p(θ)−β

∑

θ∈Θ

π2}

First, we prove that for any πe ∈ BR1(π)

Ū R
2 = max

π∈B R
2

{−
∑

θ∈Θ

[U∗
+θ−α(π−πe )]2p(θ)−β

∑

θ∈Θ

π2}

is unique and therefore Ū BR
2 = Ū W R

2 .

Lemma 6. The following problem: choose π̃(πe ) and π̂(θ) to maximize

f (π̃(πe ), π̂(θ)) =−
∑

θ∈Θ

{U∗
+θ−α[π̃(πe )−πe

+ π̂(θ)]}2p(θ)−β
∑

θ∈Θ

{π̃(πe )+ π̂(θ)}2p(θ) (36)

subject to

π̂(θ) increasing (37)

πe
− π̃(πe )=

∑

θ∈Θ

π̂(θ)p(θ) (38)
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and

π̃(πe )+ π̂(θn ) ≥
α

α2 +β
U∗

+
α

α2 +β
θn +

α2

α2 +β
πe (39)

has a unique solution

π̃(πe )+ π̂(θ) =






α
α2+β

θ, θ< θn

α
α2+β

θ+ α
α2(1−pn )+βU∗, θ= θn

Proof. We first solve the relaxed problem obtained by ignoring the constraint π̂(θ) increasing and

then we verify that the solution of the relaxed problem π̂(θ) is indeed increasing in θ.

By substituting (38) in (36) and (39), the relaxed problem is equivalent to the following: choose

π̂(θ) and πe to maximize

g (π̂(θ),πe ) =−
∑

θ∈Θ

[U∗
+θ−α(π̂(θ)−

∑

θ

π̂(θ)p(θ))]2p(θ)−β
∑

θ∈Θ

[π̂(θ)−
∑

θ

π̂(θ)p(θ)+πe ]2p(θ) (40)

subject to

πe β

α2 +β
−

∑

θ

π̂(θ)p(θ)+ π̂(θn )−
α

α2 +β
(U∗

+θn ) ≥ 0

Define

h(π̂(θ),πe ) =πe β

α2 +β
−

∑

θ

π̂(θ)p(θ)+ π̂(θn )−
α

α2 +β
(U∗

+θn ). (41)

The Lagrangean of the problem (40) is

L(π̂(θ),πe ,λ) =−
∑

θ∈Θ

[U∗
+θ−α(π̂(θ)−

∑

θ

π̂(θ)p(θ))]2p(θ)−β
∑

θ∈Θ

[π̂(θ)−
∑

θ

π̂(θ)p(θ)+πe ]2p(θ)+λh(π̂(θ),πe )

The critical points of the Lagrangean solve the following system of equations:

πe
=

λ

2

1

α2 +β
(42)

For θ< θn

π̂(θ) =
α

α2 +β
θ+

∑

θ

π̂(θ)p(θ)−
λ

2(α2 +β)
(43)

For θ= θn

π̂(θn ) =
α

α2 +β
θn +

∑

θ

π̂(θ)p(θ)+
λ

2(α2 +β)
(

1

p(θn)
−1) (44)

λ≥ 0, h(π̂(θ),πe ) ≥ 0, λh(π̂(θ),πe ) = 0 (45)

First, we show that h(π̂(θ)) = 0. For contradiction assume that h(π̂(θ),πe ) > 0. Then λ= 0 by (45).

This implies πe = 0 (by 42) and π̂(θn) = α
α2+β

θn +
∑

θ π̂(θ)p(θ) by (44), which, once substituted in (41),

implies h(π̂(θ),πe ) < 0, a contradiction to (45).

Hence, we established that h(π̂(θ),πe ) = 0, i.e.,

h(π̂(θ),πe ) =πe β

α2 +β
−

∑

θ

π̂(θ)p(θ)+ π̂(θn)−
α

α2 +β
(U∗

+θn) = 0 (46)
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The system of equations (42)-(44) and (46) has a unique solution (up to the constant k =
∑

θ π̂(θ)p(θ)):

λ=
2(α2 +β)αpn

α2(1−pn )+β
U∗

πe
=

αpn

α2(1−pn )+β
U∗ (47)

π̂(θ) =





k +

α
α2+β

θ−
αpn

α2(1−pn )+βU∗, θ < θn

k +
α

α2+β
θ+

αpn

α2(1−pn )+β
1−pn

pn
U∗, θ = θn

(48)

which is also the unique solution of the problem (40) since λ≥ 0. To obtain the solution to the original

problem (36), we substitute (47) and (48) in (38), obtaining

π̃(πe ) =
αpn

α2(1−pn)+β
U∗

−k (49)

and hence

π̃(πe )+ π̂(θ) =






α
α2+β

θ, θ< θn

α
α2+β

θ+ αU∗

α2(1−pn )+β , θ= θn
(50)

Since π̂(θ) is increasing in θ, then (50) is also a solution to the original problem (36).

Now, notice that (39) is a necessary condition for π̃(πe )+ π̂(θ) to be a renegotiation-proof strategy

(this follows from Lemma 3), therefore the set of strategies π̃(πe )+ π̂(θ) that satisfy (39) contains the

set of renegotiation-proof strategies. Moreover, from Lemma 2 on page 37 it follows that the strategy

(50) is renegotiation-proof. To see this, observe that for (50), there is no (πe ,θ), that has left deviation

and for each (πe ,θ), we have θn ∈ R(πe ,θ). Finally for π= π̃(πe )+ π̂(θ), the best response of player 1 is

equal to the set defined by (38) that is

BR1(π)= {πe
|πe

− π̃(πe ) =
∑

θ∈Θ

π̂(θ)p(θ)} = {πe
=

αpn

α2(1−pn)+β
U∗}

Therefore Ū R is equal to the value of maximization problem (36), hence it is unique and therefore

U BR =U W R . Since we established Ū BR
2 = Ū W R

2 , Propositions 8 and 9 imply that the only equilibrium

payoff of player 2 that can be supported with observable and renegotiation-proof contracts is Ū BR
2 −δ.

Moreover because of lemma 6, we know that Ū BR
2 −δ is achieved by player 2 committing to the strategy

(50). Therefore, the unique outcome supported by observable and renegotiable third party contracts

is

πe
=

αpn

α2(1−pn )+β
U∗

π(θ) =






α
α2+β

θ, θ < θn

α
α2+β

θ+ αU∗

α2(1−pn )+β , θ = θn
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1 Introduction

In what follows we provide the omitted proofs of the statements made in our paper “Commit-

ment without Reputation: Renegotiation-Proof Contracts under Asymmetric Information.”

In order to distinguish statements made in that paper from the ones made in this document

we will add a note “(of the main paper)” after those from the main paper.

2 Proofs for Section 3

It is well-known that if b2 is increasing, then, under increasing differences, incentive com-

patibility reduces to local incentive compatibility. We state it as a claim for future reference.

Claim 1. If u2 has increasing differences in (%θ,%2) and b2 ∈ A
A1×Θ

2 is increasing in (%θ ,%2),

then for any f ∈C

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥ u2(a1,b2(a1,θ j ),θi )− f (a1,b2(a1,θ j )), for all i , j = 1,2, . . . ,n

holds if and only if

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥ u2(a1,b2(a1,θi−1),θi )− f (a1,b2(a1,θi−1)), for all i = 2, . . . ,n,

and

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥ u2(a1,b2(a1,θi+1),θi )− f (a1,b2(a1,θi+1)), for all i = 1,2, . . . ,n−1.



Proof of Proposition 2 (of the main paper). (Only if ) Suppose that b2 is incentive compatible,

i.e., there exists a contract f such that ( f ,b2) is incentive compatible. Fix orders (%θ,%2)

in which u2 has strictly increasing differences. Take any a1 ∈ A1 and θ,θ′ ∈ Θ and assume

without loss of generality, that θ ≻θ θ
′. Suppose, for contradiction, that b2(a1,θ′) ≻2 b2(a1,θ).

Sequential rationality of player 2 implies

u2(a1,b2(a1,θ),θ)− f (a1,b2(a1,θ)) ≥ u2(a1,b2(a1,θ′),θ)− f (a1,b2(a1,θ′))

u2(a1,b2(a1,θ′),θ′)− f (a1,b2(a1,θ′)) ≥ u2(a1,b2(a1,θ),θ′)− f (a1,b2(a1,θ))

and hence

u2(a1,b2(a1,θ′),θ)−u2(a1,b2(a1,θ),θ) ≤ u2(a1,b2(a1,θ′),θ′)−u2(a1,b2(a1,θ),θ′),

contradicting that u2 has strictly increasing differences in (%θ,%2). Therefore, b2 must be

increasing in (%θ,%2).

[If] Suppose u2 has strictly increasing differences and b2 is increasing. We need to prove the

existence of a contract f ∈C such that

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥ u2(a1,b2(a1,θ j ),θi )− f (a1,b2(a1,θ j )), for all i , j = 1,2, ...,n.

