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Abstract

Over the past decade, there has been a remarkable improvement in our under-
standing of the role of genetic variation in complex human diseases, especially via
genome-wide association studies. However, the underlying molecular mechanisms are
still poorly characterized, impending the development of therapeutic interventions.
Identifying genetic variants that influence the expression level of a gene, i.e. expression
quantitative trait loci (eQTLs), can help us understand how genetic variants influence
traits at the molecular level. While most eQTL studies focus on identifying mean ef-
fects on gene expression using linear regression, evidence suggests that genetic variation
can impact the entire distribution of the expression level. Indeed, several studies have
already investigated higher order associations with a special focus on detecting het-
eroskedasticity. In this paper, we develop a Quantile Rank-score Based Test (QRBT)
to identify eQTLs that are associated with the conditional quantile functions of gene
expression. We have applied the proposed QRBT to the Genotype-Tissue Expres-
sion project, an international tissue bank for studying the relationship between genetic
variation and gene expression in human tissues, and found that the proposed QRBT
complements the existing methods, and identifies new eQTLs with heterogeneous ef-
fects across different quantile levels. Notably, we show that the eQTLs identified by
QRBT but missed by linear regression are more likely to be tissue specific, and also
associated with greater enrichment in genome-wide significant SNPs from the GWAS
catalog. An R package implementing QRBT is available on our website.

Introduction

Genome-wide association studies (GWAS) have led to remarkable progress in our un-
derstanding of the role of genetic variation in complex human diseases, resulting in the
identification of thousands of common genetic variants affecting human diseases and
other complex traits. Most genetic variants discovered through GWAS are non-coding,
and therefore may play a role in regulating gene expression levels. Identifying genetic
variants that influence the expression level of a gene, i.e. expression quantitative trait
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loci (eQTLs), is essential to interpreting the GWAS loci and understanding how genetic
variants influence traits at the molecular level. In addition, eQTL discovery by itself
is an important area, since it helps understand how genetic variants influence gene
regulation and discover complex gene regulatory networks. An important resource for
eQTL discovery is the Genotype-Tissue Expression (GTEx) project, a major interna-
tional project designed to establish a comprehensive data resource on genetic variation,
gene expression and other molecular phenotypes across multiple human tissues [1].

Most of the existing eQTL studies focus on identifying mean effects, or associations
between genotype and the mean value of the expression level of a gene. However,
the entire distribution of gene expression may be regulated by genetic variants. For a
concrete example, variant rs7202116 at the FTO locus has been shown to be associated
not only with the mean but also with the variability of body mass index (BMI) [2]. In
addition, recent studies noted that heterogeneity is also associated with interactions
among genetic variants (epistasis) or between variants and environment (G × E) [3],
and hence heterogeneity can be used as a screening tool for such interactions.

For these reasons, there has been increasing attention in recent eQTL studies to
quantify genetic associations at higher orders of the expression levels. Most of them
focus on identifying variance eQTLs by testing heteroskedasticity, for example (1) Lev-
ene’s test [4], (2) Brown-Forsythe test [5], and (3) correlation least squared (CLS) test
[6]. Both Levene and Brown-Forsythe tests test the marginal variance differences be-
tween two and more groups. While beneficial for experimental studies, their inability
to account for continuous covariates such as imputed single nucleotide polymorphisms
(SNPs) and principal components of population stratification largely limits their ap-
plication to genetic studies in human populations. The CLS test is a regression based
test. It regresses gene expression levels against genotypes, and then uses Spearman
rank correlation to assess whether the residuals are heteroskedastic across genotypes.
The regression based CLS method is flexible and can incorporate confounders, but the
method is restricted to a family of location-scale models, where both the mean and
variance of the gene expression are linear in genotypes. More recently, a Bayesian test
[7] has been proposed to relax the linear assumption at the expense of increased com-
putational cost, which could be undesirable for genome-wide identification of eQTLs
that involves hundreds of millions of tests.

