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Abstract. We study the Short-and-Sparse (SaS) deconvolution problem of recovering a short signal a0 and a4
sparse signal x0 from their convolution. We propose a method based on nonconvex optimization,5
which under certain conditions recovers the target short and sparse signals, up to a signed shift6
symmetry which is intrinsic to this model. This symmetry plays a central role in shaping the7
optimization landscape for deconvolution. We give a regional analysis, which characterizes this8
landscape geometrically, on a union of subspaces. Our geometric characterization holds when the9
length-p0 short signal a0 has shift coherence µ, and x0 follows a random sparsity model with sparsity10

rate ✓ 2
h
c1
p0
, c2
p0

p
µ+

p
p0

i
· 1
log2 p0

. Based on this geometry, we give a provable method that successfully11

solves SaS deconvolution with high probability.12
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1. Introduction. Datasets in a wide range of areas, including neuroscience [37], microscopy15

[15] and astronomy [49], can be modeled as superpositions of translations of a basic motif.16

Data of this nature can be modeled mathematically as a convolution y = a0 ⇤ x0, between17

a short signal a0 (the motif) and a longer sparse signal x0, whose nonzero entries indicate18

where in the sample the motif is present. A very similar structure arises in image deblurring19

[14], where y is a blurry image, a0 the blur kernel, and x0 the (edge map) of the target sharp20

image.21

Motivated by these and related problems in imaging and scientific data analysis, we study22

the Short-and-Sparse (SaS) Deconvolution problem of recovering a short signal a0 2 Rp0 and23

a sparse signal x0 2 Rn (n � p0) from their length-n cyclic convolution y = a0 ⇤ x0 2 Rn1.24

This SaS model exhibits a basic scaled shift symmetry: for any nonzero scalar ↵ and cyclic25

shift s`[·],26

(1.1)
⇣
↵ s`[a0]

⌘
⇤
⇣

1
↵ s�`[x0]

⌘
= y.27

Because of this symmetry, we only expect to recover a0 and x0 up to a signed shift (see28

Figure 1). Our problem of interest can be stated more formally as:29

Problem 1.1 (Short-and-Sparse Deconvolution). Given the cyclic convolution2 y = a0 ⇤x0 230

Rn of a0 2 Rp0 short (p0 ⌧ n), and x0 2 Rn sparse, recover a0 and x0, up to a scaled shift.31

⇤Submitted to the editors Jan/08/2019; revised Sep/20/2019.
Funding: This work was funded by NSF 1343282, NSF CCF 1527809, and NSF IIS 1546411

†Department of Electronic Engineering and Data Science Institute, Columbia University.
‡Department of Computer Science, Cornell University.
§Department of Applied Physics and Applied Mathematics, Columbia University.
1In this paper, the cyclic convolution a0 ⇤ x0 assumes a0 to be zeropadded [a0,0

n�p0 ] to length n.
2Our result can be applied to recovering direct convolutions. Let y 2 Rp0+n�1 be the direct convolution

between a0 2 Rp0 and x0 2 Rn, then y can also be expressed as circular convolution between a0 and [x0;0
p0�1].
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Figure 1. Shift symmetry in Short-and-Sparse deconvolution. An observation y (left) which is a
convolution of a short signal a0 and a sparse signal x0 (top right) can be equivalently expressed as a convolution
of s`[a0] and s�`[x0], where s`[·] denotes a shift ` samples. The ground truth signals a0 and x0 can only be
identified up to a scaled shift.

Despite a long history and many applications, until recently very little algorithmic theory32

was available for SaS deconvolution. Much of this di�culty can be attributed to the scale-shift33

symmetry: natural convex relaxations fail3, and nonconvex formulations exhibit a complicated34

optimization landscape, with many equivalent global minimizers (scaled shifts of the ground35

truth) and additional local minimizers (scaled shift truncations of the ground truth), and a36

variety of critical points [63, 64]. Currently available theory guarantees approximate recovery37

of a truncation4 of a shift s`[a0], rather than guaranteeing recovery of a0 as a whole, and38

requires certain (complicated) conditions on the convolution matrix associated with a0 [63].39

In this paper, we describe an algorithm which, under simpler conditions, exactly recovers a40

scaled shift of the pair (a0,x0). Our algorithm is based on a formulation first introduced in41

[64], which casts the deconvolution problem as (nonconvex) optimization over the sphere. We42

characterize the geometry of this objective function, and show that near a certain union of43

subspaces, every local minimizer is very close to a signed shift of a0. Based on this geometric44

analysis, we give provable methods for SaS deconvolution that exactly recover a scaled shift45

of (a0,x0) whenever a0 is shift-incoherent and x0 is a su�ciently sparse random vector. Our46

geometric analysis highlights the role of symmetry in shaping the objective landscape for SaS47

deconvolution.48

The remainder of this paper is organized as follows. Section 2 introduces our optimization49

approach and modeling assumptions. Section 3 introduces our main results — both geometric50

and algorithmic — and compares them to the literature. Section 4-5 describes the main ideas51

of our analysis. Finally, Section 7 discusses two main limitations of our analysis and describes52

directions for future work.53

3Such as matrix lifting relaxation [2, 39], in which a0 or x0 resides in random subspaces w/o shift symmetry.
4I.e., the portion of the shifted signal s`[a0] that falls in the window {0, . . . , p0 � 1}.
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2. Formulation and Assumptions.54

2.1. Nonconvex SaS over the Sphere. Our starting point is the (natural) formulation55

(2.1) min
a,x

1
2 ka ⇤ x� yk22
Data Fidelity

+ � kxk1
Sparsity

s.t. kak2 = 1.56

We term this optimization problem the Bilinear Lasso, for its resemblance to the Lasso57

estimator in statistics. Indeed, letting58

(2.2) 'lasso(a) ⌘ min
x

n
1
2 ka ⇤ x� yk22 + � kxk1

o
59

denote the optimal Lasso cost, we see that (2.1) simply optimizes 'lasso with respect to a:60

(2.3) min
a

'lasso(a) s.t. kak2 = 1.61

In (2.1)-(2.3), we constrain a to have unit `2 norm. This constraint breaks the scale ambi-62

guity between a and x. Moreover, the choice of constraint manifold has surprisingly strong63

implications for computation: if a is instead constrained to the simplex, the problem admits64

trivial global minimizers. In contrast, local minima of the sphere-constrained formulation often65

correspond to shifts (or shift truncations [64]) of the ground truth a0.66

The problem (2.3) is defined in terms of the optimal Lasso cost. This function is challenging67

to analyze, especially far away from a0. [64] analyzes the local minima of a simplification of68

(2.3), obtained by approximating5 the data fidelity term as69

1
2 ka ⇤ x� yk22 =

1
2 ka ⇤ xk

2
2 � ha ⇤ x,yi+

1
2 kyk

2
2 ,70

⇡ 1
2 kxk

2
2 � ha ⇤ x,yi+

1
2 kyk

2
2 .(2.4)71

This yields a simpler objective function72

(2.5) '`1(a) = min
x

n
1
2 kxk

2
2 � ha ⇤ x,yi+

1
2 kyk

2
2 + � kxk1

o
.73

We make one further simplification to this problem, replacing the nondi↵erentiable penalty74

k·k1 with a smooth approximation ⇢(x).6 Our analysis allows for a variety of smooth sparsity75

surrogates ⇢(x); for concreteness, we state our main results for the particular penalty776

(2.6) ⇢(x) =
P

i

�
x
2
i + �2

�1/2
.77

For � > 0, this is a smooth function of x; as � & 0 it approaches kxk1. Replacing k·k1 with78

⇢(·), we obtain the objective function which will be our main object of study,79

(2.7) '⇢(a) = min
x

n
1
2 kxk

2
2 � ha ⇤ x,yi+

1
2 kyk

2
2 + �⇢(x)

o
.80

5For a generic a, we have hsi[a], sj [a]i ⇡ 0 and hence ka ⇤ xk22 = x⇤C⇤
aCax ⇡ x⇤Ix = kxk22. The use of

'⇢ performs not as ideal comparing to bilinear Lasso when this approximation is inexact, see Section 7.
6'`1 is not twice di↵erentiable everywhere hence can’t be minimized with conventional second order methods.
7This particular surrogate is sometimes being named as the pseudo-Huber function.
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As in [64], we optimize '⇢(a) over the sphere Sp�1:81

(2.8) min
a

'⇢(a) s.t. a 2 Sp�1.82

Here, we set p = 3p0�2. As we will see, optimizing over this slightly higher dimensional sphere83

enables us to recover a (full) shift of a0, rather than a truncated shift. Our approach will leverage84

the following fact: if we view a 2 Sp�1 as indexed by coordinates W = {�p0 + 1, . . . , 2p0 � 1}85

, then for any shifts ` 2 {�p0 + 1, . . . , p0 � 1}, the support of `-shifted short signal s`[a0] is86

entirely contained in interval W . We will give a provable method which recovers a scaled87

version of one of these canonical shifts.88

2.2. Analysis Setting and Assumptions. For convenience, we assume that a0 has unit `289

norm, i.e., a0 2 Sp0�1.8 Our analysis makes two main assumptions, on the short motif a0 and90

the sparse map x0, respectively:91

The first is that distinct shifts a0 have small inner product. We define the shift coherence92

of µ(a0) to be the largest inner product between distinct shifts:93

(2.9) µ(a0) = max
6̀=0

|ha0, s`[a0]i|94

The quantity µ(a0) is bounded between 0 and 1. Our theory allows any µ smaller than95

some numerical constant. Figure 2 shows three examples of families of a0 that satisfy this96

assumption:97

• Spiky. When a0 is close to the Dirac delta �0, the shift coherence µ(a0) ⇡ 0.9 Here,98

the observed signal y consists of a superposition of sharp pulses. This is arguably the99

easiest instance of SaS deconvolution.100

• Generic. If a0 is chosen uniformly at random from the sphere Sp0�1, its coherence is101

bounded as µ(a0) /
p
1/p0 with high probability.102

• Tapered Generic Lowpass. Here, a0 is generated by taking a random conjugate103

symmetric superposition of the first L length-p0 Discrete Fourier Transform (DFT)104

basis signals, windowing (e.g., with a Hamming window) and normalizing to unit `2105

norm. When L = p0
p
1� �, with high probability µ(a0) / �. In this model, µ does106

not have to diminish as p0 grows – it can be a fixed constant10.107

Intuitively speaking, problems with smaller µ are easier to solve, a claim which will be made108

precise in our technical results.109

We assume that x0 is a sparse random vector. More precisely, we assume that x0 is110

Bernoulli-Gaussian, with rate ✓:111

(2.10) x0i = !igi,112

8This is purely a technical convenience. Our theory guarantees recovery of a signed shift (±s`[a0],±s�`[x0])
of the truth. If a0 does not have unit norm, identical reasoning implies that our method recovers a scaled shift�
↵s`[a0],↵

�1s�`[x0]
�
with ↵ = ± 1

ka0k2
.

9The use of “⇡” here suppresses constant and logarithmic factors.
10The upper right panel of Figure 2 is generated using random DFT components with frequencies smaller

then one-third Nyquist. Such a kernel is incoherent, with high probability. Many commonly occurring low-pass
kernels have µ(a0) larger – very close to one. One of the most important limitations of our results is that they
do not provide guarantees in this highly coherent situation. See [34].
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Spiky Generic Tapered Generic Lowpass

µ ⇡ 0 µ ⇡ p�1/2
0

µ ⇡ �

✓ ⇡ p�1/2
0

(
p
p0 events every p0)

✓ ⇡ p�3/4
0

( 4
p
p0 events every p0)

✓ ⇡ p�1
0

(1 event every p0)

a0

x0

Figure 2. Sparsity-coherence tradeo↵: Top: three families of motifs a0 with varying coherence µ.
Bottom: maximum allowable sparsity ✓ and number of copies ✓p0 within each length-p0 window. Here, we
suppress constants and logarithmic factors. When the target motif has smaller shift-coherence µ, our result
allows larger ✓, and vise versa. This sparsity-coherence tradeo↵ is made precise in our main result Theorem 3.1,
which, loosely speaking, asserts that when ✓ / 1/(p0

p
µ+

p
p0), our method succeeds.

where !i ⇠ Ber(✓), gi ⇠ N (0, 1) and all random variables are jointly independent. We write113

this as114

(2.11) x0 ⇠i.i.d. BG(✓).115

Here, ✓ is the probability that a given entry x0i is nonzero. Problems with smaller ✓ are easier116

to solve. In the extreme case, when ✓ ⌧ 1/p0, the observation y contains many isolated copies117

of the motif a0, and a0 can be determined by direct inspection. Our analysis will focus on the118

nontrivial scenario, when ✓ ' 1/p0.119

Our technical results will articulate sparsity-coherence tradeo↵s, in which smaller coherence120

µ enables larger ✓, and vice-versa. More specifically, in our main theorem, the sparsity-coherence121

relationship is captured in the form122

✓ / 1/(p0
p
µ+
p
p0).(2.12)123124

When the target a0 is very shift-incoherent (µ ⇡ 0), our method succeeds when each length-p0125

window contains about
p
p0 copies of a0. When µ is larger (as in the generic lowpass model),126

our method succeeds as long as relatively few copies of a0 overlap in the observed signal. In127

Figure 2, we illustrate these tradeo↵s for the three models described above.128

3. Main Results: Geometry and Algorithms. In this section, we introduce our main129

results – on the geometry of '⇢ (Subsection 3.1) and its algorithmic implications (Subsection 3.2).130

Finally, in Subsection 3.3, we compare these results with the literature on deconvolution.131
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B`2,r(s`[a0]) \ Sp�1

s`[a0]

'⇢(a)

Figure 3. Geometry of '⇢

near a shift of a0. Bottom: a
portion of the sphere Sp�1, colored
according to '⇢. Top: '⇢ visualized
as height. '⇢ is strongly convex in
this region, and it has a minimizer
very close to s`[a0].

3.1. Geometry of the Objective '⇢. The goal in SaS de-132

convolution is to recover a0 (and x0) up to a signed shift — i.e.,133

we wish to recover some ±s`[a0]. The shifts ±s`[a0] play a key134

role in shaping the landscape of '⇢. In particular, we will argue135

that over a certain subset of the sphere, every local minimum136

of '⇢ is close to some ±s`[a0].137

To gain intuition into the properties of '⇢, we first visualize138

this function in the vicinity of a single shift s`[a0] of the ground139

truth a0. In Figure 3, we plot the function value of '⇢ over140

B`2,r(s`[a0]) \ Sp�1,141142

where B`2,r(a) is a ball of radius r around a. We make two143

observations:144

• The objective function '⇢ is strongly convex in this145

neighborhood of s`[a0].146

• There is a local minimizer very close to s`[a0].147

We next visualize the objective function '⇢ near the linear span of two di↵erent shifts148

s`1 [a0] and s`2 [a0]. More precisely, we plot '⇢ near the intersection (Figure 4, left) of the149

sphere Sp�1 and the linear subspace150

S{`1,`2} = { ↵1s`1 [a0] +↵2s`2 [a0] |↵1,↵2 2 R } .151

We make three observations:152

• Again, there is a local minimizer near each shift s`[a0].153

• These are the only local minimizers in the vicinity of S{`1,`2}. In particular, the154

objective function ' exhibits negative curvature along S{`1,`2} at any superposition155

↵1s`1 [a0] +↵2s`2 [a0] whose weights ↵1 and ↵2 are balanced, i.e., |↵1| ⇡ |↵2|.156

• Furthermore, the function '⇢ exhibits positive curvature in directions away from the157

subspace S`1,`2 .158

s`2 [a0]

s`1 [a0]

S{`1,`2}

s`1 [a0]

s`2 [a0]

S{`1,`2} \ Sp�1

'⇢(a)

Figure 4. Geometry of '⇢ near the span S{`1,`2} of two shifts of a0. Left: each pair of shifts s`1 [a0],
s`2 [a0] defines a linear subspace S{`1,`2} of Rp. Center/right: every local minimum of '⇢ near S{`1,`2} (red
line) is close to either s`1 [a0] or s`2 [a0]; there is a negative curvature in the middle of s`1 [a0], s`2 [a0], and '⇢

is convex in direction away from S{`1,`2}.
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S{`1,`2,`3} \ Sp�1

s`1 [a0]

s`2 [a0]s`3 [a0]

'⇢(a)

s`1 [a0]

s`2 [a0]s`3 [a0]

S{`1,`2,`3}

Figure 5. Geometry of '⇢ over the span S{`1,`2,`3} of three shifts of a0. The subspace S{`1,`2,`3} is
three-dimensional; its intersection with the sphere Sp�1 is isomorphic to a two-dimensional sphere. On this set,
'⇢ has local minimizers near each of the s`i [a0], and are the only minimizers near S`1,`2,`3 .

