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1 The Economic Lot Scheduling Problem

Economies of scale often dictate the choice of a single high speed machine capable of producing a
given set of items over the choice of one dedicated machine for each item in the set. A scheduling
problem arises when the high speed machine can only produce one item at a time. The problem is
further complicated when the machine needs to be setup (often at a cost of both time and money)
before a different item can be produced. The Economic Lot Scheduling Problem (ELSP) is that of
scheduling the production of a set of items in a single machine to minimizing the long run average
holding and set up cost under the assumptions of known constant demand and production rates.

Unfortunately, the ELSP belongs to a class of problems, known as NP-hard, see Gallego and Shaw
[3], for which it is unlikely that an efficient solution procedure would ever be developed. What makes
the ELSP hard is the coordination problem that needs to be resolved among the items competing
for the machine capacity. Thus, much of the research effort on the ELSP (over 40 published papers)
has dealt with the problem of finding low cost schedules via heuristics. Fortunately, good heuristics
have been developed to obtain feasible production schedules whose average cost is often (but not
guaranteed to be) close to the optimal. See Dobson [1]. Recently the research focus has shifted to
deal with the more practical issues of real time scheduling, setup time reduction and the cost of
offering variety.

We will start by presenting a lower bound on the long run average cost. This bound will be later
used to assess the performance of the rotation schedule (RS) heuristic which calls for setting up and
producing the items once per cycle in a given order. Our next goal is to discuss issues that arise in
trying to implement feasible ELSP schedules. Our third goal is concerned with a brief discussion of
the cost of offering variety and the effect of reducing setup times.

The data for the problem are:

i = 1, . . . , n index for the items,
µi constant production rate of item i,
λi constant demand rate of item i,
hi inventory holding cost of item i,
si set up time of item i,
Ki set up cost of item i.

For convenience let
Hi = 0.5hiλi(1− ρi),

where ρi = λi/µi. With this notation, the average holding and ordering cost of using order interval
Ti, for item i, is

Ci(Ti) =
Ki

Ti
+ HiTi. (1)

Clearly T ∗i =
√

Ki/Hi minimizes (1) and Ci(T ∗i ) = 2
√

KiHi. It is easy to verify that Ci(Ti) can be
written as

Ci(Ti) = Ci(T ∗i )
1
2

(
T ∗i
Ti

+
Ti

T ∗i

)
, (2)

where (2) is often used to study the sensitivity of the cost function (1) to suboptimal choices of the
order interval.
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1.1 A Lower Bound on the Average Cost

A lower bound on the long run average cost is obtained by observing that feasible ELSP schedules
must satisfy two constraints and then relaxing one of them. The capacity constraint arises because
production rates are finite, while the synchronization constraint arises because the facility can only
be used to setup or produce one item at a time. It is the synchronization constraint that makes the
ELSP difficult. Our lower bound is obtained by finding the minimum cost schedule that satisfies the
capacity constraint.

To derive the capacity constraint, notice that si + ρiTi units of time are needed to produce item
i every Ti units of time. Consequently, si/Ti + ρi is the proportion of time the machine is dedicated
to setting up and producing item i, and

n∑

i=1

si

Ti
+

n∑

i=1

ρi

is the proportion of time that the machine is dedicated to setups and production of all the items.
This proportion must be at most one, since otherwise the machine cannot keep up with demand.

Let κ = 1−∑n
i=1 ρi denote the proportion of the machine time that is available for setups and

idling. We assume that κ > 0. With this notation the lower bound is given by

CLB = min
n∑

i=1

Ci(Ti)

s.t.

n∑

i=1

si

Ti
≤ κ (3)

Ti ≥ 0 i = 1, . . . , n.

Although the solution to the lower bound problem cannot be obtained in closed form when the
capacity constraint is binding, it can be found numerically by a simple line search on the dual
variable of the capacity constraint, or by the application of standard non-linear programming codes.

To be more precise, the solution to the lower bound problem can be shown to be of the form

Ti(a) =
√

Ki + asi

Hi
, i = 1, . . . , n

for some a ≥ 0. Here a is the economic value of the facility per unit time, e.g., its value per hour.
You can think of Ki + asi as the total setup cost that consists of the out of pocket cost Ki plus the
the value consumed in setups asi.