(1)

By Claim 1, (1) holds if and only if D f (a1,b2) ≤ ~U2(a1,b2). Therefore, we need to show that for

any a1 ∈ A1 there exists f (a1,b2) ∈R
n such that D f (a1,b2) ≤ ~U2(a1,b∗

2 ). By Gale’s theorem for

linear inequalities (Mangasarian (1994), p. 33), there exists such an f (a1,b2) ∈R
n if and only

if for any y ∈ R
2(n−1)
+ , D ′y = 0 implies y ′~U2(a1,b∗

2 ) ≥ 0. It is easy to show that D ′y = 0 if and

only if y1 = y2, y3 = y4, · · · , y2(n−1)−1 = y2(n−1). Let ~U2(a1,b2)i denote the i th row of ~U2(a1,b2)

and note that since b2 is increasing and u2 has strictly increasing differences, ~U2(a1,b2)2i−1+

~U2(a1,b2)2i ≥ 0, for any i = 1,2, . . . ,n −1. Therefore,

y ′~U2(a1,b∗
2 ) =

n−1∑

i=1

(~U2(a1,b2)2i−1 + ~U2(a1,b2)2i )y2i−1 ≥ 0

This proves the existence of a f (a1,b2) ∈ R
n such that (1) is satisfied for all a1 ∈ A1. We can

complete the proof by defining f̃ ∈C as

f̃ (a1, a2) =





f (a1, a2), ∃θ : a2 = b2(a1,θ)

∞, otherwise

Proof of Theorem 1 (of the main paper). By definition ( f ,b∗
2 ) ∈C×A

A1×Θ

2 is not renegotiation-

proof if and only if there exist a1 ∈ A1, i = 1,2, . . . ,n and an incentive compatible (g ,b2) ∈C ×

A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi )−g (a1,b2(a1,θi )) > u2(a1,b∗
2 (a1,θi ),θi )− f (a1,b∗

2 (a1,θi ))

and g (a1,b2(a1,θ j )) > f (a1,b∗
2 (a1,θ j )) for all j = 1,2, . . . ,n. For any ( f ,b∗

2 ) ∈ C × A
A1×Θ

2 , let

2



f (a1,b∗
2 ) ∈ R

n be a vector whose j -th component, j = 1,2, . . . ,n, is given by f (a1,b∗
2 (a1,θ j )).

Note that incentive compatibility of (g ,b2) ∈C×A
A1×Θ

2 is equivalent to Dg (a1,b2) ≤ ~U2(a1,b2)

for all a1 ∈ A1. Therefore, ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is not renegotiation-proof if and only if there

exist a1 ∈ A1, i = 1,2, . . . ,n and (g (a1,b2),b2) ∈ R
n × A

A1×Θ

2 such that Dg (a1,b2) ≤ ~U2(a1,b2),

u2(a1,b2(a1,θi ),θi )−g (a1,b2(a1,θi )) > u2(a1,b∗
2 (a1,θi ),θi )− f (a1,b∗

2 (a1,θi )), and g (a1,b2) ≫

f (a1,b∗
2 ). Also note that g (a1,b2) ≫ f (a1,b∗

2 ) if and only if there exists an ε ≫ 0 such that

g (a1,b2) = f (a1,b∗
2 )+ε. Therefore, we have the following

Lemma 1. ( f ,b∗
2 ) ∈C × A

A1×Θ

2 is not renegotiation-proof if and only if there exist a1 ∈ A1, i =

1,2, . . . ,n, b2 ∈ A
A1×Θ

2 , and ε ∈R
n such that D( f (a1,b∗

2 )+ε) ≤ ~U2(a1,b2), εi < u2(a1,b2(a1,θi ),θi )−

u2(a1,b∗
2 (ai

1,θi ),θi ), and ε≫ 0.

We first state a theorem of the alternative, which we will use in the sequel.

Lemma 2 (Motzkin’s Theorem). Let A and C be given matrices, with A being non-vacuous.

Then either

1. Ax ≫ 0 and C x ≥ 0 has a solution x

or

2. A′y1 +C ′y2 = 0, y1 > 0, y2 ≥ 0 has a solution y1, y2

but not both.

Proof of Lemma 2. See Mangasarian (1994), p. 28.

For any ( f ,b∗
2 ) ∈C ×A

A1×Θ

2 , a1 ∈ A1, b2 ∈ A
A1,×Θ
2 , and i = 1,2, . . . ,n, define V = ~U2(a1,b2)−

D f (a1,b∗
2 ),C =

(
V −D

)
, and

A =

(
In+1

li

)

where li = (u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ))e1−ei+1. Note that C and A depend on

and are uniquely defined by ( f ,b∗
2 ), a1 and (i ,b2) but we suppress this dependency for nota-

tional convenience. The following lemma uses Motzkin’s Theorem to express renegotiation-

proofness as an alternative.

Lemma 3. ( f ,b∗
2 ) ∈C ×A

A1×Θ

2 is renegotiation-proof if and only if for any a1 ∈ A1, i = 1,2, . . . ,n

and b2 ∈ A
A1×Θ

2 there exist y ∈R
n+2 and z ∈R

2(n−1) such that A′y +C ′z = 0, y > 0, z ≥ 0.

Proof of Lemma 3. By Lemma 1, ( f ,b∗
2 ) is not renegotiation-proof if and only if there exist

a1 ∈ A1, i = 1,2, . . . ,n, b2 ∈ A
A1×Θ

2 , and ε ∈ R
n such that D( f (a1,b∗

2 )+ ε) ≤ ~U2(a1,b2), εi <

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ), and ε≫ 0. This is true if and only if for some a1, i

and b2 there exists an x ∈R
n+1 such that Ax ≫ 0 and C x ≥ 0. To see this let ξ> 0 and define

x =

(
ξ

ξε

)

3



Then D( f (a1,b∗
2 )+ε) ≤ ~U2(a1,b2) if and only if C x ≥ 0. Also, ε≫ 0 and εi < u2(a1,b2(a1,θi ),θi )−

u2(a1,b∗
2 (a1,θi ),θi ) if and only if Ax ≫ 0. The lemma then follows from Motzkin’s Theo-

rem.

For any ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 , b2 ∈ A
A1×Θ

2 , a1 ∈ A1, and i = 1,2, . . . ,n, let ~U2(a1,b2) j de-

note the j -th component of vector ~U2(a1,b2) and define α1 = 1, αi+1 = u2(a1,b2(a1,θi ),θi )−

u2(a1,b∗
2 (a1,θi ),θi ), and

αk+1 =

i−1∑

j=k

~U2(a1,b2)2 j−1 +αi+1 − f (a1,b∗
2 (a1,θk ))+ f (a1,b∗

2 (a1,θi )), for k = 1,2, . . . , i −1,

αl+1 =

l∑

j=i+1

~U2(a1,b2)2( j−1) +αi+1 − f (a1,b∗
2 (a1,θl ))+ f (a1,b∗

2 (a1,θi )), for l = i +1, i +2, . . . ,n,

β j =~U2(a1,b2)2 j + ~U2(a1,b2)2 j−1, for j = 1,2, . . . ,n −1.

Again, note that α j and β j depend on and are uniquely defined by ( f ,b∗
2 ), a1 and (i ,b2) but

we suppress this dependency in the notation. We have the following lemma.

Lemma 4. For any ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 , b2 ∈ A
A1×Θ

2 , a1 ∈ A1 and i = 1,2, . . . ,n, there exist

y ∈ R
n+2 and z ∈ R

2(n−1) such that A′y +C ′z = 0, y > 0, and z ≥ 0 if and only if there exist

ŷ ∈R
n+1 and ẑ ∈R

(n−1) such that ŷ > 0, ẑ ≥ 0, and

n+1∑

j=1

α j ŷ j +

n−1∑

j=1

β j ẑ j = 0 (2)

Proof of Lemma 4. Fix ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 , b2 ∈ A
A1×Θ

2 , a1 ∈ A1 and i = 1,2, . . . ,n. First note

that for any y and z, A′y +C ′z = 0 if and only if

y1 + (u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ))yn+2 +V ′z =0 (3)

D ′z =
[

A′y
]
−1 (4)

where
[

A′y
]
−1 is the n-dimensional vector obtained from A′y by eliminating the first row.

Recursively adding row 1 to row 2, row 2 to row 3, and so on, we can reduce
(
D ′

[
A′y

]
−1

)
to

a row echelon form and show that (4) holds if and only if

z2 j−1 =z2 j +

j∑

k=1

yk+1, j = 1,2, . . . , i −1 (5)

z2 j =z2 j−1 +

n∑

k= j+1

yk+1, j = i , i +1, . . . ,n −1 (6)

yn+2 =

n∑

k=1

yk+1 (7)

4



Substituting (5)-(7) into (3) we get

y1+αi+1

n∑

k=1

yk+1+

i−1∑

j=1

~U2(a1,b2)2 j−1

j∑

k=1

yk+1+

n−1∑

j=i

~U2(a1,b2)2 j

n∑

k= j+1

yk+1+

i−1∑

j=1

(~U2(a1,b2)2 j−1

+~U2(a1,b2)2 j )z2 j+

n−1∑

j=i

(~U2(a1,b2)2 j−1+~U2(a1,b2)2 j )z2 j−1−

n∑

k=1

( f (a1,b∗
2 (a1,θk))− f (a1,b∗

2 (a1,θi )))yk+1 = 0

(8)

Therefore, A′y +C ′z = 0 if and only if equations (5) through (8) hold. Now suppose that there

exist y ∈ R
n+2 and z ∈ R

2(n−1) such that y > 0, z ≥ 0, and (5) through (8) hold. Define ŷ j = y j ,

for j = 1, . . . ,n +1 and

ẑ j =





z2 j , j = 1, . . . , i −1

z2 j−1, j = i , . . . ,n −1

It is easy to verify that ŷ > 0, ẑ ≥ 0, and
∑n+1

j=1 α j ŷ j +
∑n−1

j=1 β j ẑ j = 0.

Conversely, suppose that there exist ŷ ∈R
n+1 and ẑ ∈R

(n−1) such that ŷ > 0, ẑ ≥ 0, and (2)

holds. Define y j = ŷ j for j = 1, . . . ,n+1 and yn+2 =
∑n+1

i=1 ŷ j . For any j = 1, . . . , i −1, let z2 j−1 =

ẑ j+
∑ j

k=1
ŷk+1 and z2 j = ẑ j , and for any j = i , . . . ,n−1, let z2 j−1 = ẑ j and z2 j = ẑ j+

∑n
k= j+1 ŷk+1.

It is straightforward to show that y > 0, z ≥ 0, and (5) through (8) hold. This completes the

proof of Lemma 4.