In addition, mean and variances alone are insufficient to describe the distributional
heterogeneity. Quantile regression, proposed by Koenker and Bassett [8], has emerged
as an important statistical methodology. It offers a systematic strategy for examining
how covariates influence the entire response distribution by estimating various con-
ditional quantile functions. In this paper, we extend the rank-score inference [9] in
quantile regression to identify eQTLs that have impact on the gene expression distri-
butions. The resulting quantile test, which we call Quantile Rank-score Based Test
(QRBT) throughout the paper, enjoys the following advantages: (1) it is computation-
ally efficient; (2) it can easily accommodate continuous or discrete covariates; (3) it
accommodates a wide range of distributions without assuming an a priori parametric
likelihood for the gene expressions; (4) it is robust to outliers in the data; (5) it simpli-
fies the preprocessing normalization procedure; and (6) it is conservative in controlling
type I errors.
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We apply the proposed QRBT approach to the up-to-date Genotype-Tissue Ex-
pression (GTEx) project data [1]. The existing eQTLs identified in GTEx are based
on linear regressions [10]. Our approach complements these existing studies; it leads to
new eQTL discoveries that are more tissue specific, and that show higher enrichment
in genome-wide significant SNPs. The results suggest that the proposed QRBT has
great potential to identify disease-linked eQTLs.

Method

Overview of GTEx Data

We analyzed the GTEx midpoint v6p data freeze, which comprises RNA sequencing
(RNA-seq) data from 8232 samples from 551 individuals representing 44 tissues (db-
GaP accession number phs000424.v6.p1). We identified eQTLs separately for 4 tissues
with sufficient sample sizes (n > 275) including: muscle-skeletal (n=361), whole blood
(n=338), lung (n=278) and thyroid (n=278). Because of the relatively small sample
sizes, we focused on identifying eQTLs within ± 1MB of the transcriptional start site
(TSS) of each gene.

In this paper, we use genes defined as protein coding in the GENCODE version 19
[11]. The quantile normalized gene-level expression values were used for analysis as in
previous studies [10] (note however that our proposed approach makes no parametric
assumption for the underlying distribution of gene expression). We use the same quality
control procedures as in the GTEx study [10] for consistency. We remove genes with
more than 10% zero read count, as in such a case the Gaussian assumption in linear
regression is violated, and also our analyses found that the existing variance eQTL
method CLS [6] had largely inflated type I error. We also correct for known and
inferred technical covariates including gender, genotyping array platform (Illumina’s
OMNI 5m or 2.5M array), 3 principal components of SNPs and 35 PEER factors [12]
of the top 10,000 expressed genes in each tissue in the analysis. More information
about the preprocessing procedure of the GTEx data can be found online at http:

//www.gtexportal.org.

Tissue Specific Quantile Analysis for eQTL Discovery

Notations and Settings

Suppose the data consist of n subjects who have their gene expression measured on a
total of K genes, and are genotyped for a total of M SNPs. We then denote Y as a
n×K gene expression matrix, where Yi,k is the gene expression level of the i-th subject
on the k-th gene, Gk. We denote X as a n×M genotype matrix, where xi,j is the i-th
subject’s genotype on the j-th SNP. We finally denote zi as the vector of covariates of
the ith subject, including the intercept. Throughout the paper, we denote QY (τ |X)
as the τ -th conditional quantile of Y given X.

Let Λk be the subset of SNPs that are within ±1MB of the TSS of gene Gk, then
for each SNP-gene pair (j, k) where j ∈ Λk and k ∈ {1, ...,K}, we build the following
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linear quantile model
Yi,k = z>i αjk,τ + xi,jβjk,τ + εi,k, (1)

where εi,k is the random error whose τ -th conditional quantile Qεi,k(τ |zi, xi,j) = 0, and
τ ∈ (0, 1) is the quantile level of interest. Under Model (1), the conditional quantile of
Yi,k is a linear function of zi and xi,j , i.e. QYi,k(τ |zi, xi,j) = z>i αjk,τ +xi,jβjk,τ . In this
model, βjk,τ is the primary parameter of interest, which characterizes the association
between the genotype xi,j and the gene expression level of Gk. The goal of the analysis
is to identify the (j, k) pairs whose βjk,τ 6= 0 for any given τ ∈ (0, 1).

