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Abstract: In this paper, we rigorously study tractable models for provably recovering low-rank tensors.
Unlike their matrix-based predecessors, current convex approaches for recovering low-rank tensors based on
incomplete (tensor completion) and/or grossly corrupted (tensor robust principal analysis) observations still
suffer from the lack of theoretical guarantees, although they have been used in various recent applications
and have exhibited promising empirical performance. In this work, we attempt to fill this gap. Specifically,
we propose a class of convex recovery models (including strongly convex programs) that can be proved to
guarantee exact recovery under a set of new tensor incoherence conditions which only require the existence
of one low-rank mode, and characterize the problems where our models tend to perform well.
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1 Introduction
As modern computer technology keeps developing rapidly, multi-dimensional data (elements of which are
addressed by more than two indices) is becoming prevalent in many areas such as computer vision [41] and
information science [10, 37]. For instance, a color image is a 3-dimensional object with column, row and color
modes [30]; a greyscale video is indexed by two spatial variables and one temporal variable; and 3-D face
detection uses information with column, row, and depth modes. Tensor-based modeling is a natural choice
in these cases because of its capability for capturing these underlying multi-linear structures. Although
often residing in extremely high-dimensional spaces, the tensor of interest is frequently of low-rank, or
approximately so [19]. Consequently, low-rank tensor recovery or estimation is gaining significant attention
in many different areas: estimating latent variable graphical models [1], classifying audio [26], mining text
[7], processing radar signals [8], to name a few. Lying at the core of high-dimensional data analysis, tensor
decomposition serves as a useful tool for revealing when a tensor can be modeled as lying close to a low-
dimensional subspace. The two commonly used decompositions are the CANDECOMP/PARAFAC(CP)
[6, 15] and Tucker decomposition [40]. In particular, based on the Tucker decomposition, a convex surrogate
for tensor rank, which here we refer to as the sum-of-nuclear-norms (SNN), has been proposed in [25] and
has since appeared frequently in practical settings.

In this work, we focus on the Robust Low-rank Tensor Completion (RLRTC) problem which recovers a
low-rank tensor from partial or corrupted observations. More specifically, we study if an underlying low-rank
tensor can be recovered by minimizing the SNN over all tensors that obey the given data which may be
incomplete or corrupted by arbitrary outliers. This idea, after first being proposed in [25], has been studied
in [12, 34, 38, 39, 35], and successfully applied to various problems [36, 33, 20, 22, 11, 24]. Unlike the matrix
cases, the recovery theory for low-rank tensor estimation problems is far from being well established. In [39],
Tomioka et. al. conducted a statistical analysis of tensor decomposition and provided the first theoretical
guarantee for SNN minimization. This result was further enhanced by [27], in which it is not only proved
that the sample complexity bound obtained in [39] is tight when using the SNN as the convex surrogate, but
also an alternative model that works much better for high-order tensors is proposed. Unfortunately, both
of the aforementioned results assumed Gaussian measurements, while in practice the problem settings are
more often similar to matrix completion [5, 31, 14] or robust PCA [4, 42] problems. Mimicking their low-
dimensional predecessors, the RLRTC models that minimize the SNN have been applied to real applications
exhibiting promising empirical performances. However, to the best of our knowledge, there are still open
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questions regarding the theoretical guarantees for exact recovery in SNN-based tensor completion and tensor
RPCA problems.

From an optimization perspective, efficient algorithms based on the Augmented Lagrangian method and
splitting techniques have been designed for RLRTC problems, e.g., [13, 12, 44, 18]. In the matrix setting,
instead of solving the original convex programming problem directly, some algorithms, e.g., [3, 42, 16, 9],
have been proposed to solve the strongly convex problems obtained by adding a small ℓ2 perturbation τ∥·∥2F
to the original objective. It is well known that the Lagrangian dual for a strongly convex objective is
differentiable [32]. Therefore this leads to an unconstrained smooth dual problem which makes a wide class
of efficient methods applicable. In [45], the L-BFGS algorithm and gradient methods with line search were
studied, and a gradient algorithm based on Nesterov’s optimal scheme [28] was proposed in [16]. The major
issue with the strongly convex approach is that for exact recovery, τ needs to tend to zero. On the other
hand, empirically the convergence speed of most of the aforementioned algorithms depend on τ . In general,
a larger τ leads to a faster convergence rate. Fortunately, it has been proved that a finite τ is sufficient for
the purpose of low-rank matrix recovery. Therefore a natural technical question is if the same conclusion
holds for tensor recovery problems.

In this paper, we conduct a thorough study of models for RLRTC problems. Our contributions are
three-fold.

1. We provide provable models for RLRTC problems based on the Sum of Nuclear Norms (SNN) convex-
ification of the Tucker rank of a tensor. We also show that under mild conditions, the SNN model can
achieve exact recovery by automatically identifying the low-rank mode, and moreover, prior knowl-
edge of which mode is the one that is low-rank mode is not required. This is somewhat surprising,
and it significantly broadens the applicability of the model in practice, especially when it is difficult
to identify the exact nature of the low-rank property of the target tensor.

2. We compared the empirical performance of the SNN model against the Singleton matrix model which
only minimizes the nuclear norm of the lowest rank mode. Our experiments show that there exists
different regimes in which the high-order SNN model is superior to the regular matrix model and
vice versa. Inspired by these results, we derive a new set of tensor incoherence conditions for exact
recovery, which enables characterizing when the SNN model is a plausible model to use.

3. Due to the stronger convergence properties of fast algorithms that utilize strong convexity, we enhance
our models with a parameterized term that makes them strongly convex. We further show that the
strong convexity parameter τ does not need to tend to zero for exact recovery, thus facilitating the
use of these much more efficient algorithms.

1.1 Preliminary: Models for Low-rank Matrix Recovery
In this section, we review the existing convex programming models for Matrix Completion (MC) and Ro-
bust Principal Component Analysis(RPCA) [4, 42]. Both problems demonstrate that a low rank matrix
X0 ∈ Rn1×n2 (n1 ≥ n2) can be exactly recovered from partial or/and corrupted observations via convex
programming, under certain incoherence conditions on X0’s row and column spaces.

• [Matrix Incoherence Conditions] It is well known that exact recovery becomes tractable when
the matrix is not in the null space of the sampling operator. This requires the singular vectors of the
low-rank component X0 to be sufficiently spread and not highly correlated with any standard basis.
This motivates the following definition.

Definition 1.1. Assume that X0 ∈ Rn1×n2 is of rank r and has the singular value decomposition
X0 = UΣV ⊤ =

∑r
i=1 σiuiv

⊤
i , where σi, 1 ≤ i ≤ r are the singular values of X 0, and U and V are

the matrices of left and right singular vectors. Then the incoherence conditions with parameter µ
are:

maxi
∥∥U⊤ei

∥∥2
2
≤ µr

n1
, maxi

∥∥V ⊤ei
∥∥2
2
≤ µr

n2
, (1.1)∥∥UV ⊤∥∥

∞ ≤
√

µr
n1n2

, (1.2)

where {ei} is the standard matrix basis and ∥UV ⊤∥∞ is the ℓ∞ norm of the vectorization of UV ⊤.

