
Handout #8

‘Interpreting’ Quantum Mechanics

● As Ismael writes, “Quantum mechanics is, at least at first glance and at least in part, a

mathematical machine for predicting the behaviors of microscopic particles — or, at

least, of the measuring instruments we use to explore those behaviors [SEP Online].”

● Nevertheless, there is tremendous disagreement over why the ‘machine’ works.

○ Carroll: “At a workshop attended by expert researchers in quantum mechanics…

Max Tegmark took an...unscientific poll of the participants’ favored interpretation

….The Copenhagen interpretation came in first with thirteen votes, while the

many-worlds interpretation came in second with eight.  Another nine votes were

scattered among other alternatives. Most interesting, eighteen votes were cast for

“none of the above/undecided.” And these are the experts [2010b, 402, n. 199].”

● There are two reasons why this is not really disagreement over the interpretation of

quantum mechanics, in any ordinary sense.  First, at stake is not what people happen to

mean by pertinent technical terms, like ‘state vector’, ‘collapse’, and so on.  This would

be a question of (presumably empirical) natural language semantics, and would tell us

nothing about the nature of quantum reality.  (Indeed, some ‘interpretations’ deny that the

‘mathematical machine’ means anything -- like austere formalists about mathematics.)

● Second, the ‘interpretations’ do not even all agree on the machine! Bohmian and GRW

theories, for instance, amend the equations, and GRW makes different predictions.

● Compare: Despite the name, metaethics is not just about what we mean by “ought”!

● So, before we can ask about ‘interpretations’ of quantum mechanics -- i.e., ask why the

‘mathematical machine’ works -- we need to outline central aspects of the formalism.

Intuitive Summary

● The basic idea of quantum mechanics can be summarized as follows.  However, to

understand the summary, we will need to define the terms that I have underlined.

● Every quantum state can be expanded in terms of many different bases.  Each basis

corresponds to a superposition of states of a given quantity (e.g., position, momentum,

spin, polarization).  Once expanded, we can read off the (complex) amplitudes for the
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various eigenstates of that quantity.  And the amplitudes can then be used to compute the

probabilities of obtaining corresponding eigenvalues upon measurement of the quantity.

Vectors

● Vectors, you will recall, are quantities with length and direction.  The simplest examples

are given by the arrows in Euclidean space.  For every point in that space, there is exactly

one arrow which reaches from the origin to that point.  In quantum theory, one talks about

vectors in a more abstract, complex-valued, space, and writes them as follows: |A>.

● Vectors of any kind can be added according to the Parallelogram Rule.  Vectors can also

be multiplied by scalars.  Scalar multiplication yields another vector pointing in the

same, or the opposite, direction (depending on whether the scalar is positive or negative).

● Vectors can be multiplied by other vectors too.  One way is to define the product, called

the inner product, of vectors, |A> and |B>, written <A|B> whose result is a (typically

complex) number, not a vector.  It is obtained by multiplying the complex conjugates of

the expansion coefficients of |A> with the expansion coefficients of |B> in a basis and

adding up the results.  We will say that √<A|A> is the length or norm of |A>.

● Two vectors, |A> and |B>, of non-zero length, are orthogonal when <A|B> = 0.  A vector

space is N-dimensional when the maximum number of mutually orthogonal vectors in it is

exactly N.  And an orthonormal basis of an N-dimensional vector space is a set of N

mutually orthogonal vectors, |Ak>, each with unit length -- i.e., √<Ak|Ak> = <Ak|Ak> = 1.

○ Note: Any vector, |V>, in an N-dimensional vector space can be written, or

expanded, as the linear sum of vectors from a given orthonormal basis.  That is:

■ |V> = v1|A1> + v2|A2> +.... (where each |Ai> is a unit length basis vector,

and the expansion coefficient, vi is the (complex) number, <Ai|V>).

● Vectors can be represented as columns or rows of their expansion coefficients in a basis.

While columns correspond to ordinary vectors, |A>, rows correspond to a kind of dual

vector, written <A|.  To turn column vector, |A> into a row vector, <A|, take the complex

conjugates, c*, of the expansion coefficients, c, so that c =  x + iy becomes c* = x - iy.

● The <A|s are known as bras, and the |A>s as kets (so combing them yields a bra-ket).

○ Note: The same vector has different representations in different bases!  Vectors,

like tensors of which they are an example, have a life independent of coordinates.
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Operators

● An operator on a space acts on a vector to give another vector.  Quantum mechanics uses

linear operators, O, which satisfy the condition: O(n|A> + m|B>) = n(O|A>) + m(O|B>).