Quantile Rank-score Based Test at a Fixed Quantile

At a fixed quantile level, the existing inference tools for quantile regression can be
generally classified into three categories: Wald-type inference, rank-score method and
resampling methods [13]. The Wald-type inference requires the direct estimation of the
asymptotic variance-covariance matrix. That, however, is computationally difficult,
since the limiting variance-covariance matrix contains the density of the error εi,k at
the τ -th quantile. In the framework of quantile regression, the error distribution is
non-i.i.d. and completely unspecified. As a result, the limiting variance-covariance
matrix contains n nuisance parameters. Without a parametric likelihood, it is hard
to estimate those local densities. Several kernel based approaches have been proposed
in this context, but their estimates are often unreliable at extreme quantiles or with
relatively small sample sizes. In our preliminary analyses, we also found that direct
Wald type inference with kernel estimated densities has inflated type I errors at very
small significance level (e.g. α ≤ 1e − 6). Alternatively, resampling based inference
such as bootstrap does not require density estimation; however it is computationally
intensive, and hence undesirable in GTEx applications where one needs to repeat the
analysis for hundreds of millions of SNP-gene pairs for each tissue.

We hence propose to extend the rank-score test [9] for eQTL discovery. For any
fixed quantile τ , the rank score function in quantile regression can be written as

Sn,τ = n−1/2
n∑
i=1

φτ{yi,k − ziα̂jk,τ}x∗i,j , (2)

where φτ (u) = τ − I(u < 0) is an asymmetric sign function, and α̂jk,τ is the estimated
coefficient under the null H0 : βjk,τ = 0. Define Xj

∗ = Xj − Z(ZTZ)−1ZTXj as the
residual vector of Xj projected on the column space of Z (the design matrix under the
null), then x∗i,j in (2) is the ith element of Xj

∗; the projection is done to achieve the
asymptotic independence between X and Z. Hence the test statistics Sn,τ measures the
quantile association between Y and X that is accounted for the co-linearity between
X and Z. Since the function φτ (u) essentially measures the signs of the residuals, Sn,τ

is in the category of rank-based statistics, and hence also called rank score function.
Note that Sn,τ (u) = n−1/2

∑n
i=1 φτ{u}x∗i,j is the quantile regression estimating

functions that is associated with βjk,τ . When u is the residual under the null hypothesis,
Sn,τ (u) is close to zero if and only if the null hypothesis is true. Any deviation from
the null model will push Sn,τ (u) away from zero. Consequently, one could construct a
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test statistics to test whether βjk,τ = 0 by

Tn,τ = STn,τV
−1
n Sn,τ , (3)

where V −1n is the variance of Sn,τ such that Vn = n−1τ(1− τ)Xj
∗Xj

∗T . According to
the rank-score inference [9],

Tn,τ → χ2
1 as n→∞ (4)

under the null hypothesis βjk,τ = 0. Similar construction in maximum likelihood
estimation (MLE) is called generalized likelihood ratio statistics [14].

The asymptotic distribution of Equation (3) was established under the assumption
of i.i.d. errors. Although this assumption is often unrealistic for quantile regressions,
many studies [15, 16] have consistently found that the rank score test is very robust
with non-i.i.d. errors. A generalized rank score test with non-i.i.d. densities could be
found in [16]. However, it again requires the estimation of the nuisance parameters
f(εi,k(τ))’s. Even though it is theoretically appealing, the generalized rank score test
is much harder to implement. For this reason, we will investigate the performance of
the simple rank score test (2) in the setting of eQTL discovery. The quantile regression
rank-score test enjoys the following advantages. (1) It is a distribution-free statistic.
Under the framework of quantile regression, the test does not assume any likehood
distributions on the gene expressions. Hence it can be applied to any gene expression
data without requiring a pre-transformation to achieve normality. (2) The construction
of the test statistics is simple and avoids the estimation of local densities. Although
the asymptotic theory assumes an independent and identically distributed (i.i.d.) error
model, the rank score test has very robust performance under various error structures
and distributions. (3) It is computationally fast. To construct rank-score test statistics,
we only need to estimate the null model where βjk,τ = 0, which greatly reduces the
computation cost from M × K pair-wise regressions for each SNP-gene pair to K
regressions.