Finally, we visualize '⇢ over the intersection (Figure 5, left) of the sphere Sp�1 with the159

linear span of three shifts s`1 [a0], s`2 [a0], s`3 [a0] of the true kernel a0:160

S{`1,`2,`3} = { ↵1s`1 [a0] +↵2s`2 [a0] +↵3s`3 [a0] |↵1,↵2,↵3 2 R }161

Again, there is a local minimizer near each signed shift. At roughly balanced superpositions of162

shifts, the objective function exhibits negative curvature. As a result, again, the only local163

minimizers are close to signed shifts.164

Our main geometric result will show that these properties are obtained from every subspace165

spanned by a few shifts of a0. Indeed, for each subset166

(3.1) ⌧ ✓ {�p0 + 1, . . . , p0 � 1} ,167

define a linear subspace168

(3.2) S⌧ =

(
X

`2⌧
↵`s`[a0]

�����↵�p0+1, . . . ,↵p0�1 2 R
)
.169

The subspace S⌧ is the linear span of the shifts s`[a0] indexed by ` in the set ⌧ . Our geometric170

theory will show that with high probability the function '⇢ has no spurious local minimizers171

near any S⌧ for which ⌧ is not too large – say, |⌧ |  4✓p0. Combining all of these subspaces172

into a single geometric object, define the union of subspaces173

(3.3) ⌃4✓p0 =
[

|⌧ |4✓p0

S⌧ .174

Figure 6 (left) gives a schematic representation of this set. We claim:175

• In the neighborhood of ⌃4✓p0 , all local minimizers are near signed shifts.176

• The value of '⇢ grows in any direction away from ⌃4✓p0 .177

Our main result formalizes the above observations, under two key assumptions: first, that178

the sparsity rate ✓ is su�ciently small (relative to the shift coherence µ of p0), and, second,179

the signal length n is su�ciently large:180
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S`1,`2

S`1,`3

S`2,`3

⌃4✓p0
'⇢(a)

Figure 6. Geometry of '⇢ over the union of subspaces ⌃2✓p0 . Left: schematic representation of the
union of subspaces ⌃4✓p0 . For each set ⌧ of at most 4✓p0 shifts, we have a subspace S⌧ . Right: '⇢ has good
geometry near this union of subspaces.

Theorem 3.1 (Main Geometric Theorem). Let y = a0⇤x0 with a0 2 Sp0�111 µ-shift coherent181

and x0 ⇠i.i.d. BG(✓) 2 Rn
with sparsity rate182

✓ 2

c1
p0

,
c2

p0
p
µ+
p
p0

�
· 1

log2 p0
.(3.4)183

184

Chose ⇢(x) =
p
x2 + �2 and set � = 0.1/

p
p0✓ in '⇢. Then there exists � > 0 and numerical185

constant c such that if n � poly(p0), with high probability, every local minimizer ā of '⇢ over186

⌃4✓p0 satisfies kā� �s`[a0]k2  cmax
�
µ, p�1

0

 
for some signed shift �s`[a0] of the true kernel.187

Above, c1, c2 > 0 are positive numerical constants.188

Proof. This follows from Theorem 4.1.189

The upper bound on ✓ in (3.4) yields the tradeo↵ between coherence and sparsity described190

in Figure 2. Simply put, when a0 is better conditioned (as a kernel), its coherence µ is smaller191

and x0 can be denser.192

At a technical level, our proof of Theorem 3.1 shows that (i) '⇢(a) is strongly convex in193

the vicinity of each signed shift, and that at every other point a near ⌃4✓p0 , there is either194

(ii) a nonzero gradient or (iii) a direction of strict negative curvature; furthermore (iv) the195

function '⇢ grows away from ⌃4✓p0 . Points (ii)-(iii) imply that near ⌃4✓p0 there are no “flat”196

saddles: every saddle point has a direction of strict negative curvature. We will leverage these197

properties to propose an e�cient algorithm for finding a local minimizer near ⌃4✓p0 . Moreover,198

this minimizer is close enough to a shift (here, kā� s`[a0]k2 / µ) for us to exactly recover199

s`[a0]: we will give a refinement algorithm that produces (±s`[a0],±s�`[x0]).200

11Typically it is possible to provide an overestimate p00 � p0. Our theory and algorithm can be applied
directly to the overestimate p00, with the caveat that the sparsity rate ✓ now scales with p00 rather than p0.
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Data y Kernel a0 Sparse x0

Windowed Data a
(�1)

Initialization a
(0)

= ⇤

⇡

↵isi[a0] + ↵jsj [a0]

Figure 7. Data-driven initialization: using a piece of the observed data y to generate an initial point
a(0) that is close to a superposition of shifts s`[a0] of the ground truth. Top: data y = a0 ⇤x0 is a superposition
of shifts of the true kernel a0. Bottom: a length-p0 window contains pieces of just a few shifts. Bottom middle:
one step of the generalized power method approximately fills in the missing pieces, yielding a near superposition
of shifts of a0 (right).

3.2. Provable Algorithm for SaS Deconvolution. The objective function '⇢ has good201

geometric properties on (and near!) the union of subspaces ⌃4✓p0 . In this section, we show202

how to use give an e�cient method that exactly recovers a0 and x0, up to shift symmetry.203

Although our geometric analysis only controls '⇢ near ⌃4✓p0 , we will give a descent method204

which, with appropriate initialization a
(0), produces iterates a

(1), . . . ,a(k), . . . that remain205

close to ⌃4✓p0 for all k. In short, it is easy to start near ⌃4✓p0 and easy to stay near ⌃4✓p0 . After206

finding a local minimizer ā, we refine it to produce a signed shift of (a0,x0) using alternating207

minimization.208

The next two paragraphs give the main ideas behind the main steps of the algorithm. We209

then describe its components in more detail (Algorithm 3.1) and state our main algorithmic210

result (Theorem 3.2), which asserts that under appropriate conditions this method produces a211

signed shift of (a0,x0).212

Our algorithm starts with an initialization scheme which generates a(0) near the union of213

subspaces ⌃4✓p0 , which consists of linear combinations of just a few shifts of a0. How can we214

find a point near this union? Notice that the data y also consists of a linear combination of215

just a few shifts of a0 Indeed:216

y = a0 ⇤ x0 =
X

`2supp(x0)

x0`s`[a0].(3.5)217

A length-p0 segment of data y0,...,p0�1 = [y0, . . . ,yp0�1]⇤ captures portions of roughly 2✓p0 ⌧218

4✓p0 shifts s`[a0].219

Many of these copies of a0 are truncated by the restriction to {0, . . . , p0 � 1}. A relatively220

simple remedy is as follows: first, we zero-pad y0,...,p0�1 to length p = 3p0 � 2, giving221

⇥
0
p0�1;y0; · · · ;yp0�1;0

p0�1
⇤
.(3.6)222223
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S⌧

'⇢

Figure 8. Growth of '⇢

away from S⌧ . Because '⇢

grows away from S⌧ , small-
stepping descent methods stay
near S⌧ .

Zero padding provides enough space to accommodate any shift224

s`[a0] with ` 2 ⌧ . We then perform one step of the generalized225

power method12, writing226

(3.7) a
(0) = �PSp�1r'`1

�
PSp�1

⇥
0
p0�1;y0; · · · ;yp0�1;0

p0�1
⇤�

,227

where PSp�1 projects onto the sphere. The reasoning behind this228

construction may seem obscure. We will explain it at a more229

technical level in Section 5 after interpreting the gradient r'⇢ in230

terms of its action on the shifts s`[a0] in Section 4. For now, we231

note that this operation has the e↵ect of (approximately) filling232

in the missing pieces of the truncated shifts s`[a0] – see Figure 7233

for an example. We will prove that with high probability a
(0) is234

indeed close to ⌃4✓p0 .235

The next key observation is that the function '⇢ grows as we move away from the subspace236

S⌧ – see Figure 8. Because of this, a small-stepping descent method will not move far away237

from ⌃4✓p0 . For concreteness, we will analyze a variant of the curvilinear search method [23, 24]238

, which moves in a linear combination of the negative gradient direction �g and a negative239

curvature direction �v. At the k-th iteration, the algorithm updates a(k+1) as240

a
(k+1)  PSp�1

⇥
a
(k) � tg(k) � t2v(k)

⇤
(3.8)241242

with appropriately chosen step size t. The inclusion of a negative curvature direction allows243

the method to avoid stagnation near saddle points. Indeed, we will prove that starting from244

initialization a
(0), this method produces a sequence a

(1),a(2), . . . which e�ciently converges to245

a local minimizer ā that is near some signed shift ±s`[a0] of the ground truth.246

The second step of our algorithm rounds the local minimizer ā ⇡ �s`[a0] to produce an247

exact solution ba = �s`[a0]. As a byproduct, it also exactly recovers the corresponding signed248

shift of the true sparse signal, bx = �s�`[x0].249

Our rounding algorithm is an alternating minimization scheme, which alternates between250

minimizing the Lasso cost over a with x fixed, and minimizing the Lasso cost over x with a251

fixed. We make two modifications to this basic idea, both of which are important for obtaining252

exact recovery. First, unlike the standard Lasso cost, which penalizes all of the entries of x,253

we maintain a running estimate I(k) of the support of x0, and only penalize those entries that254

are not in I(k):255

(3.9) 1
2 ka ⇤ x� yk22 + �

X

i 62I(k)
|xi| .256

This can be viewed as an extreme form of reweighting [11]. Second, our algorithm gradually257

decreases penalty variable � to 0, so that eventually258

ba ⇤ bx ⇡ y.(3.10)259260

12The power method for minimizing a quadratic form ⇠(a) = 1
2a

⇤Ma over the sphere consists of the
iteration a 7! �PSp�1Ma. Notice that in this mapping, �Ma = �r⇠(a). The generalized power method, for
minimizing a function ' over the sphere consists of repeatedly projecting �r' onto the sphere, giving the
iteration a 7! �PSp�1r'(a). (3.7) can be interpreted as one step of the generalized power method for the
objective function '⇢.
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a0

ba

Initial a
(0)

a
(100) Converged a

(') Est. ba and true a0

Figure 9. Local minimization and refinement. Left: data-driven initialization a(0) consisting of a
near-superposition of two shifts. Middle: minimizing '⇢ produces a near shift of a0. Right: rounded solution ba
using the Lasso. ba is very close to a shift of a0.

This can be viewed as a homotopy or continuation method [46, 19]. For concreteness, at k-th261

iteration the algorithm reads:262

Update x: x
(k+1)  argmin

x

1
2ka

(k) ⇤ x� yk22 + �(k)
X

i 62I(k)
|xi| ,(3.11)263

Update a: a
(k+1)  PSp�1

⇥
argmin

a

1
2ka ⇤ x

(k+1) � yk22
⇤
,(3.12)264

Update � and I: �(k+1)  1
2�

(k), I(k+1)  supp
�
x
(k+1)

�
.(3.13)265266

We prove that the iterates produced by this sequence of operations converge to the ground267

truth at a linear rate, as long as the initializer ā is su�ciently nearby.268

Our overall algorithm is summarized as Algorithm 3.1. Figure 9 illustrates the main269

steps of this algorithm. Our main algorithmic result states that under essentially the same270

hypotheses as above, Algorithm 3.1 produces a signed shift of the ground truth (a0,x0):271

Theorem 3.2 (Main Algorithmic Theorem). Suppose y = a0 ⇤ x0 where a0 2 Sp0�1
is µ-272

truncated shift coherent
14

such that maxi 6=j

��⌦◆⇤p0si[a0], ◆⇤p0sj [a0]
↵��  µ and x0 ⇠i.i.d. BG(✓) 2273

Rn
with ✓, µ satisfying274

✓ 2
"
c1
p0

,
c2�

p0
p
µ+
p
p0
�
log2 p0

#
, µ  c3

log2 n
(3.19)275

276

for some constant c1, c2, c3 > 0. If the signal lengths n, p0 satisfy n > poly(p0) and p0 >277

polylog(n), then there exist �, ⌘v > 0 such that with high probability, Algorithm 3.1 produces278

(ba, bx) that are equal to the ground truth up to signed shift symmetry:279

(3.20)
���ba, bx

�
� �

�
s`[a0], s�`[x0]

���
2
 "280

for � 2 {±1} and ` 2 {�p0 + 1, . . . , p0 � 1} if K1 > poly(n, p0) and K2 > polylog(n, p0, "�1).281

Proof. See Theorem 5.1 and Theorem 5.2.282

When solving SaS deconvolution via minimizing bilinear Lasso objective (2.2) in practice,283

the algorithm is analogous to the provable method introduced in Algorithm 3.1, where the284

14The truncated shift coherence is a stronger condition then natural shift coherence. The statement appears
mainly due to the limitation of prove strategy for algorithm.
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Algorithm 3.1 Short and Sparse Deconvolution
Input: Observation y, motif length p0, sparsity ✓, shift-coherence µ, and curvature threshold
�⌘v.
Minimization:
Set a(0)  �PSp�1r'⇢

�
PSp�1

⇥
0
p0�1;y0; · · · ;yp0�1;0p0�1

⇤�
.

Set � = 0.1/
p
p0✓ 13and � > 0 in '⇢. For k = 1, 2, . . . ,K1, let

a
(k+1)  PSp�1 [a(k) � tg(k) � t2v(k)](3.14)

where g(k) is the Riemannian gradient; v(k) is the eigenvector of smallest Riemannian Hessian
eigenvalue if less then �⌘v with

⌦
v
(k), g(k)

↵
� 0, otherwise let v(k) = 0; and t 2 (0, 0.1/n✓]

satisfies

'⇢(a
(k+1)) < '⇢(a

(k))� 1
2 tkg

(k)k22 � 1
4 t

4⌘vkv(k)k22(3.15)

to obtain a near local minimizer ā a
(K1).

Refinement:
Set a

(0)  ā, �(0)  10(p✓ + log n)(µ + 1/p) and I(0)  S�(0) [supp(y

V⇤ ā]). For k =
1, 2, . . . ,K2, let

x
(k+1)  argminx

1
2ka

(k) ⇤ x� yk22 + �(k)P
i 62I(k) |xi| ,(3.16)

a
(k+1)  PSp�1

⇥
argmina

1
2ka ⇤ x

(k+1) � yk22
⇤
,(3.17)

�(k+1)  �(k)/2, I(k+1)  supp(x(k+1)),(3.18)

to obtain (ba, bx) (a(K2),x(K2)).

Output: Return (ba, bx).

curvilinear descent and the refinement step can be realized as alternating gradient descent of285

both variables a,x in (2.2). Unlike Algorithm 3.1, this alternating gradient method has yet286

come with theoretical guarantees, but shown to be an e↵ective and e�cient method for SaS287

deconvolution problems both in simulation and in reality [34].288

3.3. Relationship to the Literature. Blind deconvolution is a classical problem in signal289

processing [54, 12], and has been studied under a variety of hypotheses. In this section, we first290

discuss the relationship between our results and the existing literature on the short-and-sparse291

version of this problem, and then briefly discuss other deconvolution variants in the theoretical292

literature.293

The short-and-sparse model arises in a number of applications. One class of applications294

involves finding basic motifs (repeated patterns) in datasets. This motif discovery problem295

arises in extracellular spike sorting [37, 20] and calcium imaging [48], where the observed signal296

exhibits repetitive short neuron excitation patterns occurring sparsely across time and/or297

space. Similarly, electron microscopy images [15] arising in study of nanomaterials often exhibit298

repeated motifs.299

Another significant application of SaS deconvolution is image deblurring. Typically, the300

blur kernel is small relative to the image size (short) [3, 62, 13, 35, 36]. In natural image301

14In practice, we suggest setting � = c�/
p
p0✓ with c� 2 [0.5, 0.8].
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deblurring, the target image is often assumed to have relatively few sharp edges [21, 27, 36],302

and hence have sparse derivatives. In scientific image deblurring, e.g., in astronomy [33, 25, 9]303

and geophysics [28], the target image is often sparse, either in the spatial or wavelet domains,304

again leading to variants of the SaS model. The literature on blind image deconvolution is305

large; see, e.g., [31, 10] for surveys.306

Variants of the SaS deconvolution problem arise in many other areas of engineering as well.307

Examples include blind equalization in communications [50, 51, 26], dereverberation in sound308

engineering [44, 45] and image super-resolution [4, 53, 61].309

These applications have motivated a great deal of algorithmic work on variants of the310

SaS problem [32, 8, 6, 31, 43, 10, 56]. In contrast, relatively little theory is available to311

explain when and why algorithms succeed. Our algorithm minimizes '⇢ as an approximation312

to the Lasso cost over the sphere. Our formulation and results have strong precedent in313

the literature. Lasso-like objective functions have been widely used in image deblurring314

[62, 14, 21, 35, 52, 60, 18, 30, 36, 59, 47, 64]. A number of insights have been obtained into the315

geometry of sparse deconvolution – in particular, into the e↵ect of various constraints on a on316

the presence or absence of spurious local minimizers. In image deblurring, a simplex constraint317

(a � 0 and kak1 = 1) arises naturally from the physical structure of the problem [62, 14].318

Perhaps surprisingly, simplex-constrained deconvolution admits trivial global minimizers, at319

which the recovered kernel a is a spike, rather than the target blur kernel [7, 36].320

[59] imposes the `2 regularization on a and observes that this alternative constraint gives321

more reliable algorithm. [64] studies the geometry of the simplified objective '`1 over the322

sphere, and proves that in the dilute limit in which x0 has one nonzero entry, all strict local323

minima of '`1 are close to signed shifts truncations of a0. By adopting a di↵erent objective324

function (based on `4 maximization) over the sphere, [63] proves that on a certain region of325

the sphere every local minimum is near a truncated signed shift of a0, i.e., the restriction of326

s`[a0] to the window {0, . . . , p0 � 1}. The analysis of [63] allows the sparse sequence x0 to be327

denser (✓ ⇠ p�2/3
0 for a generic kernel a0, as opposed to ✓ . p�3/4

0 in our result). Both [64]328

and [63] guarantee approximate recovery of a portion of s`[a0], under complicated conditions329

on the kernel a0. Our core optimization problem is very similar to [64]. However, we obtain330

exact recovery of both a0 and relatively dense x0, under the much simpler assumption of shift331

incoherence.332

Other aspects of the SaS problem have been studied theoretically. One basic question is333

under what circumstances the problem is identifiable, up to the scaled shift ambiguity. [17]334

shows that the problem ill-posed for worst case (a0,x0) – in particular, for certain support335

patterns in which x0 does not have any isolated nonzero entries. This demonstrates that some336

modeling assumptions on the support of the sparse term are needed. At the same time, this337

worst case structure is unlikely to occur, either under the Bernoulli model, or in practical338

deconvolution problems.339

Motivated by a variety of applications, many low-dimensional deconvolution models have340

been studied in the theoretical literature. In communication applications, the signals a0 and341

x0 either live in known low-dimensional subspaces, or are sparse in some known dictionary342