● Like vectors, linear operators can be represented by their coefficients in a basis.  The

result is a matrix.  Two linear operators, O and M, can be multiplied if the number of

columns of O is equal to the number of rows of M. The components of linear operator,

O, Oij, in a basis |A1>, |A2>,...|An> (i, j ∈ N) are then given by the quantity, <Ai|O|Aj>.

○ Note: <Ai|O|Aj> is a number since it is the inner product of |Ai> and O|Aj>.

● Hermitian (self-adjoint) linear operators, O, are central to quantum mechanics.  The

eigenvalues of these are real, and their eigenvectors form an orthonormal basis.

Eigenvectors and Eigenvalues

● An eigenvector, |λi>, of the operator, O, is any vector such that there is a (perhaps

complex) scalar, λi with O|λi> = λi|λi>. O leaves fixed the ray along which |λi> lies.

● The eigenvalue of O, acting on eigenvector, |λi>, is simply defined to be the scalar λi.

● It is important that eigenstates of one Hermitian operator fail to be eigenstates of

infinitely-many others.  Indeed, if the commutator, [A, B] = AB - BA ≠ 0 (so A and B

do not commute), then A and B lack a common basis of simultaneous eigenvectors.

Quantum States

● The state of a physical system at a time, t, is, intuitively, all there is to know about it at

that time.  In classical (pre-quantum) physics, the state of a physical system at t is given

by the specification of its position and momentum at t (its coordinates in a so-called

statespace).  Consequently, the state of a classical system is a measurable thing.

● By contrast, the state of a quantum system, written |Ψ>, is not directly observable.  We

get a grip on it via its mathematical representation. It is represented by a vector in a

particular complex vector space, called a Hilbert Space.  (This is the state space of the

quantum system.)  By convention, the state vector is normalized, meaning <Ψ|Ψ> = 1.

● Note: Since a Hilbert space is a vector space, we can represent any vector in it as the

linear sum, i.e. superposition, of pairwise orthogonal vectors.  So, for any |Ψ>, we have:
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○ |Ψ> = c1|Ψ1> + c2|Ψ2> +... (where, for all i and k, ci is a scalar and <Ψi|Ψk> = 0).

● Note: The two canonical “wavefunctions” are the wavefunction for position, <x|Ψ>, and

for momentum, <p|Ψ>.  One can translate between these representations (they represent

the same state vector in different coordinates -- think reference frames) using Fourier

transformations.  Spin is an independent degree of freedom.  So, to fully represent the

state of a particle at a time, one specifies its position (momentum) and its spin states.

One can combine this information into a single object using so-called spinor notation.

Observables

● Quantum mechanics connects up with experiment by way of observable quantities, such

as position, momentum, and spin (in a technical sense peculiar to quantum objects).

● These are represented mathematically as Hermitian (self-adjoint) linear operators, O.

● When such operators do not commute, the corresponding properties are complimentary.

● Bohr: “[W]e are not dealing with contradictory but complementary pictures of the

phenomena, which only together offer a...generalization of the classical...description.”

○ General Uncertainty Principle: ∆A∆B ≥ (½)|<Ψ|[A, B]|Ψ>|

■ Note: It follows from this principle that the product of the ‘uncertainties’

(more on this idea) of the position and momentum of a particle must be

greater than ½ times Planck’s constant, ħ (‘h-bar’), since [x, px] = iħ, [y,

py] = iħ, and [z, pz] = iħ.  This is Heisenberg’s Uncertainty Principle.

■ Heisenberg: “The path of the electron through the cloud chamber

obviously existed; one could easily observe it.  The mathematical

framework of quantum mechanics existed as well, and was much too

convincing to allow for any changes.  Hence it ought to be possible to

establish a connection between the two, hard though it appeared to be.”

Measurement

● Suppose we measure the observable quantity represented by O.  Then the only possible

results of our measurement are the eigenvalues, λi, of O.  For certain such operators, O,

the eigenvalues form a discrete set, or spectrum. Hence, the modifier “quantum”.
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● Moreover, whether we obtain eigenvalue, λi, when the system is in state, |Ψ>, and we

measure the observable quantity represented by O, is generally a matter of probability.

○ Born’s Rule: The probability of obtaining λi when the system is in state |Ψ> and

we measure the observable represented by O, is Pi = |<λi|Ψ>|^2 (where |λi> is the

eigenvector of the eigenvalue equation, O|λi> = λi|λi>, and |λi> is normalized).

■ Note: |<λi|Ψ>|^2 = |ci|^2 = (cc*)^2 where ci occurs in the expansion: c1|λ1>

+ c2|λ2> +... = |Ψ> (and we require that |c1|^2 + |c2|^2 + |c3|^2… = 1).