Composite Rank-score Test

Instead of individual quantile level p-values, it would be desirable to have a single p-
value for a SNP-gene pair from a composite test across multiple quantile levels. Suppose
we consider ` quantile levels of τ1, τ2, ..., τ`, then define Sn = (Sn,τ1 , Sn,τ2 , ..., Sn,τ`)

>

as the vector of rank score test statistics at the corresponding quantile levels. We can
show that, under the null hypothesis, Sn asymptotically follows a multivariate normal
distribution,

Sn → N(0,Σ), (5)

where Σ is the ` × ` variance-covariance matrix. The diagonal elements of Σ are
σl,l = n−1τl(1 − τl)X∗j,lX∗Tj,l for l ∈ {1, ..., `}, and the off-diagonal elements of Σ are

σl,m = n−1(min(τl, τm)− τl × τm)X∗j,lX
∗T
j,m for l,m ∈ {1, ..., P} and l 6= m.

A natural composite rank score test statistic can be constructed by the following
quadratic form in Sn:

T` = Sn
TΣ−1Sn ∼ χ2

` . (6)
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To select the quantile levels, one could either choose ` evenly spaced quantile levels,
or go with the commonly used quantile levels, such as 0.1, 0.25, 0.5, 0.75 and 0.9.
Depending on the nature of the application, one may also select quantile levels in
a specific interval of interest. For example, if we are only interested in identifying
eQTLs that are associated with extreme values of gene expression, we could select only
quantiles at the upper tail.

The composite rank score T` combines the quantile associations over multiple quan-
tiles, regardless of the directions of the quantile associations. To some extent, one can
view the mean effect as

∫ 1
0 Sn(τ)dτ , an integrated quantile effect. When the quantile

association is homogeneous at all the quantiles in terms of both direction and mag-
nitude, then testing the composite quantile association at ` evenly spaced quantile
levels is equivalent to testing the mean effect. When the association is heterogeneous
across quantile levels, especially when the association is “crossing” over quantile lev-
els, i.e. Sn is positive for certain quantiles but negative for others, or the association
only manifests at extreme quantiles, the linear regression could underestimate, or even
completely miss the underlying SNP-gene link. The composite quantile test hence
has better chance to discover such heterogeneous associations. As we report below in
the Results section, the eQTLs associated with heterogeneous associations are more
likely to be associated with complex traits, which underscores the potential of quantile
analysis in eQTL discovery.

Results

Comparison methods

Here we present a simulation study to validate the type I error of the proposed quantile
test, and its application to the GTEx data to illustrate the potential value of the
quantile based test. When implementing the proposed QRBT test, we considered 5
quantile levels at τ = (0.15, 0.25, 0.5, 0.75, 0.85), and combine their rank score functions
to test whether genetic variants have effect on the entire distribution of gene expression
levels. In both studies, we compare the proposed quantile approach to the following two
existing methods: (1) linear regression (LR) following the GTEx analysis protocol, and
(2) CLS test. Linear regression is the most commonly used method for eQTL discovery.
It assumes that the gene expression level yi,k (after quantile-normalization [10]) follows
a linear model

g(yi,k) = ziαj,k + xi,jβj,k + ei,k, (7)

where g() is the quantile-normalization function, and ei,k is the random error with mean
zero. Here βj,k measures the effect of the variant xi,j on the mean of the normalized
yi,k (see the above Section on Overview of GTEx Data).