Lemma 3 and 4 imply that ( f ,b∗
2 ) ∈C ×A

A1×Θ

2 is renegotiation-proof if and only if for any

a1 ∈ A1, i ∈ {1,2, . . . ,n} and b2 ∈ A
A1×Θ

2 , there exist ŷ ∈ R
n+1 and ẑ ∈ R

(n−1) such that ŷ > 0,

ẑ ≥ 0, and equation (2) holds. We can now complete the proof of Theorem 1 (of the main

paper).

[Only if] Suppose, for contradiction, that there exist a1 ∈ A1, i = 1,2, . . . ,n and an increasing

b2 ∈ A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi ) > u2(a1,b∗
2 (a1,θi ),θi ), but there is no k = 1,2, . . . , i −

1 such that (4) holds and no l = i +1, . . . ,n such that (5) holds. This implies that α j > 0 for all

j = 1, . . . ,n +1. Since u2 has increasing differences, β j ≥ 0 for all j = 1, . . . ,n −1. Therefore,

ŷ > 0 and ẑ ≥ 0 imply that
∑n+1

j=1 α j ŷ j +
∑n−1

j=1 β j ẑ j > 0, which, by Lemma 4, contradicts that

( f ,b∗
2 ) is renegotiation-proof.

[If] Fix arbitrary a1 ∈ A1, i = 1,2, . . . ,n and increasing b2 ∈ A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi ) >

u2(a1,b∗
2 (a1,θi ),θi ). Suppose first that there exists a k ∈ {1, . . . , i −1} such that (4) holds. This

implies that αi+1 > 0 and αk+1 ≤ 0. Let ŷk+1 = 1, ŷi+1 =
−αk+1
αi+1

≥ 0, and all the other ŷ j = 0

and ẑ j = 0. This implies that equation (2) holds and, by Lemma 3 and 4, that ( f ,b∗
2 ) is rene-

gotiation-proof. Suppose now that there exists an l ∈ {i +1, . . . ,n} such that (5) holds. Then,

αi+1 > 0 and αl+1 ≤ 0. Let ŷl+1 = 1, ŷi+1 =
−αl+1
αi+1

≥ 0 and all the other ŷ j = 0 and ẑ j = 0. This,

again, implies that (2) holds and that ( f ,b∗
2 ) is renegotiation-proof.

Proof of Proposition 3 (of the main paper). Suppose that b∗
2 is renegotiation-proof and fix a1,

i = 1, . . . ,n and a b2(a1,θi ) ∈B(a1, i ,b∗
2 ). For any j = 1, . . . ,n, let c j = ei − e j , where e j is the

5



j th standard basis row vector for Rn , and define

E j =

(
D

c j

)

Also let

wk = u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

i−1∑

j=k

~U2(a1,b2)2 j−1

wl = u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

l∑

j=i+1

~U2(a1,b2)2( j−1)

for any k ∈ {1, . . . , i −1} and l ∈ {i +1, . . . ,n} and define

V j =

(
~U2(a1,b∗

2 )

−w j

)

Incentive compatibility of ( f ,b∗
2 ) implies that D f (a1,b∗

2 ) ≤ ~U2(a1,b∗
2 ). Renegotiation proof-

ness, by Theorem 1 (of the main paper), implies that ck f (a1,b∗
2 ) ≤−wk for some k ∈ {1, . . . , i−

1} or cl f (a1,b∗
2 ) ≤−wl for some l ∈ {i+1, . . . ,n}. Suppose first that there exists a k ∈ {1, . . . , i−1}

such that ck f (a1,b∗
2 ) ≤−wk . Then we must have Ek f (a1,b∗

2 ) ≤ Vk . By Gale’s theorem of lin-

ear inequalities, this implies that x ≥ 0 and E ′
k

x = 0 implies x′Vk ≥ 0. Denote the first 2(n−1)

elements of x by y and the last element by z. It is easy to show that E ′
k

x = 0 implies that

y2 j−1 = y2 j + z for j ∈ {k,k +1, . . . , i −1} and y2 j−1 = y2 j for j ∉ {k,k +1, . . . , i −1}. Therefore,

x′Vk =

n−1∑

j=1

~U2(a1,b∗
2 )2 j y2 j +

n−1∑

j=1

~U2(a1,b∗
2 )2 j−1 y2 j−1 − zwk

=

n−1∑

j=1

(~U2(a1,b∗
2 )2 j + ~U2(a1,b∗

2 )2 j−1)y2 j + z(−wk +

i−1∑

j=k

~U2(a1,b∗
2 )2 j−1)

≥ 0

This implies that −wk +
∑i−1

j=k
~U2(a1,b∗

2 )2 j−1 ≥ 0 and hence k is a blocking type.

Similarly, we can show that, if there exists an l ∈ {i +1, . . . ,n} such that cl f (a1,b∗
2 ) ≤−wl ,

then l is a blocking type, and this completes the proof.

Proof of Proposition 4 (of the main paper). Let b∗
2 ∈ A

A1×Θ

2 be an increasing strategy satisfy-

ing the conditions of the proposition. We will show that there exist an f ∈C such that ( f ,b∗
2 )

is incentive-compatible and renegotiation-proof. Fix an a1 ∈ A1 and for each i = 1, · · ·,n and

bi
2 ∈ B(a1, i ,b∗

2 ) pick a blocking type m(bi
2) = 1, · · ·,n that satisfies the conditions given in

the proposition. For each i = 1 and bi
2 ∈ B(a1, i ,b∗

2 ) define the n-dimensional row vector

6



cbi
2
= ei −em(bi

2), where e j is the j th standard basis row vector for Rn , and the scalar wbi
2

as

wbi
2
= u2(a1,bi

2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )

+1{m(bi
2)≤i−1}

i−1∑

j=m(bi
2)

~U2(a1,bi
2)2 j−1 +1{i≤m(bi

2−1}

m(bi
2)∑

j=i+1

~U2(a1,bi
2)2( j−1). (9)

Note that for a given a1 ∈ A1 and i = 1, · · ·,n, B(a1, i ,b∗
2 ) is finite and let

∑n
i=1 |B(a1, i ,b∗

2 )| =

p. Denote with C (a1), the p ×n matrix composed of all the rows cbi
2

and with W (a1)the p

dimensional vector with component wbi
2

corresponding to each bi
2. Let E (a1) be the matrix

E (a1) =

(
D

C (a1)

)

and V (a1) the column vector

V (a1) =

(
~U2(a1,b∗

2 )

−W (a1)

)

Now, if for each a1 ∈ A1, we can find an f (a1,b∗
2 ) such that E (a1) f (a1,b∗

2 ) ≤ V (a1) the

proof would be completed. In fact, if E (a1) f (a1,b∗
2 ) ≤ V (a1), then D f (a1,b∗

2 ) ≤ ~U2(a1,b∗
2 ),

which implies that ( f ,b∗
2 ) incentive compatible. Furthermore, E (a1) f (a1,b∗

2 ) ≤ V (a1) im-

plies W (a1) ≤ −C (a1) f (a1,b∗
2 ) and, by Theorem 1 (of the main paper), that ( f ,b∗

2 ) is rene-

gotiation-proof. Gale’s theorem of linear inequalities implies that there exist f (a1,b∗
2 ) ∈ R

n

such that E (a1) f (a1,b∗
2 ) ≤ V (a1) if and only if x ∈ R

p+2(n−1), x ≥ 0 and E (a1)′x = 0 implies

x′V (a1) ≥ 0. Decompose x into two vectors so that the first 2(n−1) elements constitute y and

the remaining p components constitute z. Notice that for any i = 1, . . . ,n and bi
2 ∈B(a1, i ,b∗

2 )

there is a corresponding element of z, which we will denote zbi
2
.

Recursively adding row 1 to row 2, row 2 to row 3, and so on, we can reduce E (a1)′ to a

row echelon form and show that E (a1)′x = 0 if and only if

y2 j−1 = y2 j +
∑

bi
2

zbi
2
[1{m(bi

2)≤ j≤i−1} −1{i≤ j≤m(bi
2 )−1}] (10)

for j = 1, . . . ,n −1.

Let J− = { j ∈ {1, . . . ,n − 1} : ∃bi
2 such that i ≤ j ≤ m(bi

2)− 1} and J+ = { j ∈ {1, . . . ,n − 1} :

∃bi
2 such that m(bi

2) ≤ j ≤ i −1} and note that J−∩ J+ = ;. To see this, suppose, for contra-

diction, that there exists a j ∈ J−∩ J+. Therefore, there exists a bi
2 such that i ≤ j ≤ m(bi

2)−1

and bi ′

2 such that m(bi ′

2 ) ≤ j ≤ i ′ − 1. This implies that i < i ′, m(bi
2) > i , m(bi ′

2 ) < i ′, but

m(bi
2) > m(bi ′

2 ), contradicting the conditions of the proposition. We can therefore write (10)

as

y2 j = y2 j−1 +
∑

bi
2

zbi
2
1{i≤ j≤m(bi

2 )−1} (11)
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for j ∈ J− and

y2 j−1 = y2 j +
∑

bi
2

zbi
2
1{m(bi

2)≤ j≤i−1} (12)

for j ∈ J+.

Finally note that

x′V (a1) =
n−1∑

j=1

~U2(a1,b∗
2 )2 j y2 j +

n−1∑

j=1

~U2(a1,b∗
2 )2 j−1 y2 j−1 −

∑

bi
2

zbi
2
wbi

2

Substituting from (11) and (12) we obtain

x′V (a1) =
∑

j∈J−

[
~U2(a1,b∗

2 )2 j + ~U2(a1,b∗
2 )2 j−1

]
y2 j−1 +

∑

j∈J+

[
~U2(a1,b∗

2 )2 j + ~U2(a1,b∗
2 )2 j−1

]
y2 j

+
∑

bi
2

zbi
2



−wbi
2
+1{m(bi

2)≤i−1}

i−1∑

j=m(bi
2)

~U2(a1,b∗
2 )2 j−1 +1{i≤m(bi

2)−1}

m(bi
2)−1∑

j=i

~U2(a1,b∗
2 )2 j





Increasing differences, the definition of m(bi
2), and y, z ≥ 0 imply that x′V ≥ 0, and the proof

is completed.