From (1.1) and (1.2), it follows that

max
i

∥PUei∥22 ≤
µr

n1
, (1.3)

max
i

∥PV ei∥22 ≤
µr

n2
, (1.4)

where PU (resp. PV ) is the orthogonal projection onto the column space of U (resp. V ). Thus (1.3)
and (1.4) indicate how spread out the singular vectors are with respect to the standard basis. Note
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that for any subspace, the smallest µ can be is 1, which can be achieved when U is perfectly evenly
spread out. The largest possible value for µ is n1/r when a standard basis vector lies in the subspace
spanned by the columns of U and V . A well-conditioned matrix for the recovery is expected to have
small incoherence parameter µ. To the best of our knowledge, the above conditions (1.1)-(1.2) are
those most commonly used for analyzing the exact recovery for both matrix completion and RPCA
problems.

• [Matrix Completion (MC)] In MC problems, we would like to recover the matrix X0, given that
only entries in the support Ω are observed, where Ω ⊆ [n1]× [n2]. Namely, we observe PΩ[X0] where

(PΩ[X0])ij =

{
(X0)ij , if (i, j) ∈ Ω;

0, otherwise.
(1.5)

Clearly, this problem is ill-posed for general X0. However, the low-rankness of X0 greatly alleviates
the difficulty here. Here one minimizes the nuclear norm ∥ · ∥∗, the sum of all the singular values, to
recover the original low-rank matrix. As proposed in [5], and later further studied in [31, 14], even
when the number of observed entries, i.e. |Ω|, is much less than the ambient dimension n1n2, X0

with small rank r can still be exactly recovered by the following tractable (convex) approach:

min ∥X∥∗ (1.6)

s.t. PΩ[X] = PΩ[X0].

Guarantees for exactly recovering X 0 by solving (1.6) were first studied in [5], and later simplified
and sharpened in [31, 14].

• [Robust Principal Component Analysis (RPCA)] In RPCA problems, the goal is to recover
the low-rank matrix X0 from observations B, which is a superposition of the low-rank component
X0 and a sparse corruption component E0. In [4], the following convex programming problem was
proposed

min
X,E

λ ∥X∥∗ + ∥E∥1 (1.7)

s.t. X +E = B.

It has been shown that when λ =
√
n1, solving (1.7) exactly recovers X0 when it is low-rank and

incoherent.

• [Consolidated Model] Suppose in addition to being grossly corrupted, the data matrixB is observed
only partially (say only entries in the support Ω ⊆ [n1] × [n2] are accessible). The exact recovery
of X0, which is considered as a combination of (1.6) and (1.7), can be accomplished by solving the
following problem:

min λ ∥X∥∗ + ∥E∥1 (1.8)

s.t. PΩ[X +E] = B,

where the corruption matrix E has nonzero entries only on the subset Ω of its n1 × n2 entries, i.e.,
PΩ⊥ [E] = 0. Model (1.8) is equivalent to MC when there is no corruption, i.e., E = 0, and it
reduces to RPCA when Ω is the entire set of indices. This model has been studied in [4] and [23]. In
particular, the bound established in [23] is consistent with the best known results for both MC and
RPCA.

A strongly convex formulation is obtained by adding ℓ2 perturbation terms to the objective function
of problem (1.8), i.e.,

min λ ∥X∥∗ + ∥E∥1 +
τ

2
∥X∥2F +

τ

2
∥E∥2F (1.9)

s.t. PΩ[X +E] = B.

Strongly convex models have been studied for compressed sensing, MC and RPCA problems [45, 46,
48]. The results are that, instead of vanishing to zero, τ only needs to be reasonably small for exact
recovery. Since an extremely small τ often leads to an unsatisfying convergence rate, this feature of
τ greatly benefits optimization algorithms that utilize the strong convexity property.

1.2 Notation and Tensor Basics
Throughout the paper we denote tensors by boldface Euler script letters, e.g., X . Matrices are denoted
by boldface capital letters, e.g., X; vectors are denoted by boldface lowercase letters, e.g., x; and scalars
are denoted by lowercase letters, e.g., x. For the K-way tensor X ∈ Rn1×n2×···×nK , its mode-i fiber is
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a ni-dimensional column vector defined by fixing every index but the ith of X . The mode-i unfolding

(matricization) of the tensor X is the matrix denoted by X (i) ∈ Rni×
∏

j ̸=i nj that is obtained by concate-

nating all the mode-i fibers of X as column vectors. We use the notation n
(1)
i = max{ni,

∏
j ̸=i nj} and

n
(2)
i = min{ni,

∏
j ̸=i nj}. The vectorization vec(X ) is defined as vec(X (1)).

Norms: Here we extend vector norm definitions to tensors. The Frobenius norm of any tensor X is defined
as

∥X∥F := ∥vec(X )∥2.
Similarly, the l1/l∞ norm of a tensor X is defined by the l1/l∞ norm of its vectorization, i.e.,

∥X∥1/∞ := ∥vec(X )∥1/∞.

We use the norm ∥ · ∥ with no subscript to denote the spectral norm for matrices and Euclidean norm for
vectors.
Tensor-matrix multiplication: The mode-i (matrix) product of a tensor X with a matrix A of compatible
size is denoted as Y = X ×i A, where the ith mode of Y is

Y(i) := AX (i).

Linear and projection operators:

• [Matricization] We denote the tensor-to-matrix operator by a capital letter in calligraphic font, e.g.,
Ai, that transforms a tensor X to its mode-i unfolding, i.e.,

Ai(X ) := X (i),

and the adjoint of Ai, denoted by A∗
i , is defined by A∗

i (X (i)) = X .

• [Support] For a tensor X ∈ Rn1×n2×···nK , let Ω be any subset of indices, i.e., Ω ∈ [n1] × [n2] ×
· · · × [nK ]. Then a projection operator on PΩ is defined by

(PΩ[X ])i1,i2,···iK :=

{
X i1,i2,···iK (i1, i2, · · · iK) ∈ Ω
0 otherwise

The projection operator PΩ can be extended to tensor matricization. Specifically, we define PΩk
to

be the operator that projects the kth unfolding X (k) onto the support Ω, i.e.,

PΩk
[X (k)] := (AkPΩA∗

k)[X (k)].

Also for simplicity, we denote the support Ω applied to the kth mode to be Ωk when there is no
confusions in using this notation.

Tucker decomposition: The Tucker decomposition approximates X as

X = C ×1 A1 ×2 A2 · · · ×K AK ,

where C ∈ Rr1×r2×···rK is called the core tensor with ri ≪ ni in the low-rank case, and the factor matrices
{Ai ∈ Rni×ri} are column-wise orthonormal. The Tucker rank (also called n-rank) of X is a K-dimensional
vector whose i-th entry is the (matrix) rank of the mode-i unfolding X (i), i.e.,

ranktc(X ) :=
(
rank(X (1)), rank(X (2)), . . . , rank(X (K))

)
.