The CLS test [6] takes the residuals from the linear regression (7), and then calcu-
lates the Spearman correlation between the genotype xi,j and the residuals squares ê2i .
If the resulting correlation is significant, that suggests that SNP j is associated with
the variance of the gene expression level.
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Simulations

We first investigate the type I errors of the three approaches using the GTEx gene
expression data in lung tissue. Specifically, we randomly select a gene Gk from all
the genes in the GTEx lung tissue with non-zero expression in at least 90% of the
subjects, and then randomly select a SNP j from all the genotyped and imputed
SNPs. We randomly permute the genotypes xi,j ’s to remove any association between
SNP j genotype and gene k expression level. By only permuting xi,j ’s, we preserve the
association between phenotype and covariates. We then apply all the three approaches
to test the conditional association between yi,k and permuted xi,j .

The type I errors estimated from 1 billion Monte-Carlo replicates are presented
in Table 1 at multiple significance levels ranging from 0.05 to as low as 10−7. As
shown all the approaches under consideration have well-controlled type I errors, with
the proposed QRBT being slightly more conservative.

GTEx Data Analysis

eQTLs identified in four tissues

Supplemental Table S1 provides information for each of the four tissues we analyzed
(muscle-skeletal, whole blood, lung and thyroid), including the sample size, the number
of genes with< 10% zeros, the number of SNPs genotyped or imputed within the±1MB
neighborhood of the genes, the number of SNP-gene pairs and the p-value threshold
needed to control the family-wise error rate (FWER) at the 5% level with Bonferroni
correction.

Figure 1 presents the Venn diagrams of identified SNP-gene pairs using LR, CLS
and QRBT in four tissues controlling for 5% FWER. The patterns in all four tissues
are similar. In particular, LR identified the most significant eQTLs, CLS identified the
least, and QRBT in between. This suggests that linear regression remains a powerful
tool to identify eQTLs, while the CLS test may have limited power in eQTL applica-
tions. The eQTLs identified by QRBT overlap to a large extent with those identified
by LR; however there is a large number of eQTLs uniquely identified by QRBT. A
careful examination on quantile specific effects reveals that most of the overlapping
eQTLs have homogenous effects across the quantile levels. In fact LR is expected to
be more powerful than QRBT under the assumption of homogeneous association due
to its parametric assumption. In contrast, the eQTLs that are uniquely identified by
QRBT often exhibit substantial heterogeneity across the quantiles, and consequently
are missed by linear regression. To illustrate the differences between the two sets of
SNPs (uniquely identified by QRBT vs. those identified by both LR and QRBT), we
quantify the degree of heterogeneity for each SNP-gene pair as the log transformed ratio
between the standard deviation and the mean of their 5 estimated quantile coefficients
βjk,τ s. In Figure 2, we plotted overlayed histograms of the resulting heterogeneity in-
dexes between the two sets of SNPs. As shown, the eQTLs that are uniquely identified
by QRBT presented more heterogeneous effects compared to those identified by both
LR and QRBT.
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Explore the eQTL Association Patterns using quantile specific QRBT

To get a better understanding of the differences in the eQTLs identified by the different
methods, we looked at the association patterns of those identified eQTLs. One advan-
tage of quantile based approach is to investigate how the eQTLs impact the entire
distribution of the gene expression. To do that, we estimate the quantile coefficients
on a fine grid of quantile levels (49 evenly spaced quantile levels ranging from 0.02 to
0.98). In Figure 4, we plotted the estimated conditional distribution functions of gene
expression levels with different genotypes in selected pairs in thyroid tissue. Specif-
ically, the black curve is the estimated quantile function with reference SNP values,
while the red and green curves are the estimated quantile functions with one or two
alternative alleles assuming additive genetic models.