For any strategy profile (b1,b2) of G define the expected transfer from player 2 to the

third-party as F (b1,b2) =
∑

θ∈Θ p(θ) f (b1,b2(b1,θ)).

3 Proofs for section 4.1

In the game with non-renegotiable contracts, player i has an information set at the begin-

ning of the game, which we denote ;, and an information set for each ( fi ,θi , I )∈C ×Θi ×Ii .

In the game with renegotiable contracts ΓR(G), player i has additional information sets cor-

responding to accepted or rejected renegotiation offers, ( fi ,θi , I , g , y) and ( fi ,θi , I , g ,n), and

player ti has an additional information set of each ( fi , I , g ).

The following is well-known but we state it without proof for easy reference:

Lemma 5. Let (σ,m) be a consistent assessment and fi ∈R
Z . For any i , θi , I ∈Ii

σi (I ,θi ) ∈ argmax
σ′

i
∈∆i |I

{
Ui (σ′

i ,σ−i ,m|I ,θi )−Fi (σ′
i ,σ−i ,m|I )

}
(13)

if and only if every pure strategy si ∈ supp(σi (I ,θi )) satisfies

si ∈ argmax
si∈Si |I

Uσ,m
i

(si ,θi |I )−Fσ,m
i

(si |I ) (14)

Lemma 6. Let (σ,m) be a consistent assessment and fi ∈ R
Z . Then for any i , θi , I ∈ Ii , (13)

implies that σi is increasing at I .
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Proof of Lemma 6. Fix a consistent assessment (σ,m). Our assumption that ui(h, si , s−i ,θi ,θ−i )

has strictly increasing differences in (si ,θi ) implies that

vi (h, si , s−i ,θi ,θ−i ) = ui (h, si , s−i ,θi ,θ−i )− fi (h, si , s−i )

has strictly increasing differences. Furthermore, since Si is a chain, vi (h, si , s−i ,θi ,θ−i ) is su-

permodular on Si . Finally, note that Uσ,m
i

(si ,θi |I )−Fσ,m
i

(si |I ) is nothing but vi(h, si , s−i ,θi ,θ−i )

integrated over (s−i ,h,θ−i ) and, since supermodularity and strictly increasing differences are

preserved under integration, we conclude that Uσ,m
i

(si ,θi |I )−Fσ,m
i

(si |I ) is supermodular on

Si and has strictly increasing differences in (si ,θi ).

Now let σi (I ,θi ) satisfy (13). Then, by Lemma 5, every pure strategy si ∈ supp(σi (I ,θi ))

satisfies (14). Well known monotone comparative statics results (see for example Theorem

2.8.4 in Topkis (1998)) then imply that

θi ≻i θ
′
i , si ∈ supp(σi (I ,θi )), s ′i ∈ supp(σi (I ,θ′i )) ⇒ si %si s ′i

which proves that σi is increasing at I .

Let the number of elements in Θi be equal to ni and order its elements so that θni

i
%i

θ
ni−1
i

%i · · ·θ
2
i
%i θ

1
i

. Lemma 5 has shown that sequential rationality of i at information set I

is equivalent to

si ∈ argmax
si∈Si |I

Uσ,m
i

(si ,θi |I )−Fσ,m
i

(si |I )

for every si ∈ supp(σi (I ,θi )). The following lemma shows that this is equivalent to an incen-

tive compatibility condition.

Lemma 7. Fix a consistent assessment (σ,m), i ∈ N, I ∈Ii , and σi : Θi →∆(Si |I ). There exists

a contract f̂i such that

σi (θ
j

i
) ∈ argmax

σ′
i
∈Σi |I

Uσ,m
i

(σ′
i ,θ

j

i
|I )− F̂σ,m

i
(σ′

i |I ),∀ j = 1, . . . ,ni . (15)

iff there exists a contract fi such that

Uσ,m
i

(σi (θ
j

i
),θ

j

i
|I )−Fσ,m

i
(σi (θ

j

i
)|I ) ≥Uσ,m

i
(σi (θk

i ),θ
j

i
|I )−Fσ,m

i
(σi (θk

i )|I ),∀ j ,k = 1, . . . ,ni .

(16)

Proof of Lemma 7. Necessity is immediate. For sufficiency, suppose that there exists a con-

tract fi such that σi : Θi →∆(Si |I ) satisfies (16). Define f̂i as follows

f̂i (h, si , s−i ) =





fi (h, si , s−i ), if ∃ j : si ∈ supp(σi (θ

j

i
))

maxθi
{Uσ,m

i
(si ,θi )−Uσ,m

i
(σi (θi ),θi )+Fσ,m

i
(σi (θi )|I )}, otherwise

9



It is easy to show that si : Θi → Si |I and f̂i satisfy (15).

For any σi ,σ′
i
∈ Σi define %σi by σi %σi σ′

i
iff si %si s ′

i
for all si ∈ supp(σi ) and s ′

i
∈

supp(σ′
i
). The following lemma shows that increasing differences in pure strategies implies

increasing differences in mixed strategies.

Lemma 8. Fix an assessment (σ,m), i ∈ N, and I ∈ Ii . If Uσ,m
i

(si ,θi |I ) has (strictly) increas-

ing differences in (si ,θi ) ∈ Si |I ×Θi , then Uσ,m
i

(σi ,θi |I ) has (strictly) increasing differences in

(σi ,θi ) ∈Σi |I ×Θi .

Proof of Lemma 8. Let σi %σi σ
′
i

and θi %i θi ′ . This implies that si %si s ′
i

for all si ∈ supp(σi )

and s ′
i
∈ supp(σ′

i
). Therefore, increasing differences in (si ,θi ) implies

Uσ,m
i

(si ,θi |I )−Uσ,m
i

(si ,θ′i |I )≥Uσ,m
i

(s ′i ,θi |I )−Uσ,m
i

(s ′i ,θ′i |I )

for all si ∈ supp(σi ) and s ′
i
∈ supp(σ′

i
). This implies

∑

si∈supp(σi )

σi (si )[Uσ,m
i

(si ,θi |I )−Uσ,m
i

(si ,θ′i |I )] ≥
∑

s′
i
∈supp(σ′

i
)

σ′
i (s ′i )[Uσ,m

i
(s ′i ,θi |I )−Uσ,m

i
(s ′i ,θ′i |I )]

and hence

Uσ,m
i

(σi ,θi |I )−Uσ,m
i

(σi ,θ′i |I ) ≥Uσ,m
i

(σ′
i ,θi |I )−Uσ,m

i
(σ′

i ,θ′i |I ).

This lemma has a useful corrolary:

Corollary 1. Fix an assessment (σ,m), i ∈ N, and I ∈Ii . If Uσ,m
i

(si ,θi |I ) has (strictly) increas-

ing differences in (si ,θi ) ∈ Si |I ×Θi , then Uσ,m
i

(σi ,θi |I )−Fσ,m
i

(σi |I ) has (strictly) increasing

differences in (σi ,θi ) ∈Σi |I ×Θi .

Let e j be the j th standard basis row vector for R
ni and define the row vector d j = e j −

e j+1, j = 1,2, . . . ,ni − 1. Let D be the 2(ni − 1)×ni matrix whose row 2 j − 1 is d j and row

2 j is −d j , j = 1, . . . ,n − 1. For any i ∈ N , I ∈ Ii , consistent assessment (σ,m), and σ′
i

:

Θi →∆(Si |I ) define ~Uσ,m
i

(σ′
i
|I ) as a column vector with 2(ni −1) components, where compo-

nent 2 j −1 is given by Uσ,m
i

(σ′
i
(θ

j

i
),θ j |I )−Uσ,m

i
(σ′

i
(θ

j+1
i

),θ j |I ) and component 2 j is given by

Uσ,m
i

(σ′
i
(θ

j+1
i

),θ j+1, |I )−Uσ,m
i

(σ′
i
(θ

j

i
),θ j+1|I ), j = 1,2, . . . ,ni −1. Similarly, define ~Fσ,m

i
(σ′

i
|I )

as the ni vector whose j th component is given by Fσ,m
i

(σ′
i
(θ

j

i
)|I ), j = 1,2, . . . ,ni −1.

The following lemmas show that if si : Θi → Si |I is increasing then it satisfies (16) iff it

satisfies local conditions and express it in a convenient matrix notation.

Lemma 9. Fix i ∈ N and I ∈Ii and let σi : Θi →∆(Si ) be increasing and Vi : Σi ×Θi → R has

increasing differences in (σi ,θi ). Then,

Vi (σi (θ
j

i
),θ

j

i
) ≥Vi (σi (θk

i ),θ
j

i
),∀ j ,k = 1, . . . ,ni (17)
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iff

Vi (σi (θ
j

i
),θ

j

i
) ≥Vi (σi (θ

j−1
i

),θ
j

i
),∀ j = 2, . . . ,ni (18)

and

Vi (σi (θ
j

i
),θ

j

i
) ≥Vi (σi (θ

j+1
i

),θ
j

i
),∀ j = 1, . . . ,ni −1. (19)

Proof of Lemma 9. Necessity is immediate. For sufficiency, suppose that (18) holds. This

implies Vi (σi (θ
j

i
),θ

j

i
) ≥ Vi (σi (θ

j−1
i

),θ
j

i
) and Vi (σi (θ

j−1
i

),θ
j−1
i

) ≥ Vi (σi (θ
j−2
i

),θ
j−1
i

), which, in

turn, implies

Vi (σi (θ
j

i
),θ

j

i
)−Vi (σi (θ

j−1
i

),θ
j

i
)+Vi (σi (θ

j−1
i

),θ
j−1
i

)−Vi (σi (θ
j−2
i

),θ
j−1
i

)−Vi (σi (θ
j−2
i

),θ
j

i
)

+Vi (σi (θ
j−2
i

),θ
j

i
) ≥ 0

Therefore,

Vi (σi (θ
j

i
),θ

j

i
)−Vi (σi (θ

j−2
i

),θ
j

i
) ≥Vi (σi (θ

j−1
i

),θ
j

i
)−Vi (σi (θ

j−2
i

),θ
j

i
)− [Vi (σi (θ

j−1
i

),θ
j−1
i

)

−Vi (σi (θ
j−2
i

),θ
j−1
i

)] ≥ 0

where the second inequality follows from increasing differences. We have proved that (18)

implies all downward constraints. It can be similarly shown that (19) implies all upward

conditions.