1.3 Organization of the Paper
The paper is organized as follows. In Section 2, motivated by the non-convex and convex models widely used
in practice for low-rank tensor recovery problems, we propose a class of convex recovery models (including
strongly convex programs) for which we can guarantee exact recovery under certain conditions. Based on
comparison of the empirical recovery performances between the Sum of Nuclear Norm (SNN) model and the
Singleton model, we propose a new set of incoherence conditions for tensor recovery problems. In Section 3,
we provide the full proof of the main theorem. The proof depends on the Golfing scheme that is somewhat
similar to the one in [23] to construct dual certificates. We conclude the paper with a discussion about
future research directions in Section 4.
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2 Robust Low-Rank Tensor Completion
Since a tensor generalizes the concept of a matrix, it arises naturally in applications of high-dimensional data
analysis. Tensor-based low-rank recovery models including tensor completion [25] and tensor robust PCA [13]
problems have been investigated and shown to perform well in various applications. Besides these empirical
studies, some progress on their theoretical guarantees have been achieved recently. In [39], Tomioka et. al.
conducted a statistical study of tensor decomposition and provided the first (upper)bound on the number of
random Gaussian measurements required for exact low-rank tensor recovery. More recently, Mu et. al. [27]
proved that, under the same settings, the bound obtained in [39] is tight. However, both aforementioned
results relate only to random Gaussian measurements, while a rigorous study for more practical settings
such as RLRTC problems, which are sometimes also known as tensor completion and tensor robust PCA
problems, has remained open. In this section, we extend the model (1.9) and propose a strongly convex
programming model for RLRTC problems with a provable recovery guarantee.

• [Convexification for tensor rank] The most commonly used definitions for tensor rank are the
CANDECOMP/PARAFAC(CP) rank [6, 15] and the Tucker rank [40]. Many recent applications
focus on the Tucker rank (n-rank) because of its basis on matrix rank. Given all tensors whose
corresponding elements match an incomplete set of observations, we would like to recover X 0 by
minimizing some combination of the n-vector Tucker rank, i.e.,

[Completion (non-convex)] min
w.r.t.RK

+

ranktc(X ) s.t. PΩ[X ] = PΩ[X 0]; (2.1)

[Robust PCA (non-convex)] min
w.r.t.RK

+

ranktc(X ) + ∥E∥0 s.t. X + E = B; (2.2)

[Mixture (non-convex)] min
w.r.t.RK

+

ranktc(X ) + ∥E∥0 s.t. PΩ[X + E] = B. (2.3)

To convexify the NP-hard vector optimization problems (2.1)-(2.2), it is natural to replace the Tucker
vector of ranks by a weighted sum of nuclear norms. This leads to the following scalar and convex
optimization problems

[Completion (convex)] min
X

K∑
i=1

λi∥X (i)∥∗ s.t. PΩ[X ] = PΩ[X 0]; (2.4)

[Robust PCA (convex)] min
X

K∑
i=1

λi∥X (i)∥∗ + ∥E∥1 s.t. X + E = B; (2.5)

[Consolidated (convex)] min
X

K∑
i=1

λi∥X (i)∥∗ + ∥E∥1 s.t. PΩ[X + E] = B. (2.6)

The idea of using the term
∑K

i=1 λi∥X (i)∥∗, which we refer to as Sum-of-Nuclear-Norms (SNN), as
a convex surrogate for the Tucker rank was first proposed in [25]. However, in this work we assign
possibly different weights to each nuclear norm, while in [25] and similar works that came afterwards,
only the heuristic of an equal weighted sum of nuclear norms was considered. Consequently, more
model parameters in problems (2.4) and (2.5) have to be tuned. Fortunately, we can provide an
explicit expression for λi that allows for exact recovery and only depends on the dimensions of the
target tensor X . Moreover, the above SNN becomes equally weighted when X has the same dimension
for every mode.

• [Comparison with the matrix model] Suppose that we have some prior knowledge about the
rank of the underlying tensor, i.e., the kth mode is low rank. Inspired by the matrix recovery model,
we can recover the true tensor by minimizing the nuclear norm of only the kth mode, which leads to
the following Singleton model

min
X (k)

∥X (k)∥∗ + ∥E(k)∥1 s.t. PΩ[X (k) + E(k)] = B(k). (2.7)

Note that (2.7) is exactly (1.8), with k being the low-rank mode and E(k) and B(k) being the kth
unfoldings of the corruption and observation tensors, respectively. Although the recovery theory for
the Singleton model has been well studied, it cannot be directly applied to the non-degenerate SNN
model (2.6), where λi ̸= 0 for all 1 ≤ i ≤ K. In fact, the empirical performance of these two models
can be rather different and the success of one does not necessarily imply the success of the other. To
demonstrate this, we randomly generated a 3-way tensor X 0 ∈ R30×30×30 with Tucker rank (1, r, r).
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We let r increase from 1 to 10, and the fraction ρ of the entries observed to range from 0 to 0.3. We
set equal weights for the SNN term as in [25] and similar works that came afterwards, i.e.,

λi = 1, i = 1, 2 · · ·K.

For simplicity, we assume no corruption existed in this case, i.e.

E = 0.

Therefore (2.6) reduces to the completion problem (2.4), and Figure 1 illustrates the success rates of
the two models.1
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ra
nk

Single Mode

0.05 0.1 0.15 0.2 0.25 0.3

1

2

3

4

5

6

7

8

9

10

rho

ra
nk

Sum of Nuclear Norms

0.05 0.1 0.15 0.2 0.25 0.3

1

2

3

4

5

6

7

8

9

10

Figure 1: A random tensor X 0 ∈ R30×30×30 with Tucker rank (1, r, r) was generated. We
let r increase from 1 to 10, and the fraction ρ of the entries observed to range from 0 to 0.3.
For each pair (ρ, r), we ran 5 independent trials and plotted the success rate k/5, where k is
the number of successful recoveries, i.e., relative error < 10−3. The lighter a region is, the
more likely exact recovery can be achieved under the given choice of ρ and r.

We notice from Figure 1 that the equal weighted SNN model outperformed the Singleton model
when r ≤ 5, but did worse than the Singleton model when r > 5. For instance, when r = 1, the
SNN model succeeds using only half of the number of observations of the Singleton model. When
r increases to 10, the SNN model fails while the Singleton model is capable of exact recovery with
about 25% observations. Specifically, the performance of the SNN model was very good for small r
but deteriorated as r was increased, while the Singleton model usually recovered X 0 when the fraction
of the elements of X 0 that were observed was greater than 0.25, regardless of the rank of all of the
other non-low-rank modes. This is not surprising since by minimizing the sum of nuclear norms, we
are enforcing a low-rank structure for all modes simultaneously even if this may not be the case for
the true solution. Therefore extra conditions are needed to ensure that all the non-low-rank modes
are not too far out of line from the well-conditioned low-rank mode when we are minimizing their
ranks.