The problem reduces to finding the value of a. To do this you can try a = 0. If the capacity
constrained is satisfied at a = 0 then this is the solution to the lower bound problem. If, however,
the capacity constrained is violated, then we start increasing a until

n∑

i=1

si

Ti(a)
= κ.

Many commercial packages are available to solve non-linear programs. Excel, for example, has
solver which can easily be invoked to solve the lower bound problem. See the excel file ELSP-
Calculator.xls for more details.

Example:
Consider the following five item problem
The cost lower bound for this problem is $2,140.62.
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item µi λi hi si(days) Ki

1 10,000 900 2 1 25
2 5,000 1,000 1 5 25
3 6,000 1,000 5 10 5
4 4,000 500 3 2 10
5 7,500 1,500 4 5 50

Table 1: Data for the Economic Lot Scheduling Problem

1.2 Rotation Schedules

The Rotation Schedule (RS) heuristic forces all items to share a common order interval, say Ti = T,
so each item is produced once per cycle in a given order resulting in a rotation schedule. Since items
are produced one a time there is no risk of scheduling the setup or the production of two items at the
same time. Consequently, any rotation schedule (RS) that satisfies the capacity constraint will also
satisfy the synchronization constraint. The cost of an optimal rotation schedule can be obtained by
simply adding the constraint Ti = T for all i = 1, . . . , n. Equivalently, the cost of the best rotation
schedule is given by

CRS = min
n∑

i=1

Ci(T ) (4)

s.t.

∑n
i=1 si

T
≤ κ (5)

T ≥ 0. (6)

In the absence of the capacity constraint (5) the optimal choice of T is

T̂ =

√∑
i Ki∑
i Hi

.

If T̂ satisfies (5), then it is the optimal common order interval. Otherwise, the optimal common
order interval it is the smallest T satisfying (5), i.e.,

Tmin =
∑

i si

κ
.

The overall optimal common order interval is thus

TRS = max(T̂ , Tmin).

The cost CRS is obtained by evaluating (4) at TRS .
Example: Using the data from Table 2 we find that the optimal rotation schedule is TRS = 0.293

and that CRS = $2, 253.66 which is 5.28% higher than the lower bound.

1.3 Assessing the Quality of the Rotation Schedule Heuristic

Ideally, we would like to be able to say something about the ratio CRS/C∗ where C∗ is the unknown
optimal long run average cost. Since CRS/C∗ ≤ CRS/CLB , obtaining and upper bound on the later
ratio yields a useful bound for the former. Here we will be satisfied by bounding CRS/CLB for cases
where the capacity constraint is not binding, e.g., TRS = T̂ . In order to obtain an upper bound on
the cost ratio we order the items according to the ratios Ki

Hi
, so that items with small ratios come

first. Let
γ =

Knh1λ1

K1hnλn
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then, it is possible to show that
CRS

C∗
≤ 1

2
( 4
√

γ + 1/ 4
√

γ) . (7)

The bound (7) indicates that the RS heuristic performs well if the items are similar as measured
by the ratio γ. Indeed, the cost ratio is at most 6% when γ ≤ 4. Notice that while a small ratio
CRS/CLB is prove positive that CRS/C∗ is small, a large ratio CRS/CLB does not necessarily imply
that the rotation schedule is bad since it is possible that the lower bound is far from C∗.

1.4 Implementing a Schedule in Practice

Our second goal is to briefly touch on the problems of implementing a rotation schedule. To un-
derstand the implementation problem more clearly, assume that we have already determined TRS

and that γ is fairly small so that the CRS is close to CLB . Assume further that we schedule the
production of the items as prescribed by the rotation schedule. That is, we setup the machine for
item 1, produce item 1 for ρ1T

RS units of time, set up for item 2, produce item 2 for ρ2T
RS units

of time,..., set up for product n and produce item n for ρnTRS units of time. Within the schedule
we may need to insert some idle time (if