Lemma 10. Fix a consistent assessment (σ,m), i ∈ N, a contract fi , I ∈ Ii , and let σi : Θi →

Σi |I be increasing. Then (16) holds iff D~Fσ,m
i

(σi |I ) ≤ ~Uσ,m
i

(σi |I ).

Proof of Lemma 10. Follows from Corollary 1 and lemma 9.

Lemma 11. Fix i ∈ N, σi : Θi →∆(Si ), I ∈Ii , and let |Si | = k. If there exists ni vector F , then

there also exists a k vector f such that

F j =

k∑

l=1

σi (s l
i |θ

j

i
) fl

whenever σi (θi ) 6=σi (θ′
i
) for any θi ,θ′

i
∈Θi .

Proof of Lemma 11. The proof is done if we can show that the following system of equations

has a solution for f :

Υ f = F

where j th row of Υ is given by σi ∗θ
j

i
. Since σi (θi ) 6=σi (θ′

i
) for any θi ,θ′

i
∈Θi , the rows of Υ

are independent. Therefore, rank(Υ) = rank
(
Υ F

)
, and the proof is completed.
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Proof of Proposition 5 (of the main paper). [Only If] Follows from Lemma 6.

[If] We need to prove the existence of a contract fi such that for any I ∈Ii

Uσ,m
i

(σi (θ
j

i
),θ

j

i
|I )−Fσ,m

i
(σi (θ

j

i
)|I ) ≥Uσ,m

i
(σi (θk

i ),θ
j

i
|I )−Fσ,m

i
(σi (θk

i )|I ),∀ j ,k = 1, . . . ,ni .

(20)

By Lemma 10, (20) holds if and only if D~Fσ,m
i

(σi |I ) ≤ ~Uσ,m
i

(σi |I ). By Gale’s theorem for

linear inequalities (Mangasarian (1994), p. 33), there exists a ~Fσ,m
i

(σi |I ) ∈ R
ni such that

D~Fσ,m
i

(σi |I ) ≤ ~Uσ,m
i

(σi |I ) if and only if for any y ∈ R
2(ni−1)
+ , D ′y = 0 implies y ′~Uσ,m

i
(σi |I ) ≥

0. It is easy to show that D ′y = 0 if and only if y1 = y2, y3 = y4, · · · , y2(ni −1)−1 = y2(ni −1).

Let ~Uσ,m
i

(σi |I ) j denote the j th row of ~Uσ,m
i

(σi |I ) and note that since σi is increasing and

Uσ,m
i

(σi ,θi |I ) has strictly increasing differences, ~Uσ,m
i

(σi |I )2 j−1 + ~Uσ,m
i

(σi |I )2 j ≥ 0, for any

j = 1,2, . . . ,ni −1. Therefore,

y ′~Uσ,m
i

(σi |I )=
ni −1∑

j=1

(~Uσ,m
i

(σi |I )2 j−1 + ~Uσ,m
i

(σi |I )2 j )y2 j−1 ≥ 0

Lemma 11 implies that as long as different types play different mixed strategies we can use

this ~Fσ,m
i

(σi |I ) ∈R
ni to construct F (si ) for each si ∈ Si |I .1. We can then define

fi (h, si , s−i ) = F (si )∀h, s−i .

and use this fi to construct a contract that satisfies incentive whose expectation satisfies

(16). This completes the proof.

Proof of Theorem 2 (of the main paper). Fix i ∈ N and a consistent assessment (σ,m). By

definition ( fi ,σi ) is not renegotiation-proof at (σ−i ,m) if and only if there exist I ∈ Ii , j =

1, . . . ,ni , gi ∈C , and σ′
i

: Θi →Σi |I such that

Uσ,m
i

(σ′
i (θl

i ),θl
i |I )−Gσ,m

i
(σ′

i (θl
i )|I )≥Uσ,m

i
(σ′

i (θk
i ),θl

i |I )−Gσ,m
i

(σ′
i (θk

i )|I ),∀l ,k = 1, . . . ,ni

(21)

Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Gσ,m

i
(σ′

i (θ
j

i
)|I ) >Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )−Fσ,m

i
(σi (θ

j

i
)|I ) (22)

Gσ,m
i

(σ′
i (θk

i )|I ) > Fσ,m
i

(σi (θk
i )|I ),∀k = 1, . . . ,ni . (23)

Define ~Gσ,m
i

(σ′
i
|I ) as ni vector whose kth component is given by Gσ,m

i
(σ′

i
(θk

i
)|I ). By

Lemma 10, (21) is equivalent to D~Gσ,m
i

(σ′
i
|I ) ≤ ~Uσ,m

i
(σ′

i
|I ). Therefore, we have the follow-

ing:

1If different types use the same strategies, we can simply eliminate one of them from the incentive compat-
ibility constraints.
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Lemma 12. Fix i ∈ N and a consistent assessment (σ,m). ( fi ,σi ) is not renegotiation-proof at

(σ−i ,m) if and only if there exist I ∈ Ii , j = 1, . . . ,ni , gi ∈ C , σ′
i

: Θi → Σi |I , and ε ∈ R
ni such

that D(~Fσ,m
i

(σi |I )+ε) ≤ ~Uσ,m
i

(σ′
i
|I ), ε j <Uσ,m

i
(σ′

i
(θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I ), and ε≫ 0.

Fix i ∈ N , a consistent assessment (σ,m), ( fi ,σi ), I ∈ Ii , j = 1, . . . ,ni , σ′
i

: Θi → Σi |I .

Define V = ~Uσ,m
i

(σ′
i
|I )−D~Fσ,m

i
(σi |I ), C =

(
V −D

)
, and

A =

(
Ini+1

l j

)

where l j = (Uσ,m
i

(σ′
i
(θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I ))e1−e j+1. The following lemma uses Motzkin’s

Theorem to express renegotiation-proofness as an alternative.

Lemma 13. Fix i ∈ N and a consistent assessment (σ,m). ( f ,σi ) is renegotiation-proof if and

only if for any I ∈ Ii , j = 1, . . . ,ni , σ′
i

: Θi → Σi |I , there exist y ∈ R
ni+2 and z ∈ R

2(ni −1) such

that A′y +C ′z = 0, y > 0, z ≥ 0.

Proof of Lemma 13. Let ξ> 0,ε ∈R
ni , and define

x =

(
ξ

ξε

)

Then D(~Fσ,m
i

(σi |I )+ε) ≤ ~Uσ,m
i

(σ′
i
|I ) if and only if C x ≥ 0. Also, ε≫ 0 and ε j <Uσ,m

i
(σ′

i
(θ

j

i
),θ

j

i
|I )−

Uσ,m
i

(σi (θ
j

i
),θ

j

i
|I ) if and only if Ax ≫ 0. The lemma then follows from Motzkin’s Theo-

rem.

Fix i ∈ N , a belief system m, σ ∈ Σ−i , ( f ,σi ), I ∈ Ii , j = 1, . . . ,ni , and σ′
i
∈ Σi |I . Define

α1 = 1, α j+1 =Uσ,m
i

(σ′
i
(θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I ), and

αk+1 =

j−1∑

t=k

~Uσ,m
i

(σ′
i |I )2t−1 +α j+1 −Fσ,m

i
(σi (θk

i )|I )+Fσ,m
i

(σi (θ
j

i
)|I ), for k = 1,2, . . . , j −1,

αl+1 =

l∑

t= j+1

~Uσ,m
i

(σ′
i |I )2(t−1) +α j+1 −Fσ,m

i
(σi (θl

i )|I )+Fσ,m
i

(σi (θ
j

i
)|I ), for l = j +1, j +2, . . . ,ni ,

βt =~Uσ,m
i

(σ′
i |I )2t + ~Uσ,m

i
(σ′

i |I )2t−1, for t = 1,2, . . . ,ni −1.

We have the following lemma.

Lemma 14. Fix i ∈ N, a consistent assessment (σ,m), ( fi ,σi ), I ∈ Ii , j = 1, . . . ,ni , σ′
i

: Θi →

Σi |I . There exist y ∈ R
ni+2 and z ∈ R

2(ni−1) such that A′y +C ′z = 0, y > 0, z ≥ 0 if and only if

there exist ŷ ∈R
ni+1 and ẑ ∈R

(ni−1) such that ŷ > 0, ẑ ≥ 0, and

ni+1∑

t=1
αt ŷt +

ni−1∑

t=1
βt ẑt = 0 (24)
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Proof of Lemma 14. First note that for any y and z, A′y +C ′z = 0 if and only if

y1 + (Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I ))yni+2 +V ′z =0 (25)

D ′z =
[

A′y
]
−1 (26)

where
[

A′y
]
−1 is the ni -dimensional vector obtained from A′y by eliminating the first row.