[2, 16, 29, 39, 40, 41, 42]. These theoretical works assume that the subspace / dictionary are343

chosen at random. This low-dimensional deconvolution model does not exhibit the signed344
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shift ambiguity; nonconvex formulations for this model exhibit a di↵erent structure from that345

studied here. In fact, the variant in which both signals belong to known subspaces can be solved346

by convex relaxation [2]. The SaS model does not appear to be amenable to convexification,347

and exhibits a more complicated nonconvex geometry, due to the shift ambiguity. The main348

motivation for tackling this model lies in the aforementioned applications in imaging and data349

analysis.350

[38, 57] study the related multi-instance sparse blind deconvolution problem (MISBD),351

where there are K observations yi = a0 ⇤xi consisting of multiple convolutions i = 1, . . . ,K of352

a kernel a0 and di↵erent sparse vectors xi. Both works develop provable algorithms. There are353

several key di↵erences with our work. First, both the proposed algorithms and their analysis354

require the kernel to be invertible. Second, despite the apparent similarity between the SaS355

model and MISBD, these problems are not equivalent. It might seem possible to reduce SaS356

to MISBD by dividing the single observation y into K pieces; this apparent reduction fails357

due to boundary e↵ects.358

3.4. Notations. All vectors/matrices are written in bold font a/A; indexed values are writ-359

ten as ai, Aij . Zeros or ones vectors are defined as 0 or 1, and i-th canonical basis vector defined360

as ei. The indices for vectors/matrices all start from 0 and is taking modulo-n, thus a vector361

of length n should have its indices labeled as {0, 1, . . . , n� 1}. We write [n] = {0, . . . , n� 1}.362

We often use capital italic symbols I, J for subsets of [n]. We abuse notation slightly and write363

[�p] = {n� p+ 1, . . . , n� 1, 0} and [±p] = {n� p+ 1, . . . , n� 1, 0, 1, . . . , p� 1}. Index sets364

can be labels for vectors; aI 2 R|I| denotes the restriction of the vector a to coordinates I.365

Also, we use check symbol for reversal operator on index set I

V

= �I and vectors a

V

i = a�i.366

We let PC denote the projection operator associated with a compact set C. The zero-filling367

operator ◆I : R|I| ! Rn injects the input vector to higher dimensional Euclidean space, via368

(◆Ix)i = xI�1(i) for i 2 I and 0 otherwise. Its adjoint operator ◆⇤I can be understood as subset369

selection operator which picks up entries of coordinates I. A common zero-filling operator370

through out this paper ◆ is abbreviation of ◆[p], which is often being addressed as zero-padding371

operator and its adjoint ◆⇤ as truncation operator.372

The convolution operator are all circular with modulo-n: (a⇤x)i =
P

j2[n] ajxi�j , also, the373

convolution operator works on index set: I ⇤ J = supp (1I ⇤ 1J). Similarly, the shift operator374

s`[·] : Rp ! Rn is circular with modulo-n without specification: (s`[a])j = (◆[p]a)j�`. Notice375

that here a can be shorter p  n. Let Ca 2 Rn⇥n denote a circulant matrix (with modulo-n)376

for vector a, whose j-th column is the cyclic shift of a by j: Caej = sj [a]. It satisfies for any377

b 2 Rn,378

Cab = a ⇤ b.(3.21)379380

The correlation between a and b can be also written in similar form of convolution operator381

which reverse one vector before convolution. Define two correlation matrices C⇤
a and C

V

a as382

C
⇤
aej = sj [a

V

] and C

V

aej = s�j [a]. The two operators will satisfy383

C
⇤
ab = a

V⇤ b, C

V

ab = a ⇤ b

V

.(3.22)384385

4. Geometry of '⇢ in Shift Space. Underlying our main geometric and algorithmic386

results is a relationship between the geometry of the function '⇢ and the symmetries of the387
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deconvolution problem. In this section, we describe this relationship at a more technical level,388

by interpreting the gradient and hessian of the function '⇢ in terms of the shifts s`[a0] and389

stating a key lemma which asserts that a certain neighborhood of the union of subspaces ⌃4✓p0390

can be decomposed into regions of negative curvature, strong gradient, and strong convexity391

near the target solutions ±s`[a0].392

4.1. Shifts and Correlations. The set ⌃4✓p0 is a union of subspaces. Any point a in one393

of these subspaces S⌧ is a superposition of shifts of a0:394

(4.1) a =
X

`2⌧
↵`s`[a0].395

This representation can be extended to a general point a 2 Sp�1 by writing396

(4.2) a =
X

`2⌧
↵`s`[a0] +

X

`/2⌧

↵`s`[a0].397

The vector ↵ can be viewed as the coe�cients of a decomposition of a into di↵erent shifts398

of a0. This representation is not unique. For a close to S⌧ , we can choose a particular ↵ for399

which ↵⌧c is small, a notion that we will formalize below.400

For convenience, we introduce a closely related vector � 2 Rn, whose entries are the inner401

products between a and the shifts of a0: �` = ha, s`[a0]i. Since the columns of Ca0 are the402

shifts of a0, we can write403

� = C
⇤
a0
◆a(4.3)404

= C
⇤
a0
◆◆

⇤
Ca0↵ =: M↵.(4.4)405406

The matrix M is the Gram matrix of the truncated shifts: Mij = h◆⇤si[a0], ◆⇤sj [a0]i. When µ407

is small, the o↵-diagonal elements of M are small. In particular, on S⌧ we may take ↵⌧c = 0,408

and � ⇡ ↵, in the sense that �⌧ ⇡ ↵⌧ and the entries of �⌧c are small. For detailed elaboration,409

see Section SM2.410

4.2. Shifts and the Calculus of '`1. Our main geometric claims pertain to the function411

'⇢, which is based on a smooth sparsity surrogate ⇢(·) ⇡ k·k1. In this section, we sketch the412

main ideas of the proof as if ⇢(·) = k · k1, by relating the geometry of the function '`1 to the413

vectors ↵, � introduced above. Working with '`1 simplifies the exposition; it is also faithful to414

the structure of our proof, which relates the derivatives of the smooth function '⇢ to similar415

quantities associated with the nonsmooth function '`1 .416

The function '`1 has a relatively simple closed form:417

(4.5) '`1(a) = �1
2 kS� [y

V⇤ a ]k22 .418

Here, S� is the soft thresholding operator, which is defined for scalars t as419

S�[t] = sign(t)max {|t|� �, 0} ,(4.6)420421

and is extended to vectors by applying it elementwise. The operator S�[x] shrinks the elements422

of x towards zero. Small elements become identically zero, resulting in a sparse vector.423
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Gradient: Sparsifying the Correlations �. Our goal is to understand the local minimizers424

of the function '`1 over the sphere. The function '`1 is di↵erentiable. Clearly, any point a at425

which its gradient (over the sphere) is nonzero cannot be a local minimizer. We first give an426

expression for the gradient of '`1 over Euclidean space Rp, and then extend it to the sphere427

Sp�1. Using y = a0 ⇤ x0 and calculus gives428

r'`1(a) = �◆⇤Ca0C

V

x0S�

h
C

V

x0C
⇤
a0
◆a

i
429

= �◆⇤Ca0 C

V

x0S�

h
C

V

x0�

i
430

= �◆⇤Ca0�[�],(4.7)431432

where we have simplified the notation by introducing an operator � : Rn ! Rn as �[�] =433

C

V

x0S�

h
C

V

x0�

i
. This representation exhibits the (negative) gradient as a superposition of434

shifts of a0 with coe�cients given by the entries of �[�]:435

�r'`1(a) =
X

`

�[�]` s`[a0].(4.8)436

437

The operator � appears complicated. However, its e↵ect is relatively simple: when x0 is a438

long random vector, �[�] acts like a soft thresholding operator on the vector �. That is,439

1

n✓
· �[�]` ⇡

8
<

:

�` � �, �` > �
�` + �, �` < ��
0, otherwise

.(4.9)440

441

We show this rigorously below, in the proof of our main theorems. Here, we support this442

claim pictorially, by plotting the `-th entry �[�]` as �` varies – see Figure 10 (middle left)443

and compare to Figure 10 (left). Because �[�] suppresses small entries of �, the strongest444

contributions to �r'`1 in (4.8) will come from shifts s`[a0] with large �`. In particular, the445

Euclidean gradient is large whenever there is a single preferred shift s`[a0], i.e., the largest446

entry of � is significantly larger than the second largest entry.447

The (Euclidean) gradient r'`1 measures the slope of '`1 over Rn. We are interested in448

the slope of '`1 over the sphere Sp�1, which is measured by the Riemannian gradient449

grad['`1 ](a) = Pa?r'`1(a)450

= �Pa?

X

`

�`[�] s`[a0].(4.10)451

452

The Riemannian gradient simply projects the Euclidean gradient onto the tangent space a
?453

to Sp�1 at a. The Riemannian gradient is large whenever454

(i) Negative gradient points to one particular shift: there is a single preferred shift455

s`[a0] so that the Euclidean gradient is large and456

(ii) a is not too close to any shift: it is possible to move in the tangent space in the457

direction of this shift.15 Since the tangent space consists of those vectors orthogonal to458

15...so the projection of the Euclidean gradient onto the tangent space does not vanish.

This manuscript is for review purposes only.



GEOMETRY AND SYMMETRY IN SHORT AND SPARSE DECONVOLUTION 17

��0�

0

�i

S�[�]i

��0�

0

�i

1
n✓E�i[�]

��
�

�(a)

�(a+)

Gradient descent

suppresses small �i

Large gradient region

4
5�(0) > �(1) > ⌫�

Figure 10. Gradient Sparsifies Correlations. Left: the soft thresholding operator S�[�] shrinks the
entries of � towards zero, making it sparser. Middle left: the negative gradient �r'`1 is a superposition of
shifts s`[a0], with coe�cients �`[�] ⇡ S�[�]`. Because of this, gradient descent sparsifies �. Middle right: �(a)
before, and �(a+) after, one projected gradient step a+ = PSp�1 [a � t · grad['`1 ](a)]. Notice that the small
entries of � are shrunk towards zero. Right: the gradient grad['`1 ](a) is large whenever it is easy to sparsify �;
in particular, when the largest entry �(0) � �(1) � 0.

a, this is possible whenever s`[a0] is not too aligned with a, i.e., a is not too close to459

s`[a0].460

Our technical lemma quantifies this situation in terms of the ordered entries of �. Write461

|�(0)| � |�(1)| � . . . , with corresponding shifts s(0)[a0], s(1)[a0], . . . . There is a strong gradient462

whenever |�(0)| is significantly larger than |�(1)| and |�(1)| is not too small compared to �: in463

particular, when 4
5 |�(0)| > |�(1)| > �

4 log2 ✓�1 . In this situation, gradient descent drives a toward464

s(0)[a0], reducing |�(1)|, . . . , and making the vector � sparser. We establish the technical claim465

that the (Euclidean) gradient of '`1 sparsifies vectors in shift space in Section SM3.466

Hessian: Negative Curvature Breaks Symmetry. When there is no single preferred shift,467

i.e., when |�(1)| is close to |�(0)|, the gradient can be small. Similarly, when a is very close468

to ±s(0)[a0], the gradient can be small. In either of these situations, we need to study the469

curvature of the function ' to determine whether there are local minimizers.470

Strictly speaking, the function '`1 is not twice di↵erentiable, due to the nonsmoothness of471

the soft thresholding operator S�[t] at t = ±�. Indeed, '`1 is nonsmooth at any point a for472

which some entry of y

V⇤ a has magnitude �. At other points a, '`1 is twice di↵erentiable, and473

its Hessian is given by474

er2'`1(a) = �◆⇤Ca0C

V

x0PIC

V

x0C
⇤
a0
◆,(4.11)475476

with I = supp
⇣
S�

h
C

V

y◆a

i⌘
. We (formally) extend this expression to every a 2 Rn, terming477

er2'`1 the pseudo-Hessian of '`1 . For appropriately chosen smooth sparsity surrogate ⇢, we478

will see that the (true) Hessian of the smooth function r2'⇢ is close to er2'`1 , and so er2'`1479

yields useful information about the curvature of '⇢.480

As with the gradient, the Hessian is complicated, but becomes simpler when the sample481

size is large. The following approximation482

er2'`1(a) ⇡ �
X

`

s`[a0]s`[a0]
⇤
✓

@

@�`
�`[�]

◆
(4.12)483

484
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�� 0 �
0

�1
n✓ hr'`1 (a),ai

1

�i

@
@�i

1
n✓E�i[�] S?

⌧
S⌧

Negative curvature: �(1) >
4
5�(0)

Strong convexity: �(1) < ⌫�

Figure 11. Hessian Breaks Symmetry. Left: contribution of �si[a0]si[a0]
⇤ to the Euclidean hessian.

If |�i| � � the Euclidean hessian exhibits a strong negative component in the si[a0] direction. The Riemmanian
hessian exhibits negative curvature in directions spanned by si[a0] with corresponding |�i| � � and positive
curvature in directions spanned by si[a0] with |�i| ⌧ �. Middle: this creates negative curvature along the
subspace S⌧ and positive curvature orthogonal to this subspace. Right: our analysis shows that there is always a
direction of negative curvature when �(1) >

4
5�(0); conversely when �(1) ⌧ � there is positive curvature in every

feasible direction and the function is strongly convex.

can be obtained from (4.8) noting that @
@a�`[�] =

P
j sj [a0]

@
@�j

�`[�], that
@

@�j
�`[�] ⇡ 0 for485

j 6= `, and that486

(4.13)
1

n✓
· @�`[�]

@�`
⇡
(
0 |�`|⌧ �

1 |�`|� �
487

Again, we corroborate this approximation pictorially – see Figure 11.488

From this approximation, we can see that the quadratic form v
⇤ er2'`1v takes on a large489

negative value whenever v is a shift s`[a0] corresponding to some |�`| � �, or whenever v is a490

linear combination of such shifts. In particular, if for some j, |�(0)|, |�(1)|, . . . , |�(j)|� �, then491

'`1 will exhibit negative curvature in any direction v 2 span(s(0)[a0], s(1)[a0], . . . , s(j)[a0]).492

The (Euclidean) Hessian measures the curvature of the function '`1 over Rn. The Rie-493

mannian Hessian494

(4.14) gHess['`1 ](a) = Pa?

 
er2'`1(a)

Curvature of '`1

+ h�r'`1(a),ai · I
Curvature of the sphere

!
Pa? .495

measures the curvature of '`1 over the sphere. The projection Pa? restricts its action to496

directions v ? a that are tangent to the sphere. The additional term h�r'`1(a),ai accounts497

for the curvature of the sphere. This term is always positive. The net e↵ect is that directions498

of strong negative curvature of '`1 over Rn become directions of moderate negative curvature499

over the sphere. Directions of nearly zero curvature over Rn become directions of positive500

curvature over the sphere. This has three implications for the geometry of '`1 over the sphere:501

(i) Negative curvature in symmetry breaking directions: If |�(0)|, |�(1)|, . . . ,
|�(j)|� �, '`1 will exhibit negative curvature in any tangent direction v ? a which is
in the linear span

span(s(0)[a0], s(1)[a0], . . . , s(j)[a0])

of the corresponding shifts of a0.502
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(ii) Positive curvature in directions away from S⌧ : The Euclidean Hessian503

quadratic form v
⇤ er2'`1v takes on relatively small values in directions orthogonal to504

the subspace S⌧ . The Riemannian Hessian is positive in these directions, creating505

positive curvature orthogonal to the subspace S⌧ .506

(iii) Strong convexity around minimizers: Around a minimizer s`[a0], only a single507

entry �` is large. Any tangent direction v ? a is nearly orthogonal to the subspace508

span(s`[a0]), and hence is a direction of positive (Riemmanian) curvature. The objective509

function '⇢ is strongly convex around the target solutions ±s`[a0].510

Figure 11 visualizes these regions of negative and positive curvature, and the technical claim511

of positivity/negativity of curvature in shift space is presented in detail in Section SM4.512

4.3. Any Local Minimizer is a Near Shift. We close this section by stating a key theorem,513

which makes the above discussion precise. We will show that a certain neighborhood of any514

subspace S⌧ can be covered by regions of negative curvature, large gradient, and regions of515

strong convexity containing target solutions ±s`[a0]. Furthermore, at the boundary of this516

neighborhood, the negative gradient points back—retracts—toward the subspace S⌧ , due to517

the (directional) convexity of '⇢ away from the subspace.518

To formally state the result, we need a way of measuring how close a is to the subspace519

S⌧ . For technical reasons, it turns out to be convenient to do this in terms of the coe�cients520

↵ in the representation521

(4.15) a =
X

`2⌧
↵`s`[a0] +

X

`02⌧ c

↵`0s`0 [a0].522

If a 2 S⌧ , we can take ↵ with ↵⌧c = 0. We can view the energy k↵⌧ck2 as a measure of the523

distance from a to S⌧ . A technical wrinkle arises, because the representation (4.15) is not524

unique. We resolve this issue by choosing the ↵ that minimizes k↵⌧ck2, writing:525

d↵(a,S⌧ ) = inf {k↵⌧ ck2 :
P

`↵`s`[a0] = a} .(4.16)526527

The distance d↵(a,S⌧ ) is zero for a 2 S⌧ . Our analysis controls the geometric properties of528