■ Note: Born’s Rule means that probabilities are gauge invariant in that all

observable quantities are unaffected by a global change of phase of the

state vector.  Sending |Ψ> → e^iθ|Ψ> leaves the probabilities the same.

(Differences between phases can, however, have physical significance.)

● Note: Although the probability of obtaining value λi when the system is in state |Ψ> and

we measure the observable represented by O, is real (since (x + iy)(x - iy) = x^2 + y^2), it

is determined by the complex quantities which are the coefficients of the vectors when the

state is expanded as eigenvectors of O.  It is fixed by the cis in = |Ψ> = c1|λ1> + c2|λ2> +...

Copenhagen Interpretation

● According to (an interpretation of!) the Copenhagen Interpretation, a state, |λ>, has value,

λ, of the quantity represented by O, if/f |λ> is an eigenvector of O with eigenvalue λ.

○ Note: In this case, one says that |λ> is an eigenstate of the quantity in question.

● Since eigenstates of one operator fail to be eigenstates of infinitely-many others, this

means: quantum states lack values for infinitely-many properties at any given instant!

● Example (Spin): The eigenstates of the operator representing the property of being spin

→ or ← (with respect to some chosen axis) are superpositions of the eigenstates of the

operator representing the property of being spin ↑ and ↓ (with respect to that axis).  So,

on the Copenhagen Interpretation, a spin ↑ particle fails to have a spin → or ← property!

○ Details: |↑> = √(½)|→>  + √(½)|←>.  Let the spin ↑ operator be O↑. Then

problem is that spin → and ← states are not eigenstates of the operator O↑.

■ Note: If we were to measure the → spin of a spin ↑ particle, we can see

that we would get spin → with 50% probability -- since (√(½))^2 = (½).
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● Example (Position & Momentum):  Although the details are more involved, the situation

is the same.  By Heisenberg’s Uncertainty Principle, the eigenstates of the operator

representing the property of having some position fail to be eigenstates of the operator

representing the property of having some momentum (and vice versa).  So, on the

Copenhagen Interpretation, a particle with a position at t fails to have a momentum at t!

● Suppose that we obtain λi when measuring the observable represented by O.  Then on the

Copenhagen Interpretation, the state of the quantum system instantaneously and

discontinuously “collapses” to |Ψ> = |λi>.  This is the Collapse of the Wavefunction.

● The system is thereby supposed to acquire a value of the property corresponding to O.

○ Note: “Measurement” is a misleading term on the Copenhagen Interpretation!

○ Problem: Special Relativity says that is no objective order to distant events.  So,

what does “instantaneously” mean here?  If the “measurement” induces collapse

(and this cannot happen across time), then, if there are objective facts about

collapse, frames in which |Ψ> collapsed before or after measurement are wrong.

(The same is thereby true vis a vis different observers’ judgments of entanglement

-- see below.)  The Copenhagen Interpretation reintroduces a privileged foliation!

● By contrast, between measurements the state of the system, |Ψ>, evolves linearly and

deterministically (and unitarily), according to the time-dependent Schrödinger equation:

○ Note: is the total energy operator of the system, called the Hamiltonian.

○ Note: Linearity is the requirement that if |A> evolves to |A’>, |B> evolves to |B’>,

and so on, then c1|A> + c2|B> +... must evolve to c1|A’> + c2|B’> +....  Hence, a

superposition of |A> and |B> evolves into a superposition of |A’> and |B’>.

○ Note: This equation too is manifestly not Lorentz invariant.  Hence, it is at best an

approximation of the relativistic equation for the evolution of the state vector.

● Question (Theoretical Equivalence): We are assuming the standard Schrödinger picture

of quantum mechanics according to which the state vector evolves in time while the

observables do not change.  (A version of this exists appropriate to quantum field theory

as well.)  However, there is a unitary transformation (giving an empirically equivalent

theory) from time-dependent state vectors to time-independent ones, trading
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time-independent observables for time-dependent ones.  The result is Heisenberg’s

picture, obeying the dynamical equation obtained by replacing |Ψ(t)> on the left of

Schrödinger’s equation with L(t), for some observable, L, and H|Ψ(t)> on the right by

the commutator of L with the Hamiltonian, [L, H]. (There is even a kind of mix of the

pictures, called the Dirac-Tomonaga picture, according to which the time dependence is

distributed between states and observables.)  And this is just sticking only to Hilbert

space pictures!  There are also algebraic formulations in terms of so-called C*-algebras,

Feynman’s path-integral formulation, density matrix formulations, and more.  What

are we to make of this plethora of formulations? Might they all represent the same thing?