∑
i si < κTRS) until the elapsed time is a complete cycle

of length TRS . At the end of the first cycle, we will be on target only if

1. The initial inventories are on target

2. The facility is perfectly reliable

3. The setups actually consume a constant amount of time

4. The demand and the production rates are actually constant

5. The raw materials, tools, and fixtures are all available when required.

At best 1-5 represent an idealized situation that rarely holds in practice. So how can we effectively
manage the production of the items? One effective way of doing so, when backorders are allowed, is
to determine target, or produce-up to, levels for each of the items and to produce the items in the
sequence prescribed by the rotation schedule and stop the production of an item when its inventory
reaches its target level. An item’s target level is determined by taking into account the nature of
the schedule disruptions, i.e., random demands, production rates, setup times, etc. A target level is
optimal for an item if and only if the time average probability of being out of stock is the ratio of the
item’s holding to the holding plus backorder cost. Thus, if the backorder cost for an item is b = 19h
then, the item’s target, or base stock levels, should be such that the time average probability of being
out of stock is h/(b + h) = 1/20 = 5%. Alternatively, if backorder costs are not available, target
service levels may be set by management from which target levels can be computed as indicated
above.

Notice that the policy we have just described ignores the inventory levels of the items not be-
ing produced, and it prescribes to produce an item up to its target level even if other items are
suffering severe shortages. This policy, of ignoring the inventories of the other items, works well in
recovering a rotation (or any other target schedule) when the backorder costs are proportional to
the processing rates, i.e., when the quantities biµi/λi, i = 1, . . . , n are all approximately the same.
If the proportionality condition fails to hold, a more sophisticated control policy can be used where
the production run time of the current item depends, in a linear way, on the inventories of all the
other items in the group. See Gallego [2]

1.5 Related Issues

In this section, we address our final goal and briefly discuss a few related issues including the
additional cost of offering variety and the effect of reducing setup times.
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1.5.1 The Cost of Offering Variety

Studying the variety problem in all its generality is a difficult task. Here we will be satisfied by
studying an important special case, where the setup costs are zero. This means that there are no
out of pocket costs associated with the setup itself, other than those associated with the loss of
capacity due to the time the machine spends on setups.

Under this conditions the lower bound problem is given by

CLB = min
n∑

i=1

HiTi

s.t.

n∑

i=1

si

Ti
≤ κ (8)

Ti ≥ 0 i = 1, . . . , n.

Fortunately, this problem can be solved in closed form, with

TLB
i =

1
κ

√
si

Hi

∑

j

√
Hjsj

and

CLB =
1
κ

(
n∑

i=1

√
Hisi

)2

. (9)

Here CLB is a lower bound on the average cost of producing n different items in a single machine.
We are interested in contrasting this lower bound cost with that of the average cost of producing

each item in a dedicated machine (DM), where item i = 1, . . . , n is assumed to be produced at
rate µi. It is easy to see that it in the absence of setup costs, is optimal to produce item i every
Ti = si/(1− ρi) units of time, resulting in a total average cost of

CDM =
n∑

i=1

Hisi

1− ρi
. (10)

Now, let us compare the average cost CDM of producing the items on dedicated machines,
and the lower bound cost CLB of producing the items in a single machine. It is easy to see that
CDM < CLB . The following example illustrates the additional cost of offering variety.

Example Suppose that H1 = 1, λi = 1, s1 = 1, and µi = 10 for i = 1, . . . n. It is clear that at most
nine items can be produced in a single facility, so we assume that n ≤ 9. Under these conditions,
CLB = 10n2/(10− n), CDM = 10n/9, and

CLB

CDM
=

9n

10− n
.

Notice that the ratio indicates how much more we pay in terms of holding costs to offer a larger
variety. This ratio is one when n is one, and it grows to eighty-one when n is nine.

1.5.2 Reducing Setup Times

An important concern in modern manufacturing is that of reducing setup times. Setup times are
often reduced in pursuit of the benefits of just-in-time production, but setup time reductions can be
justified directly in terms of reduced costs. Setup times are typically reduced either by externalizing
setup operations, or by making direct investments to reduce the setup times of operations that are
difficult to do off-line.
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Out-of-pocket setup costs often increase when setup operations are externalize because, when
done off-line, these operations require more time, additional or better trained workers, or more
careful coordination by management. Nevertheless, externalizing setups can significantly reduce the
long run average cost in facilities where lot sizes are mainly driven by the capacity constraint. These
explains why some Japanese companies have been willing to spend more on setup costs to reduce
internal setup times in order to reduce lot sizes and average cost. In effect they are trading setup
times for setup costs. It can be shown that when out-of-pocket setup costs are zero, it is best to
reduce the setup time of the item that is produced more frequently, i.e., the one with the smallest
TLB

i . The idea is that we enjoy the time savings every time the item is setup.