'⇢ over the set of a for which d↵(a,S⌧ ) is not too large. Similar to (3.3), we define an object529

which contains all points that are close to some S⌧ , in the above sense:530

⌃�
4✓p0

:=
[

|⌧ |4✓p0

{a : d↵(a,S⌧ )  �} .(4.17)531

532

The aforementioned geometric properties hold over this set:533

Theorem 4.1 (Geometry of '⇢ over UoS). Suppose that y = a0 ⇤ x0 where a0 2 Sp0�1
is534

µ-shift coherent and x0 ⇠i.i.d. BG(✓) 2 Rn
satisfying535

✓ 2

c0

p0
,

c

p0
p
µ+
p
p0

�
· 1

log2 p0
(4.18)536

537

for some constants c0, c > 0. Set � = 0.1/
p
p0✓ in '⇢ where ⇢(x) =

p
x2 + �2. There exist538

numerical constants C, c00, c000, c1-c4 > 0 such that if �  c00�✓8

p2 log2 n
and n > Cp50✓

�2 log p0, then539

with probability at least 1� c000/n, for every a 2 ⌃�
4✓p0

, we have:540
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(Negative curvature): If
���(1)

�� � ⌫1
���(0)

��, then541

�min (Hess['⇢](a))  �c1n✓�;(4.19)542543

(Large gradient): If ⌫1
���(0)

�� �
���(1)

�� � ⌫2(✓)�, then544

kgrad['⇢](a)k2 � c2n✓
�2

log2 ✓�1 ;(4.20)545
546

(Convex near shifts): If ⌫2(✓)� �
���(1)

��, then547

Hess['⇢](a) � c3n✓Pa? ;(4.21)548549

(Retraction to subspace): If
�
2  d↵(a,S⌧ )  �, then for every ↵ satisfying a = ◆

⇤
Ca0↵, there550

exists ⇣ satisfying grad['⇢](a) = ◆
⇤
Ca0⇣, such that551

h⇣⌧ c ,↵⌧ ci � c4 k⇣⌧ ck2 k↵⌧ ck2 ;(4.22)552553

(Local minimizers): If a is a local minimizer,554

min
`2[±p]
�2{±1}

ka� � s`[a0]k2 
1
2 max

�
µ, p�1

0

 
,(4.23)555

556

where ⌫1 =
4
5 , ⌫2(✓) =

1
4 log2 ✓�1 and � =

c·poly(
p

1/✓,
p

1/µ)

log2 ✓�1 · 1p
p0
.557

Proof. See Subsection SM6.5.558

The retraction property elaborated in (4.22) implies that the negative gradient at a points in559

a direction that decreases d↵(a,S⌧ ). This is a consequence of positive curvature away from S⌧ .560

It essentially implies that the gradient is monotone in ↵⌧ c space: choose any a 2 S⌧ \ Sp�1,561

write ↵ to be its coe�cient, and let ⇣ be the coe�cient of grad['⇢](a). Then ↵⌧ c = 0, ⇣⌧ c ⇡ 0562

and563

h⇣⌧ c � ⇣⌧ c , ↵⌧ c �↵⌧ ci ⇡ h⇣⌧ c � 0, ↵⌧ c � 0i = h⇣⌧ c ,↵⌧ ci > 0.564565

Our main geometric claim in Theorem 3.1 is a direct consequence of Theorem 4.1. Moreover,566

it suggests that as long as we can minimize '⇢ within the region ⌃�
4✓p0

, we will solve the SaS567

deconvolution problem.568

5. Provable Algorithm. In light of Theorem 4.1, in this section we introduce a two-part569

algorithm Algorithm 3.1, which first applies the curvilinear descent method to find a local min-570

imum of '⇢ within ⌃�
4✓p0

, followed by refinement algorithm that uses alternating minimization571

to exactly recover the ground truth. This algorithm exactly solves SaS deconvolution problem.572

5.1. Minimization. There are three major issues in finding a local minimizer within ⌃�
4✓p0

.573

(i) Initialization. the initializer a(0) to reside within ⌃�
4✓p0

,574

(ii) Negative curvature. the method to avoid stagnating near saddle points of '⇢,575

(iii) No exit. the descent method to remain inside ⌃�
4✓p0

.576

In the following paragraphs, we describe how our proposed algorithm achieves the above577

desiderata.578
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Initialization within ⌃�
4✓p0

.. Our data-driven initialization scheme produces a(0), where579

a
(0) = �PSp�1r'⇢

�
PSp�1

⇥
0
p0�1;y0; · · · ;yp0�1;0

p0�1
⇤�

580

= �PSp�1r'⇢PSp�1

⇥
P[p0](a0 ⇤ x0)

⇤
,581

⇡ �PSp�1r'⇢
⇥
P[p0](a0 ⇤ ex0)

⇤
,582583

is the normalized gradient vector from a chunk of data a
(�1) := P[p0](a0 ⇤ ex0) with ex0 a584

normalized Bernoulli-Gaussian random vector of length 2p0 � 1. Since r'⇢ ⇡ r'`1 , expand585

the gradient r'`1 and rewrite the gradient r`1(a
(�1)) in shift space, we get586

�r'⇢1(a
(�1)) ⇡ ◆

⇤
Ca0C

V

x0S�

h
C

V

x0C
⇤
a0
P[p0](a0 ⇤ ex0)

i
587

= ◆
⇤
Ca0�

⇥
C

⇤
a0
P[p0]Ca0 ex0

⇤
588

⇡ ◆
⇤
Ca0� [ex0]589

⇡ n✓ · ◆⇤Ca0S� [ex0] ,590591

where the approximation in the third equation is accurate if the truncated shifts are incoherent592

max
i 6=j

��⌦◆⇤p0si[a0], ◆
⇤
p0sj [a0]

↵��  µ⌧ 1.(5.1)593
594

With this simple approximation, it comes clear that the coe�cients (in shift space) of initializer595

a
(0),596

a
(0) ⇡ PSp�1◆

⇤
Ca0S� [ex0] ,(5.2)597598

approximate S� [ex0], which resides near the subspace S⌧ , in which ⌧ contains the nonzero599

entries of ex0 on {�p0 + 1, . . . , p0 � 1}. With high probability, the number of non-zero entries600

is |⌧ | / 4✓p0, we therefore conclude that our initializer a(0) satisfies601

a
(0) 2 ⌃�

4✓p0
.(5.3)602

603

Furthermore, since ex0 is normalized, the largest magnitude for entries of |ex0| is likely to be604

around 1/
p
2p0✓. To ensure that S� [ex0] does not annihilate all nonzero entries of ex0 (otherwise605

our initializer a(0) will become 0), the ideal � should be slightly less then the largest magnitude606

of |ex0|. We suggest setting � in '⇢ as607

� =
cp
p0✓

.(5.4)608
609

for some c 2 (0, 1).610

Many methods have been proposed to optimize functions whose saddle points exhibit strict611

negative curvature, including the noisy gradient method [22], trust region methods [1, 55] and612

curvilinear search [58]. Any of the above methods can be adapted to minimize '⇢. In this613

paper, we use curvilinear method with restricted stepsize to demonstrate how to analyze an614

optimization problem using the geometric properties of '⇢ over ⌃�
4✓p0

– in particular, negative615

curvature in symmetry-breaking directions and positive curvature away from S⌧ .616
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Curvilinear search uses an update strategy that combines the gradient g and a direction of617

negative curvature v, which here we choose as an eigenvector of the hessian H with smallest618

eigenvalue, scaled such that v⇤
g � 0. In particular, we set619

a
+  PSp�1

⇥
a� tg � t2v

⇤
(5.5)620621

For small t,622

'(a+) ⇡ '(a) + hg, ⇠i+ 1
2⇠

⇤
H⇠.(5.6)623624

Since ⇠ converges to 0 only if a converges to the local minimizer (otherwise either gradient g is625

nonzero or there is a negative curvature direction v), this iteration produces a local minimizer626

for '⇢, whose saddle points near any S⌧ has negative curvature, we just need to ensure all627

iterates stays near some such subspace. We prove this by showing:628

• When d↵(a,S⌧ )  �, curvilinear steps move a small distance away from the subspace:629

��d↵
�
a
+,S⌧

�
� d↵ (a,S⌧ )

��  �
2 .(5.7)630631

• When d↵(a,S⌧ ) 2
⇥�
2 , �
⇤
, curvilinear steps retract toward subspace:632

d↵
�
a
+,S⌧

�
 d↵ (a,S⌧ ) .(5.8)633634

Together, we can prove that the iterates a(k) converge to a minimizer, and635

8 k = 1, 2, . . . , a
(k) 2 ⌃�

4✓p0
.(5.9)636

637

We conclude this section with the following theorem:638

Theorem 5.1 (Convergence of retractive curvilinear search). Suppose signals a0,x0 satisfy639

the conditions of Theorem 4.1, ✓ > 103c/p0 (c > 1), and a0 is µ-truncated shift coherent640

maxi 6=j

��⌦◆⇤p0si[a0], ◆⇤p0sj [a0]
↵��  µ. Write g = grad['⇢](a) and H = Hess['⇢](a). When the641

smallest eigenvalue of H is strictly smaller than �⌘v let v be the unit eigenvector of smallest642

eigenvalue, scaled so v
⇤
g � 0; otherwise let v = 0. Define a sequence

�
a
(k)
 
k2N where a

(0)643

equals (3.7) and for k = 1, 2, . . . ,K1:644

a
(k+1)  PSp�1

h
a
(k) � tg(k) � t2v(k)

i
(5.10)645

646

with largest t 2
�
0, 0.1n✓

⇤
satisfying Armijo steplength:647

'⇢(a
(k+1)) < '⇢(a

(k))� 1
2

⇣
tkg(k)k22 + 1

2 t
4⌘vkv(k)k22

⌘
,(5.11)648

649

then with probability at least 1� 1/c, there exists some signed shift ā = ±si[a0] where i 2 [±p0]650

such that
��a(k) � ā

��
2
 µ + 1/p for all k � K1 = poly(n, p). Here, ⌘v = c0n✓� for some651

c0 < c1 in Theorem 4.1.652

Proof. See Subsection SM7.2.653
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5.2. Local Refinement. In this section, we describe and analyze an algorithm which654

refines an estimate ā ⇡ a0 of the kernel to exactly recover (a0,x0). Set655

a
(0)  ā, �(0)  C(p✓ + log n)(µ+ 1/p), I(0)  supp(S� [C

⇤
āy]).(5.12)656657

We alternatively minimize the Lasso objective with respect to a and x:658

x
(k+1)  argmin

x

1
2ka

(k) ⇤ x� yk22 + �(k)
X

i 62I(k)
|xi| ,(5.13)659

a
(k+1)  PSp�1

⇥
argmin

a

1
2ka ⇤ x

(k+1) � yk22
⇤
,(5.14)660

�(k+1)  1
2�

(k), I(k+1)  supp
�
x
(k+1)

�
.(5.15)661662

One departure from standard alternating minimization procedures is our use of a continuation663

method, which (i) decreases � and (ii) maintains a running estimate I(k) of the support set.664

Our analysis will show that a(k) converges to one of the signed shifts of a0 at a linear rate, in665

the sense that666

min
�2±1, `2[±p0]

��a(k) � � · s`[a0]
��
2
 C 02�k.(5.16)667

668

It should be clear that exact recovery is unlikely if x0 contains many consecutive nonzero669

entries: in fact in this situation, even non-blind deconvolution fails. Therefore to obtain exact670

recovery it is necessary to put an upper bound on signal dimension n. Here, we introduce the671

notation I as an upper bound for number of nonzero entries of x0 in a length-p window:672

(5.17) I := 6max {✓p, log n} ,673

where the indexing and addition should be interpreted modulo n. We will denote the support674

sets of true sparse vector x0 and recovered x
(k) in the intermediate k-th steps as675

I = supp(x0), I(k) = supp(x(k)),(5.18)676677

then in the Bernoulli-Gaussian model, with high probability,678

(5.19) max
`

��I \ ([p] + `)
��  I .679

The log n term reflects the fact that as n becomes enormous (exponential in p) eventually it680

becomes likely that some length-p window of x0 is densely occupied. In our main theorem681

statement, we preclude this possibility by putting an upper bound on signal length n with682

respect to window length p and shift coherence µ. We will assume683

(µ+ 1/p) · 2I < c(5.20)684685

for some numerical constant c 2 (0, 1).686

Recall that (4.23) in Theorem 3.1 provides that687

kā� a0k2  (µ+ 1/p) ,(5.21)688689
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which is su�ciently close to a0 as long as (5.19) holds true. Here, we will elaborate this by690

showing a single iteration of alternating minimization algorithm (5.13)-(5.15) is a contraction691

mapping for a toward a0.692

To this end, at k-th iteration, write T = I(k), J = I(k+1) and �
(k) = sign

�
x
(k)
�
, then first693

observe that the solution to the reweighted Lasso problem (5.13) can be written as694

x
(k+1) = ◆J

�
◆
⇤
JC

⇤
a(k)Ca(k)◆J

��1
◆
⇤
J

⇣
C

⇤
a(k)Ca0x0 � �(k)

PJ\T�
(k+1)

⌘
,(5.22)695

696

and the solution to least squares problem (5.14) will be697

a
(k+1) =

�
◆
⇤
C

⇤
x(k+1)Cx(k+1)◆

��1 �
◆
⇤
C

⇤
x(k+1)Cx0◆a0

�
.(5.23)698699

Here, we are going to illustrate the relationship between a
(k+1)�a0 and a

(k)�a0 using simple700

approximations. First, let us assume that a
(k) ⇡ a0, C

⇤
a0
Ca0 ⇡ I, and I ⇡ J ⇡ T . Then701

(5.22) gives702

x
(k+1) ⇡ x0,(5.24)703

(x(k+1) � x0) ⇡ PI
�
C

⇤
a0
Ca0x0 �C

⇤
a0
Ca(k)x0

�
704

⇡ PI

h
C

⇤
a0
Cx0◆(a0 � a

(k))
i
,(5.25)705

706

which implies, while assuming C
⇤
x0
Cx0 ⇡ n✓I, that from (5.23):707

(a(k+1) � a0) ⇡ (n✓)�1
◆
⇤
C

⇤
x(k+1)Cx0◆a0 � ◆

⇤
C

⇤
x(k+1)Cx(k+1)◆a0708

⇡ (n✓)�1
◆
⇤
C

⇤
x0
Ca0(x0 � x

(k+1))709

⇡ (n✓)�1
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆ (a

(k) � a0).(5.26)710711

Now since C⇤
x0
PICx0 ⇡ n✓ e0e⇤0, this suggests that (n✓)

�1
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆ approximates712

a contraction mapping with fixed point a0, as follows:713

(n✓)�1
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆ ⇡ ◆

⇤
Ca0e0e

⇤
0C

⇤
a0
◆714

⇡ a0a
⇤
0.(5.27)715716

Hence, if we can ensure all above approximation is su�ciently and increasingly accurate as717

the iterate proceeds, the alternating minimization essentially is a power method which finds718

the leading eigenvector of matrix a0a
⇤
0—and the solution to this algorithm is apparently a0.719

Indeed, we prove that the iterates produced by this sequence of operations converge to the720

ground truth at a linear rate, as long as it is initialized su�ciently nearby:721

Theorem 5.2 (Linear rate convergence of alternating minimization). Suppose y = a0 ⇤ x0722

where a0 is µ-shift coherent and x0 ⇠ BG(✓), then there exists some constants C, c, cµ such723

that if (µ+ 1/p)2I < cµ and n > C✓�2p2 log n, then with probability at least 1� c/n, for any724

starting point a
(0)

and �(0)
, I(0) such that725

��a(0) � a0

��
2
 µ+ 1/p, �(0) = 5I(µ+ 1/p), I(0) = supp

�
C

⇤
a(0)y

�
,(5.28)726727
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and for k = 1, 2, . . . ,:728

x
(k+1)  argminx

1
2ka

(k) ⇤ x� yk22 + �(k)P
i 62I(k) |xi| ,(5.29)729

a
(k+1)  PSp�1

⇥
argmina

1
2ka ⇤ x

(k+1) � yk22
⇤
,(5.30)730

�(k+1)  1
2�

(k), I(k+1)  supp
�
x
(k+1)

�
(5.31)731732

then733

��a(k+1) � a0

��
2
 (µ+ 1/p)2�k(5.32)734735

for every k = 0, 1, 2, . . . .736

Proof. See Subsection SM8.3.737

Remark 5.3. The estimates x(k) also converges to the ground truth x0 at a linear rate.738

6. Experiments. We demonstrate that the tradeo↵s between the motif length p0 and739

sparsity rate ✓ produce a transition region for successful SaS deconvolution under generic740

choices of a0 and x0. For fixed values of ✓ 2 [10�3, 10�2] and p0 2 [103, 104], we draw 50741

instances of synthetic data by choosing a0 ⇠ Unif(Sp0�1) and x0 2 Rn with x0 ⇠i.i.d. BG(✓)742

where n = 5⇥ 105. Note that choosing a0 this way implies µ(a0) ⇡ 1p
p0
.743

For each instance, we recover a0 and x0 from y = a0 ⇤x0 by minimizing problem (2.5). For744

ease of computation, we modify Algorithm 3.1 by replacing curvilinear search with accelerated745

Riemannian gradient descent method (Algorithm 6.1), which is an adaptation of accelerated746

gradient descent [5] to the sphere. In particular, we apply momentum and increment by the747

Riemannian gradient via the exponential and logarithmic operators748

Expa(u) := cos(kuk2) · a+ sin(kuk2) ·
u

kuk2
,(6.1)749

Loga(b) := arccos(ha, bi) · Pa? (b�a)

kPa? (b�a)k
2

,(6.2)750
751

derived from [1]. Here Expa : a? ! Sp�1 takes a tangent vector of a and produces a new752

point on the sphere, whereas Loga : Sp�1 ! a
? takes a point b 2 Sp�1 and returns the tangent753

vector which points from a to b.754

For each recovery instance, we say the local minimizer amin generated from Algorithm 6.1755

is su�ciently close to a solution of SaS deconvolution problem, if756

(6.3) success(amin, ;a0) := {max` |hs`[a0],amini| > 0.95 } .757

The result is shown in Figure 12. Our source code can be accessed via the following address:758

https://github.com/sbdsphere/sbd experiments.git759

7. Discussion. In this section, we close by discussing the most important limitations of our760

results when a0 is coherent, about scenarios when the signal setting breaches our assumption,761

especially when x0 is either highly sparse or non-symmetric, and highlighting corresponding762

directions for future work.763
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Figure 12. Success probability of SaS deconvolution under generic a0, x0 with varying kernel

length p0, and sparsity rate ✓. When sparsity rate decreases su�ciently with respect to kernel length,
successful recovery becomes very likely (brighter), and vice versa (darker). A transition line is shown with slope
log p0
log ✓ ⇡ �2, implying Algorithm 6.1 works with high probability when ✓ / 1p

p0
in generic case.