● Problem: This is prima facie inconsistent!  There are two dynamical laws, for two

different contexts of observation.  When not being measured, a state vector evolves in

accord with the Schrödinger equation, and it is generally not in an eigenstate of the

operator of any property of interest.  But when we measure the state for that property, the

state obeys a different law, instantaneously taking on a value (with probability obtained

by expanding the state in a basis of eigenstates of that operator and applying Born’s

Rule).  And then the evolution starts all over again -- this time from the new state.

● Response: The different laws concern different contexts, so there is no inconsistency.

● Rejoinder: In order to distinguish those contexts, we need to know what counts as a

measurement.  Must a human being sense the system? Must a sentient being?  Would a

video camera suffice?  Whatever answer we proffer, the resulting criterion would seem to

be indeterminate, with the result that all manner of states of the world are indeterminate.

○ Note: This problem is at the heart of the Schrödinger’s Cat thought experiment.

● Clarification: It is sometimes suggested that mere appeal to decoherence allows one to

explain collapse using only the linear Schrodinger equation (or a relativistic surrogate).

But this is incorrect.  The latter preserves superpositions.  So, Schrodinger’s Cat evolves

into a superposition of dead and alive no matter how entangled the system becomes.

● Question: What exactly is objectionable about the thought that the fundamental physical

laws might be indeterminate?  After all, the view that the fundamental mathematical laws

-- e.g., concerning all subsets of natural numbers -- might be so is commonly endorsed.

● Question: We noted that the probabilities of obtaining measurements are determined by

the complex amplitudes.  This makes it hard to treat the latter as fictions, despite the
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Copenhagen Interpretation’s silence on them.  But if they are not fictions, what are they?

Might they be the real entities, and the observables of the Born Rule not fundamental?

Prospects for Realism

● The Copenhagen Interpretation (insofar as it can be pinned down!) is a quintessentially

antirealist view.  It says that the facts about quantum states counterfactually depend on us.

○ Compare: Intuitionism about mathematics or constructivism about morality.

● Note: On another interpretation, the Copenhagen Interpretation is instrumentalism, so is

antirealist in the way that formalism about mathematics and emotivism about ethics are.

● Dirac: “[O]nly questions about the results of experiments have real significance and it is

only such questions that theoretical physics have to consider (Principles, 4th Edition).”

● Einstein was not satisfied with that interpretation for just this reason.  Indeed, he thought

that he could prove using the ‘mathematical machine’ that quantum mechanics was

incomplete -- i.e., failed to represent measurement-independent facts about the world.

● In order to understand Einstein’s worries, let us introduce formalism for states of

collections of quantum systems (these could be multiple systems of a single particle, like

position and spin, but we will focus on multiple systems involving multiple particles).

○ Product State: When one system is in state, |Ω>, and another system is in state

|Φ>, we write the state of the composite system like this: |Ψ> = |Ω>1|Φ>2.

■ Example: If |Ψ> = |↑>1|↓|>2 is the state of two electron spins, then the first

is spin up (along an axis), and the second is spin down (along the same

axis). Such a state is just the conjunction of states of the sub-systems.

■ Note: In quantum field theory one gives up on the idea of particle

identities, so the labeling of particles here does not really make sense.

However, there is a surrogate form of the argument in that context.

○ Since the components of a product state are independent, the probability of

getting any combination of results when measuring each is what we would expect:

the joint probabilities are the product of the individual ones.  (If we toss a die and

flip a coin, the probability of getting a 3 and getting heads is (⅙)(½) = (1/12).)

○ Composite State: The more interesting, and characteristically quantum, states do

not have independent components.  They instead have so-called entangled states.
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○ Consider the product states, |Ω> = |↑>1|↓|>2 and |Φ> =  |↓|>1|↑>2.  Since these are

each possible states of the system, and since the space of such states forms a

vector space, the following must also be be a possible state of the system:

■ Singlet: |Ψ> = √(½)(|Ω> - |Φ>) = √(½)(|↑>1|↓|>2 - |↓|>1|↑>2) (where the

√(½)s ensure that the probabilities — squared amplitudes — sum to 1.)

■ The state |Ψ> is a superposition of a one in which the first electron is spin

up and the second is spin down, and one in which the first is spin down

and the second is spin up.  (One cannot obtain the same spin results for the

two particles because the coefficients for |↑>1|↑>2 and |↓>1|↓>2 are zero.)

■ Note: Such a state can be prepared by emitting them from an event

conserving angular momentum (if the particles are left undisturbed).

