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Appendix B

This appendix presents the proof of Lemma 1 and the discussion of discontinuities at critical
values in the case of indivisible classrooms (case 2).

PROOF OF LEMMA 1

Our strategy for proof is to begin with a preliminary partition of the set of schools and show
that within each subset there are two possible optimal integer choices, and that there is a critical
value below which the lower integer is optimal and above which the higher integer is optimal.
These new critical values become the basis for the new partition described in the statement of the
lemma.

1) For a given integer k, let ık be the value of � at which the optimal number of classrooms
in Case 1, the divisible-classrooms case, is k. That is, ık � n��1.k/ where n�.�/ is
defined by (13c) for � � ˛ and by (17c) for � < ˛. As noted above, n�.�/ is continuous
and monotonically increasing in �. This implies that ık0 > ık if k0 > k for any positive
integers k; k0. The values ık thus form an ordered partition the set of schools.

2) We now show that within the interval � 2 Œık ; ıkC1/, the optimal integer number of class-
rooms is either k or k C 1.

a) Define functions for profits under the counterfactual assumptions that the class-size
cap never binds and that it always binds. That is, let:

��.n; �/ D �.p�.n; �/; x�.n; �/; n; �/

where p�.n; �/ and x�.n; �/ are given by (20a) and (20a), the optimal choices when
the class-size cap does not bind. Let:

���.n; �/ D �.p�.n; �/; x�.n; �/; n; �/

where p�.n; �/ and x�.n; �/ are given by (24b) and (24a), the optimal choices when
the class-size cap binds. The definition of Q�.�/ in (28) can then be restated:

(A15) e�.n; �/ D � ��.n; �/ if � � ˇ.n/
���.n; �/ if � > ˇ.n/

b) We now show that ��.n; �/, ���.n; �/ and hence e�.n; �/ are concave in n for any
given �:

i) By the envelope theorem, we have:
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Applying the implicit function theorem (as in (A4)) to (A11a)-(A11c),
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Plugging into (A17),
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Hence ��.n; �/ is globally concave in n for all �.

ii) Combining (8), (24a) and (24b), and differentiating twice with respect to n, we
have that @
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n
< 0. Hence ���.n; �/ is globally concave in n for all

� as well.
iii) Implicitly differentiating (27) with respect to n, we have:

(A19)
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for all n, where the inequality follows from (22). Hence there is a one-to-one
mapping between ˇ.n/ and n for a given �. ˇ�1.�/ is then the value of n at
which the class-size cap starts to bind for a given �. Note that the cap binds for
n < ˇ�1.�/ and does not bind for n � ˇ�1.�/. The definition of Q�.�/ in (A15)
can then be rewritten:

(A20) e�.n; �/ D � ��.n; �/ if n � ˇ�1.�/

���.n; �/ if n < ˇ�1.�/

The function ��.n; �/ gives the maximized profit for a given n and � under one
equality constraint, namely x D d . The function ���.n; �/ gives the maximized
profit for a given n and � under two equality constraints, namely x D d and
x
n
D 45. For a given �, the two points coincide at the point where the optimal

class size is 45 even in the absence of the cap—that is, where n D ˇ�1.�/—and
for all other n the function ���.n; �/ lies under ��.n; �/. A standard result in
optimization theory is that (if both functions are continuously differentiable) the
two curves are tangent at that point (see e.g. Avinash K. Dixit (1976, Ch. 3)).
Now consider the curvature of the e�.n; �/ function. For n < ˇ�1.�/, @e�

@n
is

decreasing in n by the concavity of ���.n; �/. For n � ˇ�1.�/, @e�
@n

is decreasing
in n by the concavity of ��.n; �/. At n D ˇ�1.�/ the two curves are tangent
and @��

@n
D

@���

@n
. It follows that @e�

@n
is decreasing in n for all n and all �. Hencee�.n; �/ is globally concave in n for all �.

c) Recall the definition of n�.�/, the optimal number of classrooms in the divisible-
classroom case, from step 1 of this proof. Since n�.�/ is monotonically increasing
in �, � 2 Œık ; ıkC1/ implies n�.�/ 2 Œk; k C 1/. From the concavity of e�.n; �/ it
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follows that:

e�.k; �/ > e�.k0; �/ 8 k0 < k(A21) e�.k C 1; �/ > e�.k0; �/ 8 k0 > k C 1(A22)

That is, within the interval � 2 Œık ; ıkC1/ either k or k C 1 must be the optimal
integer number of classrooms.

3) We now show that in the interval � 2 Œık ; ıkC1/ there is a critical value of � to the left of
which k is the optimal number of classrooms and to the right of which kC 1 is the optimal
number. For � 2 Œık ; ıkC1/, define:

e….�/ � e�.k C 1; �/ �e�.k; �/
Since k is the unique optimal choice of number of classrooms at ık in the divisible-
classrooms case, e….ık/ D e�.k C 1; ık/ �e�.k; ık/ < 0
Similarly, since kC 1 is the unique optimal number of classrooms at ıkC1 in the divisible-
classrooms case,

e….ıkC1/ D e�.k C 1; ıkC1/ �e�.k; ıkC1/ > 0
From (A19), we know that ˇ.k/ < ˇ.k C 1/; the class-size cap starts to bind at a higher
value of � for n D k C 1 than for n D k. Using (A15), the definition of e….�/ can be
restated:

e….�/ D ( ��.k C 1; �/ � ��.k; �/ if � � ˇ.k/
��.k C 1; �/ � ���.k; �/ if ˇ.k/ < � � ˇ.k C 1/
���.k C 1; �/ � ���.k; �/ if ˇ.k C 1/ < �

Note that ��.k; ˇ.k// D ���.k; ˇ.k// and ��.kC 1; ˇ.kC 1// D ���.kC 1; ˇ.kC 1//.
Hence e….�/ is continuous. Now consider the slope of e….�/ against � in each interval:

a) � � ˇ.k/. The class-size cap binds neither for n D k nor for n D k C 1.
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where the second equality follows from (A16), the third equality follows from (A2b),
and the inequality follows from (21b) and (23). Hence:
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b) ˇ.k/ < � � ˇ.k C 1/. The class-size cap binds for n D k but not for n D k C 1.
Note that

(A23)
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where L is given by (A9), and the first equality follows by the envelope theorem.
Similarly,

(A24)
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At n D k, the optimal enrollment if there were no class-size cap would be greater
than or equal to 45n; otherwise the cap would not be binding. Hence, comparing
(A23) and (A24),
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c) ˇ.k C 1/ < �. The class-size cap binds for both n D k and n D k C 1. Partially
differentiating (A24) and using (A18),
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Thus e….�/ is continuous and monotonically increasing in � for all � 2 Œık ; ıkC1/. To-
gether with the fact that it is negative at ık and positive at ıkC1, this implies that there
is exactly one critical value, call it �k , at which e….�k/ D 0. For � 2 Œık ; �k/, k is the
optimal integer number of classrooms; for � 2 Œ�k ; ıkC1/, k C 1 is optimal.

4) It remains to consider the regions at the extremes of the support of �. Without loss of
generality, let j be the largest integer such that ıj � �,48 and let j be the smallest integer
such that � � ıj . Within each interval, Œıj ; ıjC1/, ŒıjC1; ıjC2/, ..., Œıj�1; ıj /, the results
from steps 1-3 above hold. Truncate the interval .ıj ; ıj / at � below and � above. If
�j � �, then let k D j C 1; else if � < �j then let k D j . If �j�1 < �, then let k D j ;
else if � � �j�1, then let k D j � 1. Let �k�1 D � and �k D �. Then

�k�1 < �k < ::: < �k

form a partition of the set of voucher schools, with the optimal integer number of class-
rooms equal to k; k C 1; :::; k between consecutive values, and the lemma is proved.

48If � < ı1 then let j D 0 and ı0 D 0.
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DISCONTINUITIES AT CRITICAL VALUES

Consider a given �k from Lemma 1, where k < k < k. The fact that ˇ.k C 1/ > ˇ.k/ (from
(A19)) implies that it will never be the case that the class-size cap is non-binding to the left of the
critical value but binding to the right of it. There are then three cases to consider:

1) The class-size cap is binding neither to the left nor to the right of the critical value: �k �
ˇ.k/ < ˇ.kC1/. In this case, lim�!��

k
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‚� (the limits as �
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differences in the left and right limits then have the same signs as the partial derivatives of
the variables with respect to n. By (A18), we have immediately that @p

�

@n
> 0, @x

�

@n
> 0,

and @‚�

@n
> 0. Hence:

lim
�!��

k

p� < lim
�!�

C

k

p�(A25a)

lim
�!��

k

x� < lim
�!�

C

k

x�(A25b)

lim
�!��

k

‚� < lim
�!�

C

k

‚�(A25c)

Moreover,
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and hence:
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2) The class-size cap is binding to the left of the critical value but not to the right: ˇ.k/ <
�k < ˇ.k C 1/. It is immediate that,
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Consider x� and ‚� in turn:

a) If there were no class-size cap, then for � 2 .ˇ.k/; �k/, we would have @x�
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the presence of the class-size cap, for � 2 .ˇ.k/; �k/ we have @x�

@�
D 0. Hence

lim
�!��

k

x�

ˇ̌̌̌
ˇ
cap

< lim
�!��

k

x�

ˇ̌̌̌
ˇ
no cap



6 THE AMERICAN ECONOMIC REVIEW XX 200X

If there were no class-size cap, then by (A25b) we would have:
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b) Let z� D x�

n
. Recalling the assumption that schools cannot price discriminate, the

price term can be brought outside the integral in (5) and ‚� can then be written:
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Note that ‚� depends only on class size and �, not on price, or enrollment or the
number of classrooms separately. Differentiating,
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Hence (A27) implies:
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3) If the class-size cap is binding both to the left and to the right of the critical value: ˇ.k/ <
ˇ.k C 1/ � �k . It is immediate that:
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As (A28) indicates, ‚� depends only on class size and �. Hence (A31) implies:
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Since @‚�

@�
> 0 both to the left and to the right of �k (refer to (26c)), we have that ‚� is

strictly increasing in � at �k .

In this case, p� is given by (24a) both to the left and to the right of the critical value. Hence
the jump in number of classrooms from k to k C 1 implies:
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To summarize, at �k , class size is either decreasing or constant in �, and enrollment and average
willingness to pay are always increasing in �. We have no unambiguous result for how price
changes with � at �k .