Algorithm 6.1 SaS deconvolution with Accelerated Riemannian gradient descent

Input: Observation y, sparsity penalty � = 0.5/
p
p0✓, momentum parameter ⌘ 2 [0, 1).

Initialize a
(0)  �PSp�1r'⇢

�
PSp�1

⇥
0
p0�1; [y0, · · · ,yp0�1];0p0�1

⇤�
,

for k = 1, 2, . . . ,K do

Get momentum: w  Expa(k)

�
⌘ · Loga(k�1)(a(k))

�
.

Get negative gradient direction: g  � grad['⇢](w).
Armijo step a

(k+1)  Expw(tg), choosing t 2 (0, 1) s.t. '⇢(a(k+1))� '⇢(w) < �t kgk22.
end for

Output: Return a
(K).

The main drawback of our proposed method is that it does not succeed when the target764

motif a0 has shift coherence very close to 1. For instance, a common scenario in image blind765

deconvolution involves deblurring an image with a smooth, low-pass point spread function766

(e.g., Gaussian blur). Both our analysis and numerical experiments show that in this situation767

minimizing '⇢ does not find the generating signal pairs (a0,x0) consistently—the minimizer of768

'⇢ is often spurious and is not close to any particular shift of a0. We do not suggest minimizing769

'⇢ in this situation. On the other hand, minimizing the bilinear lasso objective 'lasso over the770

sphere often succeeds even if the true signal pair (a0,x0) is coherent and dense.771
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In light of the above observations, we view the analysis of the bilinear lasso as the most772

important direction for future theoretical work on SaS deconvolution. The drop quadratic773

formulation studied here has commonalities with the bilinear lasso: both exhibit local minima774

at signed shifts, and both exhibit negative curvature in symmetry breaking directions. A775

major di↵erence (and hence, major challenge) is that gradient methods for bilinear lasso do776

not retract to a union of subspaces – they retract to a more complicated, nonlinear set.777

Our model assume x0 to be Bernoulli-Gaussian vector, which are sparse and symmetric778

iid random variables. When x0 is sparse but non-symmetric, (e.g. Bernoulli), one can apply779

our result with a simple symmetrization trick, by using the concatenated observation vectors780

[y,�y] as an input to our algorithm.781

When x0 is highly sparse and if y is noiseless, it is possible to identify a short copy of a0782

via looking for a shortest consecutive non-zero entries within y. When ✓ ⌧ 1/p0, these isolated783

copies are very common. Once ✓ exceeds 1/p0, or when support x0 is not Bernoulli random784

while being more clustered, they become very uncommon. In particular, the probability785

of an isolated copy is small unless n ' exp(p0✓). Our proposed approach succeeds when786

n � poly(p0).787

In applications involving noisy data, optimization approaches often outperform direct788

inspection, even for samples with isolated copies of a0. An intuition for this is that optimization789

methods aggregate information across the sample. One practical avenue for obtaining the best790

of both worlds is to try to optimize the choice of data segment used for initialization. This can791

be a potential improvement for our data-driven initialization scheme, both in theory and in792

practice.793

Finally, there are several directions in which our analysis could be improved. Our lower794

bounds on the length n of the random vector x0 required for success are clearly suboptimal. We795

also suspect our sparsity-coherence tradeo↵ between µ, ✓ (roughly, ✓ / 1/(
p
µp0)) is suboptimal,796

even for the '⇢ objective. Articulating optimal sparsity-coherence tradeo↵s for is another797

interesting direction in this line of work. Extending our current result for cases when y is798

a↵ected by noise can also be a natural next step for future work.799
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SUPPLEMENTARY MATERIALS: Geometry and Symmetry in
Short-and-Sparse Deconvolution⇤

Han-Wen Kuo† , Yuqian Zhang‡ , Yenson Lau† , and John Wright† §

SM1. Basic bounds for Bernoulli-Gaussian vectors. In this section, we prove several
lemmas pertaining to the sparse random vector x0 ⇠i.i.d. BG(✓).

Lemma SM1.1 (Support of x0). Let x0 ⇠i.i.d. BG(✓) and I0 = supp(x0) ✓ [n]. Suppose
n > 10✓�1, then for any " 2

�
0, 1

10

�
, with probability at least 1� " we have

||I0|� n✓|  2
p
n✓ log "�1

.(SM1.1)

And suppose n � C✓
�2 log p and ✓, then with probability at least 1� 2/n, we have

8 t 2 [2p] \ {0} , 1
2n✓

2  |I0 \ (I0 + t)|  2n✓2(SM1.2)

where C is a numerical constant.

Proof. Let x0 = ! · g ⇠i.i.d. BG(✓), notice that the support of the Bernoulli-Gaussian
vector x0 is almost surely equal to the support of the Bernoulli vector !. Applying Bernstein
inequality Lemma SM10.4 with (�2

, R) = (1, 1), then if n✓ > 10 we have

P

2

4

������

X

k2[n]

!k � n✓

������
> 2
p
n✓ log "�1

3

5  2 exp

✓
�4n✓ log2 "�1

2n✓ + 4
p
n✓ log "�1

◆
 ".

For (SM1.2), let Jt := I0 \ (I0 + t). The cardinality of Jt is an inner product between shifts of
!:

|Jt| =
X

k2[n]

!k!k�t,(SM1.3)

and define two subset Jt1 ] Jt2 = Jt, as follows:

⇢
Jt1 = Jt \K1, K1 := [n] \ {0, . . . , t� 1, 2t, . . . , 3t� 1, . . .}
Jt2 = Jt \K2, K2 := [n] \ {t, . . . , 2t� 1, 3t, . . . , 4t� 1, . . .} .(SM1.4)

Here, the size of sets K1,K2 has two-side bounds 0.4n  (n� 2p) /2  |K2|  |K1| 
(n+ 2p) /2  0.6n, thus the size of sets Jt1, Jt2 can be derived using Bernstein inequality
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Lemma SM10.4 with n > C✓
�2 log p as

P


max
t2[2p]\{0}

|Jt1 | � n✓
2

�
= P

2

4 max
t2[2p]\{0}

X

k2K1

!k!k�t � n✓
2

3

5

 2p · P

2

4
X

k2K1

!k!k+1 � n✓
2

3

5

 2p · P

2

4
X

k2K1

!k!k+1 � E
X

k2K1

!k!k+1 � n✓
2 � 0.6n✓2

3

5

 4p · exp
 

�
�
0.4n✓2

�2

2 · 0.6n✓2 + 2 · 0.4n✓2

!
= exp

�
log(4p)� 0.08n✓2

�

 1/n,(SM1.5)

where the last two inequalities hold with C > 105. The lower bound can also derived as follows

P


min
t2[2p]\{0}

|Jt1 |  n✓
2
/4

�
= P

2
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t2[2p]\{0}
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3
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 4p · exp
 

�
�
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= exp
�
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�
 1/n.

The bound for |J2| can derived similarly to (SM1.5)-(1).

Lemma SM1.2 (Norms of x0). Let x0 ⇠i.i.d. BG(✓) 2 Rn. If n � 10✓�1, then for any
" 2

�
0, 1

10

�
, with probability at least 1� ",

���kx0k1 �
p
2/⇡n✓

���  2
p
n✓ log "�1

,

���kx0k22 � n✓

���  3
p
n✓ log "�1(SM1.6)

Proof. To bound kx0k1, using Bernstein inequality with (�2
, R) = (✓, 1) and with n✓ � 10

we have

P
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Similarly for kx0k22, from Gaussian moments Lemma SM10.2 , we know the 2-norm
P

i2[n] E |x0i|4 =

3n✓ and q-norm
P

i2[n] E |x0i|2p  (n✓)(2q�1)!!  1
2(3n✓)2

q�2
q! for q � 3. Let (�2

, R) = (3✓, 2)
in Bernstein inequality form Lemma SM10.4, n✓ � 10 we have

P
h���kx0k22 � n✓

��� � 3
p
n✓ log "�1

i
 2 exp

✓
�9n✓ log2 "�1

2(3n✓) + 12
p
n✓ log "�1

◆
 ",

completing the proof.

Lemma SM1.3 (Norms of x0 subvectors). Let x0 ⇠i.i.d. BG(✓) 2 Rn and n > 10, then with
probability at least 1� 3/n, we have

max
U=[2p]+j

j2[n]

kPUx0k22  2p✓ + 6
⇣p

p✓ + log n
⌘

(SM1.7)

and if a0 is µ-shift coherent and there exists a constance cµ such that both ✓
2
p < cµ and

µp
2
✓ < cµ, then

max
U=[p]+j
j2[n]

kPU [a0 ⇤ x0]k22  p✓ + log n.(SM1.8)

Proof. Use Bernstein inequality with (�2
, R) = (3✓, 2) and t = max

�p
p✓, log n

 
, with

union bound we obtain:

P

2

64 max
U=[2p]+j

j2[n]

kPUx0k22 � 2p✓ + 6
⇣p

p✓ + log n
⌘
3

75  2n exp

 
�

36
�p

p✓ + log n
�2

6p✓ + 12
�p

p✓ + log n
�
!

 2 exp

✓
log n� 36t2

6t2 + 12t

◆
 2

n
.(SM1.9)

For the second inequality, first we know calculate the expectation

E kPU [a0 ⇤ x0]k22 = E
⇥
x
⇤
0C

⇤
a0
PUCa0x0

⇤

= ✓ · tr
�
C

⇤
a0
PUCa0

�
ka0k22 + ✓ ·

p�1X

i=1

k◆⇤si[a0]k22

= p✓.(SM1.10)

Then apply Henson Wright inequality Lemma SM10.6 with
��C⇤

a0
PUCa0

��2
F
=
��◆⇤C⇤

a0
Ca0◆

��2
F


p (1 + µp) and also
��C⇤

a0
PUCa0

��
2
= kCa0◆k

2
2 = 1 + µp, we can derive

P

2

64 max
U=[p]+j
j2[n]

kPU [a0 ⇤ x0]k22 � p✓ + log n

3

75  n exp

✓
�min

⇢
log2 n

64✓2p (1 + µp)
,

log n

8
p
2✓ (1 + µp)

�◆

 exp

✓
log n�min

⇢
log2 n

128cµ
,
log n

32cµ

�◆
 1

n
(SM1.11)

when cµ <
1

300 .
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Lemma SM1.4 (Inner product between shifted x0). Let x0 ⇠i.i.d. BG(✓) 2 Rn. There exists
a numerical constant C such that if n > C✓

�2 log p and p✓ log2 ✓�1
> 1, with probability at

least 1� 4/n, the following two statements hold simultaneously:

max
i 6=j2[2p]

hsi[x0], sj [x0]i  6
p
n✓2 log n;(SM1.12)

and for xi = |x0,i| 2 Rn
+ the vector of magnitudes of x0,

max
i 6=j2[2p]

hsi[x], sj [x]i  4n✓2.(SM1.13)

Proof. We will start from proving (SM1.13). Write x = |g| � ! where g / ! are Gauss-
ian/Bernoulli random vectors respectively. Let I0 denote the support of ! and t = |j � i| with
0 < t < p. Then (SM1.13) can be written as summation of Gaussian r.v.s. on intersection of
support set between shifts:

hsi[x], sj [x]i =
X

k2I0\(I0+t)

|gk| |gk�t|(SM1.14)

Define Jt := I0 \ (I0 + t) = Jt1 ] Jt2 same as (SM1.4). Notice that both
P

k2Jt1 |gk| |gk�t| andP
k2Jt2 |gk| |gk�t| are sum of independent r.v.s.. We are left to consider the upper bound of

P
j2Jti |gj |

���g0
j

��� where g, g0 are independent Gaussian vectors. We condition on the following

event

EJ :=
�
8t 2 [2p] \ {0} , n✓2/4  |Jt1| , |Jt2|  n✓

2
 
,(SM1.15)

which holds w.p. at least 1� 2/n from Lemma SM1.1. Since
P

j2Jt1 |gj |
���g0

j

���  kgJt1k2
��g0

Jt1

��
2
,

we use Gaussian concentration Lemma SM10.3 and union bound to obtain

P

2

4 max
t2[2p]\{0}

X

j2Jt1

��gjg0
j

�� > 2 |Jt1|

3

5  2p · P
⇥
kgJt1k2

��g0
Jt1

��
2
� E kgJt1k2

��g0
Jt1

��
2
> |Jt1|

⇤

 4p · P
h
kgJt1k2 � E kgJt1k2 >

p
|Jt1|/3

i

 4p exp (�(|Jt1| /9)/2)  4p exp
�
�n✓2/72

�
 1/n(SM1.16)

where the last inequality is derived simply via assuming n = C✓
�2 log p for some C > 104,

such that

C > 400 ⇤ (4C)1/5 =) C log p > 400 log((4C)1/5p)

=) C log p > 72 log(4Cp
5) > 72 log(4Cp

2 log3 p)

=) n✓
2
> 72 log(p · 4C✓

�2 log p) = 72 log(4np).

Likewise for sum on set Jt2, we collect all above result and conclude for every i 6= j 2 [2p],

hsi[x], sj [x]i =
X

k2Jt1

|gk|
��g0

k�t

��+
X

k2Jt2

|gk|
��g0

k�t

��  2 (|Jt1 |+ |Jt2 |)  4n✓2.(SM1.17)
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For (SM1.12) similarly condition on event EJ , using Bernstein inequality Lemma SM10.4 with
(�2

, R) = (1, 1):

P

2

4 max
t2[2p]\{0}

������

X

j2Jt1

gjg
0
j

������
> 3

p
n✓2 log n

3

5  p · exp
 

�9n✓2 log n
2 |Jt1|+ 6

p
n✓2 log n

!

 p · exp
✓
�9n✓2 log n

3n✓2

◆
 1

n
(SM1.18)

thus for every i 6= j 2 [2p],

|hsi[x0], sj [s0]i| 

������

X

k2Jt1

gkg
0
k�t

������
+

������

X

k2Jt2

gkg
0
k�t

������
 6

p
n✓2 log n.(SM1.19)

Finally, both (SM1.17),(SM1.19) holds simultaneously with probability at least

1� 2/n� 1/n� 1/n = 1� 4/n(SM1.20)

Lemma SM1.5 (Convolution of x0). Given y = x0 ⇤ a0 where x0 ⇠i.i.d. BG(✓) 2 Rn and
a0 2 Rp0 is µ-shift coherent. Suppose n � C✓

�2 log p for some numerical constant C > 0, with
probability at least 1� 7/n, we have the following two statement simultaneously hold:

kCy◆k22  3(1 + µp)n✓(SM1.21)

and for all J ✓ [n],

kPJCy◆k22  14 |J | (1 + µp) (p✓ + log n)(SM1.22)

Proof. Given any a 2 Sp�1, write � = C
⇤
a0
◆a where |�|  2p . Apply kx0k22  2n✓ from

Lemma SM1.2 by choosing " = 1/n, also |hsi[x0], sj [x0]i|  6
p
n✓2 log n from Lemma SM1.4

we get:

kCy◆ak22 = kCx0�k
2
2  k�k

2
2 kx0k22 +

X

i 6=j2[±p]

|�i�j hsi[x0], sj [x0]i|

 k�k22 kx0k22 + k�k
2
1 max
i 6=j2[±p]

|hsi[x0], sj [x0]i|

 k�k22 · 2n✓ + p k�k22 · 6
p

n✓2 log n  3 k�k22 n✓

where n = C✓
�2 log p with C � 104, and the statement holds with probability at least 1� 5/n.

For the bound of kPJCy◆ak22. Simply apply Lemma SM1.3 and utilize norm bound of

k�k22, with probability at least 1� 2/n we have:

kPJCy◆ak22 =
X

i2J
|hsi[x0],�i|2  |J | max

U=[2p]+j
j2[n]

kPUx0k22 k�k
2
2  |J | · 14 (p✓ + log n) · k�k22

Finally apply Lemma SM2.4 and Gershgorin disc theorem obtain

k�k22 =
��C⇤

a0
◆a
��2
2

��C⇤

a0
◆
��2
2
= �max (M)  1 + µp.(SM1.23)

Remark SM1.6. When a0 is a basis vector e0, the result of Lemma SM1.5 gives upper
bound of kCx0k2 < 3n✓, whose lower bound can be derived similarly with kCx0◆k2 �

2
3n✓
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SM2. Vectors in shift space. In this section, we will establish a number of properties of
the coe�cient vectors ↵ and correlation vector �. Generally speaking, when a is close to the
subspace S⌧ , then both vectors ↵,� have most of their energy concentrated on the entries ⌧ .
In this section, we derive upper bounds on ↵⌧ c and �⌧ c under various assumptions.