Recursively adding row 1 to row 2, row 2 to row 3, and so on, we can reduce
(
D ′

[
A′y

]
−1

)
to

a row echelon form and show that (26) holds if and only if

z2t−1 =z2t +

t∑

k=1

yk+1, t = 1,2, . . . , j −1 (27)

z2t =z2t−1 +

ni∑

k=t+1

yk+1, t = j , j +1, . . . ,ni −1 (28)

yni+2 =

ni∑

k=1

yk+1 (29)

Substituting (27)-(29) into (25) we get

y1+α j+1

ni∑

k=1

yk+1+

j−1∑

t=1

~Uσ,m
i

(σ′
i |I )2t−1

t∑

k=1

yk+1+

ni−1∑

t= j

~Uσ,m
i

(σ′
i |I )2t

ni∑

k=t+1

yk+1+

j−1∑

t=1
(~Uσ,m

i
(σ′

i |I )2t−1

+~Uσ,m
i

(σ′
i |I )2t )z2t+

ni−1∑

t= j

(~Uσ,m
i

(σ′
i |I )2t−1+~Uσ,m

i
(σ′

i |I )2t )z2t−1−

ni∑

k=1

(Fσ,m
i

(σi (θk
i )|I )−Fσ,m

i
(σi (θ

j

i
)|I ))yk+1 = 0

(30)

Therefore, A′y +C ′z = 0 if and only if equations (27) through (30) hold. Now suppose that

there exist y ∈R
ni+2 and z ∈R

2(ni−1) such that y > 0, z ≥ 0, and (27) through (30) hold. Define

ŷt = yt , for t = 1, . . . ,n +1 and

ẑt =





z2t , t = 1, . . . , j −1

z2t−1, t = j , . . . ,ni −1

It is easy to verify that ŷ > 0, ẑ ≥ 0, and
∑ni+1

t=1 αt ŷt +
∑ni −1

t=1 βt ẑt = 0.

Conversely, suppose that there exist ŷ ∈ R
ni+1 and ẑ ∈ R

(ni−1) such that ŷ > 0, ẑ ≥ 0, and

(24) holds. Define yt = ŷt for t = 1, . . . ,ni + 1 and yni+2 =
∑ni+1

t=1 ŷt . For any t = 1, . . . , j − 1,

let z2t−1 = ẑt +
∑t

k=1 ŷk+1 and z2t = ẑt , and for any t = j , . . . ,ni − 1, let z2t−1 = ẑt and z2t =

ẑt +
∑ni

k=t+1
ŷk+1. It is straightforward to show that y > 0, z ≥ 0, and (27) through (30) hold.

This completes the proof of Lemma 14.

Fix i ∈ N and a consistent assessment (σ,m). ( f ,σi ) is renegotiation-proof at (σ−i ,m) if

and only if for any I ∈Ii , j = 1, . . . ,ni , σ′
i

: Θi →Σi |I , there exist ŷ ∈ R
n+1 and ẑ ∈ R

(n−1) such

that ŷ > 0, ẑ ≥ 0, and equation (24) holds. We can now complete the proof of Theorem 2 (of

the main paper).
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[Only if] Fix a consistent assessment (σ,m), i ∈ N , and ( fi ,σi ). Suppose, for contradiction,

that there exist I ∈Ii , j = 1, . . . ,ni , and increasingσ′
i

: Θi →Σi |I such that Uσ,m
i

(σ′
i
(θ

j

i
),θ

j

i
|I ) >

Uσ,m
i

(σi (θ
j

i
),θ

j

i
|I ), but there is no k = 1,2, . . . , j −1 such that (4) holds and no l = j +1, . . . ,ni

such that (5) holds. This implies that αt > 0 for all t = 1, . . . ,ni +1. Since Uσ,m
i

(σ′
i
,θi |I ) has

increasing differences, βt ≥ 0 for all t = 1, . . . ,ni − 1. Therefore, ŷ > 0 and ẑ ≥ 0 imply that
∑ni+1

t=1 αt ŷt +
∑ni−1

t=1 βt ẑt > 0, which, by Lemma 14, contradicts that ( fi ,σi ) is renegotiation-

proof.

[If] Fix a consistent assessment (σ,m), i ∈ N , and ( fi ,σi ). Let I ∈ Ii , j = 1, . . . ,ni , and σ′
i

:

Θi → Σi |I be increasing and Uσ,m
i

(σ′
i
(θ

j

i
),θ

j

i
|I ) >Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I ). Suppose first that there

exists a k ∈ {1, . . . , j − 1} such that (4) holds. This implies that α j+1 > 0 and αk+1 ≤ 0. Let

ŷk+1 = 1, ŷ j+1 =
−αk+1
α j+1

≥ 0, and all the other ŷt = 0 and ẑt = 0. This implies that equation

(24) holds and, by Lemma 13 and 14, that ( fi ,σi ) is renegotiation-proof. Suppose now that

there exists an l ∈ { j +1, . . . ,n} such that (5) holds. Then, α j+1 > 0 and αl+1 ≤ 0. Let ŷl+1 = 1,

ŷ j+1 =
−αl+1
α j+1

≥ 0 and all the other ŷt = 0 and ẑt = 0. This, again, implies that (24) holds and

that ( fi ,σi ) is renegotiation-proof.

Definition 1. Fix a consistent assessment (σ,m) and i ∈ N . For any I ∈ Ii , j = 1, . . . ,ni , and

σ′
i
∈ Σ̂i (I , j ,σi ) we say that b j ∈ {1,2, . . . ,ni } is a blocking type if there exists a k ∈ {1,2, . . . , j −1}

such that

Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I ) ≤

j−1∑

t=b j

[~Uσ,m
i

(σi |I )2t−1 − ~Uσ,m
i

(σ′
i |I )2t−1] (31)

or there exists an l ∈ { j +1, j +2, . . . ,ni } such that

Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I ) ≤

j−1∑

t=b j

[~Uσ,m
i

(σi |I )2t−1 − ~Uσ,m
i

(σ′
i |I )2(t−1)] (32)

We obtain the following necessary conditions for a strategy σi to be renegotiation-proof.

Proposition 1. Fix a consistent assessment (σ,m) and i ∈ N. A mixed strategy σi is renegotia-

tion-proof only if for any I ∈Ii , j = 1, . . . ,ni , and σ′
i
∈ Σ̂i (I , j ,σi ) there is a blocking type.

The above condition becomes also sufficient for renegotiation-proofness with an addi-

tional requirement about the relation of blocking types for different renegotiation opportu-

nities.

Proposition 2. Fix a consistent assessment (σ,m) and i ∈ N. An increasing mixed strategy σi

is renegotiation-proof if for any I ∈Ii , j = 1, . . . ,ni , and σ′
i
∈ Σ̂i (I , j ,σi ) there is a blocking type

b j such that k < l , bk > k, and bl < l imply bk ≤ bl .

Proof of Proposition 1. Fix a consistent assessment (σ,m) and i ∈ N and suppose that the

mixed strategy σi is renegotiation-proof. Fix I ∈Ii , j = 1, . . . ,ni , and an increasing σ′
i

: Θi →
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Σi |I such that Uσ,m
i

(σ′
i
(θ

j

i
),θ

j

i
|I ) > Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I ). For any t = 1, . . . ,ni , let ct = e j − et ,

where et is the t th standard basis row vector for Rni , and define

Et =

(
D

ct

)

Also let

wk =Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )+

j−1∑

t=k

~Uσ,m
i

(σ′
i |I )2t−1

wl =Uσ,m
i

(σ′
i (θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )+

l∑

t= j+1

~Uσ,m
i

(σ′
i |I )2(t−1)

for any k ∈ {1, . . . , j −1} and l ∈ { j +1, . . . ,ni } and define

V j =

(
~Uσ,m

i
(σi |I )

−w j

)

Incentive compatibility of ( fi,σi ) implies that D~Fσ,m
i

(σi |I ) ≤ ~Uσ,m
i

(σi |I ). Renegotiation proof-

ness, by Theorem 2 (of the main paper), implies that ck
~Fσ,m

i
(σi |I ) ≤ −wk for some k ∈

{1, . . . , j − 1} or cl
~Fσ,m

i
(σi |I ) ≤ −wl for some l ∈ { j + 1, . . . ,n}. Suppose first that there exists

a k ∈ {1, . . . , j −1} such that ck
~Fσ,m

i
(σi |I ) ≤ −wk . Then we must have Ek

~Fσ,m
i

(σi |I ) ≤ Vk . By

Gale’s theorem of linear inequalities, this implies that x ≥ 0 and E ′
k

x = 0 implies x′Vk ≥ 0.

Denote the first 2(ni − 1) elements of x by y and the last element by z. It is easy to show

that E ′
k

x = 0 implies that y2t−1 = y2t + z for t ∈ {k,k + 1, . . . , j − 1} and y2t−1 = y2 j for t ∉

{k,k +1, . . . , j −1}. Therefore,

x′Vk =

ni −1∑

t=1

~Uσ,m
i

(σi |I )2t y2t +

ni−1∑

t=1

~Uσ,m
i

(σi |I )2t−1 y2t−1 − zwk

=

ni −1∑

t=1
(~Uσ,m

i
(σi |I )2t + ~Uσ,m

i
(σi |I )2t−1)y2t + z(−wk +

j−1∑

t=k

~Uσ,m
i

(σi |I )2t−1)

≥ 0

This implies that −wk +
∑ j−1

t=k
~Uσ,m

i
(σi |I )2t−1) ≥ 0 and hence k is a blocking type.

Similarly, we can show that, if there exists an l ∈ {i + 1, . . . ,ni } such that cl
~Fσ,m

i
(σi |I ) ≤

−wl , then l is a blocking type, and this completes the proof.