In the next section we derive a new tensor mutual incoherence condition that characterizes the regimes
where the SNN model tends to work better for RLRTC problems.

• [Strongly convex programming] From an optimization perspective, instead of directly dealing
with the original convex programming problem (2.4) and (2.5), algorithms, e.g., [3, 42, 16, 9], have
been proposed to solve strongly convex programming problems that approximate (2.4) and (2.5) by
adding a small ℓ2 perturbation τ∥·∥2F to the original objective. This has the advantage of enabling the
use of faster optimization algorithms. This is due to the well known fact that the Lagrangian dual of
a strongly convex program is unconstrained as well as differentiable. The main drawback of this class
of problems sometimes comes from the noise introduced by the extra ℓ2 perturbation. The parameter
τ needs to tend to zero for exact recovery. On the other hand, for most of the aforementioned

1Note that many efficient algorithms have been proposed for solving the above Singleton and SNN models,
e.g., [3, 42, 16, 9, 13, 12, 44, 18]. Here we applied the Accelerated Linearizd Bregman (ALB) algorithm
proposed in [16] to solve both models. For the Singleton model, more implementation details can be found
in [16]. Solving SNN model with ALB has been demonstrated in the Appendix of [27]
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algorithms, an infinitely small τ will significantly deteriorate the convergence speed. Fortunately, it
has been proved that a finite τ is sufficient for the purpose of low-rank matrix recovery, and we show
in this paper that the same arguments can be extended to RLRTC problems.

2.1 Tensor Incoherence Conditions
As in low-rank matrix recovery problems, some incoherence conditions need to be met if recovery is to be
possible for tensor-based problems. Hence, we propose a new set of incoherence conditions (2.8)-(2.9) for
the sought after tensor X 0 by extending the matrix incoherence conditions (1.1)-(1.2) to the unfoldings of
X 0 and adding a new “mutual incoherence” condition. In contrast to the prevailing assumptions on low-
rank tensors, which require all modes to have low rank, our tensor incoherence conditions indicate that the
existence of only one low-rank mode is sufficient for exact recovery, and we do not need to know in advance
which mode is of low rank.

Definition 2.1. Suppose that for a tensor X 0 ∈ Rn1×n2×···nK , its unfoldings {X (i)}i=1,2··· ,K have the
singular value decompositions

X (i) = U iΣiV
⊤
i i = 1, 2, · · · ,K.

Let

λi :=

√
n
(1)
i and T :=

K∑
i=1

λiA∗
iU iV

⊤
i .

Then the tensor incoherence conditions with parameter µ are that there exists a mode k such that

[k-mode incoherence]


maxj ∥U⊤

k ej∥22 ≤ µrk
nk , maxj ∥V ⊤

k ej∥22 ≤ µrk∏K
j=1,j ̸=k

nj
,

∥λkUkV
⊤
k ∥∞ ≤ µ

√
rk

n
(2)
k

,
(2.8)

[mutual incoherence]
∥T ∥∞

K
≤ µ

√
rk

n
(2)
k

. (2.9)

where {ei} is the standard matrix basis.

Note that the first two inequalities in (2.8) are just the regular matrix incoherence conditions for the
low-rank mode (e.g., the k-th unfolding). If we define µk := µ where µ is defined in (2.8) and (2.9), the
second inequality of (2.8) is equivalent to

∥UkV
⊤
k ∥∞ ≤ µk

√
rk

n
(1)
k n

(2)
k

, (2.10)

since λk =

√
n
(1)
k . Furthermore, in order to account for the effect of the other modes and compare with

the condition (2.9), we generalize the above relation (2.10) to all modes, i.e. an incoherence parameter µi is
chosen for mode i such that the following inequality holds,

∥U iV
⊤
i ∥∞ ≤ µi

√
ri

n
(1)
i n

(2)
i

i = 1, 2, 3 · · ·K. (2.11)

If we define κi :=
ri

n
(2)
i

to be the “rank-saturation” for the ith mode, then from the triangle inequality, the

conditions (2.10) and (2.11) imply the following

∥T ∥∞
K

≤ µmax
√
κ, (2.12)

where µmax := maxi{µi} and κ := maxi{κi}. Here the condition (2.12) is a rough characterization of the
mutual incoherence condition among different modes. Therefore, by comparing it with our condition (2.9),
i.e.,

∥T ∥∞
K

≤ µ
√
κk,

we can see that (2.9) strengthens the original matrix incoherence condition (2.8) and potentially implies a
larger µ, especially when κ ≫ κk. Obviously κ ≫ κk means that the tensor X 0 is somewhat “unbalanced”
with respect to its ranks and incoherence for different modes. Hence, as suggested by our new mutual
incoherence condition (2.9), the “balance” of the tensor X 0 does play an important role for exact recovery
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using the SNN model. Moreover, the importance of (2.9) has also been supported by our previous numerical
results. From Figure 1, we have seen that for a well-balanced tensor X 0 with Tucker rank (1, r, r), as r
approaches 1, the performance of the SNN is significantly enhanced. With all other conditions being the
same, the SNN model exactly recovers X 0 using much fewer observations than the Singleton model.

On the other hand, to demonstrate the effect of (2.9) on µ, we randomly generated a 3-way tensor
X ∈ R100×100×100 with its Tucker decomposition

X = C ×1 A1 ×2 A2 · · · ×K AK ,

where the core tensor C ∈ R1×r×r had entrees generated from an i.i.d Gaussian distribution, and each Ai

was a random orthogonal matrix. In the first example shown in Figure 2, we gradually increased r from 2
to 100, so that while we always had κ1 = 1

100
, κ ranged from 2

100
to 1. From Figure 2, we observe that the

ratio
∥T ∥∞/K

∥λ1U1V
⊤
1 ∥∞

grows gradually as r and κ are increased. This means that the gap between (2.8) and

(2.9) becomes larger as X 0 get more unbalanced in terms of its Tucker ranks.

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

rank

ra
tio

How restricted is joint incoherence condition

Figure 2: The average ratio
∥
∑K

i=1 λiA∗
i UiV

⊤
i ∥∞/K

∥λ1U1V ⊤
1 ∥∞

as a function of the rank r for randomly

generated 3-way tensors X ∈ R100×100×100 with Tucker rank (1, r, r). For each rank r ∈
[1, 100], we ran 10 independent trials and averaged their output ratios

It is also interesting to see how µ scales with the dimension n for X 0 ∈ Rn×n×n with different Tucker
ranks. In Figure 3, we let n to increase from 5 to 250 and compare the cases of low Tucker ranks, i.e., (2, 2, 2)
and high Tucker ranks, i.e., (2, n, n). We compute the smallest µ induced by (2.9), i.e.,

µ =
∥T ∥∞

K
√

rk

n
(2)
k

.