In particular, we will introduce a relationship between the sparsity rate ✓, coherence µ

and size |⌧ |, which we term the sparsity-coherence condition. In Lemma SM2.2 we prove
that measuring the distance from a to subspace S⌧ in terms of k↵⌧ ck2 gives a seminorm. We
then use this distance to characterize a region R(S⌧ , �(cµ)) around the subspace S⌧ . Later,
in Lemma SM2.4 we illustrate the relationship between ↵ and �, where � = C

⇤
a0
◆◆

⇤
Ca0↵.

Finally in Lemma SM2.5 and Corollary SM2.6, controls the magnitude of ↵⌧ c and �⌧ c near
S⌧ .

Definition SM2.1 (Sparsity-coherence condition). Let a0 2 Sp0�1 with shift coherence µ.
We say that (a0, ✓, |⌧ |) satisfies the sparsity-coherence condition SCC(cµ) with constant cµ, if

✓ 2
"
1

p
,

cµ

4max
�
|⌧ | ,pp

 
#
· 1

log2 ✓�1
, µ ·max

n
|⌧ |2 , p2✓2

o
· log2 ✓�1  cµ

4
,(SM2.1)

where p = 3p0 � 2.

Lemma SM2.2 (d↵ is a seminorm). For every solution subspace S⌧ , the function d↵(·,S⌧ ) :
Rp ! R+ defined as

d↵(a,S⌧ ) = inf {k↵⌧ ck2 | a = ◆
⇤
Ca0↵} .(SM2.2)

is a seminorm, and for all a 2 S⌧ , d↵(a,S⌧ ) = 0.

Proof. It is immediate from definition that d(·,S⌧ ) is nonnegative and S⌧ ✓ {a : d↵(a,S⌧ ) = 0}.
Subadditivity can be shown from simple norm inequalities and our definition of d↵, for all a1,
a2 we have

d↵(a1 + a2,S⌧ ) = inf {k↵⌧ ck2 | a1 + a2 = ◆
⇤
Ca0↵}

= inf {k↵1⌧ c +↵2⌧ ck2 | a1 = ◆
⇤
Ca0↵1, a2 = ◆

⇤
Ca0↵2}

 inf {k↵1⌧ ck2 + k↵2⌧ ck2 | a1 = ◆
⇤
Ca0↵1, a2 = ◆

⇤
Ca0↵2}

= inf {k↵1⌧ ck2 | a1 = ◆
⇤
Ca0↵1}+ inf {k↵2⌧ ck2 | a2 = ◆

⇤
Ca0↵2}

= d↵(a1,S⌧ ) + d↵(a2,S⌧ ).

Similarly the absolute homogeneity, for any c 2 R:

d↵(c · a,S⌧ ) = inf
���↵0

⌧ c

��
2

�� c · a = ◆
⇤
Ca0↵

0 = inf {kc ·↵⌧ ck2 | a = ◆
⇤
Ca0↵}

= |c| · inf {k↵⌧ ck2 | a = ◆
⇤
Ca0↵} = |c| · d↵(a,S⌧ ),

which completes the proof that d↵ is a seminorm.

Definition SM2.3 (Widened subspace). For subspace S⌧ let

R(S⌧ , �(cµ)) :=
�
a 2 Sp�1

�� d↵(a,S⌧ )  �
 

(SM2.3)

denote its widening by �, in the seminorm d↵.
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Our analysis works with a specific choice of width �(cµ), which depends on the problem
parameters a0, ✓, |⌧ | and a constant cµ, via

�(cµ) =
cµ

4 log2 ✓�1
min

(
1p
|⌧ |

,
1
p
µp

,
1

µp
p
✓ |⌧ |

)
(SM2.4)

Lemma SM2.4 (Properties of C⇤
a0
◆◆

⇤
Ca0). Let M = C

⇤
a0
◆◆

⇤
Ca0, with a0 2 Sp0�1

µ-shift
coherent. The diagonal entries of M satisfy

8
><

>:

Mii = 1 i 2 [�p0 + 1, p0 � 1] = [±p0],

0 Mii  1 i 2 [�2p0 + 2,�p0] [ [p0, 2p0 � 2],

Mii = 0 otherwise,

(SM2.5)

and the o↵-diagonal entries satisfy
8
><

>:

|Mij |  µ 0 < |i� j| < p0, {i 2 [�p0 + 1, p0 � 1]} [ {j 2 [�p0 + 1, p0 � 1]}
|Mij | < 1 {i, j 2 [�2p0 + 2,�p0]} [ {i, j 2 [p0, 2p0 � 2]}
0 otherwise

.(SM2.6)

Furthermore, let ⌧ ⇢ [±p0], and ⌧
c = [±2p0 � 1] \ ⌧ . The singular values of submatrix ◆

⇤
⌧M◆⌧

can be bounded as:
8
><

>:

1� µ |⌧ |  �min (◆⇤⌧M◆⌧ )  �max (◆⇤⌧M◆⌧ )  1 + µ |⌧ |
�max (◆⇤⌧ cM◆⌧ )  µ

p
p |⌧ |

�max (◆⇤⌧ cM◆⌧ c)  1 + µp

(SM2.7)

Proof. Recall the definition of ◆, which selects the entries {�p0 + 1, . . . , 2p0 � 2}. The
entrywise properties of M can be derived by carefully counting the entries of the shifted
support. The submatrix M on support {�2p0 + 2, . . . , 2p0 � 2} has an upper bound to be
characterized as follows:

���◆⇤[±2p0�1]M◆[±2p0�1]

��� 

2

66666666666666666666666664

J µ · 1

2

64
0
.
.
.

0

3

75 0 0

µ · 1 I + µ · 1o

2

64
µ

.

.

.

µ

3

75 µ · 1 0

⇥
0 · · · 0

⇤ ⇥
µ · · ·µ

⇤
1

⇥
µ · · ·µ

⇤ ⇥
0 · · · 0

⇤

0 µ · 1

2

64
µ

.

.

.

µ

3

75 I + µ · 1o µ · 1

0 0

2

64
0
.
.
.

0

3

75 µ · 1 J

3

77777777777777777777777775

.(SM2.8)
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Here, the center row/column vector is indexed at 0, the matrices J , I,1 and 1o are square and
of size (p0 � 1)2. Among which, I is the identity matrix, 1 is the ones matrix whereas 1o has
all o↵ diagonal entries equal 1. Also |J | has property |Jij | < 1 for all i, j.

As for the singular values, notice that the first and second inequalities consider submatrix
not containing J since ⌧ ✓ [±p0]; thus the first inequality can be derived with Gershgorin disc
theorem directly, and the second inequality with the upper bound with its Frobenius norm:

�max (◆
⇤
⌧ cM◆⌧ )  µ

p
(2p0 � 1) |⌧ | < µ

p
p |⌧ |.(SM2.9)

Finally by recalling p = 3p0 � 2 > 2p0 � 1. The last inequality is direct from bound of ◆⇤Ca0 :

�max (◆
⇤
⌧ cM◆⌧ c) 

��C⇤
a0
◆◆

⇤
Ca0

��
2
=
��◆⇤Ca0C

⇤
a0
◆
��
2
=
��◆⇤C⇤

a0
Ca0◆

��
2
 1 + µp(SM2.10)

where the third equality is derived via commutativity of convolution.

Lemma SM2.5 (Shift space vectors in widened subspace). Let (a0, ✓, |⌧ |) satisfy the sparsity-
coherence condition SCC(cµ). Then for every a 2 R(S⌧ , �(cµ)), every ↵ satisfying a = ◆

⇤
Ca0↵

and k↵⌧ ck2  �(cµ) has

|k↵⌧k2 � 1|  cµ;(SM2.11)

moreover, � = C
⇤
a0
◆a satisfies

1� 3cµ  k�⌧k22  1 +
cµ

|⌧ | log2 ✓�1
(SM2.12)

k�⌧ ck1 
cµp

|⌧ | log2 ✓�1
(SM2.13)

k�⌧ ck2 
cµ

|⌧ | ✓ log ✓�1
min

np
✓, �(cµ)

o
.(SM2.14)

Proof. Write �1/ log ✓ = ✓log and � = �(cµ) for convenience. First, by using bounds on �

in (SM2.4) and µ |⌧ | < 1 we obtain:
8
>>>>><

>>>>>:

� ·
p
1 + µp  � (1 +

p
µp)  cµ✓

2
log/2

� ·
p
1 + µ2p  �

⇣
1 +

p
µ2p

⌘


cµ✓
2
log

4

 
1p
|⌧ |

+
p
µ

!


cµ✓
2
log

2
p

|⌧ |

� · µ
p

p |⌧ |  � ·pµp ·
p
µ |⌧ |  cµ✓

2
log/4

(SM2.15)

Let a = ◆
⇤
Ca0↵ with k↵⌧ ck2 < �. Utilize properties of ◆

⇤
Ca0 from Lemma SM2.4 and

µ |⌧ | < cµ/4 and (SM2.15), we have:

k↵⌧k2 � k◆
⇤
Ca0◆⌧k

�1
2 (kak2 � k◆

⇤
Ca0↵⌧ ck2)

� k◆⇤Ca0◆⌧k
�1
2 (1� k◆⇤Ca0k2 k↵⌧ ck2)

� 1p
1 + µ |⌧ |

⇣
1� � ·

p
1 + µp

⌘
� 1� cµ/2p

1 + cµ/4
� 1� cµ,(SM2.16)
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and similarly, the upper bound can be derived as:

k↵⌧k2  �
�1
min (◆

⇤
Ca0◆⌧ ) (kak2 + k◆

⇤
Ca0↵⌧ ck2)

 �
�1
min (◆

⇤
Ca0◆⌧ ) (1 + k◆⇤Ca0k2 k↵⌧ ck2)

 1p
1� µ |⌧ |

⇣
1 + � ·

p
1 + µp

⌘
 1 + cµ/2p

1� cµ/4
 1 + cµ.(SM2.17)

The bound of k�⌧k22 can be simply obtained using µ |⌧ | < cµ/4 and � bound from (SM2.15)
as:

k�⌧k22  �
2
max (◆

⇤
⌧Ca0◆)  1 + µ |⌧ |  1 +

cµ✓
2
log

|⌧ |(SM2.18)

k�⌧k22 � (�min (◆
⇤
⌧M◆⌧ ) k↵⌧k2 � �max (◆

⇤
⌧M◆⌧ c) k↵⌧ ck2)

2

�
⇣
(1� µ |⌧ |) (1� cµ)� µ

p
p |⌧ | · �

⌘2
� 1� 3cµ.(SM2.19)

As for the upper bound of and k�⌧ ck1, follow from (SM2.15), we have:

k�⌧ ck1  k◆
⇤
⌧ cM↵⌧k1 + k◆⇤⌧ cM↵⌧ ck1  µ

p
|⌧ | k↵⌧k2 +

p
1 + µ2p k↵⌧ ck2


cµ✓

2
log(1 + cµ)

4 |⌧ | + � ·
p
1 + µ2p 

cµ✓
2
logp
|⌧ |

;(SM2.20)

the bound for k�⌧ ck2 requires two inequalities, we know

k�⌧ ck2  k◆
⇤
⌧ cM↵⌧k2 + k◆

⇤
⌧ cM↵⌧ ck2  µ

p
p |⌧ | k↵⌧k2 + (1 + µp) k↵⌧ ck2 ,(SM2.21)

for the first inequality, use
�
µ |⌧ |2

�3/4 �
µp

2
✓
2
�1/4

= µ
p
p✓ |⌧ |3/2 < cµ✓

2
log/4 , definition of �

and ✓ |⌧ |  cµ✓
2
log/4 we have:

(SM2.21)  µ
p
p✓ |⌧ |3/2p
✓ |⌧ |

(1 + cµ) +

p
✓ |⌧ | ·

p
|⌧ |�p

✓ |⌧ |
+

µp
p
✓ |⌧ | �p
✓ |⌧ |


2cµ✓2log + cµ✓

3
log + cµ✓

2
log

4
p
✓ |⌧ |


cµ✓

2
logp

✓ |⌧ |
,(SM2.22)
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and similarly for the second inequality, use both conditions of µ, we have:

(SM2.21)

 �

✓ |⌧ | ·
µ
p
p✓ |⌧ |3/2

�
(1 + cµ) + � + µp�

 �

✓ |⌧ | ·
4µ
p
p✓ |⌧ |3/2

cµ✓
2
log

·max
np

|⌧ |, pµp, µp
p
✓ |⌧ |

o

+
�

✓ |⌧ | · ✓ |⌧ |+
�

✓ |⌧ | · µp✓ |⌧ |

 �

✓ |⌧ | ·
⇣ 4

cµ✓
2
log

·max
n
µ |⌧ |2 ·pp✓, µ(p✓) |⌧ | ·

p
µ |⌧ |,

µ

p
p✓ |⌧ |3/2 · µp✓ |⌧ |

o
+

cµ✓
2
log

4
+

cµ✓
2
log

4

⌘

 �

✓ |⌧ |

 
cµ✓log

4
+

cµ✓
2
log

4
+

cµ✓
2
log

4

!


cµ✓log�

✓ |⌧ | ,(SM2.23)

which completes the proof.

Corollary SM2.6 ( |h�⌧ c ,x0,⌧ ci| is small). Given x0 ⇠i.i.d. BG(✓) in Rn and |⌧ | , cµ such
that (a0, ✓, |⌧ |) satisfies the sparsity-coherence condition SCC(cµ). Write � = c�/

p
|⌧ | with

some c� � 1/5, then if cµ  c�
25 ,

P
"�����
X

i2⌧ c

�ix0i

����� >
�

10

#
 2✓, P

"�����
X

i

�ix0i

����� >
�

10

#
 ✓ |⌧ |+ 2✓.(SM2.24)

Proof. We bound tail probability of the first result with Gaussian moments Lemma SM10.2
and Bernstein inequality Lemma SM10.4. Via Hölder’s inequality,

P
i2⌧ c E(�ixi)q = Exq0 k�⌧ ckqq 

✓(q � 1)!! k�⌧ ck22 k�⌧ ckq�2
1 , thus

P
"�����
X

i2⌧ c

�ix0i

����� > �/10

#
 2 exp

 
�(�/10)2

2✓ k�⌧ ck22 + 2(�/10) k�⌧ck1

!
(SM2.25)

Write ✓log = � 1
log ✓ , Lemma SM2.5 imples when cµ  c�

25 , we have ✓ k�⌧ ck22 
c2µ✓

2
log

|⌧ |2 
✓log�2

625

and k�⌧ ck1 
cµ✓logp

|⌧ |
 ✓log�

25 , therefore,

(SM2.25)  2 exp

✓
��2

/100

2✓log�2/625 + 2(✓log�/25) · (�/10)

◆

 2 exp (log ✓)  2✓(SM2.26)
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The second tail bound is straight forward from the first tail bound as follows:

P
"�����
X

i

�ix0i

����� >
�

10

#
 P [|�⇤

⌧x⌧ |+ |�⇤
⌧ cx⌧ c | > �/10]

 P [x⌧ 6= 0] + P [x⌧ = 0] · P [|�⇤
⌧ cx⌧ c | > �/10]

 ✓ |⌧ |+ 2✓.(SM2.27)

Corollary SM2.7 (
��⌦�⌧\(0),x0,⌧\(0)

↵�� is small near shifts). Suppose that x0 ⇠i.i.d. BG(✓) in
Rn, and |⌧ | , cµ such that (a0, ✓, |⌧ |) satisfies the sparsity-coherence condition SCC(cµ), then
if cµ  1

10 , for any a such that
���(1)

��  �
4 log ✓�1 , we have

P

2

4

������

X

i2⌧\(0)

�ix0i

������
>

2�

5

3

5  2✓(SM2.28)

Proof. For the last tail bound, write x = ! � g. Wlog define �0 be the largest correlation
�(0), define random variables s0 =

⌦
�⌧\{0},x⌧\{0}

↵
. Firstly most of the entries of x⌧ would be

zero since via Bernstein inequality with ✓ |⌧ | < 0.1:

P
"
X

i2⌧
!i > log ✓�1

#
 P

"
X

i2⌧
!i > ✓ |⌧ |+ 0.9 log ✓�1

#

 exp

✓
�0.92 log2 ✓�1

2 (✓ |⌧ |+ 0.9 log ✓�1/3)

◆
 ✓(SM2.29)

thus with probability at least 1� ✓, we can write s
0 as a Gaussian r.v. with variation bounded

as Es02  E
hPlog ✓�1

i=1 �igi

i2
= log ✓�1

�
2
(1), then via Gaussian tail bound Lemma SM10.1:

P
⇥��s0

�� > 0.4�
⇤
 P

"
|g| > 0.4�p

log ✓�1
���(1)

��

#
+ P

"
X

i2⌧
!i > log ✓�1

#

 2p
2⇡

exp
�
�1.2 log ✓�1

�
+ ✓  2✓,(SM2.30)

SM3. Euclidean gradient as soft-thresholding in shift space. In this section, we will
study the Euclidean gradient (4.7), by deriving bounds showing that the � operator ap-
proximates a soft-thresholding function in shift space (Lemma SM3.2 and Corollary SM3.4).
Furthermore, we will show the operator �[�i] is monotone in |�i| from Lemma SM3.3. A figure
of visualized � operator is shown in Figure SM1.

To understand the � operator, we shall first consider a simple case—when x0 is highly
sparse. By definition of � from (4.3) we can see that � has a short support of size at most
2p�1, when x0 has support entries separated by at least 2p, the entries of vector �[�]i become
sum of independent random variables as:

�[�]i =
D
s�i[x0],S�

h
x0 ⇤ �

V

iE
=|{z}

x0 sep.

hs�i[x0],S� [�is�i[x0]]i =
X

j2supp(x0)

gj · S� [gj · �i]
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where (gj)j2[n] are standard Gaussian r.v.s.