Each sub-figure represents a distinctive association pattern. Figure 4a presents a
SNP-gene pair that is not identified by any of the approaches. As shown, the three
curves are nearly identical at all the quantile levels, which suggest that the SNP geno-
type has little impact on the gene expression level. As expected, none of the approaches
identify it as an eQTL. Figure 4b presents a SNP-gene pair that is identified by both
LR and QRBT, but missed by CLS. In this case, the effect of the SNP on gene expres-
sion is homogeneous in both the direction and magnitude across all quantile levels. In
this case, LR is more efficient than QRBT with smaller p-values. Figure 4c presents a
SNP-gene pair with a “crossing” heterogeneous effect such that the SNP promotes the
gene expression at lower quantiles, but suppress the gene expression at upper quan-
tiles. Such eQTLs would be missed by LR as their effect at lower and upper quantiles
cancels out at the mean level; in contrast, the proposed QRBT is not affected by such
crossing effect because the test statistics accumulates the squared estimating functions.
As shown in their p-values, the CLS test detects such association pattern with a much
limited power. Finally, Figure 4d presents another heterogeneous effect pattern, in
which case the SNP has an effect that is mostly evident at upper quantile levels. In
this case the SNP has an effect only at upper quantile levels, and LR misses the local
effect while QRBT captures it.

These examples illustrate the advantage that QRBT can have over LR in identifying
SNP-gene pairs with heterogeneous effects, and in providing a more comprehensive
association picture for eQTL discoveries.

Tissue-specific effects in the four tissues

We have also investigated the sharing patterns of eQTLs across tissues, for each method
separately. As complex traits are assumed to be influenced by regulatory elements that
act in a tissue-specific manner, tissue-specific eQTLs are more likely to be linked with
disease risk than cross-tissue eQTLs [17]. To understand the eQTLs sharing patterns
for each method, we compute a pairwise eQTL sharing estimate πij = Pr(eQTL in
tissue i | eQTL in tissue j). In Figure 3 we show the pairwise eQTL sharing πij for
the different approaches. We denote by QRBT-LR the eQTLs from the SNP-gene
pairs identified by QRBT but missed by LR in the same tissue. In multi-tissue results,
QRBT-LR are the eQTLs from the SNP-gene pairs identified by QRBT but missed by
LR in at least one tissue. As shown, eQTLs that are uniquely identified QRBT are the
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least shared in all approaches considered.
In Table 2 we show the relative risk (RR) of being tissue-specific eQTLs for eQTLs

identified by each approach in comparison with LR. Out of the 6705 eQTLs that were
identified by QRBT but not linear regression, 89% of the eQTLs that tissue specific. In
comparison, only 54% LR-identified eQTLs are tissue specific. Statistical test on the
relative risks also show that CLS, QRBT, QRBT-LR are all significantly more likely
to detect tissue-specific eQTLs than LR, the eQTLs identified by QRBT-LR, however,
are most likely to be tissue-specific (RR: 1.65; 95% CI (1.63, 1.65)).

Enrichment of GWAS SNPs among the eQTLs identified in the four
tissues

We investigate here the enrichment of eQTLs identified by the different methods in
genome-wide significant SNPs from the GWAS catalog ([18]; version June 2016). Table
3 presents the enrichment results. The GWAS enrichment is calculated with reference
to LR by the relative risk (RR), the ratio of the probability of an eQTL identified by
one approach to be in the GWAS catalog relative to an eQTL identified by LR. Table
3 shows that both CLS and QRBT-LR are significantly enriched in GWAS catalog
SNPs in comparison with LR, with QRBT-LR having the biggest estimate (RR: 1.74;
95% CI (1.30, 2.32)) of enrichment. Results for each separate tissue are available in
Supplement Table S2.

Discussion

In this paper, we develop a new quantile regression based test procedure for the genome-
wide identification of eQTLs. Unlike linear models which focus on the effect of SNPs
on mean expression levels, quantile regressions characterize a comprehensive picture
of how genetic variants affect gene expressions at different quantiles. Test statistics
are derived from the rank score function in quantile regressions. In particular, for
the fixed quantile test, the test statistic is a quadratic form of the rank score at a
fixed quantile. For the composite quantile test, we combine rank scores across a set of
quantiles. The test statistics have explicit asymptotic distributions under the null, and
thus the hypothesis testings are computationally efficient. The proposed method can
easily accommodate continuous or discrete covariates, and is robust against non-i.i.d.
error terms. In the simulation study, we show that the method strictly controls the
type-I error. In the GTEx v6p data analysis, the proposed method not only identifies
eQTLs with significant mean effect differences, but also makes many unique discoveries
not obtainable from linear models. We further investigate the additional discoveries
and obtain interesting patterns of how genetic variants regulate gene expressions with
heterogeneity in effect across different quantiles. The GWAS enrichment analysis shows
that the additional eQTLs are highly enriched in the SNPs in the GWAS catalog.
Therefore those eQTLs detected by QRBT but missed by LR might be interesting in
understanding the existing GWAS findings. Overall, the proposed method provides
an alternative approach for eQTL detection, and the results complement the existing
knowledge by understanding the differential expression across the entire distribution.

