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Abstract. A variant of the multi-armed bandit problem was recently introduced by Dimitriu,
Tetali and Winkler. For this model (and a mild generalization) we propose faster algorithms to
compute the Gittins index. The indexability of such models follows from earlier work of Nash on
generalized bandits.
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1. Introduction. The multi-armed bandit problem is a well studied optimiza-
tion problem concerned with dynamically allocating a single resource amongst several
competing projects. In the basic version of this problem, there are N independent
projects, each of which can be in one of many possible states. At each t = 1, 2, . . .,
we must operate exactly one of the projects; as a result, we earn a (possibly random)
reward that may depend on the state of the operated project, which undergoes a
Markovian state transition. The states of all the other projects remain frozen. Future
earnings are discounted by a factor β, and our objective is to decide the order in which
we must operate the various projects to maximize the expected total discounted re-
ward earned. Gittins and Jones [7] showed that to each project i, we can attach an
index which depends only on the state of project i, and is independent of the states of
all the other projects, and that operating a project with the largest index at any point
in time is optimal. (Such problems are said to be indexable.) Since their original proof,
many alternative and insightful proofs have appeared, see [14, 10, 12, 5, 9, 11, 1, 3].
In addition, several natural extensions and variations of the basic multi-armed bandit
model have been considered, see [8, 14, 15, 13, 2]. Especially relevant to this work is
the generalized bandit model of Nash [8], which considers a class of bandit problems
with a more general reward structure. In such a model, the reward obtained from a
transition in one project depends in a multiplicatively separable way on the states of
all the other projects. Nash [8] proved that this more general class of bandit problems
is indexable.

In this paper we consider a variant of the multi-armed bandit problem that has
been recently introduced in [4]. Here, as before, we are required to operate exactly
one of the projects, except that we are forced to stop upon reaching certain “target”
states. The formulation in [4] is in terms of costs (instead of rewards), and is used to
model situations in which there are multiple ways to accomplish a certain task, and
the goal is to find the “best” way; termination is assumed to be inevitable, and our
objective is to operate the projects so as to minimize the total expected cost incurred
until termination. By letting the “multiplicative factors” in the generalized bandit
model to be zero for the target states and one for the non-target states, we see that
the (discounted version of the) model considered here can be viewed as a special-case
of the generalized bandit problem.

2. Model & Related Work. There are n bandit processes; the ith process is
a Markov chain with a finite state space Si, and a sink ti ∈ Si. For convenience, we
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assume that the state spaces of the different bandit processes are disjoint. Time is
discrete and is indexed by t. If the ith bandit is at some state x ∈ Si and is operated
at time t, then the bandit moves to state y ∈ Si with probability pxy, and a (possibly
random) cost Cxy is incurred; if y = ti, we stop, otherwise we must choose a bandit
to operate at time t + 1. Our objective is to operate the bandits over time so as
to minimize the expected total cost incurred before termination, which we assume is
inevitable (so the expected total cost is finite). For simplicity, we assume that the
Cxy are deterministic, noting that much of what follows holds true for random Cxy

by simply replacing the random variables by their expected values.
We shall call the special case in which Cxy > 0 for all non-sink states x as the

positive-cost model, distinguishing it from the general model in which no assumptions
are made about Cxy. The indexability of the positive-cost model and the general cost
model can be inferred from the classical results of Gittins [6] and Nash [8] respectively,
by letting β → 1. In [4], the authors prove the indexability of the positive-cost model
by adapting Weber’s elegant intuitive proof to this setting; in addition, they provide
two algorithms to compute the Gittins index, both with complexity O(n5), where n
is the number of non-sink states. Our main observation is that standard techniques
result in an O(n3) algorithm to compute the Gittins index for the general model
(and hence for the positive-cost model as well); this matches the complexity of the
most efficient algorithm to compute the Gittins index in the usual multi-armed bandit
problem [11, 12].