The following lemma describes the behavior of the summands in the above expression:

Lemma SM3.1 (Gaussian smoothed soft-thresholding). Let g ⇠ N (0, 1). Then for every
b, s 2 R and � > 0,

Eg

h
gS� [b · g + s]

i
= b (1� erfb(�, s)) ,(SM3.1)

where

erfb(�, s) =
1

2
erf

✓
�+ sp
2 |b|

◆
+

1

2
erf

✓
�� sp
2 |b|

◆
.(SM3.2)

Furthermore, for s = 0, b 2 [�1, 1] and " 2 (0, 1/4), letting � = sign(b) we have

�S⌫02�
[b]  �Eg

h
gS� [b · g]

i
 �S⌫01(")�

[b] + "(SM3.3)

where ⌫
0
1(") = 1/(2

p
� log ") and ⌫

0
2 =

p
2/⇡.

Proof. Wlog assume b > 0. Write f as the pdf of standard Gaussian distribution. With
integral by parts:

Z t

�1
t
0
f(t0)dt0 = �f(t),

Z t

�1
t
02
f(t0)dt0 =

1

2
erf

✓
tp
2

◆
� tf(t)

Integrating, we obtain

E
h
gS� [b · g + s]

i
=

Z

t���s
b

�
bt

2 � (�� s)t
�
f(t)dt+

Z

t��+s
b

�
bt

2 + (�+ s)t
�
f(t)dt,

by writing L = �� s, the integral of first summand

Z

t�L
b

�
bt

2 � Lt
�
f(t)dt = b


1

2
� 1

2
erf

✓
Lp
2b

◆
+

L

b
f

✓
L

b

◆�
� Lf

✓
L

b

◆

=
b

2
� b

2
erf

✓
Lp
2b

◆
,

and similarly for the second summand, which gives

E
h
gS� [b · g + s]

i
=

b

2
� b

2
erf

✓
�� sp

2b

◆
+

b

2
� b

2
erf

✓
�+ sp

2b

◆
= b (1� erfb(�, s))

For b < 0, alternatively we have

E
h
gS�[�|b| · g + s]

i
= �E[gS�[|b| · g � s] = �|b|(1� erfb(�,�s)) = b(1� erfb(�, s)),
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To show (SM3.3), via definition of error function, for x > 0, we know:

min

(
1� ",

1� "p
log(1/")

x

)
 erf(x) =

2p
⇡

Z x

0
e
�t2

dt  2xp
⇡

(SM3.4)

where the lower bound is derived by first knowing erf is increasing thus for all x >
p
log(1/"),

erf(x) � 1� e
�x2 � 1� e

log " = 1� "

and from concavity of erf we have for 0 < x <
p
log(1/") = T ,

erf(x) � erf(T )� erf(0)

T � 0
x+ erf(0) � 1� "p

log(1/")
x.

Lastly plug (SM3.4) into (SM3.1) and apply condition |b|  1 and " < 1/4 we have

|b|�
r

2

⇡
�  |b|� |b| erf

✓
�p
2 |b|

◆

 max

(
|b| ", |b|� �(1� ")p

2 log(1/")

)
 max

(
", |b|� �

2
p
log(1/")

)
,

which completes the proof.

This lemma establishes when x0 is separated, then � is soft thresholding operator on � with
threshold about �/2. This phenomenon extends beyond the separated case, as long as when
x0 is su�ciently sparse (when Definition SM2.1 holds). Recall that � : Rn ! Rn is defined as

�[�] = C

V

x0S�

h
C

V

x0�

i
.(SM3.5)

The following lemma bounds its expectation:

Lemma SM3.2 (Expectation of �(�)). Let x0 ⇠i.i.d. BG(✓) and � > 0, then for every
a 2 Sp�1 and every i 2 [n], define the operator � as in (SM3.5), then

n
�1E�[�]i = ✓�i (1� Esierf�i(�, si))(SM3.6)

where si =
P

` 6=i �`x0`. Suppose (a0, ✓, |⌧ |) satisfies the sparsity-coherence condition SCC(cµ)

and � = c�/
p
|⌧ | for some c� > 1/5 and �i = sign(�i), then there exists some numerical

constant c such that if cµ  c then for every a 2 R(S⌧ , �(cµ)) and every i 2 [n], (SM3.6) has
upper bound

�in
�1E�[�]i  �in

�1E�[�]i :=
(
4✓2 |⌧ | |�i| |�i| < ⌫1�

✓ (|�i|� ⌫1�/2) |�i| � ⌫1�
,(SM3.7)

and lower bound

�in
�1E�[�]i � �in

�1E�[�]
i
=: ✓S⌫2� [|�i|] ,(SM3.8)

where ⌫1 = 1/
⇣
2
p

log ✓�1
⌘
, ⌫2 =

p
2/⇡.
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-0.5 0 ⌫1�⌫2� 0.5
-0.5

0

0.5

�i

E�[�]i
E�[�]

i

E�[�]i

-0.5 0 ⌫2�1 ⌫2�2 ⌫2�3
-0.5

0

0.5

�i

�1 = 0.2
�2 = 0.4
�3 = 0.6

Figure SM1. A numerical example of E�[�]i. We provide figures for the expectation of � when entries
of x0 are 2p-separated. Left: the yellow line is the function �i ! �i (1� erf�i(�, 0)) derived from (SM3.1), and
the blue/red lines are its upper/lower bound (SM3.3) utilized in the analysis respectively. Right: functions of
�i ! �i (1� erf�i(�, 0)) with di↵erent �, the section of function of �i > ⌫2� are close to linear.

This lemma shows the expectation of �[�]i acts like a shrinkage operation on |�i|: for large
|�i|, it acts like a soft thresholding operation, and for small |�i|, it reduces |�i| by multiplying
a very small number 4✓ |⌧ | ⌧ 1. We rigorously prove this segmentation of � operator as
follows:

Proof. First, since si[x0] ⌘d sj [x0],

�[�]i = e
⇤
iC

V

x0S�

h
C

V

x0�

i
=
D
s�i[x0],S�

h
x0 ⇤ �

V

iE

⌘d

D
s�j [x0],S�

h
si�j [x0] ⇤ �

V

iE
= �[sj�i[�]]j

Thus wlog let us consider i = 0 and write x as x0. The random variable �[�]0 can be written
sum of random variables as:

� [�]0 =

*
x,S�

2

4�0x0 +
X

6̀=0

�`s�`[x]

3

5
+

=
X

j2[n]

xjS�

2

4�0xj +
X

` 6=0

�`xj+`

3

5 ,

and a random variable Zj(�) is defined as

Zj(�) = xjS�

2

4�0xj +
X

`2[±p]\0

�`xj+`

3

5 ,(SM3.9)

gives �[�]0 =
P

j2[n] Zj(�) as sum of r.v.s. of same distribution and thus n�1E�[�]0 = EZ0(�).
Define a random variable s0 =

P
6̀=0 �`x`, which is independent of x0. From Lemma SM3.1,

we can conclude

n
�1E�[�]0 = Ex0,s0x0S� [�0x0 + s0] = ✓�0 (1� Es0erf�0(�, s0))(SM3.10)
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so that (SM3.6) holds for i = 0, and hence for all i.

1. (Upper bound of EZ) Wlog assume �0 � 0 and write Z = Z0. We derive the upper bound
on EZ in two pieces.

(1). First, since Ex0S� [0 · x0 + s0] = 0, we have

EZ(�)  �0 sup
�2[0,�0]

d

d�
Ex0,s0x0S� [�x0 + s0]

= ✓�0 sup
�2[0,�0]

d

d�

Z

|�g+s0|>�
g (�g + s0 � sign(�g + s0) · �) dµ(g)dµ(s0)

= ✓�0 sup
�2[0,�0]

Eg,s0

⇥
g
21{|�g+s0|>�}

⇤

 ✓�0 sup
�2[0,�0]

Eg,s0

h
g
2
⇣
1{|�g|> 9�

10} + 1{|s0|> �
10}

⌘i

 ✓�0

⇣�
Eg6

�1/3 P [|�0g| > (9�/10)]2/3 + P [|s0| > �/10]
⌘

(SM3.11)

We bound the tail probability of s0 using Corollary SM2.6 where

P [|s0| > �/10]  P [|
P

i �ixi| > �/10]  ✓ |⌧ |+ 2✓  3✓ |⌧ | .(SM3.12)

On the other hand, the first term in (SM3.11) can be derived by pdf of Gaussian r.v.
Lemma SM10.1 as:

�
Eg6

�1/3 P [|�0g| > (9�/10)]2/3  3
p
15

✓
10�0

9�
p
2⇡

◆2/3

exp

✓
� �

2

4�2
0

◆

 3

2

✓
�0

�

◆2/3

exp

✓
� �

2

4�2
0

◆
.(SM3.13)

Combine (SM2.26), (SM3.13), when �0 < ⌫1�, we know e
� �2

4�2
0  e

log ✓  ✓ |⌧ |. The first type
of upper bound EZ is derived as

8�0 2 [0, ⌫1�] , EZ(�)  ✓�0

✓
3

2
⌫
2/3
1 exp

✓
� �

2

4�2
0

◆
+ 3✓ |⌧ |

◆
 4✓2 |⌧ |�0.(SM3.14)

(2). The second type of upper bound can be derived directly from Lemma SM3.1:

EZ(�)  Ex0Es0x0S� [�0x0 + s0]  Ex0x0S� [�0x0] + Ex0 |x0|Es0 |s0|

 ✓ ·
⇣
S⌫01�

[�0] + "+
p
2/⇡ · E |s0|

⌘
,(SM3.15)

where E |s| can be bounded with k�k2 and ✓ |⌧ | < cµ✓log from Lemma SM2.5. When cµ <
1
10 ,

observe that

E |s| 
sX

`

Ex2
`�

2
` 
p
✓ (k�⌧k2 + k�⌧ ck2) 

p
✓ (1 + cµ) +

cµ✓log

|⌧ | 
2cµ✓logp

|⌧ |
.(SM3.16)
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Now choose " = ✓  cµ✓log
|⌧ | , so that ⌫ 01 = ⌫1 =

p
✓log
2 in (SM3.15). Since cµ <

c�
25 we gain

EZ(�)  ✓

 
S⌫1� [�0] +

cµ✓log

|⌧ | +

r
2

⇡
·
2cµ✓logp

|⌧ |

!
 ✓

 
S⌫1� [�0] +

3cµ✓logp
|⌧ |

!

 ✓

 
S⌫1� [�0] +

p
✓log

5
�

!
 ✓

✓
S⌫1� [�0] +

1

2
⌫1�

◆
(SM3.17)

(3). Combine both (SM3.14) and (SM3.17), we can thus conclude that

EZ(�) := EZ(�) 
(
4✓2 |⌧ |�0 �0  ⌫1�

✓
�
�0 � ⌫1

2 �
�

�0 > ⌫1�
.(SM3.18)

2. (Lower bound of EZ) On the other hand, for the lower bound for EZ, use the fact that
erf�(�, s) is concave in s0, we have

EZ(�) = Es0Ex0x0S� [�0x0 + s0]

= ✓ · Es0


�0 �

�0

2
· erf

✓
�� s0p
2 |�0|

◆
� �0

2
· erf

✓
�+ s0p
2 |�0|

◆�

� ✓

✓
�0 � �0 · erf

✓
�p
2 |�0|

◆◆
� ✓ · S⌫02�

[�0] =: EZ(�).(SM3.19)

The proof of �0 < 0 is in the same vein. For cases of i 6= 0, since �[�]i ⌘d �[s�i[�]]0, replace
�0 with �i we obtain the desired result.

Another convenient fact of E�[�]i is that it is monotone increasing w.r.t. |�i|. The
monotonicity is clear in Figure SM1; it is demonstrated rigorously with the following lemma:

Lemma SM3.3 (Monotonicity of E�(�)). Suppose x0 ⇠i.i.d. BG(✓) in Rn, and |⌧ | , cµ such
that (a0, ✓, |⌧ |) satisfies the sparsity-coherence condition SCC(cµ). Define � = c�/

p
|⌧ | in '`1

where c� 2
⇥
0, 14

⇤
, then there exists some numerical constant c > 0, such that if cµ < c, the

expectation |E[�[�]]i| is monotone increasing in |�i|. In other words, if |�i| > |�j | then

�iE�[�]i � �jE�[�]j(SM3.20)

where �i = sign(�i).

The proof first operate simple calculus and then followed by studying cases of |�i|� |�j | when
either it is smaller are larger then �.

Proof. 1. (Monotonicity by gradient negativity) Wlog assume �i > �j > 0, and from
Lemma SM3.2 we can write (n✓)�1E�[�]i = �i (1� Esierf�i(�, si)). Consider t 2 [0, 1] and
define `(t) = t�i � t�j . Write the random variable sij =

P
`6=i,j �`x`. Define h as a function

of t such that

h(t) = Ex,sij

h
((1� t)�i + t�j)

⇣
1� erf(1�t)�i+t�j

(�, ((1� t)�j + t�i)x+ sij)
⌘i

= Ex,sij

⇥
(�i � `(t))

�
1� erf�i�`(t)(�, x · (�j + `(t)) + sij)

�⇤
.(SM3.21)
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Notice that E�[�]i = h(0) and E�[�]j = h(1) respectively, thus it su�ces to prove h
0(t) < 0

for all t 2 [0, 1]. Write f as pdf of standard Gaussian r.v. where

erf�(�, sij) =

Z �+sij
�

0
f(z) dz +

Z ��sij
�

0
f(z) dz,

and use chain rule:

h
0(t) = Ex,sij

⇥
(�j � �i)

�
1� erf�i�`(t)(�, x · (�j + `(t)) + sij)

�

� (�i � `(t)) · d

dt

✓
�+ x · (�j + `(t)) + sij

�i � `(t)

◆
· f

✓
�+ x · (�j + `(t)) + sij

�i � `(t)

◆

� (�i � `(t)) · d

dt

✓
�� x · (�j + `(t))� sij

�i � `(t)

◆
· f

✓
�� x · (�j + `(t))� sij

�i � `(t)

◆�

= (�j � �i)Ex,sij

⇥
1� erf�i�`(t)(�, x · (�j + `(t)) + sij)

+

✓
�+ x(�j + `(t)) + sij

�i � `(t)
+ x

◆
· f

✓
�+ x(�j + `(t)) + sij

�i � `(t)

◆

| {z }
z�+

+

✓
�� x(�j + `(t))� sij

�i � `(t)
� x

◆
· f

✓
�� x(�j + `(t))� sij

�i � `(t)

◆

| {z }
z��

�

= (�j � �i)Ex,sij


1�

Z z�+

0
f(z) dz �

Z z��

0
f(z) dz + (z�+ + x)f(z�+) + (z�� � x)f(z��)

�
.

(SM3.22)

Consider the term only related to z�+ , condition on cases that it is either positive or negative,
observe that
8
<

:
µ+� := Ex,sij |z�+0

hR z�+
0 f(z) dz � z�+f(z�+)

i
= Ex,s|z�+0

h
�
R �z�+
0 f(z) dz � z�+f(z�+)

i
 0

µ++ := Ex,sij |z�+>0

hR z�+
0 f(z) dz � z�+f(z�+)

i
 min

n
1
2 ,

1p
2⇡
Ex,sij |z�+>0 z�+

o ,

where the negativity of the first equation can be observed by writing v = �z�+ and take
derivative:

(
�
R v
0 f(z)dz + v · f(v) = 0 v = 0

d
dv

�
�
R v
0 f(z)dz + v · f(v)

 
= �f(v) + f(v) + v · f 0(v) < 0 v > 0

;

and similarly for z�� :

8
<

:
µ�� := Ex,sij |z��0

hR z��
0 f(z) dz � z��f(z��)

i
 0

µ�+ := Ex,sij |z��>0

hR z��
0 f(z) dz � z��f(z��)

i
 min

n
1
2 ,

1p
2⇡
Ex,sij |z��>0z��

o ,
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then combine every term to (SM3.22) using tower property and from assumption �j � �i < 0
we obtain

(SM3.22)  (�j � �i)
�
1� P

⇥
z�+ > 0

⇤
· µ++

�P
⇥
z�� > 0

⇤
· µ�+ + Ex,sij

⇥
x(f(z�+)� f(z��))

⇤�

 (�j � �i)

 
1�min

(
P
⇥
z�+ > 0

⇤

2
,
E
��z�+

��
p
2⇡

)

�min

(
P
⇥
z�� > 0

⇤

2
,
E
��z��

��
p
2⇡

)
� ✓p

2⇡
· E |g|

!
,(SM3.23)

where g is standard Gaussian r.v..

2. (Cases of varying �i,�j) Let c� <
1
4 . Suppose �i�`(t)  1

4
p

|⌧ |
. Recall that k�⌧k22 � 1�3cµ.

We are going to show there is at least one of the entry �⇤ 2 {�r}r2⌧ 6=i,j ] {�j + `(t)} is greater

than 0.85p
|⌧ |

. First, if both i, j 62 ⌧ , the lower bound is immediate since �
2
⇤ = k�⌧k21 >

1�3cµ
|⌧ | .

