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B A Model of Organizational Barriers to Technology Adoption

This appendix develops a model of strategic communication in a principal-agent setting that cap-
tures the intra-firm dynamics we have observed and motivates our second experiment, as discussed
in Section V of the main text. After describing the theoretical setting in Section B.1, we consider
the case in which the principal is not able to offer conditional contracts in Section B.2, and the
case in which she is able to offer such contracts in Section B.3. In Section B.4, we present an
additional result that a one-time lump-sum transfer can generate an equilibrium similar to the
conditional-contracts case.

B.1 Theoretical setting

B.1.1 Basic set-up

Consider a one-period game. There is a principal (she) and an agent (he). The principal can sell
any output q at an exogenously given price p. The principal incurs two costs: a constant marginal
cost of materials, c, and a wage w(q) that she pays to the agent. Her payoff is π = pq −w(q)− cq.
The agent produces output q = se where s is the speed of the technology (e.g. the cuts per minute),
and e is effort, which is not contractible and is costly to the agent to provide. The agent has utility
U = w(q)− e2

2 and an outside option of zero. We assume that contracts must be of the linear form
w(q) = α + βq, where β ≥ 0.1 We further assume that the agent has limited liability, α ≥ 0 — a
reasonable assumption given that no worker in our setting pays an owner to work in the factory.
Below we will consider cases which differ in the ability of the principal to condition the piece rate,
β, on marginal cost, c, a characteristic of the technology that will in general only be revealed ex
post.

Technologies are characterized by speed, s, and materials cost, c. There is an existing technology,
θ0, with (s0, c0). There is also a new technology, which can be one of three types:

• Type θ1, with c1 = c0 and s1 < s0. This technology is material-neutral (neither raises nor
lowers material costs) and labor-using (is slower). It is dominated by the existing technology;
we refer to it as the “bad” technology.

• Type θ2, with c2 < c0 and s2 < s0. This technology is material-saving but labor-using: it
lowers material costs but is slower than the existing technology. It is analogous to our offset
die.

• Type θ3, with c3 = c0 and s3 > s0. This technology is material-neutral and labor-saving. It
dominates the existing technology because it has the same material costs but is faster. It is
analogous to the original two-panel non-offset “back-to-back” die (faster than the one-piece
die that preceded it) discussed in Section VII.

We assume that both players are aware ex ante of the existence of the technology, but differ in their
knowledge about the technology type. The principal has prior ρi that the technology is type θi, with∑3

1 ρi = 1, and Nature does not reveal the type to her. In contrast, Nature reveals the type with
certainty to the agent. While this is clearly an extreme assumption, it captures in an analytically

1We restrict attention to a single contract rather than a menu of contracts since there was no evidence such
menus were on offer in Sialkot. Also, we rule out by assumption the possibility that the contract can be conditioned
on messages sent by the agent, implicitly assuming that the costs of implementing such contracts are prohibitively
high. There is an active theoretical literature on optimal contracts in settings similar to ours, in which agents need
to be induced to experiment; see e.g. Halac, Kartik, and Liu (2016).
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tractable way the observation from our qualitative work that the cutters are better informed about
the cutting dies (which they work with all day every day) than are owners. Adopting the new
technology requires a fixed cost, F .

In Stage 1 of the game, the principal chooses a wage contract. In Stage 2, Nature reveals the
technology type to the agent. In Stage 3, the agent can send a costless message regarding the type
of the new technology. In Stage 4, the principal decides whether to adopt the new technology,
given the agent’s message. In Stage 5, the agent chooses his level of effort. In Stage 6, output is
observed, the technology is revealed to the principal, and payoffs are realized. The key feature of
the timing is that the wage contract must be chosen before the agent sends his message.2,3

Given this setup, the optimal effort choice for the agent, for a given β, is:

e = arg max
e

(
α+ βsie−

e2

2

)
= βsi (B1)

In all the cases we consider below, the limited-liability constraint binds and the principal will set
α = 0. Conditional on technology θi being used, the agent’s utility is then:

U(β, θi) =
β2s2

i

2
(B2)

which makes it clear that conditional on β the agent prefers faster technologies. Given the agent’s
optimal effort choice, the principal’s profit from adopting technology type θi can be written as a
function of the piece rate, β. Writing π(β, θi) as πi(β) to reduce clutter, we have:

πi(β) = s2
iβ (p− β − ci)− F · 1(i = 1, 2, 3) (B3)

where β need not be the optimal choice for technology θi.

B.1.2 Benchmarks

As a preliminary step, it is useful to consider the optimal contract under two counterfactual bench-
mark cases. In the first, suppose that the principal is fully informed about the technology. In
this case, in the absence of the limited-liability constraint the principal would make the agent the
residual claimant: she would set β = p − ci and bring the agent down to his reservation utility
through a negative value of α. With the limited-liability constraint this is not possible. Since the

2Since Nature does not reveal the technology type to the principal, it is not crucial for the analysis whether
Nature’s move, which we can think of as the initial technology drop by our survey team, happens before or after the
wage contract is set. (That is, the order of Stages 1 and 2 can be reversed.) Thus the model can also accommodate
a scenario in which the principal’s priors are set when our survey team does the technology drop and the technology
type is revealed to the agent.

3One concern with static cheap-talk models is that the principal has no chance to respond to lying, and hence
no way to encourage truth telling, if she later discovers that the technology is a good one (for example, from another
firm that adopts). A more general version of our model would partially address this concern. Consider the following
modification to Stage 2 of the game: if the technology is type θ3, Nature signals θ3 to the agent; if the technology is
type θ2, Nature signals θ2 to the agent with probability ϕ > 1

2
and θ1 with probability 1−ϕ; and if the technology is

type θ1, Nature signals θ1 to the agent with probability ϕ > 1
2

and θ2 with probability 1−ϕ. (Recall that conditional
on β the agent’s utility is only a function of si and not ci so it is reasonable that he can more easily distinguish slow
from fast technologies than low cost from high cost.) This leaves our model essentially unchanged since the agent
still wishes to block adoption if he receives either signal θ1 or θ2 and to encourage adoption if he receives signal θ3.
Hence, he continues to pool types θ1 and θ2, and the principal anticipates this pooling. The key difference is that
in this variant of the model, if the principal later discovers the technology is of type θ2, she cannot be sure that the
agent received the signal θ2.
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agent’s effort (e = βsi, as above) is independent of α (refer to (B1)), the principal sets α = 0. The
optimal contract for a known technology type θi is then:

αi = 0, βi =
p− ci

2
(B4)

Note that the optimal piece rate depends on marginal cost.4 The optimal piece rate for technology
θ2, β2, is higher than the optimal piece rate for the existing technology, β0, since c2 < c0.5 In this
case, the principal would like to incentivize more effort from the agent because profits per cut are
higher.

In the second benchmark, suppose that the principal is imperfectly informed but receives no
message from the agent. Define expected profit in this case as:

π̃(β) ≡ ρ1π1(β) + ρ2π2(β) + ρ3π3(β) (B5)

In this case, it can be shown that the principal, if she were to adopt the technology, would choose

the wage contract: α = 0, β̃ =
∑3

i=1 λiβi, where βi is as in (B4) and λi =
ρis

2
i∑3

1 ρis
2
i

. The optimal

piece rate would thus be a weighted average of the optimal piece rates in the full-information case.
Given this contract, the expected profit from adoption would be:

π̃(β̃) =

(
3∑
i=1

ρis
2
i

)(
β̃
)2
− F (B6)

B.1.3 Parameter restrictions

As noted above, the aim of the model is to capture the intra-organizational dynamics we have
observed, in particular that workers may seek to discourage owners from adopting a technology like
ours, and that modifying wage contracts may lead to successful adoption. These features are not
present under all possible parameter values. To focus on what we consider to be the interesting
case in the model, we impose three parameter restrictions. Using the definitions of πi(·) from (B3),
of βi from (B4), and of π̃(β̃) from (B6), they are:

π2(β0) > π0(β0) (B7a)

π3(β2) > π0(β2) (B7b)

π0(β0) > π̃(β̃) (B7c)

To understand the intuition for these conditions, consider the schematic representation of the

4There are alternative scenarios where the piece rate would depend not only on the price and marginal cost, but
also on speed. As a first example, if speed and effort were substitutes, q = s+ e, then agents will optimally provide
effort e = β and the optimal piece rate for a given technology is β = p−ci−si

2
. However, the agent’s utility conditional

on β, U(β, θi) = β2

2
+ βsi, is still increasing in speed. Since wages are set in Stage 1, the agent will still try to avoid

slower technologies like type θ2 in Stage 3. Whether the principal will want to adopt types θ2 and θ3 will again depend
on parameters and there will still be a potential misalignment in incentives. Second, suppose that the principal has
to produce a target q̄ with no time limit and, as in our model, q = se and optimal effort for technology type θi is
βsi. Since q = βs2

i , the optimal piece rate is to pay β = q̄

s2i
to hit the target (assuming this is less than β = p−c

2
,

otherwise she would just hire several cutters at this optimal piece rate). But since the agent’s utility conditional on

β is still increasing in s, U(β, θi) =
β2s2i

2
, the agent will still try to avoid slower technologies like type θ2 creating a

potential misalignment in incentives.
5Since c3 = c1 = c0, the optimal piece rate for types θ1 and θ3 is the same as for the existing technology.
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profit functions πi(β) in Figure B.1. Each of the profit functions πi(β) defines a concave parabola
with vertex at βi.