9



There are several interesting directions for future work. One is to better accommo-
date zero inflation in gene expression data. So far, we have focused on genes with fewer
than 10% zero read count. In practice, many genes have excessive zero read counts
due to various experimental and biological reasons. The abundance of zeros may be
problematic with the lower quantiles and leads to numerical instability of the proposed
method. New methods are needed to deal with the zero inflation problem. For exam-
ple, one may add small perturbations to the zero values to break the ties. Conceptually
this will not affect the estimation very much but will greatly improve the computa-
tional performance of the method. Another idea is to introduce an additional latent
variable to indicate the presence of zeros [19], and model zeros separately. A second
direction is to build joint models for eQTL analysis in multiple tissues simultaneously.
It is well known that most eQTLs are shared across tissues, while some are highly tis-
sue specific [10]. Analyzing gene expression data from multiple tissues simultaneously
will increase the power of eQTL detection by borrowing strength across tissues, and
also will facilitate the assessment of tissue specificity [20, 21]. However, how to extend
the quantile regression method to multiple tissues is not trivial. A SNP may regulate
the expression level of a gene at different quantiles in different tissues. Furthermore,
the computational burden will be more severe in multi-tissue analysis. This calls for
further investigation. A third direction is to use functional effect predictions for genetic
variants, non-tissue specific such as GERP [22] and Eigen [23], or tissue-specific [24] as
priors to improve power to identify eQTLs, especially in trans-eQTL mapping studies.

Software implementing the proposed QRBT is available as an R package on our
website at https://qrbt.shinyapps.io. The database containing eQTLs with p-
value < 10−6 in at least one of the three approaches (LR, CLS and QRBT) as well as
their summary statistics is also available on this website.
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Nominal p-value LR CLS QRBT
5E-02 5.00E-02 5.24E-02 3.13E-02
1E-02 1.01E-02 1.07E-02 5.28E-03
1E-03 1.03E-03 1.10E-03 4.63E-04
1E-04 1.07E-04 1.11E-04 4.68E-05
1E-05 1.16E-05 1.13E-05 5.34E-06
1E-06 1.27E-06 1.14E-06 7.06E-07
1E-07 1.60E-07 1.20E-07 1.09E-07

Table 1: Type I error of three approaches in simulations based on the lung tissue data.

LR QRBT CLS QRBT-LR
No. of eQTLs 470413 310931 15828 6705
% of tissue-specific eQTLs 54% 57% 75% 89%
RR ref 1.05 1.37 1.64
95% CI ref (1.04, 1.05) (1.36, 1.39) (1.63, 1.65)
P-value ref 5.8E-112 < 2.2E-308 < 2.2E-308

Table 2: The tissue-specificity of eQTLs identified by different approaches. The relative risk
(RR) is calculated as the probability of being tissue-specific eQTLs for eQTLs identified by
each approach in comparison with LR. The eQTLs identified by QRBT-LR are most likely
to be tissue-specific.