The left subplot in Figure 3 shows that µ scales well with n with a rate of O(log(n
(1)
k )) for the low-rank

tensor X 0. This is not surprising since each mode i is incoherent thus implies µi = O(log(n
(1)
k )). However,

when the tensor X 0 is more unbalanced in terms of its Tucker ranks, µ scales badly as the dimensionality

n grows. The right subplot indicates that µ grows slower than

√
n
(1)
k in both cases.

As demonstrated in Figure 2 and 3, in the case where X 0 has unbalanced Tucker ranks, the condition
(2.9) requires a larger µ, thus leading to a weaker ability for exact recovery. Therefore, (2.9) does characterize
a class of tensors on which SNN is a plausible model to use since it favors tensors whose Tucker rank is
more balanced. Indeed, in Figure 1 we illustrate the difference between the SNN model and the Singleton
model for recovering an incomplete tensor X 0 under different ranks and observation levels. As the rank r
is increased, κ/κk gets larger and larger. Therefore, (2.9) becomes more restrictive and SNN minimization

8
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Figure 3: The smallest value of µ implied by (2.9) as a function of the dimensionality n for
randomly generated 3-way tensors X ∈ Rn×n×n with Tucker rank (2, r, r). We compare the
low-rank case with r = 2, and the high-rank case with r = n. For each rank n ∈ [5, 250], we
ran 5 independent trials and averaged their output for ∥T ∥∞

is more likely to perform poorly. In particular, (2.9) suggests that for good recovery, the average overall
incoherence should be on a par with the incoherence of the low-rank (kth) mode as measured by the infinity
norm.

2.2 Main Result
In this section, we consider recovering a low-rank tensor X 0 under incomplete and corrupted observations.
Let Ω be the set of entries accessible to us. Out of the entire set Ω, a subset Λ ⊂ Ω of the entries of X 0

are corrupted by E0, and Γ ⊂ Ω are locations where data are available and clean, thus Ω = Λ ∪ Γ. Here we
consider the following strongly convex version of this tensor model that is analogous to the matrix model
(1.9).

min
X ,E

f(X ,E) :=
K∑
i=1

λi∥X (i)∥∗ + ∥E∥1 +
τ

2
∥X∥2F +

τ

2
∥E∥2F

s.t. PΩ[X + E] = B
(2.13)

Now we present our main theorem on conditions under which solving (2.13) yields the exact recovery of
the true low-rank tensor X 0. The detailed proof is provided in the next section.

Theorem 2.2. Suppose X 0 obeys the incoherence conditions (2.8)-(2.9) with parameter µ, and the support

set Ω is uniformly distributed with cardinality m = ρn
(1)
k n

(2)
k . Also suppose that each observed entry is

independently corrupted with probability γ. Then provided that

rk ≤ CrK
−2 ρµ

−1n
(2)
k

log2 n
(1)
k

, γ ≤ Cγ (2.14)

or equivalently

ρ ≥ CρrkK
2 log

2 n
(1)
k

n
(2)
k

, γ ≤ Cγ

and

τ ≤
1

2n
(1)
k n

(2)
k (1 + 4

ρ(1−2Cγ)
)∥B∥F

, (2.15)

solving (2.13) with λi =

√
n
(1)
i yields the exact solution X 0 with probability at least 1−Cn−3 for where C,

Cr, Cρ and Cγ are positive numbers.
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As special cases of (2.13), the recovery guarantees for models (2.4) and (2.5) are naturally implied by
Theorem 2.2 as in the following corollaries.

Corollary 2.3. Suppose X 0 satisfies the incoherence conditions (2.8)-(2.9) with parameter µ, and E0 has
support uniformly distributed with probability γ and with arbitrary magnitude. Then provided that

rk ≤ CrK
−2 µ−1n

(2)
k

log2 n
(1)
k

, γ ≤ Cγ ,

and

λi =

√
n
(1)
i

we can exactly recover (X 0,E0) via solving (2.5) with probability at least 1 − Cn−3. Here C, Cr and Cγ

are all positive numbers.

Corollary 2.3 holds from Theorem 2.2 with ρ = 1 and τ = 0. It shows that the RPCA model (2.5) can

exactly recover (X 0,E0) with only n
(1)
k n

(2)
k observations, while the order of the degrees of freedom in the

underlying signal is Cn
(1)
k n

(2)
k and C > 1. The above bound is consistent with the best known result for

matrix RPCA.

Corollary 2.4. Suppose X 0 satisfies the incoherence conditions (2.8)-(2.9) with parameter µ, and ob-
servations are supported on Ω, which uniformly distributed with cardinality m. Then provided that m ≥
K2µ
Cr

rkn
(1)
k log2 n

(1)
k and λi =

√
n
(1)
i , we can exactly recover X 0 via solving (2.4) with probability at least

1− Cn−3. Here C and Cr are both positive numbers.

Corollary 2.4 holds from Theorem 2.2 with γ = 0 and τ = 0. Unlike Corollary 2.3 for the RPCA model,
the above result is arguably suboptimal for the cases when K ≥ 4. To illustrate, consider a K-way tensor
with length n and rank r in each mode. Then the degree of freedom of this tensor is O(rk + rnk), which is
substantially smaller than the number of measurements O(rnK−1) required in Corollary 2.4. For K ≥ 4, [27]
proposes a square model, minimizing the nuclear norm of a more balanced embedding of the tensor, which

only needs O(r⌊
K
2 ⌋n⌈

K
2 ⌉) Gaussian measurements. However, when K = 3, to the best of our knowledge, at

least O(rn2) measurements are required to recover a general low-rank tensor using any convex model that
is computationally tractable.

3 Architecture of the Proof

3.1 Sampling Schemes and Model Randomness
Theorem 2.2 is established based on using a Uniform sampling scheme without replacement to choose a
set of entrees Ω with cardinality m. However, in order to simplify our proofs, it is more convenient as is
commonly done to work with other sampling schemes, such as Bernoulli sampling. Specifically, in order to
simplify our proofs, we will work with Bernoulli sampling with a Random sign model.

[Bernoulli sampling] A Bernoulli sampling scheme has been used in previous work ([5], [4]) to facilitate the
analysis of matrix completion and RPCA problems. For the Bernoulli model, we have Ω := {(i, j) : δij = 1},
where the δij ’s are i.i.d Bernoulli variables taking value one with probability ρ and zero with probability
1− ρ. Bernoulli sampling can be written as Ω ∼ Ber(ρ) for short. Being a proxy for uniform sampling, the
probability of failure under Bernoulli sampling with p = m

n1×n2···×nK
closely approximates the probability

of failure under uniform sampling.

[Random sign model] A standard Bernoulli model assumes that Λ ∼ Ber(ργ)
Γ ∼ Ber((1− γ)ρ)
Ω ∼ Ber(ρ),

and that the signs of nonzeros entries of E0 are deterministic. However, it turns out that it is easier to prove
Theorem 2.2 under the stronger assumption that the signs of the nonzeros entries of E0 are independent
symmetric Bernoulli variables. We define two independent random subsets of Ω:

Λ′ ∼ Ber(2γρ),

Γ′ ∼ Ber((1− 2γ)ρ),

10



It is convenient to think of
E0 = PΛ[E],

for some fixed tensor E. Consider now a random sign tensor W with i.i.d. entries such that for any index
i⃗ ∈ Ri1×i2···×iK ,

P (W i⃗ = 1) = P (W i⃗ = −1) =
1

2
.