6 Since c0 = c1 = c3, the functions π0(β), π1(β), and π3(β) have maxima at the
same value of the piece rate, β0; π2(β) has a maximum at β2 > β0.

Condition (B7a) requires that π2(β) lie above π0(β) even at the optimal piece rate for the
existing technology β0, as in the figure. We believe that this condition is realistic in our empirical
setting, where our technology is profitable to adopt for almost all firms even at existing wage rates.
The condition in turn implies π2(β2) > π0(β0); that is, a fully informed principal would adopt type
θ2.

Condition (B7b) requires that technology θ3 dominates the existing technology θ0 even at β2,
the optimal piece rate for type θ2. This condition guarantees that θ3 dominates θ0 at all values of
the piece rate between β0 and β2, which will be the region of primary interest.7

Condition (B7c) implies that a principal with no information beyond her priors would choose
not to adopt. Intuitively, it requires that the payoff to the bad technology θ1 is sufficiently low and
that the principal’s prior on θ1 is sufficiently high that the π̃(β̃) curve defined in (B6) (a weighted
average of π1(β), π2(β), and π3(β), and itself a concave parabola) lies everywhere below π0(β0).

Remarks 1-3 in Appendix B.5 show formally that conditions (B7a)-(B7c) imply that the relative
locations of the πi(β) curves are as illustrated in Figure B.1.8 Remark 4 shows formally that
conditions (B7a)-(B7c) are compatible with each other.

B.1.4 Cheap-talk Subgames Conditional on β

For a given choice of the piece rate β by the principal, the agent and principal engage in a cheap-
talk subgame similar to the interaction considered by Crawford and Sobel (1982) (hereafter CS)
but with a discrete set of possible states of the world. Let Θ be the set of possible new technologies
(i.e. {θ1, θ2, θ3}). We refer to an agent who observes θi as being “type θi.” Let m be a message
and M the set of possible messages. Let q(m|θ) be the agent’s probability of sending message m
if he is type θ, where

∑
m∈M q(m|θ) = 1 for each θ. Let ρ(θ) be the principal’s prior distribution;

that is, ρ(θ1) = ρ1, ρ(θ2) = ρ2, ρ(θ3) = ρ3. Let a(m) ∈ [0, 1] be the probability of adoption by the
principal in response to the message m. Let Û(a(m), β, θi) be the expected utility of the agent of
type θi, prior to the adoption decision of the principal:

Û(a(m), β, θi) = a(m)U(β, θi) + (1− a(m))U(β, θ0) (B9)

where U(·, ·) is as defined in (B2). Define π̂(a, β, θi) as the expected profit of the principal prior to
the adoption decision, conditional on θi:

π̂(a, β, θi) = aπi(β) + (1− a)π0(β) (B10)

where πi(·) is as defined in in (B3).

6To see this, note that (B3) can be rewritten:

πi(β) = −s2
i (β − βi)2 + s2

iβ
2
i − F · 1(i = 1, 2, 3) (B8)

where βi is as defined in (B4). The width of each parabola is declining in speed, si.
7As piece rates rise towards p− c0, operating profits fall to zero for both the existing technology and type θ3 and

so the existing technology, which requires no fixed cost F of adoption, becomes preferred to θ3. Thus, the condition
will be satisfied by some combination of large speed gains from θ3, low fixed costs of adoption for θ3, and small
marginal cost gains from θ2.

8Note that the conditions do not carry an implication for the relative magnitudes of π3(β0) and π2(β2); it may
be that π3(β0) > π2(β2) as in the figure, or that π3(β0) < π2(β2).

4



By Bayes’ rule, the principal’s posterior beliefs after receiving any message m sent with positive
probability, i.e. an m for which q(m|θi) > 0 for some θi, are:9

p(θ|m) =
q(m|θ)ρ(θ)∑

θ′∈Θ q(m|θ′)ρ(θ′)
(B11)

An equilibrium in the cheap-talk subgame is a family of reporting rules q(m|θ) for the agent (sender)
and an action rule a(m) for the principal (receiver) such that the following conditions hold:

1. If q(m∗|θ) > 0 then
m∗ = arg max

m∈M
Û(a(m), β, θ) (B12)

2. For each m,

a(m) = arg max
a∈[0,1]

∑
θ∈Θ

π̂(a, β, θ)p(θ|m) (B13)

That is, the rule of each player must be a best response to the rule of the other player.
Following CS, we describe two messages m and m′ as equivalent in a given subgame equilibrium

if they induce the same action, that is a(m) = a(m′). Let Ma = {m : a(m) = a} be the set of
equivalent messages that lead the principal to choose action a. Following CS, we say that an action
a is induced by an agent of type θ if

∑
m∈Ma

q(m|θ) > 0. For a given subgame equilibrium, let
mmin ≡ arg minm∈M a(m) and mmax ≡ arg maxm∈M a(m) be messages that induce the lowest and
highest probabilities of adoption, respectively. Let amin ≡ a(mmin) and amax ≡ a(mmax) be the
corresponding lowest and highest induced probabilities of adoption, and Mamin and Mamax be the
sets of equivalent messages that induce them.

To streamline the exposition, we treat each set Ma as a single message and treat subgame
equilibria that differ only in which messages from a set Ma are chosen as the same subgame
equilibrium. We refer to M1 as “technology is good” and M0 as “technology is bad.”10

B.2 No conditional contracts

We first consider the case in which the (imperfectly informed) principal is not able to condition
the wage payment on marginal cost, which is only revealed ex post. In this case, there exists an
equilibrium in which, if the technology is type θ2, the agent seeks to discourage the principal from
adopting and the principal does not adopt. If we restrict attention to the most informative equi-
libria in all cheap-talk interactions, then this equilibrium is unique. For conciseness, the following
proposition only states the on-equilibrium-path strategies; in the proof below we consider the entire
strategy space.

Proposition 1. Under (B7a)-(B7c), if contracts conditioned on marginal cost are not available,
then the following strategies are part of a perfect Bayesian equilibrium.

1. In Stage 1, the principal offers wage contract (α∗ = 0, β∗ = β0 = p−c0
2 ).

9Following Crawford and Sobel (1982), we assume that if the principal receives a message that is off the equilibrium
path, i.e. an m for which q(m|θi) = 0 ∀ θi, she takes one of the actions induced on the equilibrium path for that β.

10If we were to limit the set of messages to have just three elements, m1 =“the techology is type θ1”, m2 =“the
techology is type θ2”, and m3 =“the techology is type θ3”, then a natural subgame equilibrium would have m1 ∈M0

and m2,m3 ∈M1; that is, to discourage adoption the agent would say that the technology is type θ1 and to encourage
it he would say type θ2 or θ3. Since formally there is no need to limit the set of messages in this way, we consider
the richer set of potential messages in the proofs below.
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2. In Stage 3, the agent:

(a) says “technology is bad” if the technology is type θ1 or θ2,

(b) says “technology is good” if the technology is type θ3.

3. In Stage 4, the principal:

(a) adopts if the agent says “technology is good”,

(b) does not adopt if the agent says “technology is bad”.

Intuitively, given that the principal has committed in Stage 1 to a piece rate (not conditioned on
cost), the agent strictly prefers the existing technology to type θ2. So if the technology is type θ2,
the agent discourages adoption, and the principal does not adopt.11 Why does the principal pay
any attention to the agent’s message, given that she knows that the agent does not want to adopt
type θ2? The intuition is that the players’ interests are aligned if the technology is of type θ1 or
θ3, and the agent’s advice is valuable enough in these states of the world that it is worthwhile for
the principal to allow herself to be influenced by the agent — and possibly discouraged from using
type θ2 — rather than to ignore the agent’s advice altogether.

B.2.1 Proof of Proposition 1

To prove this proposition, we first consider the cheap-talk interaction in the subgame defined by
any choice of piece rate, β (Subsection B.2.1.1). We then consider the particular subgame defined
by a particular choice of β, namely β = β0 (Subsection B.2.1.2). We then show that this choice is
optimal for the principal (Subsection B.2.1.3).

B.2.1.1 Subgames conditional on β

For the subgame corresponding to any choice of β, we have the following.