■ Note: There is nothing more to know about the subsystems of this state, as

it cannot be written as a product state.  Indeed, it is maximally entangled.

○ Observation: The state |Ψ> is peculiar.  It is symmetric under rotations.  It has

exactly the same form when expressed using any pair of orthogonal spin bases.

■ Note: This is very puzzling!  According to the Copenhagen Interpretation,

it means that there is no axis of spin along which we can say that either

particle is spin up or spin down along it.  So, any spin quantity (correlate

of an operator of which |Ψ> is an eigenstate) must somehow be  “holistic”.

● What if we decide to measure the spin of electron 1, along the chosen spin axis?  It will

either pass the test or not, each with 50% probability, and when it does, the state |Ψ> will

collapse to either  |Ω> = (|↑>1|↓|>2 or |Φ> = ||↓|>1|↑>2. But these are product states —

i.e., states which can be expressed as conjunctions of states of the individual systems.

○ Hence, immediately on measurement, electron 2 will also go from having no spin

along any axis (according to the Copenhagen Interpretation) to having one.

● Technical Context: In order to combine systems, SA and SB, like that of two electrons,

one needs a way of combining their state spaces. This is done by forming their tensor

product, SA ⊗ SB.  The orthonormal basis vectors of the combined system are built from

possible combinations of the basis vectors of the subsystems (so that if |ab> is a vector in

the combined space of |A> and |B>, then <ab|a’b’> = δaa’δbb’).  The dimension of the

state space of a composite system is thus the product of the dimensions of the state spaces

of its component systems.  (One cannot add basis vectors from the two spaces.)
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EPR Argument

● States like the second above were used by Einstein, Podosky, and Rosen (EPR) to argue

that quantum mechanics is incomplete.  There are facts of the matter that are independent

of our measurements that quantum mechanics fails to represent.  Here is one formulation:

○ (1) Suppose that at time, t, the composite system described above were in state

|Ψ> = √(½)(|↑>1|↓|>2 - |↓|>1|↑>2), where electrons 1 and 2 are very far apart.

○ (2) Suppose that Alice were to measure the ↑ spin of particle 1, and got YES.

○ (3) Then, immediately after t, at t + dt, Alice (who has studied quantum

mechanics!) could know that particle 2, very far away, is spin ↓.

○ (4) Alice would not have disturbed particle 2 as of t + dt.

■ Criterion of Reality: “If without in any way disturbing a system, we can

predict with certainty (i.e., with probability equal to unity) the value of a

physical quantity, then there exists an element of physical reality

corresponding to this physical quantity (Einstein et al., 1935, 777).”

■ (5) So, particle 2 would have already been spin ↓ at t, before particle 1 had

been measured.

○ (6) Quantum mechanics does not represent particle 2 as being spin ↓ at t in this

situation (it represents its state as a superposition of being spin ↓ and spin ↑).

○ (7) So, quantum mechanics is incomplete.

● Argument (1) — (7) is quite compelling.  The key premise is (4), but this seemed to have

a priori and empirical support, the latter coming from the Theory of Special Relativity.

This implies that there are no superluminal -- a fortiori instantaneous -- causal influences.

● In fact, since state |Ψ> is symmetric under rotations, (7) can be strengthened.  According

to the Copenhagen Interpretation, particle 2 has no determinate spin properties before

particle 1 is measured.  But Alice could have chosen to measure the spin of particle 1

along any axis.  Had she, she would have instantaneously known particle 2’s spin along

it.  Since Alice could not have instantaneously disturbed particle 2, quantum mechanics is

“infinitely incomplete” — i.e., particle 2 has infinitely-many measurement-independent

properties which quantum mechanics fails to represent it as having.  (This is the case

whether or not we could simultaneously measure a particle’s spin along different axes.)
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● Note: If this is right, then the whole apparatus of quantum mechanics seems

fundamentally misconceived.  No vector can point in two directions at once!  So, no

vector could represent electrons as having spin properties along even two of the axes.

● Note: If one accepts the EPR argument, we would seem to have to reject the disturbance

account of uncertainty relations suggested by Feynman and others (following

Heisenberg).  By measuring particle 1 we could instantaneously determine facts about

particle 2 without disturbing it.  So, if we cannot measure particle 2’s spin along different

axes simultaneously, this cannot be merely because we would have to disturb it.

● Question: The argument (understandably!) assumes that measurements have unique

outcomes.  How would giving up this assumption, a la Everett, affect the argument?

● Question: The EPR argument makes heavy use of counterfactuals. Are these avoidable?
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