2 The Joint Replenishment Problem

The Joint Replenishment Problem (JRP) arises in a manufacturing setting when a machine requires
a major setup to produce a set of products and a minor setup for each item included in the set.
For example, the major setup may consist on placing the die into the machine and to adjust it
to get good parts, while the minor setups may consist in opening and closing cavities in the die
to produce different variants of the product. The JRP also arises in a distribution setting where
multiple items can be shipped together, the cost per shipment is fixed, and there are in addition
fixed, item dependent, costs for picking and processing. Notice that an order with a minor setup
cost cannot be placed unless the major setup cost is also incurred. However, once the major setup
cost is incurred then any item can be ordered by simply incurring its minor setup cost.

The relevant questions are: What is the optimal time between major setups? What is the optimal
time between setups for each item?

When the major setup cost is zero the problem reduces to the case of independent items studied
before. When the major setup cost is very large then all the items will be forced to order together.
Thus, a manager that insists on ordering all items infrequently and together may be subconsciously
charging the system a large major setup cost for his time. In most cases the major setup cost is
large enough to force us to consolidate some, but not all, orders.

Let

λi demand rate for item i = 1, . . . , n,
hi holding cost rate for item i = 1, . . . , n,
Ki fixed minor setup cost for item i = 1, . . . , n,
K0 fixed major setup cost.

For convenience, we set Hi = 0.5hiλi.
As stated, the solution can be exceedingly complicated because orders need to be coordinated to

account for the major setup cost. Rather than studying this more general problem, we will restrict
attention to a type of policy that seems to be quite constraining, but in fact is not. Specifically, we
assume that there exists a base planning period β (day, shift, week, or month), where β is expressed
in years, and that major setups occur as a non-negative integer power-of-two multiple of β. Finally,
we assume that the policy that is followed is stationary. That is, the only solutions that will be
considered assume that the time between setups, either major or minor, is always the same.

It helps to envision the solution before we delve into the details. There will be a set of items
C ⊂ {1, . . . , n} that will order together and will pay for the major setup cost. You can think of C
as the set of items that want to order frequently. The other items will then order only when the set
C orders. Thus, for example, if the set of items C orders every month, then other items will order
either every month, every two months, every four months, etcetera.

The following mathematical program follows from minimizing average cost under the above
assumptions.



IEOR4000: Production Management page 7 Professor Guillermo Gallego

ZPT = min
n∑

i=0

(
HiTi +

Ki

Ti

)

subject to Ti = Miβ

Mi ≥ M0

Mi ∈ {2l : l = 0, 1, . . . , },

where H0 ≡ 0, and Ti is the reorder interval of item i = 1, . . . , n, and T0 is the interval between
major setups.

Under formulation ZPT the reorder intervals are powers-of-two multiples of a base planning
period and every item has a reorder interval that is at least as large as the interval as that between
consecutive payments of the major setup cost.

As stated the above problem is still difficult to solve because it is a non-linear program with
integer constraints. Instead of solving ZPT to optimality we will use a heuristic that will first relax
the problem by ignoring the integer constraints and then round the solution to powers-of-two.

The first step of the heuristic is to relax the integrality constraint. This leads to the program

ZR = min
n∑

i=0

(
HiTi +

Ki

Ti

)

subject to Ti ≥ T0 ≥ 0.

Notice that ZR ≤ ZPT because any feasible solution to problem ZPT is also feasible for problem
ZR. It can be shown that ZR is a lower bound among all feasible policies (not only stationary
policies) and that there exists a power-of-two solution whose cost is at most 1.06ZR, see [4].

2.1 Algorithm to Solve the Relaxed Problem

Step 1 Sort the items so K1
H1

≤ . . . ≤ Kn

Hn
.