Lemma 1. In any equilibrium with amin < amax the following statements are true:∑
m∈Mamin

q(m|θ1) = 1
∑

m∈Mamax

q(m|θ1) = 0
∑

m/∈{Mamin∪Mamax}

q(m|θ1) = 0 (B14a)

∑
m∈Mamin

q(m|θ2) = 1
∑

m∈Mamax

q(m|θ2) = 0
∑

m/∈{Mamin∪Mamax}

q(m|θ2) = 0 (B14b)

∑
m∈Mamin

q(m|θ3) = 0
∑

m∈Mamax

q(m|θ3) = 1
∑

m/∈{Mamin∪Mamax}

q(m|θ3) = 0 (B14c)

For m ∈ Mamin, p(θ1|m) = ρ1

ρ1+ρ2
, p(θ2|m) = ρ2

ρ1+ρ2
, and p(θ3|m) = 0. For m ∈ Mamax, p(θ1|m) =

0, p(θ2|m) = 0, and p(θ3|m) = 1.
In any equilibrium with amin = amax (letting a∗ ≡ amin = amax), the following statements are

true: ∑
m∈Ma∗

q(m|θi) = 1 ∀ θi,
∑

m/∈Ma∗

q(m|θi) = 0 ∀ θi (B15)

For m ∈Ma∗, p(θ1|m) = ρ1, p(θ2|m) = ρ2, and p(θ3|m) = ρ3.

11In the language of Aghion and Tirole (1997), the principal in this equilibrium retains formal authority over the
adoption decision but cedes real authority to the agent.
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Proof. Note from (B9) that ∂
∂a Û(a, β, θ1) < 0, ∂

∂a Û(a, β, θ2) < 0 and ∂
∂a Û(a, β, θ3) > 0 for all

a ∈ [0, 1], since s1 < s0, s2 < s0 and s3 > s0. Hence if amin 6= amax then in order for (B12) to
be satisfied it must be the case that an agent of type θ1 or θ2 chooses a message that induces the
lowest possible probability of adoption, amin. Similarly, an agent who observes θ3 must choose a
message that induces the highest possible probability of adoption, amax. Given these reporting
rules, the updating of the principal’s beliefs follow by Bayes’ rule.

If amin = amax then trivially all messages sent by the agent induce the same action and hence
are equivalent (Mamin = Mamax = Ma∗). Given this, the principal does not update.

Intuitively, conditional on a piece rate, β, types θ1 and θ2 strictly prefer non-adoption, and type
θ3 strictly prefers adoption; the types report accordingly, with the most discouraging and most
encouraging messages. So in any equilibrium in which the principal’s action is influenced by the
agent’s message (i.e. amin < amax), if an agent sends a discouraging message the principal infers
that he is type θ1 or θ2; if the message is encouraging, she infers that he is type θ3. She then
updates by Bayes’ rule.

The Lemma holds that for a given β, only two subgame equilibria (modulo treating messages
that induce the same action as equivalent) may exist: one in which amin 6= amax and agent types θ1

and θ2 are indistinguishable and another in which the principal ignores the message from the agent
(a “babbling” equilibrium). In the terminology of Sobel (2013), an equilibrium is “informative” if
the message from the sender shifts the receiver’s beliefs and is “influential” if different messages
induce the receiver to take different actions. By these definitions, the equilibrium with amin 6= amax
is both informative and influential.

It will be convenient below to define the principal’s ex-ante expected profit in a given subgame
equilibrium. Given Lemma 1, we have:

π∗(β) = ρ1π̂ [a (m|m ∈Mamin) , β, θ1] + ρ2π̂ [a (m|m ∈Mamin) , β, θ2]

+ρ3π̂ [a (m|m ∈Mamax) , β, θ3] (B16)

where a(m) represents the principal’s best response, given by (B13), and we may or may not have
amin = amax.

B.2.1.2 Subgame with β = β0

Now consider the particular subgame with β = β0.

Lemma 2. If β = β0, there exists a perfect Bayesian subgame equilibrium with the strategies
outlined in Proposition 1.

Proof. As outlined by Proposition 1, the agent’s reporting rules are given by (B14a)-(B14c), where
amin = 0 and amax = 1, and the principal’s action rule is a(m) = 0 ∀ m ∈ M0, a(m) = 1 ∀ m ∈
M1.12 To prove that this is a subgame equilibrium, it suffices to show that neither agent nor
principal wants to deviate. That the agent does not want to deviate follows from the fact (from
(B9)) that ∂

∂a Û(a, β, θ1) < 0, ∂
∂a Û(a, β, θ2) < 0 and ∂

∂a Û(a, β, θ3) > 0 for all a ∈ [0, 1]. Now consider
the principal’s decision. Given Lemma 1, if the agent says “technology is bad” (i.e. any m ∈ M0)
then the condition for the principal not to deviate is:

π0(β) ≥ ρ1

ρ1 + ρ2
π1(β) +

ρ2

ρ1 + ρ2
π2(β)

12Note that in the Proposition-1 equilibrium all messages fall into one of the following sets: M0, M1, or the
complement to M0 ∪M1, no element of which is used in equilibrium.
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where the left-hand side is the profit from the existing technology and the right-hand side the
expected profit to adoption. That this condition holds for β = β0 is demonstrated by Remark 5
below.

If the agent says “technology is good” (i.e. any m ∈ M1), then the condition for the principal
not to deviate is:

π0(β) ≤ π3(β)

which by Remark 2 is satisfied for β = β0.

In this subgame, the principal’s ex-ante expected profit (refer to (B16)) is:

π∗(β0) = ρ1π̂(0, β0, θ1) + ρ2π̂(0, β0, θ2) + ρ3π̂(1, β0, θ3)

= (ρ1 + ρ2)π0(β0) + ρ3π3(β0) (B17)

B.2.1.3 Principal’s choice of β

We now turn to the supergame where the principal selects the optimal β given the subgame payoffs.
We can show that the principal has no incentive to deviate from β0 in the supergame.

Lemma 3. The principal’s expected payoff in the informative equilibrium of the subgame with piece
rate β0 is strictly greater than the payoffs in the subgames for all other possible values of β.

Proof. From Lemma 1, types θ1 and θ2 can never be distinguished. Therefore, the highest possible
payoff to the principal from any subgame equals the payoff that the principal would obtain if she
observed whether θ = θ3 or θ ∈ {θ1, θ2}.13 Consider the maximal payoffs in all subgames under
the assumption that the principal is able to extract this information. There are only four cases to
consider, which may exist for different values of β.14

1. It is profitable for the principal to adopt if θ = θ3 but not if θ ∈ {θ1, θ2}:

π̂(1, β, θ3) ≥ π̂(0, β, θ3)
ρ1

ρ1 + ρ2
π̂(1, β, θ1) +

ρ2

ρ1 + ρ2
π̂(1, β, θ2) <

ρ1

ρ1 + ρ2
π̂(0, β, θ1) +

ρ2

ρ1 + ρ2
π̂(0, β, θ2)

In this case, the principal’s maximal ex-ante expected profit (refer to (B16)) is:

π∗(β) = ρ1π̂(0, β, θ1) + ρ2π̂(0, β, θ2) + ρ3π̂(1, β, θ3)

= (ρ1 + ρ2)π0(β) + ρ3π3(β) (B18)

By Remarks 1-3, this case holds when β = β0. From the definition of πi(·) in (B3) it
follows immediately that the expected payoff is maximized at β∗ = β0 ≡ p−c0

2 . That is,
π∗(β0) > π∗(β) ∀ β 6= β0. Hence for all subgames that fall into this case, the principal prefers
β0 to any other β.

13This is a simple application of Blackwell’s ordering, i.e. that the decision maker’s payoff must be weakly higher
with more information (see Blackwell (1953).)

14The sets of values of β for which the different cases hold depend on the values of the parameters
ˆ̂
β3 and β defined

in Remarks 2 and 5. There are two possibilities: (1) β ≥ ˆ̂
β3. Here the region (0, β̂3) corresponds to Case 2 below,

[β̂3,
ˆ̂
β3] to Case 1, [

ˆ̂
β3, β] to Case 2, and (β,∞) to Case 4. (2) β <

ˆ̂
β3. Here the region (0, β̂3) corresponds to Case 2

below, [β̂3, β) to Case 1, [β,
ˆ̂
β3] to Case 3, and (

ˆ̂
β3,∞) to Case 4.
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2. It is profitable for the principal to adopt neither if θ = θ3 nor if θ ∈ {θ1, θ2}:

π̂(1, β, θ3) < π̂(0, β, θ3)
ρ1

ρ1 + ρ2
π̂(1, β, θ1) +

ρ2

ρ1 + ρ2
π̂(1, β, θ2) <

ρ1

ρ1 + ρ2
π̂(0, β, θ1) +

ρ2

ρ1 + ρ2
π̂(0, β, θ2)

In this case, the principal’s ex-ante expected profit (refer to (B16)) is:

π∗(β) = ρ1π̂(0, β, θ1) + ρ2π̂(0, β, θ2) + ρ3π̂(0, β, θ3) = π0(β) (B19)

From (B3), β0 maximizes π0(β), i.e. π0(β0) ≥ π0(β) ∀ β. But by Remark 2, π3(β0) > π0(β0)
and hence π∗(β0) > π0(β0) ≥ π0(β) (where π∗(β0) is from (B17)). Hence the principal prefers
the subgame with β0 to any subgame that falls under this case.