Before we proceed to the proof of Proposition 2 we need the following lemma:

Lemma 15. Fix a consistent assessment (σ,m) and i ∈ N. ( fi ,σi ) ∈ C ×Σi is renegotiation-

proof at (σ−i ,m) if for all I ∈Ii , θi ∈Θi such that there exists (gi , s ′
i
) ∈C ×Si |I that is incentive

compatible at (σ−i ,m) and

Ui (s ′i (I ,θi ),σ−i ,m|I ,θi )−Gi (s ′i (I ,θi ),σ−i ,m|I ,θi ) >Ui (σi (I ,θi ),σ−i ,m|I ,θi )−Fi (σi (I ,θi ),σ−i ,m|I ,θi )
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there exists a θ′
i
∈Θi such that

Fi (σi (I ,θ′i ),σ−i ,m|I ,θ′i ) ≥Gi (s ′i (I ,θ′i ),σ−i ,m|I ,θ′i )

Proof of Lemma 15. By definition ( fi ,σi ) is not renegotiation-proof at (σ−i ,m) if and only if

there exist I ∈ Ii , j = 1, . . . ,ni , gi ∈ C , and σ′
i

: Θi → ∆(Si |I ) such that (21)-(23) hold. This is

true iff there exists s ′
i

: Θi → Si |I such that

Uσ,m
i

(s ′i (θl
i ),θl

i |I )−Gσ,m
i

(s ′i (θl
i )|I ) ≥Uσ,m

i
(s ′i (θk

i ),θl
i |I )−Gσ,m

i
(s ′i (θk

i )|I ),∀l ,k = 1, . . . ,ni (33)

Uσ,m
i

(s ′i (θ
j

i
),θ

j

i
|I )−Gσ,m

i
(s ′i (θ

j

i
)|I ) >Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )−Fσ,m

i
(σi (θ

j

i
)|I ) (34)

Gσ,m
i

(s ′i (θk
i )|I ) > Fσ,m

i
(σi (θk

i )|I ),∀k = 1, . . . ,ni . (35)

This is because if there exists an s ′
i
, that satisfies (33)-(35) then there trivially exists σ′

i
that

satisfies (21)-(23). Conversely, let there be a σ′
i

that satisfies (21)-(23). This implies that there

is an s ′
i
∈ supp(σ′

i
) that satisfies (35) for all k = 1, . . . ,ni . Then this s ′

i
also satisfies (33) and

(34) because σ′
i
(θl

i
) ∈ argmaxσ′′

i
Uσ,m

i
(σ′′

i
,θl

i
|I )−Gσ,m

i
(σ′′

i
|I ) iff s ′

i
∈ argmaxs′′

i
Uσ,m

i
(s ′′

i
,θl

i
|I )−

Gσ,m
i

(s ′′
i
|I ) for any s ′

i
∈ supp(σ′

i
).

Proof of Proposition 2. Fix a consistent assessment (σ,m) and i ∈ N and suppose that the

mixed strategy σi is increasing and satisfies the conditions of the proposition. We will show

that there exist an fi ∈ C such that ( fi ,σi ) is incentive-compatible and renegotiation-proof

at (σ−i ,m). Fix I ∈Ii and for each j = 1, . . . ,ni define

Ŝi (I , j ,σi ) = {s ′i : Θi → Si |I : s ′i is increasing and Uσ,m
i

(s ′i (θ
j

i
),θ

j

i
|I ) >Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )}.

(36)

For each j = 1, . . . ,ni and s
j

i
∈ Ŝi (I , j ,σi ) pick a blocking type b(s

j

i
) such that k < l , b(sk

i
) > k,

and b(s l
i
) < l imply b(sk

i
) ≤ b(s l

i
). By Lemma 15, if ( fi ,σi ) is renegotiation-proof against any

s ′
i
∈ Ŝi (I , j ,σi ) it is also renegotiation-proof against any σ′

i
∈ Σ̂i (I , j ,σi ).

For each j = 1, . . . ,ni and s
j

i
∈ Ŝi (I , j ,σi ) define the ni -dimensional row vector c

s
j

i

= e j −

e
b(s

j

i
)
, where et is the t th standard basis row vector for Rni , and the scalar w

s
j

i

as

w
s

j

i

=Uσ,m
i

(s
j

i
(θ

j

i
),θ

j

i
|I )−Uσ,m

i
(σi (θ

j

i
),θ

j

i
|I )+1

{b(s
j

i
)≤ j−1}

j−1∑

t=b(s
j

i
)

~Uσ,m
i

(s
j

i
|I )2t−1

+1
{ j≤b(s

j

i
)−1}

b(s
j

i
)∑

t= j+1

~Uσ,m
i

(s
j

i
|I )2(t−1).

Note that Ŝi (I , j ,σi ) is finite and let
∑ni

j=1 |Ŝi (I , j ,σi )| = q . Denote with C (I ), the q ×n matrix
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composed of all the rows c
s

j

i

and with W (I ) the q dimensional vector with component w
s

j

i

corresponding to each s
j

i
. Let E (I ) be the matrix

E (I )=

(
D

C (I )

)

and V (I ) the column vector

V (I )=

(
~Uσ,m

i
(σi |I )

−W (I )

)

Now, if for each I ∈ Ii , we can find an ~Fσ,m
i

(σi |I ) such that E (I )~Fσ,m
i

(σi |I ) ≤ V (I ) the

proof would be completed. Indeed, if E (I )~Fσ,m
i

(σi |I )≤V (I ), then D~Fσ,m
i

(σi |I ) ≤ ~Uσ,m
i

(σi |I ),

which implies that there exists fi such that ( fi ,σi ) is incentive compatible (see Lemma 11).

Furthermore, E (I )~Fσ,m
i

(σi |I )≤V (I ) implies W (I )≤−C (I )~Fσ,m
i

(σi |I ) and, by Theorem 2, that

( fi ,σi ) is renegotiation-proof.

Gale’s theorem of linear inequalities implies that there exist~Fσ,m
i

(σi |I ) such that E (I )~Fσ,m
i

(σi |I ) ≤

V (I ) if and only if x ∈ R
q+2(ni −1), x ≥ 0 and E (I )′x = 0 implies x′V (I ) ≥ 0. Decompose x into

two vectors so that the first 2(ni −1) elements constitute y and the remaining q components

constitute z. Notice that for any j = 1, . . . ,ni and s
j

i
∈ Ŝi (I , j ,σi ) there is a corresponding

element of z, which we will denote z
s

j

i

.

Recursively adding row 1 to row 2, row 2 to row 3, and so on, we can reduce E (I )′ to a row

echelon form and show that E (I )′x = 0 if and only if

y2t−1 = y2t +
∑

s
j

i

z
s

j

i

[1
{b(s

j

i
)≤t≤ j−1}

−1
{ j≤t≤b(s

j

i
)−1}

] (37)

for t = 1, . . . ,ni −1.

Let T− = {t ∈ {1, . . . ,ni − 1} : ∃s
j

i
such that j ≤ t ≤ b(s

j

i
)− 1} and T+ = {t ∈ {1, . . . ,ni − 1} :

∃s
j

i
such that b(s

j

i
) ≤ t ≤ j −1} and note that T−∩T+ =;. To see this, suppose, for contradic-

tion, that there exists a t ∈T−∩T+. Therefore, there exists a s
j

i
such that j ≤ t ≤ b(s

j

i
)−1 and

s
j ′

i
such that b(s

j ′

i
) ≤ t ≤ j ′−1. This implies that j < j ′, b(s

j

i
) > j , b(s

j ′

i
) < j ′, but b(s

j

i
) > b(s

j ′

i
),

contradicting the conditions of the proposition. We can therefore write (37) as

y2t = y2t−1 +
∑

s
j

i

z
s

j

i

1
{ j≤t≤b(s

j

i
)−1}

(38)

for t ∈T− and

y2t−1 = y2t +
∑

s
j

i

z
s

j

i

1
{b(s

j

i
)≤t≤ j−1}

(39)

for t ∈T+.
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Finally note that

x′V (I )=
ni −1∑

t=1

~Uσ,m
i

(σi |I )2t y2t +

ni−1∑

t=1

~Uσ,m
i

(σi |I )2t−1 y2t−1 −
∑

s
j

i

z
s

j

i

w
s

j

i

Substituting from (38) and (39) we obtain

x′V (I )=
∑

t∈T−

[
~Uσ,m

i
(σi |I )2t + ~Uσ,m

i
(σi |I )2t−1

]
y2t−1+

∑

t∈T+

[
~Uσ,m

i
(σi |I )2t + ~Uσ,m

i
(σi |I )2t−1

]
y2t

+
∑

s
j

i

z
s

j

i



−w
s

j

i

+1
{b(s

j

i
)≤ j−1}

j−1∑

t=b(s
j

i
)

~Uσ,m
i

(σi |I )2t−1 +1
{ j≤b(s

j

i
)−1}

b(s
j

i
)−1∑

t=i

~Uσ,m
i

(σi |I )2t





Increasing differences, the definition of b(s
j

i
), and y, z ≥ 0 imply that x′V ≥ 0, and the proof

is completed.

4 Proofs for section 4.2

Proof of Theorem 3 (of the main paper). By definition ( f ,b∗
2 ) ∈C×A

A1×Θ

2 is not renegotiation-

proof if and only if there exist a1 ∈ A1, i = 1,2, . . . ,n and an incentive compatible (g ,b2) ∈C ×

A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi )−g (a1,b2(a1,θi )) > u2(a1,b∗
2 (a1,θi ),θi )− f (a1,b∗

2 (a1,θi ))

and u3(a1,b2(a1,θ j ),θ j )+g (a1,b2(a1,θ j )) > u3(a1,b∗
2 (a1,θ j ),θ j )+ f (a1,b∗

2 (a1,θ j )) for all j =

1,2, . . . ,n. Therefore, we have the following

Lemma 16. ( f ,b∗
2 ) ∈C ×A

A1×Θ

2 is not renegotiation-proof if and only if there exist a1 ∈ A1, i =

1,2, . . . ,n, b2 ∈ A
A1×Θ

2 , and ε ∈R
n such that D( f (a1,b∗

2 )+ε) ≤ ~U2(a1,b2), εi < u2(a1,b2(a1,θi ),θi )−

u2(a1,b∗
2 (ai

1,θi ),θi ), and u3(a1,b2(a1,θ j ),θ j )−u3(a1,b∗
2 (a1,θ j ),θ j )+ε j > 0 for all j = 1, . . . ,n.