Now|E| ◦W has components with symmetric random signs and we define a new “noise” tensor

E′
0 := PΛ′ [|E| ◦W] .

By the standard derandomization theory (e.g., Theorem 2.3 in [4]), if the recovery of (X 0,E′
0) is exact

with high probability, then it is also exact with at least the same probability for the model with input data
(X 0,E0). Therefore from now on, we can equivalently work with

Λ ∼ Ber(2γρ), Γ ∼ Ber ((1− 2γ)ρ) ,

the locations of nonzero and zero entries of E0, respectively, and assume that the nonzero entries of E0 have
symmetric random signs.

3.2 Supporting Lemmas
Assume that the ith unfolding X (i) has the singular value decomposition

X (i) = U iΣiV
⊤
i i = 1, 2, · · · ,K. (3.1)

Define Ti to be the linear space

Ti :=
{
W |W = U iX

⊤ + Y V ⊤
i for some X,Y

}
, (3.2)

and T⊥
i to be the orthogonal complement of Ti. The orthogonal projection PTi

on Ti is given by

PTi
(Z) = PUi

Z +ZPVi
− PUi

ZPVi
, (3.3)

and PT⊥
i

is defined as

PT⊥
i
(Z) = (I −PUi

)Z(I −PVi
), (3.4)

where PUi
and PVi

are the orthogonal projections onto U i and V i respectively.

Lemma 3.1. With the tensor T defined as in Definition 2.1, we have, for any mode i,

T (i) ∈ Ti,

where the subspace Ti is defined in (3.2).

Proof. For X = C ×1 A1 ×2 A2 · · · ×K AK , let Lk ∈ Rrk×rk and Rk ∈ R
∏

j ̸=k rj×rk be matrices of the
left and right singular vectors of C(k), the mode k unfolding of C. Then the singular value decomposition of
X (k) obeys

X (k) = (AkLk)ΣkR
⊤
k Φ⊤

k , (3.5)

where Σk ∈ Rrk×rk is the matrix whose diagonal elements are the singular values of C(k) and

Φk := AK ⊗ · · ·Ak+1 ⊗Ak−1 · · · ⊗A1.

Therefore the subspace Tk in (3.2) corresponding to (3.5) is

Tk =
{
W |W = AkLkX

⊤ + Y R⊤
k Φ⊤

k for some X,Y
}
. (3.6)

Note that the columns of AkLk are orthonormal since those of Ak are and Lk is an orthonormal matrix.
On the other hand, T can be explicitly written as

T = CT ×1 A1 ×2 A2 · · · ×K AK , (3.7)

where CT :=
(∑K

i=1 λiA∗
iLiR

⊤
i

)
, and its kth unfolding T(k) = Ak (CT )(k) Φk is in Tk since we can choose

X and Y in (3.6) as

X = L−1
k (CT )(k) Φk, Y = 0.
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We now state three key inequalities which are crucial for the proof of the main theorem. The first and
third inequalities, i.e., (3.8) and (3.10), can be found in [5] and (3.9) can be found in [4]. Note that all three
inequalities are applied to the matricization on the kth mode where k is the low-rank mode.

Lemma 3.2. Suppose Ω is sampled from the Bernoulli model with parameter ρ, Let Z ∈ Rn1×n2··· ,×nK

and k is the low-rank mode in (2.8)-(2.9), and Ωk is the support Ω applied to the kth mode. Then with the
high probability, ∥∥ρ−1PTk

PΩk
PTk

− PTk

∥∥ ≤ ϵ, (3.8)

and ∥∥(ρ−1PTk
PΩk

PTk
−PTk

)Z(k)

∥∥
∞ ≤ ϵ∥PTk

Z(k)∥∞ (3.9)

provided that ρ ≥ C1ϵ−2 µrk logn
(1)
k

n
(2)
k

for some positive numerical constant C1;

∥(I − ρ−1PΩk
)Z(k)∥ ≤ C′

2

√
n
(1)
k logn

(1)
k

ρ
∥Z(k)∥∞ (3.10)

for some C′
2 > 0, provided that ρ ≥ C2

logn
(1)
k

n
(2)
k

for some small constant C2 > 0.

3.3 Dual Certificates
Lemma 3.3. If there exists some unfolding k ∈ [K] such that

∥
1

(1− 2γ)ρ
PTk

PΓk
PTk

− PTk
∥ ≤

1

2
,

and a matrix Y ∈ Rnk×
∏

j ̸=k nj satisfying

∥∥PTk
[Y ]− PTk

[
S(k) − T (k) + τ(X 0 − E0)(k)

]∥∥
F

≤ 1

n
(1)
k

n
(2)
k

,

∥∥∥PT⊥
k
[Y ]− PT⊥

k

[
S(k) + τ(X 0 − E0)(k)

]∥∥∥ ≤ λk
2
,

PΓ⊥
k
[Y ] = 0,

∥Y ∥∞ ≤ 1
2

(3.11)

where λk =

√
ρn

(1)
k and S(k) is the kth unfolding of

S := sgn(E0),

then (X 0,E0) is the unique solution of (2.13) when n
(1)
k n

(2)
k is sufficiently large.

Proof. Consider a feasible perturbation (X 0 + ∆,E0 − PΩ[∆]). We now show that the objective value
f(X 0 +∆,E0 − PΩ[∆]) is strictly greater than f(X 0,E0) unless ∆ = 0. Since{

A∗
i [U iV

⊤
i +W 0

i ] ∈ ∂ ∥Ai[X 0]∥∗ , for any i ∈ [K]
S +F0 ∈ ∂∥E0∥1,

where for each i

PTk
[W 0

i ] = 0,
∥∥W 0

i

∥∥ ≤ 1

PΓ⊥
k
[F0] = 0,

∥∥F0
∥∥
∞ ≤ 1,

we have
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f(X 0 +∆,E0 −PΩ[∆])− f(X 0,E0)

≥
⟨

K∑
i=1

λiA∗
i [U iV

∗
i ] +

K∑
i=1

λiA∗
i [W

0
i ] + τX 0,∆

⟩
−
⟨
S +F0 + τE0,PΩ[∆]

⟩
=

⟨
T +

K∑
i=1

λiA∗
i [W

0
i ] + τX 0,∆

⟩
−
⟨
S +F0 + τE0,∆

⟩
= λk

∥∥∥PT⊥
k
[∆(k)]

∥∥∥
∗
+
∥∥PΓk

[∆(k)]
∥∥
1
+ ⟨T − S + τ(X 0 − E0),∆⟩

= λk

∥∥∥PT⊥
k
[∆(k)]