3. It is profitable for the principal to adopt either if θ = θ3 and or if θ ∈ {θ1, θ2}:

π̂(1, β, θ3) ≥ π̂(0, β, θ3)
ρ1

ρ1 + ρ2
π̂(1, β, θ1) +

ρ2

ρ1 + ρ2
π̂(1, β, θ2) ≥ ρ1

ρ1 + ρ2
π̂(0, β, θ1) +

ρ2

ρ1 + ρ2
π̂(0, β, θ2)

In this case, the principal’s ex-ante expected profit is:

π∗(β) = ρ1π1(β) + ρ2π2(β) + ρ3π3(β) = π̃(β) (B20)

where π̃(·) is defined in (B5). Since β̃ is the optimal choice if the principal bases her decision
only on her priors and adopts (refer to (B6)), it must be the case that π̃(β̃) ≥ π̃(β) for all β.
But by condition (B7c), π0(β0) > π̃(β̃). As above, Remark 2 implies π∗(β0) > π0(β0) (where
π∗(β0) is from (B17)). Hence π∗(β0) > π0(β0) > π̃(β̃) ≥ π̃(β) ∀ β; the principal prefers the
subgame with β0 to any subgame that falls under this case.

4. It is not profitable for the principal to adopt if θ = θ3 but it is profitable if θ ∈ {θ1, θ2}:15

π̂(1, β, θ3) < π̂(0, β, θ3)
ρ1

ρ1 + ρ2
π̂(1, β, θ1) +

ρ2

ρ1 + ρ2
π̂(1, β, θ2) ≥ ρ1

ρ1 + ρ2
π̂(0, β, θ1) +

ρ2

ρ1 + ρ2
π̂(0, β, θ2)

In this case, the principal’s ex-ante expected profit (refer to (B16)) is:

π∗(β) = ρ1π1(β) + ρ2π2(β) + ρ3π0(β) (B21)

Consider the function ˜̃π(β) = ρ1π1(β) + ρ2π2(β) + ρ3π0(β) defined over all possible values of

β. (That is, ˜̃π(·) and π∗(·) coincide for values of β that yield Case 4, but for values of β that

yield the other cases π∗(·) ≥ ˜̃π(·) since π∗(·) reflects optimal adoption decisions.) Maximizing˜̃π(β) over β yields:

˜̃
β =

(
ρ1s

2
1 + ρ3s

2
0

ρ1s2
1 + ρ2s2

2 + ρ3s2
0

)
β0 +

(
ρ2s

2
2

ρ1s2
1 + ρ2s2

2 + ρ3s2
0

)
β2

Because
˜̃
β maximizes ˜̃π(β) and ˜̃π(·) is strictly convex, ˜̃π(

˜̃
β) > ˜̃π(β) ∀ β 6= ˜̃

β. Because
˜̃
β is

15We include this case for completeness, although no informative equilibria will exist in this case as interests are
completely misaligned.
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a weighted average of β0 and β2, we know
˜̃
β ∈ (β0, β2). By Remark 2, π3(β) > π0(β) for

all β ∈ (β0, β2) and hence π∗(
˜̃
β) > ˜̃π(

˜̃
β) in this region. Since it is profitable to adopt θ3 for

β =
˜̃
β, Case 1 or 3 must hold. By the argument in one or the other case, π∗(β0) > ˜̃π(

˜̃
β)

(where π∗(β0) is from (B17)). Hence π∗(β0) > ˜̃π(
˜̃
β) > ˜̃π(β) for values of β for which this

case holds. Once again, the principal prefers the subgame with β0 to any subgame that falls
under this case.

Considering the four cases together, we can conclude the maximum possible payoff to the
principal for β 6= β0 is less than π∗(β0) from (B17).

Intuitively, from Lemma 1, types θ1 and θ2 can never be distinguished. Therefore, the highest
possible payoff to the principal from any subgame equals the payoff that the principal would obtain
if she observed whether θ = θ3 or θ ∈ {θ1, θ2}.16 It is possible to show that the payoff when β = β0

is greater than the maximal payoffs in all other subgames.
Given Lemma 3, the principal does not have an incentive to deviate from β∗ = β0, her chosen

wage in Proposition 1. By Lemma 2, the strategies outlined in Proposition 1 form a perfect Bayesian
equilibrium of the subgame with β∗ = β0. Hence neither player has an incentive to deviate at any
stage. This completes the proof of the existence of the equilibrium described in Proposition 1.

B.2.2 Discussion

Crawford and Sobel (1982) and others have argued that it is reasonable to assume that players
coordinate on the most informative equilibrium in cheap-talk interactions. If one is willing to
assume this, then the equilibrium described by Proposition 1 is unique. Recall that Lemma 1
implies that there are at most two possible equilibria in each subgame for each β. The restriction
that we focus on the most informative equilibrium in each subgame implies that there is at most
one equilibrium in each subgame. Lemma 3 implies that the principal prefers the subgame with
β = β0 to all other subgames. Hence the only equilibrium of the supergame is the one characterized
by the Proposition-1 strategies on the equilibrium path.

One other result is worth highlighting. Lemma 1 implies that there does not exist an equilibrium
in which the agent always truthfully reveals the technology type. That is, information about the
technology is necessarily lost in some states of the world. Intuitively, if the agent were to reveal the
technology type truthfully, then the principal would want to adopt type θ2 and not type θ1. But
given this strategy of the principal, and the fact that the wage contract is fixed ex ante, the agent
would be better off misreporting type θ2 to be type θ1.

B.3 Conditional contracts

Now suppose that in Stage 0 the principal can pay a transaction cost G and gain access to a larger
set of wage contracts — in particular to contracts that condition the piece rate on marginal cost,
c. This larger set of possible contracts includes contracts that offer a per-sheet incentive to reduce
waste of laminated rexine, as these can be interpreted as an increase in the piece rate conditional
on using the lower-marginal-cost technology.17 The fixed cost G can be interpreted as the cost of a
commitment device to pay a piece rate above the one that would be paid for the existing technology

16This is a simple application of Blackwell’s ordering, i.e. that the decision maker’s payoff must be weakly higher
with more information (see Blackwell (1953).)

17In our framework, the only way to reduce waste is to use the low-marginal-cost technology; exerting additional
effort would raise output but not reduce waste per sheet.
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(β0), which otherwise the principal would not be able to credibly commit to. (We discuss other
possible interpretations in Section V.B.3 of the main text.)

The optimal contracts under the existing technology and types θ1 and θ3 are identical (since
c3 = c1 = c0 and hence β3 = β1 = β0). The ability to condition on marginal cost matters only if
the technology is type θ2. Allowing for conditioning, the principal can offer contracts of the form:

w(q) = α+ (β + γ2)q if c = c2 (B22)

w(q) = α+ βq if c 6= c2

If G is sufficiently small, then there exists an equilibrium in which the agent reports truthfully,
in the sense that he encourages adoption of profitable technologies and discourages adoption of
unprofitable ones. Again, for conciseness, the proposition only states the on-equilibrium-path
strategies, but the proof below covers the entire strategy space.

Proposition 2. Under (B7a)-(B7c), if contracts conditioned on marginal cost are available at fixed
cost G, then the following strategies are part of a perfect Bayesian equilibrium.

1. In Stages 0 and 1,

(a) For

ρ2 >
G

π2(β2)− π0(β0)
, (B23)

the principal pays G and offers wage contract
(
α∗∗ = 0, β∗∗ = p−c0

2 , γ∗∗2 = c0−c2
2

)
.

(b) For ρ2 ≤ G
π2(β2)−π0(β0) the principal does not pay G and offers wage contract

(
α∗∗ = 0, β∗∗ = p−c0

2

)
.

2. In Stage 3,

(a) given
(
α∗∗ = 0, β∗∗ = p−c0

2 , γ∗∗2 = c0−c2
2

)
, the agent:

i. says “technology is bad” if the technology is type θ1,

ii. says “technology is good” if the technology is type θ2 or θ3.

(b) given
(
α∗∗ = 0, β∗∗ = p−c0

2

)
, the agent:

i. says “technology is bad” if the technology is type θ1 or θ2,

ii. says “technology is good” if the technology is type θ3.

3. In Stage 4, the principal:

(a) adopts if the agent says “technology is good”,

(b) does not adopt if the agent says “technology is bad”.