3. Computing the Gittins Index. Since the model considered here is index-
able, we focus on a single bandit and show how the Gittins index can be computed for
each of its states. Without loss of generality, we assume that the bandit has a single
sink, which can be accessed from every other state; let Fx denote the probability of
going from state x to the sink in one step. Also, let Cx ≡

∑
y Cxypxy be the expected

cost of operating the bandit when it is in state x. For convenience, we also assume
that Fx > 0 for every non-sink state x. Later we show how this assumption can be
relaxed.

An alternative characterization of the Gittins index is the key to computing it
efficiently, so we discuss this briefly. Consider a “game” in which, at each step, one is
faced with two choices: continuing to operate the bandit, which costs (on average) Cx

if the bandit is in state x, or quitting by paying a fee of M dollars. It is well-known
that the Gittins index, νx, of a state x is the unique value of M at which one is
indifferent between operating the bandit in state x and quitting.

Suppose state x has the smallest Gittins index, and suppose the bandit is currently
in state x. Let the fee in the game described earlier be νx. By definition, it is optimal
to operate the bandit once, and quit by paying νx if the resulting state is not a sink;
thus νx = Cx/Fx. Unfortunately, we do not know the state with the smallest Gittins
index, so we test all possibilities. From the alternative characterization of the Gittins
index mentioned earlier, it is clear that x is a state with the smallest Gittins index if
and only if

x = arg min
y∈S

Cy

Fy
.

Having identified a state with the smallest Gittins index, we can now “reduce” the
bandit by eliminating x in the following manner (see [11]). Consider any non-sink
state y 6= x with pyx > 0. In computing the Gittins index of y, we may assume that
whenever we make a transition to x, we continue to operate the bandit until we leave
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x to reach some state z (which may possibly be y itself or even the sink); this sequence
of plays may be regarded as a single play with a “cost”

ĉyz = Cyx + Cxx

{
1

1− pxx
− 1

}
+ Cxz,

and a transition probability

p̂yz = pyx pxz/(1− pxx).

We note that ĉyz is the expected cost incurred during this composite play, which
can be broken down into three components: the first transition from y to x, costing
Cyx; the successive self-transitions at x, whose expected number is 1/(1 − pxx) − 1,
each costing Cxx; and the last transition from x to z, costing Cxz. The conditional
probability of an (x, z) transition, given that a transition from x to another state
occurs is pxz/(1 − pxx), which justifies the expression for p̂yz. If the (y, z) arc does
not already exist, we introduce one, and let Cyz = ĉyz, pyz = p̂yz; if the (y, z) arc
already exists, the cost for a y to z transition is updated as

Cyz ←
pyzCyz + p̂yz ĉyz

pyz + p̂yz
,

and the transition probability from y to z now becomes

pyz ← pyz + p̂yz.

For a bandit with n states, a state with the smallest Gittins index can be deter-
mined in O(n) time; the reduction algorithm needs to examine O(n2) pairs, each of
which requires O(1) time; so the complexity per iteration is O(n2) when there are n
states. The (reduced) bandit now has one less state; we proceed as before by identify-
ing a state with the minimum Gittins index, eliminating this state to further reduce
the bandit, etc. After (n − 1) applications of the reduction algorithm we will have
determined the Gittins index for all the non-sink states; thus the overall complexity
of computing the Gittins index for an n-state bandit is easily seen to be O(n3).

We now show how the assumption Fx > 0 for all non-sink states x can be relaxed.
Let x be a non-sink state with Fx = 0. If Cx ≤ 0, then we will always operate the
bandit in state x, so νx = −∞. (Such states must be reduced first.) If Cx > 0, it is
clear that x cannot be a state with the minimum index; in fact, it is easy to see that
some state adjacent to x must have a lower index (see [4]). In this case, the index of
state x will be determined by the algorithm at a later point.

Finally, we note that the algorithm proposed here can be extended to more general
versions of the problem such as the semi-Markov version (time is not slotted), and
the discounted version. We leave the obvious modifications to the reader.
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