Step 2 Let C = {1, . . . , i∗} where i∗ is the largest index for which
∑i

j=0 Kj∑i
j=0 Hj

≥ Ki

Hi
,

and let K(C) =
∑i∗

i=0 Ki, H(C) =
∑i∗

i=1 Hi.

Step 3 Set TR
0 = TR

1 = . . . = TR
i∗ =

√
K(C)
H(C) ≡ TR(C)

and TR
i =

√
Ki

Hi
i = i∗ + 1, . . . , n.

Intuitively the algorithm works as follows. After sorting the items, the natural order intervals√
Ki/Hi i = 1, 2, . . . , n are non-decreasing. This means that in the absence of the major setup cost

item 1 would like to order more frequently than item 2 etcetera. Set C = {1} and suppose item
1 absorbs the major setup cost by itself. Then item 1’s order interval is T (C) =

√
K(C)/H(C) =√

(K0 + K1)/H1. Now, if

T (C) >

√
K2

H2
,

then it is optimal to produce item 2 every time item 1 is produced and so it should share the burden
of the major setup cost. We add item 2 to the set of items that have a common order interval, i.e.,
C = {1, 2} and continue adding items to C until there is an item whose natural order interval is
greater than T (C).
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2.2 Finding a Power-of-Two Solution from the Relaxation

Given TR = (TR
1 , . . . , TR

n ) with TR
i = TR(C) =

√
K(C)/H(C) for i ∈ C and TR

i =
√

Ki/Hi for
i /∈ C we want to find a power-of-two policy based on a planning period β, i.e., we want to find
order intervals of the form 2kβ where k ∈ {0, 1, 2, . . .}. We assume β is sufficiently small so that
β ≤ TR(C). We know that for the group of items in C any order interval in [TR(C)/

√
2,
√

2 TR(C)]
will have a cost that is at most 1.06 times the cost 2

√
K(C)H(C) of using order interval TR(C).

Therefore it is enough to find the smallest integer, say xC such that 2xC β ∈ [TR(C)/
√

2,
√

2 TR(C)].
Similarly, for i /∈ C any order interval in [TR

i /
√

2,
√

2 TR
i ] will have a cost that is at most 1.06 times

the cost 2
√

KiHi of using the order interval TR
i . Consequently, it is enough to find the smallest

integer, say xi, such that 2xiβ ∈ [TR
i /
√

2,
√

2 TR
i ]. Let

TPT (C) = 2xC β for i ∈ C

and
TPT

i = 2xiβ for i /∈ C.

Notice that by our choice of the xi’s we have

1√
2
≤ TPT

i

TR
i

≤
√

2

for all i, so the average cost based on the TPT is at most 6% higher than the average cost based on
TR.

2.3 Numerical Example

Consider the data from the table below. We start by solving the relaxation.

Step 1 The items are already sorted as needed.

Step 2 Clearly 1 ∈ C. Since 8/2 > 2 we have 2 ∈ C. Since 12/3 = 4 we have 3 ∈ C. Since 18/4 < 6
we stop and C = {1, 2, 3}.

Step 3 Set TR
0 = TR

1 = TR
3 =

√
12/3 = 2, TR

4 =
√

6 and TR
5 = 4.

We now round the solution to powers-of-two. Clearly xC = 7 is the smallest integer such that
2xC 1

52 ≥ TR(C)/
√

2 =
√

2. Similarly, x4 = 7 is the smallest integer such that 2x4 1
52 ≥ TR

4 /
√

2 =
√

3,
and x5 = 8 is the smallest integer such that 2x5 1

52 ≥ TR
5 /
√

2 = 2
√

2.
Thus, we have

TPT
i = 27β for i = 1, 2, 3, 4

and
TPT

i = 28β for i = 5.

In words, items 1, 2, 3 and 4 order every 27 = 128 weeks while item 5 orders every 28 = 256
weeks. The cost penalties are as follows: For items 1,2, and 3 the cost penalty is 2.16%. For item 4
the cost penalty is less than 1%. For item 5 the cost penalty is 2.16%.
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β = 1/52
item Ki Hi Ki/Hi

0 5 0
1 1 1 1
2 2 1 2
3 4 1 4
4 6 1 6
5 16 1 16

Table 2: Data for the Joint Replenishment Problem
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