Intuitively, if the principal offers the conditional contract, the higher piece rate if c = c2 is enough
to induce the agent to prefer adoption if the technology is of type θ2.18 Paying the transaction
cost, G, will be in the interest of the principal if (B23) is satisfied, which is to say that the expected
additional profit from adopting type θ2 (with the optimal piece rate for type θ2) is greater than
the fixed cost of offering the new contract. In this case, the availability of the conditional contract
solves the misinformation problem, in that type θ2 will be adopted in equilibrium. At the same
time, if (B23) is not satisfied, for instance because the principal has a low prior, ρ2, then there
again exists the equilibrium of Proposition 1, in which type θ2 is not adopted.

18Note that, using the notation of (B4), β∗∗ = β0 and β∗∗ + γ∗∗2 = β2, the optimal piece rate for type θ2 in the
full-information case.
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B.3.1 Proof of Proposition 2

To prove this proposition, in Subsection B.3.1.1 we consider the subgame conditional on paying
G and offering β∗∗ and γ∗∗2 and show first that the strategies in 2(a) and 3(a) in the proposition
are part of a perfect Bayesian subgame equilibrium and second that the equilibrium replicates the
payoff to the principal if the technology type were fully revealed to the principal at the beginning
of Stage 1 (before setting the contract). This implies that, conditional on paying G, the principal
cannot do better by choosing a subgame with a different β and γ2. In Subsection B.3.1.2, we
consider the principal’s decision about whether to pay G and show that the strategies outlined in
the proposition form an equilibrium of the full game.

B.3.1.1 Subgame with G paid, β = β∗∗, γ2 = γ∗∗2

As before, for types θ1 and θ3, ∂
∂a Û(a, β, θ1) < 0 and ∂

∂a Û(a, β, θ3) > 0 for all a ∈ [0, 1], since
s1 < s0 and s3 > s0. (Refer to (B9).) For type θ2, expected utility is now given by:

Û(a, β, γ2, θ2) = a

(
(β + γ2)2s2

2

2

)
+ (1− a)

(
β2s2

0

2

)
(B24)

Here condition (B7a) implies that ∂
∂a Û(a, β, γ2, θ2) > 0 for β = β∗∗, γ2 = γ∗∗2 and hence that agent

type θ2 wants to encourage adoption.19 In this subgame, a result analogous to Lemma 1 holds.20

Lemma 4. In any equilibrium with amin < amax the following statements are true:∑
m∈Mamin

q(m|θ1) = 1
∑

m∈Mamax

q(m|θ1) = 0
∑

m/∈{Mamin∪Mamax}

q(m|θ1) = 0 (B25a)

∑
m∈Mamin

q(m|θ2) = 0
∑

m∈Mamax

q(m|θ2) = 1
∑

m/∈{Mamin∪Mamax}

q(m|θ2) = 0 (B25b)

∑
m∈Mamin

q(m|θ3) = 0
∑

m∈Mamax

q(m|θ3) = 1
∑

m/∈{Mamin∪Mamax}

q(m|θ3) = 0 (B25c)

For m ∈ Mamin, p(θ1|m) = 1, p(θ2|m) = 0, and p(θ3|m) = 0. For m ∈ Mamax, p(θ1|m) = 0,
p(θ2|m) = ρ2

ρ2+ρ3
, and p(θ3|m) = ρ3

ρ2+ρ3
.

In any equilibrium with amin = amax (letting a∗ ≡ amin = amax), the following statements are
true: ∑

m∈Ma∗

q(m|θi) = 1 ∀ θi,
∑

m/∈Ma∗

q(m|θi) = 0 ∀ θi (B26)

For m ∈Ma∗, p(θ1|m) = ρ1, p(θ2|m) = ρ2, and p(θ3|m) = ρ3.

Proof. Given that ∂
∂a Û(a, β, θ1) < 0, ∂

∂a Û(a, β, θ2) > 0 and ∂
∂a Û(a, β, θ3) > 0 for all a ∈ [0, 1], if

amin 6= amax then in order for (B12) to be satisfied it must be the case that an agent of type θ1

chooses messages that induce the lowest possible probability of adoption, amin, and agents of type
θ2 or θ3 choose a message that induces the highest possible probability of adoption, amax. Given
these reporting rules, the updating of the principal’s beliefs follow by Bayes’ rule. If amin = amax

19To see this, note that condition (B7a) implies π2(β2) > π0(β0), since π2(β) is increasing for β ∈ [β0, β2). Using

(B3) and (B4), we have that
((β∗∗+γ∗∗2 )s2)2

2
> (β∗∗s0)2

2
, which in turn implies ∂

∂a
Û(a, β, γ2, θ2) > 0.

20This lemma holds in any subgame in which γ2 > β
(
s0−s2
s2

)
and hence ∂

∂a
Û(a, β, γ2, θ2) > 0.
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then trivially all messages sent by the agent induce the same action and hence are essentially
equivalent (Mamin = Mamax = Ma∗). Given this, the principal does not update.

As in Lemma 1, we have shown that there exist at most two equilibria in this subgame. We
can also show existence of the informative subgame equilibrium.

Lemma 5. If G is paid, β∗∗ = p−c0
2 and γ∗∗2 = c0−c2

2 , there exists a perfect Bayesian subgame
equilibrium with the strategies outlined in Proposition 2.

Proof. In the subgame equilibrium outlined by Proposition 2 (after paying G), the agent’s reporting
rules are given by (B25a)-(B25c), where amin = 0, amax = 1, and the principal’s action rule is
a(m) = 0 ∀ m ∈ M0, a(m) = 1 ∀ m ∈ M1.

To prove that this is a subgame equilibrium, it suffices to show that neither agent nor principal
wants to deviate. Since ∂

∂a Û(a, β, θ1) < 0, ∂
∂a Û(a, β, θ2) > 0 and ∂

∂a Û(a, β, θ3) > 0 for all a ∈ [0, 1],
the agent has no incentive to deviate. Now consider the principal’s decision. Given Lemma 4, if
the agent says m ∈M0 (“technology is bad”), the condition for the principal not to deviate is:

π0(β∗∗) > π1(β∗∗)

which is satisfied for β = β∗∗ = β0 by Remark 3. If the agent says m ∈M1 (“technology is good”),
the condition for the principal not to deviate is:

π0(β0) ≤
(

ρ2

ρ2 + ρ3

)
π2(β2) +

(
ρ3

ρ2 + ρ3

)
π3(β0) (B27)

since β∗∗ = β0 and β∗∗+γ∗∗2 = β2. Since π2(β) is increasing for β ∈ [β0, β2), condition (B7a) implies
π0(β0) < π2(β2) as noted in Remark 1. Similarly π0(β0) < π3(β0) follows from condition (B7b)
as noted in Remark 2. Hence the right-hand-side of (B27) is a weighted average of two quantities
greater than π0(β0) and (B27) is satisfied.

In this subgame, the principal’s ex-ante expected profit (refer to (B16)) is:

π∗∗(β∗∗, γ∗∗2 ) = ρ1π̂(0, β0, θ1) + ρ2π̂(1, β2, θ2) + ρ3π̂(1, β0, θ3)−G
= ρ1π0(β0) + ρ2π2(β2) + ρ3π3(β0)−G (B28)

Compare this payoff to what would obtain in the conditional contracts case if the technology were
fully revealed to the principal at the beginning of Stage 1. Recalling (B4), the principal would offer
β0 under the existing technology and types θ1 and θ3 and β2 under type θ2. She would adopt types
θ2 and θ3, and not adopt type θ1.21 Her ex-ante expected profit would be equal to (B28). That
is, when G is paid, the conditional contract with β∗∗ and γ∗∗2 exactly replicates the payoff to the
principal if she observed the technology type herself at the beginning of Stage 1. The insight of
Blackwell (1953), mentioned above, is that the principal cannot do better than she would do with
full information. Hence conditional on paying G, no subgame can offer the principal a better payoff
than the one she receives from offering (β∗∗, γ∗∗2 ). Conditional on paying G, the principal has no
incentive to deviate to offer a different β or γ2.

21To see this, note that π0(β0) > π1(β1) and π0(β0) < π3(β0) from Remarks 2-3, and π0(β0) < π2(β2) from
Remark 1 (and the fact that π2(β2) ≥ π2(β0) since β2 is the optimal wage under type θ2).
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B.3.1.2 Principal’s choice whether to pay G

We now consider whether the principal has an incentive to deviate from the strategies outlined in
Proposition 2 at Stage 0, when choosing whether to pay G. Suppose ρ2 >

G
π2(β2)−π0(β0) (i.e. that

(B23) is satisfied). If the principal pays G, her payoff is given by π∗∗(β∗∗, γ∗∗2 ) in (B28) above. If she
were to deviate and not pay G, the resulting subgame would identical to the interaction analyzed
in Proposition 1. In this case, the maximal payoff she could obtain would be π∗(β0) from (B17). If
(B23) holds, then π∗∗(β∗∗, γ∗∗2 ) > π∗(β0) and she does not have an incentive to deviate to receive
the maximal payoff from not paying G. If this is true for the maximal payoff from deviating, it is
also true for all other payoffs from deviating.