LR QRBT CLS QRBT-LR
No. of identified eQTLs 470413 310931 15828 6705
No. of identified eQTLs in GWAS 1896 1315 107 47
RR ref 1.05 1.68 1.74
95% CI ref (0.98, 1.13) (1.38, 2.04) (1.30, 2.32)
P-value ref 1.79E-01 1.34E-07 1.43E-04

Table 3: The enrichment of identified eQTLs in SNPs from the GWAS catalog in four tissues.
The relative risk (RR) is calculated as the probability of being in GWAS catalog for eQTLs
identified in each approach in comparison with LR. The eQTLs identified by QRBT-LR are
most likely to be enriched in SNPs from the GWAS catalog.
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Figure 1: Venn diagram depicting overlap among SNP-gene pairs identified by LR, CLS and
QRBT controlling FWER at α = 0.05.
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Figure 2: Histogram of the log transformed ratio between the standard deviation and the
mean of their 5 estimated quantile coefficients βjk,τ s in four tissues. The pairs identified by
QRBT but missed by LR tend to be more heterogeneous than the pairs identified by both
methods.
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Figure 3: Cross-tissue sharing of eQTLs. The entry in row i and column j is an estimate
of πij = Pr(eQTL in tissue i | eQTL in tissue j). QRBT-LR has the lowest levels of eQTL
sharing with other tissues.
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Figure 4: The estimated conditional distribution functions of gene expression levels for a few
SNP-gene pairs in thyroid tissue. The x-axis is the grid of quantile levelsτ ∈ (0, 1), and the
y-axis is the estimated conditional distribution functions for each quantile level given three
SNP values and averaged covariates. This figure presents how the entire distribution of gene
expression differs by SNP values for 4 SNP-gene pairs.
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Supplementary Materials

Tissue Obs. Genes SNPs Pairs P-values
(<10% zero) (<10% zero) (5% FWER)

Muscle - Skeletal 361 23,948 9,991,147 166,070,588 3.01E-10
Whole Blood 338 23,973 9,878,498 164,903,296 3.03E-10
Lung 278 27,974 9,036,719 176,028,082 2.84E-10
Thyroid 278 27,735 9,173,566 176,881,830 2.83E-10

Table S1: Description of the GTEx data in four tissues.
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LR QRBT CLS QRBT-LR
Muscle-skeletal
No. of identified eQTLs 176888 118898 5000 2213
No. of identified eQTLs in GWAS 764 517 39 22
RR ref 1.01 1.81 2.30
95% CI high ref (0.90, 1.13) (1.31, 2.49) (1.51, 3.51)
P-value ref 9.06E-01 2.51E-04 7.00E-05
Whole Blood
No. of identified eQTLs 208620 137404 11568 2868
No. of identified eQTLs in GWAS 957 690 92 17
RR ref 1.09 1.73 1.29
95% CI ref ( 0.99, 1.21) (1.40, 2.15) (0.80, 2.08)
P-value ref 6.93E-02 3.10E-07 2.92E-01
Lung
No. of identified eQTLs 202451 126707 2302 977
No. of identified eQTLs in GWAS 861 525 23 4
RR ref 0.97 2.35 0.96
95% CI ref (0.87, 1.09) (1.56, 3.55) (0.36, 2.57)
P-value ref 6.37E-01 2.97E-05 9.39E-01
Thyroid
No. of identified eQTLs 275495 174387 4467 1606
No. of identified eQTLs in GWAS 1141 718 40 10
RR ref 0.99 2.16 1.50
95% CI ref (0.91, 1.09) (1.58, 2.96) ( 0.81, 2.80)
P-value ref 9.01E-01 8.51E-07 1.95E-01

Table S2: The enrichment of identified eQTLs in GWAS catalog in each tissue. The relative
risk (RR) is calculated as the probability of being in GWAS catalog for eQTLs identified in
each approach in comparison with LR.
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[6] A. A. Brown, A. Buil, A. Viñuela, T. Lappalainen, H.-F. Zheng, J. B. Richards,
K. S. Small, T. D. Spector, E. T. Dermitzakis, and R. Durbin, “Genetic interac-
tions affecting human gene expression identified by variance association mapping,”
Elife, vol. 3, p. e01381, 2014.

[7] B. Dumitrascu, G. Darnell, J. Ayroles, and B. E. Engelhardt, “A bayesian test to
identify variance effects,” arXiv preprint arXiv:1512.01616, 2015.

[8] R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica: journal of
the Econometric Society, pp. 33–50, 1978.
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