∥∥∥
∗
+
∥∥PΓk

[∆(k)]
∥∥
1
+ ⟨Y − S(k) + T (k) + τ(X 0 − E0)(k),∆(k)⟩ − ⟨Y ,∆(k)⟩

= λk

∥∥∥PT⊥
k
[∆(k)]

∥∥∥
∗
+
∥∥PΓk

[∆(k)]
∥∥
1
+ ⟨PTk

[
Y − S(k) + T (k) + τ(X 0 − E0)(k)

]
,PTk

[
∆(k)

]
⟩

+⟨PT⊥
k

[
Y − S(k) + τ(X 0 − E0)(k)

]
,PT⊥

k

[
∆(k)

]
⟩+ ⟨Y ,PΓk

[
∆(k)

]
⟩

≥
λk

2

∥∥∥PT⊥
k
[∆(k)]

∥∥∥
∗
+

1

2

∥∥PΓk
[∆(k)]

∥∥
1
−

1

n
(1)
k n

(2)
k

∥∥PTk
[∆(k)]

∥∥
F
, (3.12)

where the first inequality follows directly from the convexity of ∥ · ∥∗ and ∥ · ∥1; the second inequality holds
as

PΩ⊥
[
S +F0 + τE0

]
= 0;

The third equality requires choosing W 0
i = 0 for all i ̸= k and picking up W 0

k and F0 such that

⟨A∗
kW

0
k,∆⟩ = ⟨W 0

k,∆(k)⟩ = ∥PT⊥
k
[∆(k)]∥∗

⟨F0,∆⟩ = ∥PΓ[∆]∥1 = ∥PΓk
[∆(k)]∥1;

the last inequality is due to (3.11), thus

⟨PTk

[
Y − S(k) + T (k) + τ(X 0 − E0)(k)

]
,PTk

[
∆(k)

]
⟩ ≥ −

1

n
(1)
k n

(2)
k

∥∥PTk
[∆(k)]

∥∥
F

⟨PT⊥
k

[
Y − S(k) + τ(X 0 − E0)(k)

]
,PT⊥

k

[
∆(k)

]
⟩ ≥ −

λk

2

∥∥∥PT⊥
k
[∆(k)]

∥∥∥
∗

⟨Y ,PΓk

[
∆(k)

]
⟩ ≥ −

1

2

∥∥PΓk
[∆(k)]

∥∥
1

Recall that we have

∥
1

(1− 2γ)ρ
PTk

PΓk
PTk

− PTk
∥ ≤

1

2
,

which implies ∥ 1√
(1−2γ)ρ

PTk
PΓk

∥ ≤
√

3/2, then

∥PTk
[∆(k)]∥F ≤ 2

∥∥∥∥ 1

(1− 2γ)ρ
PTk

PΓk
PTk

[∆(k)]

∥∥∥∥
F

≤ 2

∥∥∥∥ 1

(1− 2γ)ρ
PTk

PΓk
PT⊥

k
[∆(k)]

∥∥∥∥
F

+ 2

∥∥∥∥ 1

(1− 2γ)ρ
PTk

PΓk
[∆(k)]

∥∥∥∥
F

≤

√
6

(1− 2γ)ρ

∥∥∥PT⊥
k
[∆(k)]

∥∥∥
F

+

√
6

(1− 2γ)ρ

∥∥PΓk
[∆(k)]

∥∥
F

(3.13)

Substituting (3.13) into (3.12), we obtain

f(X 0 +∆,E0 − PΩ[∆])− f(X 0,E0)

≥
(
λk

2
−

1

n
(1)
k n

(2)
k

√
6

(1− 2γ)ρ

)∥∥PTk
[∆(k)]

∥∥
F

+

(
1

2
−

1

n
(1)
k n

(2)
k

√
6

(1− 2γ)ρ

)∥∥PΓk
[∆(k)]

∥∥
F
. (3.14)

When n
(1)
k n

(2)
k is large such that

1

2
−

1

n
(1)
k n

(2)
k

√
6

(1− 2γ)ρ
> 0,
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the inequality (3.14) holds if and only if PTk
[∆(k)] = PΓk

[∆(k)] = 0. On the other hand, when ρ is small
such that ∥∥PTk

PΓk

∥∥ ≤
√

3(1− 2γ)ρ

2
< 1,

which implies that PTk
PΓk

is injective. As a result, (3.14) holds if and only if ∆ = 0.

Proof of Theorem 2.2:

Proof. We apply the Golfing Scheme similar to that in [23] to construct the dual certificate Y that satisfies

∥∥PTk
Y −PTk

[
S(k) − T (k)

]∥∥
F

≤ 1

2n
(1)
k

n
(2)
k∥∥∥PT⊥

k
Y
∥∥∥ ≤ λk

8∥∥∥PT⊥
k

[
S(k)

]∥∥∥ ≤ λk
8

∥Y ∥∞ ≤ 1
2

(3.15)

and verify the following condition for τ
τ ·
∥∥PTk

[
(X 0 − E0)(k)

]∥∥
F

≤ 1

2n
(1)
k

n
(2)
k

τ ·
∥∥∥PT⊥

k

[
(X 0 − E0)(k)

]∥∥∥ ≤ λk
4
.

(3.16)

.
[Proof of (3.15)] We construct Y , which is supported on Γk, by gradually increasing the size of Γk. Now
think of Γk ∼ Ber((1−2γ)ρ) as a union of sets of support Γj , i.e., Γk =

∪p
j=1 Γ

j where Γj ∼ Ber(qj). Define

q1 = q2 =
(1−2γ)ρ

6
and q3 = · · · = qp = q, which implies q ≥ Cρ/ logn

(1)
k . Thus we have

1− (1− 2γ)ρ =

(
1−

(1− 2γ)ρ

6

)2

(1− q)p−2,

where p = ⌊5 logn+ 1⌋. Starting from Y 0 = 0, we define Y L inductively
Z0 = PTk

[
S(k) − T (k)

]
,

Y j =
∑j

i=1 q
−1
i PΓi [Zi−1],

Zj = Z0 −PTk
Y j ,

which implies that

Zj =
(
PTk

− q−1
j PTk

PΓjPTk

)
[Zj−1].

Then it follows from Lemma 3.2 that

∥Zj∥F ≤
1

2
∥Zj−1∥F

∥Z1∥∞ ≤
1

2

√
logn

(1)
k

∥Z0∥∞, ∥Zj∥∞ ≤
1

2j logn
(1)
k

∥Z0∥∞ ∀j > 1,

∥∥∥(I − q−1
j PΓj

)
Zj−1

∥∥∥ ≤ C

√√√√n
(1)
k logn

(1)
k

qj
∥Zj−1∥∞

• We first bound
∥∥Z0

∥∥
F

and
∥∥Z0

∥∥
∞. By the triangle inequality, we have

∥Z0∥∞ ≤ ∥T (k)∥∞ + ∥PTk
[S(k)]∥∞. (3.17)

Recall that for any (i, j) ∈ Rn
(1)
k

×n
(2)
k , we have

∥PTk
[eie

⊤
j ]∥∞ ≤

2µrk

n
(2)
k

, ∥PTk
[eie

⊤
j ]∥F ≤

√
2µrk

n
(2)
k

.
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By Bernstein’s inequality, we have

P
(
|⟨PTk

[
S(k)

]
, eie

⊤
j ⟩| ≥ t

)
= P

(
|⟨S(k),PTk

[eie
⊤
j ]⟩| ≥ t

)
≤ 2 exp

(
−

t2/2

N +Mt/3

)
,

where
N := 2γρ · ∥PTk

eie
⊤
j ∥2F ≤ Cγρ

µrk

n
(2)
k

,

and

M :=
∥∥∥PTk

eie
⊤
j

∥∥∥
∞

≤
2µrk

n
(2)
k

.