Similarly, suppose ρ2 ≤ G
π2(β2)−π0(β0) (i.e. that (B23) is not satisfied).22 If the principal does

not pay G and offers β = β0 = p−c0
2 , her payoff is given by π∗(β0) from (B17). If she were to

deviate and pay G, the maximal payoff she could obtain is π∗∗(β∗∗, γ∗∗2 ) in (B28). If (B23) holds,
then π∗∗(β∗∗, γ∗∗2 ) < π∗(β0) and she does not have an incentive to deviate to receive the maximal
payoff from paying G. If this is true for the maximal payoff from deviating, it is also true for all
other payoffs from deviating.

We have already shown that neither player has an incentive to deviate in the resulting subgames.
Hence the strategies described in Proposition 2 form a perfect Bayesian equilibrium.

B.3.2 Uniqueness of the equilibrium in Proposition 2

As with Proposition 1, if we are willing to assume that players coordinate on the most informative
equilibrium in cheap-talk interactions, the equilibrium described by Proposition 2 is unique. Recall
that in the case where ρ2 ≤ G

π2(β2)−π0(β0) , the equilibrium is identical to that in Proposition 1 which
was unique if players coordinated on the most informative equilibrium of each subgame. Thus, to
prove that the equilibrium in Proposition 2 is unique, we only need to show that the equilibrium
is unique in the case where ρ2 >

G
π2(β2)−π0(β0) . We do this in two steps. First, Lemma 6 shows that

in any subgame conditional on a wage contract, there are at most two equilibria and these can be
strictly ordered in terms of which is most informative. Second, Lemma 7 shows that the principal’s
ex-ante expected profits under the contract (β∗∗, γ∗∗2 ) are strictly greater than under any other
possible wage contract, and so the principal prefers that subgame to any other. Hence, the only
equilibrium of the supergame conditional on paying G is the one characterized by the Proposition-2
strategies on the equilibrium path.

Lemma 6. In any subgame conditional on a wage contract, there are at most two equilibria, one
of which is strictly more informative that the other.

Proof. Under conditional contracts, the principal can offer contracts of the form:

w(q) = α+ (β + γ1)q if c = c1 (B29)

w(q) = α+ (β + γ2)q if c = c2

w(q) = α+ (β + γ3)q if c = c3

w(q) = α+ βq if c = c0

As in Proposition 1, α > 0 is costly and does not induce effort and so the principal will always
set α = 0. We denote a set of piece-rate contracts by (β, γ1,γ2, γ3). (Note that the contract in

22We implicitly assume that the principal prefers the simpler option of not paying G if G = ρ2(π2(β2)− π0(β0)).
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Proposition 2 corresponds to (p−c02 , 0, c0−c22 , 0) in this notation.) Define the expected utility of the
agent of type θ, prior to the adoption decision of the principal:

̂̂
U(a, β, γi, θi) = aU(β + γi, θi) + (1− a)U(β, θ0) (B30)

where U(·, ·) is as defined in (B2) and where ∂
∂a
̂̂
U(a, β, γi, θi) = U(β+γi, θi)−U(β, θ0) is independent

of a. We assume a tie breaking rule where the principal and agent prefer the status quo technology
if U(β + γi, θi) = U(β, θ0).

Define ̂̂π(a, β, γi, θi) as the expected profit of the principal prior to the adoption decision, con-
ditional on θi: ̂̂π(a, β, γi, θi) = aπi(β + γi) + (1− a)π0(β) (B31)

where πi(·) is as defined in in (B3). As before, the principal’s posterior beliefs after receiving
message m, by Bayes’ rule, are given by (B11). An equilibrium in the cheap-talk subgame is a
family of reporting rules q(m|θ) for the agent (sender) and an action rule a(m) for the principal
(receiver) such that the following conditions hold:

1. If q(m∗|θ) > 0 then

m∗ = arg max
m∈M

̂̂
U(a(m), β, γi, θ) (B32)

2. For each m,

a(m) = arg max
a∈[0,1]

∑
θ∈Θ

̂̂π(a, β, γi, θ)p(θ|m) (B33)

That is, the rule of each player must be a best response to the rule of the other player.
For there to be more than one equilibrium, it must be the case that amin < amax. In any

equilibrium with amin < amax, the following statements are true:∑
m∈Mamin

q(m|θ1) = 1
∑

m∈Mamax

q(m|θ1) = 0
∑

m/∈{Mamin∪Mamax}

q(m|θ1) = 0 if
∂

∂a
̂̂
U(a, β, γ1, θ1) ≤ 0

(B34)∑
m∈Mamin

q(m|θ1) = 0
∑

m∈Mamax

q(m|θ1) = 1
∑

m/∈{Mamin∪Mamax}

q(m|θ1) = 0 if
∂

∂a
̂̂
U(a, β, γ1, θ1) > 0

(B35)

∑
m∈Mamin

q(m|θ2) = 1
∑

m∈Mamax

q(m|θ2) = 0
∑

m/∈{Mamin∪Mamax}

q(m|θ2) = 0 if
∂

∂a
̂̂
U(a, β, γ2, θ2) ≤ 0

(B36)∑
m∈Mamin

q(m|θ2) = 0
∑

m∈Mamax

q(m|θ2) = 1
∑

m/∈{Mamin∪Mamax}

q(m|θ2) = 0 if
∂

∂a
̂̂
U(a, β, γ2, θ2) > 0

(B37)
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∑
m∈Mamin

q(m|θ3) = 1
∑

m∈Mamax

q(m|θ3) = 0
∑

m/∈{Mamin∪Mamax}

q(m|θ3) = 0 if
∂

∂a
̂̂
U(a, β, γ3, θ3) ≤ 0

(B38)∑
m∈Mamin

q(m|θ3) = 0
∑

m∈Mamax

q(m|θ3) = 1
∑

m/∈{Mamin∪Mamax}

q(m|θ3) = 0 if
∂

∂a
̂̂
U(a, β, γ3, θ3) > 0

(B39)

Given the signs of ∂
∂a
̂̂
U(a, β, γ1, θ1, ∂

∂a
̂̂
U(a, β, γ2, θ2) and ∂

∂a
̂̂
U(a, β, γ3, θ3) for all a ∈ [0, 1], if

amin 6= amax then in order for (B32) to be satisfied it must be the case that an agent of type θi

chooses messages that induce the lowest possible probability of adoption, amin, if ∂
∂a
̂̂
U(a, β, γi, θi) ≤

0, and chooses messages that induce the highest possible probability of adoption, amax, if ∂
∂a
̂̂
U(a, β, γi, θi) >

0. For amin < amax, both messages must be used. Given these reporting rules, the updating of the
principal’s beliefs follow by Bayes’ rule.

There are eight possible cases to consider:

1. If ∂
∂a
̂̂
U(a, β, γ1, θ1) ≤ 0, ∂∂a

̂̂
U(a, β, γ2, θ2) ≤ 0, ∂∂a

̂̂
U(a, β, γ3, θ3) ≤ 0: For m ∈Mamin , p(θ1|m) =

ρ1, p(θ2|m) = ρ2, and p(θ3|m) = ρ3. For m ∈ Mamax , p(θ1|m) = 0, p(θ2|m) = 0, and
p(θ3|m) = 0. As only amin is used there is no equilibrium with amin < amax. There is a single
equilibrium with amin = amax.

2. If ∂
∂a
̂̂
U(a, β, γ1, θ1) ≤ 0, ∂∂a

̂̂
U(a, β, γ2, θ2) ≤ 0, ∂∂a

̂̂
U(a, β, γ3, θ3) > 0: For m ∈Mamin , p(θ1|m) =

ρ1

ρ1+ρ2
, p(θ2|m) = ρ2

ρ1+ρ2
, and p(θ3|m) = 0. For m ∈ Mamax , p(θ1|m) = 0, p(θ2|m) = 0, and

p(θ3|m) = 1. As both amin and amax are used, there are at most two equilibria, an informative
one with amin < amax and potentially a babbling one with amin = amax.

3. If ∂
∂a
̂̂
U(a, β, γ1, θ1) ≤ 0, ∂∂a

̂̂
U(a, β, γ2, θ2) > 0, ∂∂a

̂̂
U(a, β, γ3, θ3) ≤ 0: For m ∈Mamin , p(θ1|m) =

ρ1

ρ1+ρ3
, p(θ2|m) = 0, and p(θ3|m) = ρ3

ρ1+ρ3
. For m ∈ Mamax , p(θ1|m) = 0, p(θ2|m) = 1, and

p(θ3|m) = 0. As both amin and amax are used, there are at most two equilibria, an informative
one with amin < amax and potentially a babbling one with amin = amax.