Define the matrices V and C as in the proof of Theorem 1 (of the main paper), and define

the matrix A as follows: its row 1 is e1, row n+2 is li , and row j +1, for j = 1, . . . ,n, is given by

[u3(a1,b2(a1,θ j ),θ j )−u3(a1,b∗
2 (a1,θ j ),θ j )]e1 + e j+1. We have the following lemma, whose

proof is similar to that of Lemma 3.

Lemma 17. ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is strongly renegotiation-proof if and only if for any a1 ∈ A1,

i = 1,2, . . . ,n and b2 ∈ A
A1×Θ

2 there exist y ∈R
n+2 and z ∈R

2(n−1) such that A′y +C ′z = 0, y > 0,

z ≥ 0.

The rest of the proof is almost identical to that of Theorem 1 (of the main paper), and

therefore is omitted.
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5 Proofs for section 4.3

Proof of Theorem 4 (of the main paper). By definition ( f ,b∗
2 ) ∈C×A

A1×Θ

2 is not strongly renegotiation-

proof if and only if there exist a1 ∈ A1, i = 1,2, . . . ,n and an incentive compatible (g ,b2) ∈C ×

A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi )−g (a1,b2(a1,θi )) > u2(a1,b∗
2 (a1,θi ),θi )− f (a1,b∗

2 (a1,θi )),

g (a1,b2(a1,θi )) > f (a1,b∗
2 (a1,θi )), and g (a1,b2(a1,θi ))− f (a1,b∗

2 (a1,θi )) > min{0,u2(a1,b2(a1,θ j ),θ j )−

u2(a1,b∗
2 (a1,θ j ),θ j )} for all j = 1,2, . . . ,n. The following lemma easily follows.

Lemma 18. ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is not strongly renegotiation-proof if and only if there exist

a1 ∈ A1, i = 1,2, . . . ,n, b2 ∈ A
A1×Θ

2 , and ε ∈ R
n such that D( f (a1,b∗

2 )+ε) ≤ ~U2(a1,b2), 0 < εi <

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (ai

1,θi ),θi ), and ε j > min{0,u2(a1,b2(a1,θ j ),θ j )−u2(a1,b∗
2 (a1,θ j ),θ j )}

for all j = 1,2, . . . ,n.

Define the matrices V and C as in the proof of Theorem 1 (of the main paper), and define

the matrix A as follows: its row 1 is e1, row n+2 is li , and row j +1, for j = 1, . . . ,n, is given by

−min{0,u2(a1,b2(a1,θ j ),θ j )−u2(a1,b∗
2 (a1,θ j ),θ j )}e1 + e j+1. We have the following lemma,

whose proof is similar to that of Lemma 3.

Lemma 19. ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is strongly renegotiation-proof if and only if for any a1 ∈ A1,

i = 1,2, . . . ,n and b2 ∈ A
A1×Θ

2 there exist y ∈R
n+2 and z ∈R

2(n−1) such that A′y +C ′z = 0, y > 0,

z ≥ 0.

The rest of the proof is almost identical to that of Theorem 1 (of the main paper), and

therefore is omitted.

6 Proofs for Section 5.1.2

Proof Proposition 9 (of the main paper). Let

b∗
1 (b2) ∈ argmin

b1∈BR1(b2)
U2(b1,b2)

b∗
2 ∈ argmax

b2∈BR
2

U2(b∗
1 (b2),b2)

and a∗
1 = b∗

1 (b∗
2 ). Note that U2(a∗

1 ,b∗
1 ) = Ū W R

2 and suppose, for contradiction, that player 2

gets a payoff Ũ2 < Ū W R
2 −δ. We will show that player 2 can offer a contract that supports

(a∗
1 ,b∗

2 ) and yields a higher payoff.

For any a1 choose b̂2,a1 ∈ argminb2∈BR
2

U1(a1,b2). By construction b̂2,a1 is increasing and

hence there exists a contract that makes it optimal to play. As in the proof of Proposition 7,

we can show that there exists a contract f a1 such that b̂2,a1 is the unique optimal strategy

and ( f a1 , b̂2,a1 ) is renegotiation-proof after a1. Let ε> 0 be small and define f (b∗
1 , a2) = δ+ε
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for all a2. For any a1 6= b∗
1 define

f (a1, a2) =





f

a1
i

, a2 = b̂2,a1 (a1,θi )

∞, otherwise

Under this contract, player 2 plays a best response to a∗
1 and according to b̂2,a1 after any

a1 6= a∗
1 . Player 1, on the other hand, must play a best response to b∗

2 . This is because for

any a1 ∉ BR1(b∗
1 ), we have U1(br1(b∗

2 ),b∗
2 ) > U1(a1,b∗

2 ) ≥ U1(a1, b̂2,a1 ). Therefore, deviation

to such a contract yields a payoff of U2(b∗
1 ,b∗

2 )−δ−ε> Ũ2, for small enough ε. In other words,

player 2 has a profitable deviation, contradicting that Ũ2 is an equilibrium payoff.

7 Proofs for section 6.2

Proof of Proposition 13 (of the main paper). In the original game G , player 2 chooses π after

observing πe and the realization of θ. For each πe and θ, player 2 chooses π to maximize

−(U∗+θ−α(π−πe))2 −βπ2. The first order conditions yield the optimal strategy for player

2 as

π(πe ,θ) =
α2

α2 +β
πe

+
α

α2 +β
(U∗

+θ). (40)

Given the optimal strategy of player 2, player 1 choosesπe to maximize−
∑

θ∈Θ(πe−π(πe ,θ))2p(θ).

The first order condition is

−2(1−
α2

α2 +β
)
∑

θ∈Θ

(πe
−π(πe ,θ))p(θ) = 0

which is solved as

πe
=

∑

θ∈Θ

π(πe ,θ)p(θ)

Substituting it in to (40), we obtain

πe
=

α

β
U∗

and

π(πe ,θ) =
α

β
U∗

+
α

α2 +β
θ

completing the proof.
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8 Proofs for section 8

Proof of Lemma 2 (of the main paper). Fix a1 ∈ A1, i ∈ {1, · · ·,n}, and bi
2 ∈B(a1, i ,b∗

2 ). Since

A2 is linearly ordered, we have bi
2(a1,θi ) %2 b∗

2 (a1,θi ) or b∗
2 (a1,θi ) %2 bi

2(a1,θi ). First, as-

sume that bi
2(a1,θi )%2 b∗

2 (a1,θi ), i.e., (a1, i ) has right deviation at b∗
2 , and note that R(a1, i ) 6=

; by assumption. Let J = { j ∈ N : i +1 ≤ j ≤ minR(a1, i )−1 and b∗
2 (a1,θ j ) ≻2 bi

2(a1,θ j )}. If

J =;, let m(bi
2) = minR(a1, i ) and if J 6= ;, let m(bi

2) = min J . It is simple to show that

m(bi
2)∑

j=i+1

(
u2(a1,bi

2(a1,θ j−1),θ j )−u2(a1,b∗
2 (a1,θ j−1),θ j )

−[u2(a1,bi
2(a1,θ j−1),θ j−1)−u2(a1,b∗

2 (a1,θ j−1),θ j−1)]
)

+u2(a1,b∗
2 (a1,θm(bi

2)),θm(bi
2))−u2(a1,bi

2(a1,θm(bi
2)),θm(bi

2)) ≥ 0 (41)

Inequality (41) implies that m(bi
2) is a blocking type.

Now assume that b∗
2 (a1,θi )%2 bi

2(a1,θi ), i.e., (a1, i ) has left deviation at b∗
2 , and note that

L(a1, i ) 6= ;. Let J = { j ∈ N : maxL(i )+1 ≤ j ≤ i −1 and bi
2(a1,θ j ) ≻2 b∗

2 (a1,θ j )}. If J = ;, let

m(bi
2) = maxL(i ) and if J 6= ;, let m(bi

2) = max J and note that

i−1∑

j=m(bi
2)

(
u2(a1,b∗

2 (a1,θ j+1),θ j+1)−u2(a1,bi
2(a1,θ j+1),θ j+1)

− [u2(a1,b∗
2 (a1,θ j+1),θ j )−u2(a1,bi

2(a1,θ j+1),θ j )]
)

+u2(a1,b∗
2 (a1,θm(bi

2)),θm(bi
2))−u2(a1,bi

2(a1,θm(bi
2)),θm(bi

2)) ≥ 0 (42)

Inequality (42) implies that m(bi
2) is a blocking type.

Finally assume that there exist (a1, i1) and (a1, i2) with i1 < i2 such that m(b
i1
2 ) > i1 and

m(b
i2
2 ) < i2. This implies that (a1, i1) has right deviation and (a1, i2) has left deviation at b∗

2 ,

which imply that R(a1, i1) 6= ;, L(a1, i2) 6= ; and R(a1, i1)∩L(a1, i2) 6= ;. But this implies that

m(b
i1
2 ) ≤ m(b

i2
2 ) and the proof is completed by applying Proposition 4.

Proof of Lemma 3 (of the main paper). Suppose, for contradiction, that there exists an a′
1 ∈

A1 such that (a′
1,θn) has right deviation at b2, i.e., there exists an a′

2 ∈ A2 such that a′
2 %2

b2(a′
1,θn) and u2(a′

1, a′
2,θn) > u2(a′

1,b2(a′
1,θn),θn). Define

b′
2(a′

1,θ) =





a′

2, θ = θn

b2(a′
1,θ), θ ≺θ θ

n

Note that b′
2 is increasing and therefore b′

2 ∈B(a′
1,n,b2). It is easy to show that for (a′

1,n,b′
2)

there is no blocking type and therefore, by Proposition 3 (of the main paper), b2 is not rene-

gotiation proof.
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