Then with high probability, we have

∥PTk
[S(k)]∥∞ ≤ C

√√√√ρ
µrk logn

(1)
k

n
(2)
k

,

and from the mutual incoherence condition (2.9)

∥T (k)∥∞ = ∥T ∥∞ ≤ K

√
µrk

n
(2)
k

Therefore from (3.17) we have

∥Z0∥∞ ≤ CK

√√√√µrk logn
(1)
k

n
(2)
k

(3.18)

∥Z0∥F ≤
√

n
(1)
k n

(2)
k ∥Z0∥∞ ≤ CK

√
µrkn

(1)
k logn

(1)
k (3.19)

• Second, we bound ∥PT⊥
k
Y p∥.

∥PT⊥
k
Y p∥ ≤

∑
j

∥q−1
j PT⊥

k
PΓjZj−1∥

≤
∑
j

∥q−1
j (PΓj − I)Zj−1∥

≤ C
∑
j

√√√√n
(1)
k logn

(1)
k

qj
∥Zj−1∥∞

≤ C

√
n
(1)
k logn

(1)
k

 p∑
j=3

1

2j−1 logn
(1)
k

√
qj

+
1

2

√
logn

(1)
k q2

+
1

√
q1

 ∥Z0∥∞

≤ CK

√√√√√n
(1)
k µrk

(
logn

(1)
k

)2
n
(2)
k ρ

≤ C

√√√√n
(1)
k

Cρ

≤
λk

8
.

The last inequality holds when Cρ is large enough.

• Third, we bound
∥∥∥PT⊥

k
[S(k)]

∥∥∥. Since
∥∥∥PT⊥

k
[S(k)]

∥∥∥ ≤ ∥S(k)∥ and the sign matrix S(k) = sgn(E0) is

distributed as

(
S(k)

)
ij

=

 1, w.p. γρ
0, w.p. 1− 2γρ
−1, w.p. γρ,
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standard arguments about the norm of a matrix with i.i.d entries give

∥S(k)∥ ≤
λk

8
,

when Cγ is sufficiently small.

• Fourth, we bound ∥Y p∥∞.

∥Y p∥∞ ≤
∑
j

∥∥∥q−1
j PT⊥

k
PΓjZj−1

∥∥∥
∞

≤
∑
j

∥∥∥q−1
j (PΓj − I)Zj−1

∥∥∥
∞

≤ C
∑
j

1

qj
∥Zj−1∥∞

≤

 p∑
j=3

1

2j−1 logn
(1)
k

√
qj

+
1

2

√
logn

(1)
k q2

+
1

√
q1

 ∥Z0∥∞

≤ K

√√√√µr logn
(1)
k

n
(2)
k ρ

≤
√

1

Cρ logn
(1)
k

≤ 1/4

provided Cρ is sufficiently large.

• Last, we show that ∥∥PTk
Y p − PTk

[
S(k) − T (k)

]∥∥
F

≤
1

2n
(1)
k n

(2)
k

.

Since PTk
Y p − PTk

[
S(k) − T (k)

]
= PTk

Y p −Z0 = −Zp, we only need to bound ∥Zp∥F , i.e.,∥∥PTk
Y p − PTk

[
S(k) − T (k)

]∥∥
F

= ∥Zp∥F

≤ C

(
1

2

)p

∥Z0∥F

≤ C
(
n
(1)
k

)−5
√

µrkn
(1)
k logn

(1)
k

≤
1

2n
(1)
k n

(2)
k

.

[Proof of (3.16)] To establish the condition for τ under which (3.16) holds, it suffices to bound ∥X 0−E0∥F
since ∥∥PTk

[
(X 0 − E0)(k)

]∥∥
F

≤ ∥X 0 − E0∥F ,∥∥∥PT⊥
k

[
(X 0 − E0)(k)

]∥∥∥ ≤ ∥X 0 − E0∥F ,

and we require

τ <
1

2n
(1)
k n

(2)
k ∥X 0 − E0∥F

.

We observe that

∥X 0 − E0∥F = ∥(I + PΩ)[X 0]−B∥F ≤ 2∥X 0∥F + ∥B∥F . (3.20)

Since

∥PTk
−

1

(1− 2γ)ρ
PTk

PΓk
PTk

∥ ≤
1

2
,

we have

∥X 0∥F ≤
2

(1− 2γ)ρ

∥∥PTk
PΓk

PTk
[(X 0)(k)]

∥∥
F

=
2

(1− 2γ)ρ

∥∥PTk
PΓk

[B(k)]
∥∥
F

≤
2

(1− 2γ)ρ
∥B∥F . (3.21)
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Therefore we have

∥X 0 − E0∥F ≤
(
1 +

4

(1− 2γ)ρ

)
∥B∥F ,

and it suffices to have

τ ≤
1

2n
(1)
k n

(2)
k

(
1 + 4

p0(1−γs)

)
∥B∥F

, (3.22)

4 Discussions
In this paper, we establish a theoretical bound for a RLRTC model, i.e., (2.13), based on SNN convexification.
The model (2.13), extending both matrix completion and matrix RPCA models to the case of tensors,
employs a strongly convex programming formulation. Its reduced form, i.e., τ = 0, has been repeatedly used
in practice with a promising empirical performance. Our paper presents, to the best of our knowledge, the
first rigorous study on theoretical guarantees for this model. Simulations show that, with λ’s being fixed,
the tensor model (2.13) performs much better when the target tensor X 0 has more balanced Tucker ranks.
Thus we propose a new set of tensor incoherence conditions under which using high-order tensor models
based on SNN minimization is plausible.

For the tensor completion problem, our results imply that, using SNN, Ω
(
rnK−1

)
observed entries are

sufficient to recover a K-way tensor with length n and rank r along each mode, which is recently proved to
be tight by [29]. Also it is worth mentioning that the SNN-based models such as (2.13), despite being very
popular, are not the only effective approach for solving the RLRTC problem. Recently, other models – e.g.
[21, 17, 47, 2, 43], have been proposed with potentially better complexity bounds.

Furthermore, the bounds achieved in Theorem 2.2 do not explain why the SNN model (2.13) is superior
to the Singleton model, as suggested by numerical simulations, when the Tucker ranks of all modes are
simultaneously low. This requires a sharper bound for model (2.13) and would be an interesting topic for
future research.
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