4. If ∂
∂a
̂̂
U(a, β, γ1, θ1) ≤ 0, ∂∂a

̂̂
U(a, β, γ2, θ2) > 0, ∂∂a

̂̂
U(a, β, γ3, θ3) > 0: For m ∈Mamin , p(θ1|m) =

1, p(θ2|m) = 0, and p(θ3|m) = 0. For m ∈ Mamax , p(θ1|m) = 0, p(θ2|m) = ρ2

ρ2+ρ3
, and

p(θ3|m) = ρ3

ρ2+ρ3
. As both amin and amax are used, there are at most two equilibria, an

informative one with amin < amax and potentially a babbling one with amin = amax.

5. If ∂
∂a
̂̂
U(a, β, γ1, θ1) >, ∂∂a

̂̂
U(a, β, γ2, θ2) > 0, ∂∂a

̂̂
U(a, β, γ3, θ3) > 0: For m ∈ Mamin , p(θ1|m) =

0, p(θ2|m) = 0, and p(θ3|m) = 0. For m ∈ Mamax , p(θ1|m) = ρ1, p(θ2|m) = ρ2, and
p(θ3|m) = ρ3. As only amin is used there is no equilibrium with amin < amax. There is a
single equilibrium with amin = amax..

6. If ∂
∂a
̂̂
U(a, β, γ1, θ1) > 0, ∂∂a

̂̂
U(a, β, γ2, θ2) ≤ 0, ∂∂a

̂̂
U(a, β, γ3, θ3) ≤ 0: For m ∈Mamin , p(θ1|m) =

0, p(θ2|m) = ρ2

ρ2+ρ3
, and p(θ3|m) = ρ3

ρ2+ρ3
. For m ∈ Mamax , p(θ1|m) = 1, p(θ2|m) = 0, and

p(θ3|m) = 0. As both amin and amax are used, there are at most two equilibria, an informative
one with amin < amax and potentially a babbling one with amin = amax.
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7. If ∂
∂a
̂̂
U(a, β, γ1, θ1) > 0, ∂∂a

̂̂
U(a, β, γ2, θ2) ≤ 0, ∂∂a

̂̂
U(a, β, γ3, θ3) > 0: For m ∈Mamin , p(θ1|m) =

0, p(θ2|m) = 1, and p(θ3|m) = 0. For m ∈ Mamax , p(θ1|m) = ρ1

ρ1+ρ3
, p(θ2|m) = 0, and

p(θ3|m) = ρ3

ρ1+ρ3
. As both amin and amax are used, there are at most two equilibria, an

informative one with amin < amax and potentially a babbling one with amin = amax.

8. If ∂
∂a
̂̂
U(a, β, γ1, θ1) > 0, ∂∂a

̂̂
U(a, β, γ2, θ2) > 0, ∂∂a

̂̂
U(a, β, γ3, θ3) ≤ 0: For m ∈Mamin , p(θ1|m) =

0, p(θ2|m) = 0, and p(θ3|m) = 1. For m ∈ Mamax , p(θ1|m) = ρ1

ρ1+ρ2
, p(θ2|m) = ρ2

ρ1+ρ2
, and

p(θ3|m) = 0. As both amin and amax are used, there are at most two equilibria, an informative
one with amin < amax and potentially a babbling one with amin = amax.

Given (β, γ1,γ2, γ3), in cases 2-4 and 6-8 there can exist at most two equilibria in each subgame:
one more-informative equilibrium in which amin 6= amax and two agent types are indistinguishable
from each other but are distinguishable from the third type; and one less-informative equilibrium
in which amin = amax and the principal ignores the message from the agent (a “babbling” type).
In cases 1 and 5, only a single equilibrium exists in which amin = amax and the principal ignores
the message from the agent.

Lemma 7. The principal’s ex-ante expected profits under the contract (β∗∗, γ∗∗2 ) — (β∗∗, 0, γ∗∗2 , 0)
using the notation of Lemma 6 — are strictly greater than under any other possible wage contract.

Proof. From (B4), the maximal ex-ante expected profits are equal to:

πmax = ρ1max(π0(β0), π1(β1)) + ρ2max(π0(β0), π2(β2)) + ρ3max(π0(β0), π3(β3))−G
= ρ1π0(β0) + ρ2π2(β2) + ρ3π3(β3)−G (B40)

where the second line follows from the fact π0(β0) > π1(β1) and π0(β0) < π3(β0) from Remarks
2-3 (and the fact that β0 = β3 since c0 = c3), and π0(β0) < π2(β2) from Remark 1 (and the fact
that π2(β2) ≥ π2(β0) since β2 is the optimal wage under type θ2). This is the expected profit both
under full information and under the contract (β∗∗, 0, γ∗∗2 , 0). From Blackwell (1953), we know that
the principal cannot do better than this.

It remains to show that other wage contracts and/or adoption patterns cannot provide equally
large ex-ante expected profits. First, if the principal pays optimal piece rates, βi for type θi,
profits will be strictly smaller under any adoption patterns other than adopt θ2 and θ3, do not
adopt θ1: π0(β0) > π1(β1), π0(β0) < π2(β2), and π0(β0) < π3(β3) are all strict inequalities.
Second, profits at optimal piece rates, πi(βi) for type θi, are also strictly higher under piece rate βi
than under any other piece rate: πi(β) is twice continuously differentiable and strictly concave as
∂2πi(β)
∂β2 = −2s2

i < 0; hence, the stationary point βi (the value of β for which ∂πi(β)
∂β = 0) is a global

maximizer and any deviations from these optimal piece-rates will strictly reduce profits.

B.4 Theoretical prediction for incentive intervention

Here we prove that a lump-sum payment offered by a third-party experimenter conditional on the
technology being revealed to be type θ2, if sufficiently large, can induce the agent to reveal truthfully
and lead to adoption of the type θ2 technology. Suppose that the players have coordinated on
the equilibrium described in Proposition 1 (or, equivalently, on the equilibrium in Proposition 2
where G is large relative to the expected benefits of adopting type θ2 and hence (B23) is not
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satisfied and the conditional contracts are not offered.) In Stage 1, the principal offers wage
contract (α∗ = 0, β∗ = p−c0

2 ). Now suppose that in Stage 2 a third-party experimenter, without
forewarning, offers a conditional lump-sum payment, L, conditional on the marginal cost being c2.
Suppose that players place zero prior on this event in Stages 0 and 1. For the subgame that follows
this intervention, we have the following.

Proposition 3. In the subgame described above, if

L >
(p− c0)2(s2

0 − s2
2)

8
(B41)

then the following strategies are part of a perfect Bayesian subgame equilibrium.

1. In Stage 3, the agent:

(a) says “technology is bad” if the technology is type θ1,

(b) says “technology is good” if the technology is type θ2 or θ3.

2. In Stage 4, the principal:

(a) adopts if the agent says “technology is good”,

(b) does not adopt if the agent says “technology is bad”.

Proof. It again suffices to show that there is no profitable deviation for either principal or agent.
In the subgame equilibrium outlined by Proposition 3, the agent’s reporting rules are given by
(B25a)-(B25c), where amin = 0, amax = 1, and the principal’s action rule is a(m) = 0 ∀m ∈ M0,
a(m) = 1 ∀m ∈ M1. That the agent does not want to deviate if he is of type θ1 or θ3 follows from
the fact (from (B9)) that ∂

∂a Û(a, β, θ1) < 0 and ∂
∂a Û(a, β, θ3) > 0 for all a ∈ [0, 1]. That the agent

does not want to deviate if he is of type θ2 follows from the fact that

Û(a, β∗, L, θ2) = a

(
(β∗)2s2

2

2
+ L

)
+ (1− a)

(
(β∗)2s2

0

2

)
(B42)

and (B41) implies ∂
∂a Û(a, β∗, L, θ2) > 0 for all a ∈ [0, 1].

Now consider the principal’s decision. If m ∈M0 (“technology is bad”), then the condition for
the principal not to deviate can be written:

π0(β0) ≥ π1(β0)

which is true by Remark 3. If m ∈M1 (“technology is good”), then the condition for the principal
not to deviate can be written:(

ρ2

ρ2 + ρ3

)
π2(β0) +

(
ρ3

ρ2 + ρ3

)
π3(β0) ≥ π0(β0) (B43)

where there is no L on the left hand side since we, rather than the principal, pay the lump-sum
bonus. Since π2(β0) > π0(β0) by Remark 1 and π3(β0) > π0(β0) is true by Remark 2, the left-hand
side is a weighted average of two quantities greater than π0(β0) and (B43) holds. Hence neither
the agent nor the principal has an incentive to deviate.
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B.5 Miscellaneous Proofs

The following remarks establish several properties of the profit functions defined in (B3).

Remark 1. Given the definition of πi(·) in (B3), of βi in (B4), and condition (B7a), we have:

π2(β)− π0(β)


< 0 if 0 < β < β̂2

= 0 if β = β̂2

> 0 if β > β̂2

where 0 < β̂2 < β0.

Proof. From (B3), we can write:

π2(β)− π0(β) =
(
s0

2 − s2
2
)

(β − Ω)2 − Ω2
(
s0

2 − s2
2
)
− F (B44)

where Ω =
s20β0−s22β2

s20−s22
. This defines a convex parabola with vertex at

(
Ω,−Ω2

(
s0

2 − s2
2
)
− F

)
.

Setting π2(β) − π0(β) = 0 gives two critical values of β. Since we are requiring β > 0, we ignore

the negative root. The positive root defines the value of β̂2: β̂2 = Ω +
√

Ω2 + F
s02−s22 . Condition

(B7a) requires that π2(β0)− π0(β0) > 0 and hence that β0 > β̂2.

Remark 2. Given the definition of πi(·) in (B3), of βi in (B4), and condition (B7b), we have:

π3(β)− π0(β)



< 0 if β < β̂3

= 0 if β = β̂3

> 0 if β̂3 < β <
ˆ̂
β3

= 0 if β =
ˆ̂
β3

< 0 if β >
ˆ̂
β3

where 0 < β̂3 < β0 < β2 <
ˆ̂
β3 < 2β0.

Proof. From (B3), we can write:

π3(β)− π0(β) = −
(
s3

2 − s0
2
)

(β − β0)2 + β2
0

(
s3

2 − s0
2
)
− F (B45)

This defines a concave parabola with vertex at
(
β0, β

2
0

(
s3

2 − s0
2
)
− F

)
. Condition (B7b) implies

that π3(β0) > π0(β0), since π3(β) − π0(β) is decreasing over (β0, β2], and this in turn implies
β2

0

(
s3

2 − s0
2
)
− F > 0. Setting π3(β) − π0(β) = 0 defines the values of the roots: β̂3 = β0 −√

β2
0 − F

s32−s02 ,
ˆ̂
β3 = β0 +

√
β2

0 − F
s32−s02 . The facts that 0 < β̂3 < β0 <

ˆ̂
β3 < 2β0 follow directly

from the expressions for β̂3 and
ˆ̂
β3. Condition (B7b) requires that π3(β2)− π0(β2) > 0 and hence

that β2 <
ˆ̂
β3.

Remark 3. Given the definition of πi(·) in (B3) and of βi in (B4), we have:

π1(β)− π0(β)


< 0 if 0 < β <

ˆ̂
β1

= 0 if β =
ˆ̂
β1

> 0 if β >
ˆ̂
β1
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where
ˆ̂
β1 > 2β0 >

ˆ̂
β3.

Proof. From (B3), we can write

π1(β)− π0(β) =
(
s0

2 − s1
2
)

(β − β0)2 −
(
s0

2 − s1
2
)
β2

0 − F (B46)

which is a convex parabola with roots β̂1 = β0 −
√
β2

0 + F
s02−s12 < 0 and

ˆ̂
β1 = β0 +

√
β2

0 + F
s02−s12 .

Note that β̂1 < 0. The fact that
ˆ̂
β1 > 2β0 follows immediately from the expression for

ˆ̂
β1. The fact

that 2β0 >
ˆ̂
β3 is from Remark 2.

Remark 4. Conditions (B7a), (B7b) and (B7c) are compatible with each other.

Intuitively, it is straightforward to see that condition (B7a) can be satisfied as long as F is not
too large and the slower speed s2 is sufficiently compensated by the lower costs c2 (compared to s0

and c0). Condition (B7b) is satisfied as long as F is not too large and s3 is sufficiently faster than
s0. Condition (B7c) is satisfied as long as the bad technology is sufficiently likely, i.e. ρ1 is large,
and the bad technology is sufficiently bad relative to the existing technology, i.e. s1 is sufficiently
low.

Proof. There are three conditions:
Condition (B7a)

π2(β0) > π0(β0)

which can be rewritten in terms of primitives as:

s2
2(
p− c0

2
)

(
p− (

p− c0

2
)− c2

)
− F > s2

0(
p− c0

2
)

(
p− (

p− c0

2
)− c0

)
Condition (B7b)

π3(β2) > π0(β2)

which can be rewritten in terms of primitives as:

s2
3(
p− c2

2
)

(
p− (

p− c2

2
)− c0

)
− F > s2

0(
p− c2

2
)

(
p− (

p− c2

2
)− c0

)
Condition (B7c)

π0(β0) > π̃(β̃)

which can be rewritten in terms of primitives as:

s2
0(
p− c0

2
)

(
p− (

p− c0

2
)− c0

)
>

(
3∑
i=1

ρis
2
i

)(
3∑
i=1

ρis
2
i∑3

1 ρis
2
i

(
p− ci

2
)

)2

− F

To see that the three can be satisfied simultaneously, consider the following chain:
First, pick a s0, c0 and p such that p−(p−c02 )−c0 is positive (i.e. so that the original technology

is profitable at β0).
Second, manipulate s2 , c2, s3 and F to ensure both (B7a) and (B7b) are simultaneously satisfied

(i.e. lower s2 below s0, lower c2 below c0, and raise s3 above s0). This is always possible as in the
limit when F → 0 and s2 → s0 (B7a) will be strictly satisfied, and in the limit when F → 0 (B7b)
will be strictly satisfied.
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Third, still holding fixed s0, c0 and p at the values from step 1, and holding fixed s2 , c2, s3 and
F at a combination that satisfies (B7a) and (B7b) from step 2, we can raise ρ1 (and correspondingly
lower ρ2 and ρ3 since

∑3
i=1 ρi = 1) and lower s1 below s0 to ensure that (B7c) holds. This will

always be possible since in the limit when ρ1 → 1 and s1 → 0 (B7c) will be strictly satisfied.

Remark 5. Given the definition of πi(·) in (B3) and conditions (B7b) and (B7c), we have:

Z(β) ≡
[

ρ1

ρ1 + ρ2
π1(β) +

ρ2

ρ1 + ρ2
π2(β)

]
− π0(β)


< 0 if β̂2 ≤ β < β

= 0 if β = β

> 0 if β > β

for some β > β0.

Proof. We first consider β = β0. By condition (B7c), π0(β0) > π̃(β̃). Since β̃ is the optimal choice
if the principal bases her decision only on her priors, it must be the case that π̃(β̃) ≥ π̃(β0). Hence
π0(β0) > π̃(β0). This in turn implies:

π0(β0) > ρ1π1(β0) + ρ2π2(β0) + ρ3π3(β0)

π0(β0)− ρ3π3(β0) > ρ1π1(β0) + ρ2π2(β0)

π0(β0)− ρ3π0(β0) > ρ1π1(β0) + ρ2π2(β0)

(ρ1 + ρ2)π0(β0) > ρ1π1(β0) + ρ2π2(β0)

0 >

[
ρ1

ρ1 + ρ2
π1(β0) +

ρ2

ρ1 + ρ2
π2(β0)

]
− π0(β0) = Z(β0) (B47)

where the third inequality follows from the fact that π3(β0) > π0(β0) (from condition (B7b)).
Now consider β ∈ [β̂2, β0). Note that:

Z(β) =
ρ1[π1(β)− π0(β)] + ρ2[π2(β)− π0(β)]

ρ1 + ρ2
(B48)

By Remark 3, π1(β) − π0(β) < 0 in this region. From (B44), π2(β) − π0(β) is strictly increasing
over this region. Hence if Z(β0) < 0 then must be the case that Z(β) < 0 for all β ∈ [β̂2, β0).

Now consider β > β0. Using (B44), (B46) and (B48), we have:

∂Z(β)

∂β
=

1

ρ1 + ρ2

[
2ρ1

(
s0

2 − s2
2
)

(β − Ω) + 2ρ2

(
s0

2 − s1
2
)

(β − β0)
]

which is strictly positive and increasing in β for β > β0 (noting that Ω < β̂2 < β0). Since Z(β) is
negative at β0 and has strictly positive and increasing slope for β > β0, it takes the value zero at
a single point, call it β, and is negative for β ∈ (β0, β) and positive for β ∈ (β,∞).23

23To see this, note that Z(β) =
∫ β
c
Z′(β′)dβ′ + C for some finite constants c and C. Hence, limβ−→∞ Z(β) =∫∞

c
Z′(β′)dβ′ + C. Since Z′(β′) does not go to zero as β′ goes to infinity, Z(β) −→∞ and so must cross zero.
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Figure B.1: Profit functions for different technology types
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Notes: Figure illustrates the relative positions of the πi(β) functions (defined by (B3) in Subsection B.1.1) implied

by the parameter restrictions (B7a)-(B7c).
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