On the other hand if at least one of i, j is in ⌧ and all other �⌧ entries are small where���⌧\{i,j}
��2
1 <

1�3cµ
|⌧ | , then we know via norm inequalities,

(�i + �j)
2
> �

2
i + �

2
j > k�⌧k22 � (|⌧ |� 1)

���⌧\{i,j}
��2
1 �

1� 3cµ
|⌧ | ,(SM3.24)

which implies if cµ <
1

100 ,

�⇤ = �j + `(t) = (�i + �j)� (�i � `(t)) �
p

1� 3cµp
|⌧ |

� 1

4
p
|⌧ |
� 0.72p

|⌧ |
.(SM3.25)

In this case, adopt result from Corollary SM2.6 such that P [|
P

�`x`| > �/10]  3✓ |⌧ |  .01,
we have

P
⇥
z�� > 0

⇤
= P

⇥
z�+ > 0

⇤
= 1� P [x(�j + `(t)) + sij < ��]
 1� P [x⇤�⇤ < �11�/10] · P [x(�j + `(t)) + sij � x⇤�⇤ < �/10]

 1� ✓ · P
"
g⇤ ·

0.72p
|⌧ |

<
�11c�
10
p
|⌧ |

#
·
✓
1� P

X
�`x` >

�

10

�◆

 1� ✓ · P [0.72 · g⇤  �1.1 · 0.25] · (1� 3cµ)

 1� 0.35✓.(SM3.26)

On the other hand, when �i � `(t) � 1
4
p

|⌧ |
, both z�+ , z�� are upper bounded via |⌧ | ✓  1

800

such as:

Ex,sij

��z��

�� = Ex,sij

��z�+

��  Ex,sij
�+ |x(�j + `(t))� sij |

�i � `(t)

 1 + 4
p

|⌧ | ·
⇣
Ex,sij |x(�j + `(t))� sij |2

⌘1/2

 1 + 4
p

|⌧ | ✓ k�k2  1 + 4
p
|⌧ | ✓

✓
1 + cµ +

cµp
✓ |⌧ |

◆
 1.2.(SM3.27)
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Combine (SM3.23), (SM3.26) we have

h
0(t)  (�j � �i)

 
1� 2 · (1� 0.35✓)

2
� ✓p

2⇡
·
r

2

⇡

!
 0.03✓(�j � �i) < 0,(SM3.28)

and combine (SM3.23), (SM3.27) and ✓ < cµ we have

h
0(t)  (�j � �i)

 
1� 2 · 1.2p

2⇡
� ✓p

2⇡
·
r

2

⇡

!
 0.03(�j � �i) < 0,(SM3.29)

which proves the monotonicity.

When the signal length of y is su�ciently large, operator � will be enough close to its
expected value.

Corollary SM3.4 (Finite sample deviation of �(�)). Suppose x0 ⇠i.i.d. BG(✓) in Rn, and
k, cµ such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Define � = c�/

p
k

in '`1 for some c� > 1/5, then there exists some numerical constants C, c, c > 0, such
that if n � Cp

5
✓
�2 log p and cµ  c, then with probability at least 1 � 3/n, for every a 2

[|⌧ |kR(S⌧ , �(cµ)) and every i 2 [n], we have:

��n�1
�[�]i � n

�1E�[�]i
��  c✓/p

3/2
,(SM3.30)

Proof. See Subsection SM9.1

SM4. Euclidean Hessian as logic function in shift space. We can express the (pseudo)
curvature (4.11) in direction v 2 Sp�1 in terms of the correlation � = C

⇤
a0
◆v between v and

a0, giving

v
⇤ er2

'`1(a)v = ��⇤
C

V

x0PIC

V

x0�,

where

I(a) = supp
⇣
S�

h
C

V

x0C
⇤
a0
◆a

i⌘
=
n
i 2 [n]

��
���x0 ⇤ �

V

���
i
> �

o
.(SM4.1)

The i-th diagonal entry of C

V

x0PI(a)C

V

x0 is

�e⇤iC

V

x0PI(a)C

V

x0ei = �
���PI(a)C

V

x0ei

���
2

2
= �

��PI(a)s�i[x0]
��2
2
,(SM4.2)

which is the core component for us to study the curvature of objective '`1 . We illustrate the
expectation of diagonal term of Hessian in Lemma SM4.2 and Corollary SM4.3, whose figure
of visualized

��PI(a)s�i[x0]
��
2
is shown in Figure SM1. Lastly, we also prove the o↵-diagonal

terms e
⇤
iC

V

x0PI(a)C

V

x0ej of Hessian is likely inconsequential in calculation of curvature in
Lemma SM4.4.

We expect the Hessian to have stronger negative component in the si[a0] direction as��PI(a)s�i[x0]
��2
2
becomes larger. This term can by tremendously simplified when x0 is very
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sparse: suppose all entries of its support I0 are separated by at least 2p� 1 samples, then by
implementing the definition of support from (SM4.1), we can derive

�
��PI(a)s�i[x0]

��2
2
= �

X

j2I0

x
2
0j1{|P` �`x0(`+j�i)|>�} =|{z}

sep.

�
X

j2I0

g
2
j1{|�igj |>�},(SM4.3)

where 1 is the indicator function and gj are independent standard Gaussian r.v.s.. In expecta-
tion, the summands in (SM4.3) acts like a smoothed logic function on entry �i:

Lemma SM4.1 (Gaussian smoothed indicator). Let g ⇠ N (0, 1), then for any b, s 2 R and
� > 0.

Eg
⇥
g
21{|b·g+s|>�}

⇤
= 1� erfb (�, s) + fb(�, s),(SM4.4)

where

fb(�, s) =
1p
2⇡

✓
�+ s

|b|

◆
e
� (�+s)2

2b2 +

✓
�� s

|b|

◆
e
� (��s)2

2b2

�
.(SM4.5)

Proof. The proof can be derived via same calculation of integrals in Lemma SM3.1.

Although the definition (SM4.4) seems incomprehensible at first glance, we can actually
interpret it as a smoothed indicator function which compares |b| to the threshold

p
2/⇡�.

Once we assign s = 0, then we can see that Eg21{|b·g|>�} is be an increasing function of |b|.
Moreover by assigning di↵erent values for |b| we obtain:

Eg21{|b·g|>�} ⇡

8
><

>:

1, |b| ⇡ 1

1/2, |b| ⇡
p
2/⇡�

0, |b| ⇡ 0

.(SM4.6)

Relate (SM4.6) to (SM4.3), when |�i| is close to 1 then we expect � 1
n✓ kPIs�i[x0]k22 to be

close to �1, and it increases to 0 as |�i| decreases, suggests that the Euclidean Hessian at point
a has stronger negative component at si[a0] direction if |ha, si[a0]i| is larger. See Figure SM2
for a numerical example. This phenomenon can be extend beyond the idealistic separating
case as follows:

Lemma SM4.2 (Expected Hessian diagonals). Let x0 ⇠i.i.d. BG(✓) and � > 0, define the set
I(a) in (SM4.1), write si =

P
6̀=i �`x0`, then for every a 2 Sp�1 and i 2 [n]:

n
�1E

��PI(a)s�i[x0]
��2
2
= ✓ [1� Esierf�i (�, si) + Esif�i (�, si)](SM4.7)

Proof. Write x0 as x. Observe that y ⇤ aV= x0 ⇤ �

V

=
P

` �`s�`[x0]. Thus for any j 2 [n]
and i 2 [±p]:

(y ⇤ aV)j�i =
⇣
�is�i[x] +

X

6̀=i

�`s�`[x]
⌘

j�i
= �ixj +

X

`6=i

�`xj+`�i =: �ixj + sj ,(SM4.8)
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-1 0 ⌫2�1⌫2�2⌫2�3 1
0

0.5

1

�i

�3 = 0.6
�2 = 0.4
�1 = 0.2

Figure SM2. A numerical example for E
��PI(a)si[x0]

��2

2
. We provide a figure to illustrate the expectation

of � 1
n✓

��PI(a)si[x0]
��2

2
when entries of x0 are 2p-separated, as a function plot of �i ! 1� erf�i (�, 0)+ f�i(�, 0)

from (SM4.4) with di↵erent �. When |�i| ⇡ ⌫2� where ⌫2 =

p
2/⇡, then the its function value is close to 0.5. If

|�i| is much larger then � its value grow to 1, implies there is a negative curvature at si[a0] direction. Similarly
if |�i| is much smaller then � the function value is 0 thus the curvature is positive in si[a0] direction.

where xj is independent of sj , and both xj , sj are symmetric and identically distributed for
all j 2 [n]. Rewrite the random variable using (SM4.1) as

��PI(a)s�i[x0]
��2
2
=
���PI(a)

P
j2[n] (x0jej�i)

���
2

2
=

X

j2[n]

x
2
0j1{|y⇤ǎ|j�i>�}

=
X

j2[n]

x
2
0j1{|�ix0j+sj |>�}

Write x = g � ! as composition of Gaussian/Bernoulli r.v.s., the expectation has a simple
form:

E
��PI(a)s�i[x0]

��2
2
= n✓ · Eg2

01{|�ig0+s0|>�} = n✓ · E (1� erf�i(�, si) + f�i(�, si))

where si =
P

6̀=i x0i�i with x0i ⇠i.i.d. BG(✓), yielding the claimed expression.

When the signal length of y is su�ciently large, then i-th diagonal term for Hessian��PI(a)s�i[x0]
��2
2
will be close enough to its expected value.

Corollary SM4.3 (Large sample deviation of curvature). Suppose x0 ⇠i.i.d. BG(✓) in Rn, and
k, cµ such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Define � = c�/

p
k

in '`1 for some c� > 1/5, then there exists some numerical constant C, c, c > 0, such that if n �
Cp

4
✓
�1 log p and cµ  c, then with probability at least 1�3/n, for every a 2 [|⌧ |kR(S⌧ , �(cµ))

and every i 2 [n], we have:

���n�1
��PI(a)s�i[x0]

��2
2
� n

�1E
��PI(a)s�i[x0]

��2
2

���  c✓/p(SM4.9)

Proof. See Subsection SM9.2.
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The o↵-diagonal entries of Hessian in general are much smaller then the diagonal entries;
however, it a↵ects the region near sign shifts of a0 the most where we need to show strong
convexity in the region. We provide an upper bound for o↵-diagonal entries in the vicinity of
signed shifts. In these regions, only one entry of the correlations

���(0)

�� is large and the rest is
small.

Lemma SM4.4 (Hessian o↵-diagonal term near solution). Suppose x0 ⇠i.i.d. BG(✓) in Rn,
and k, cµ such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Let � = c�/

p
k

with c� > 1/5, then there exists some numerical constant C, c > 0 such that if n � C✓
�4 log p

and cµ  c, then with probability at least 1 � 4/n, for every a 2 [|⌧ |kR(S⌧ , �(cµ)), where���(1)

��  1
4 log ✓�1� and every i 6= j 2 [±p] \ {(0)}, we have

|si[x0]
⇤|PI(a) |sj [x0]| < 8n✓3(SM4.10)

Proof. Write ✓log = �1/ log ✓ and x0 as x = ! � g. Wlog let �0 be the largest correlation
�(0). Define random variables s0 =

⌦
�⌧\{0,i,j},x⌧\{0,i,j}

↵
. Firstly via Corollary SM2.7 we have

P [|s0| > 0.4�]  2✓; also define s =
⌦
�⌧ c\{0,i,j},x⌧ c\{0,i,j}

↵
, and base on Corollary SM2.6 we

have P [|s| > �/10]  2✓. Expand the (�i,�j)-th cross term with ✓ < 0.1 we have:

E |s�i[x]
⇤|PI(a) |s�j [x]| = E

P
k2[n] |xk+ixk+j |1{|�0xk+�ixk+i+�jxk+j+s+s0|>�}

= n✓
2 · E |gigj |1{|�0x0+�igi+�jgj+s+s0|>�}

 n✓
2 · E

⇥
|gigj |

�
21{|�igi|>�/4}

+P [x0 6= 0] + P [|s| > 0.1�] + P
⇥��s0

�� > 0.4�
⇤�⇤

 n✓
2 ·
�
exp

�
� log2 ✓�1

�
+ ✓ + 2✓ + 2✓

�

 6n✓3.(SM4.11)

Write (SM4.10) as two summation of independent random variables with t = j�i by separating
sum into two sets Jt1, Jt2 defined in (SM1.4) with both |Jt1| , |Jt2| < n✓

2 with probability at
least 1� 2/n from Lemma SM1.1

E |s�i[x]
⇤|PI(a) |s�j [x]| =

X

(k�i)2I(a)

|xk| |xk+t|

=
X

(k�i)2I(a)\Jt1

|gk| |gk+t|+
X

(k�i)2I(a)\Jt2

|gk| |gk+t| ,

whose first summands can be upper bounded with high probability via Bernstein inequality

Lemma SM10.4 with (�2
, R) = (1, 1) and writes C := [|⌧ |kR(S⌧ , �(cµ))\

n
a
�� ���(1)

��  1
4 log ✓�1�

o
,
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then we have

P

2

4 max
i 6=j2[±p]\{0}

a2C

0

@
X

(k�i)2I(a)\Jt1

|gk| |gk+t|� E
X

(k�i)2I(a)\Jt1

|gk| |gk+t|

1

A � n✓
3

3

5

P

2

4 max
i 6=j2[±p]\{0}

0

@
X

(k�i)2\Jt1

|gk| |gk+t|� E
X

(k�i)\Jt1

|gk| |gk+t|

1

A � n✓
3

3

5

 4p2 · exp
✓

�n2
✓
6

2 |Jt1|+ 2n✓3

◆
 exp

✓
8 log p� �n

2
✓
6

3n✓2

◆
 exp

✓
�n✓

4

10

◆
 1

n
(SM4.12)

when n = C✓
�4 log p with C > 104 and ✓ log2 ✓�1 � 1/p. Thus for all i 6= j 2 [±p] \ {0} and a

satisfies our condition of lemma, from (SM4.11) and (SM4.12) we can conclude :

|s�i[x]
⇤|PI(a) |s�j [x]| 

X

I(a)\Jt1

E |gk| |gk+t|+
X

I(a)\Jt2

E |gk| |gk+t|+ 2n✓3  8n✓3

which holds with probability at least 1� 2/n� 2 · 1/n = 1� 4/n base on Lemma SM1.1 and
(SM4.12).

SM5. Geometric relation between ⇢ and `
1-norm. In this section, we discuss how to

ensure that the smooth sparsity surrogate ⇢ approximates k · k1 accurately enough that
guarantees '⇢ inherits the good properties of '`1 . We prove several lemmas which allow us to
transfer properties of '`1 to '⇢. Our result does not pertain to the suggested pseudo-Huber

surrogate ⇢(x)i =
q
x2i + �2 in the main script, and is general for a class of function class

defined in Definition SM5.2 that is smooth and well approximates `1 when the proper smoothing
parameter � is chosen from the result of Lemma SM5.6. In particular we ask the regularizer
⇢�(x) to be uniformly bounded to |x| by �/2:

8x 2 R, |⇢�(x)� |x||  �/2(SM5.1)

then if � ! 0 we have for every a near subspace,

��prox�`1 [a

V⇤ y]� prox�⇢� [a

V⇤ y]
��
2
! 0,(SM5.2)

kr'`1(a)�r'⇢�(a)k2 ! 0,(SM5.3)

ker2
'`1(a)�r2

'⇢�(a)k2 ! 0.(SM5.4)

An example choices of eligible smooth sparse surrogate is demonstrated in Table SM1.
The marginal minimizer over x in (2.7) can be expressed in terms of the proximal operator

[SM2] of ⇢ at point a

V⇤ y:

prox�⇢ [a

V⇤ y] = argmin
x2Rn

n
�⇢(x) + 1

2 kxk
2
2 � ha ⇤ x,yi

o
.

Plugging in, we obtain
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'⇢(a) = �⇢
�
prox�⇢[a

V⇤ y]
�
+ 1

2

��aV⇤ y � prox�⇢ [a

V⇤ y]
��2
2
� 1

2 ka

V⇤ yk22 +
1
2 kyk

2
2(SM5.5)

The objective function '⇢(a) is a di↵erentiable function of a. This can be seen, e.g., by noting
that

'⇢(a) = ✏(�⇢)(a

V⇤ y)� 1
2 ka

V⇤ yk22 +
1
2 kyk

2
2 ,(SM5.6)

where ✏(g)(z) = g
�
proxg(z)

�
+ 1

2

��z � proxg(z)
��2
2
is the Moreau envelope of a function g. The

Moreau envelope is di↵erentiable:

Fact SM5.1 (Derivative of Moreau envelope, [SM2], Prop.12.29). Let f be a proper
lower semicontinuous convex function and � > 0 then the Moreau envelope ✏(�f)(z) =

�f(prox�f [z]) +
1
2

��z � prox�f [z]
��2
2
is Fréchet di↵erentiable with r✏(�f)(z) = z � prox�⇢[z].

Furthermore, '⇢ is twice di↵erentiable whenever prox�⇢ is di↵erentiable. In this case, the
(Euclidean) gradient and hessian of '⇢ are given by

r'⇢(a) = �◆⇤C

V

y prox�⇢

h
C

V

y◆a

i
,(SM5.7)

r2
'⇢(a) = �◆⇤C

V

yr prox�⇢

h
C

V

y◆a

i
C

V

y◆.(SM5.8)

The Riemannian gradient and hessian over Sp�1 are

grad['⇢](a) = �Pa?◆
⇤
C

V

y prox�⇢

h
C

V

y◆a

i
,(SM5.9)

Hess['⇢](a) = �Pa?

⇣
◆
⇤
C

V

yr prox�⇢

h
C

V

y◆a

i
C

V

y◆� hr'⇢(a),ai I
⌘
Pa? .(SM5.10)

Our analysis accommodates any su�ciently accurate smooth approximation ⇢ to the `
1

function. The requisite sense of approximation is captured in the following definition:

Definition SM5.2 (�-smoothed `
1 function). We call an additively separable function ⇢(x) =Pn

i=1 ⇢i(xi) : Rn ! R, a �-smoothed `
1 function with � > 0 if for each i 2 [n], ⇢i is even,

convex, twice di↵erentiable and r2
⇢i(x) being monotone decreasing w.r.t. |x|, where, there

exists some constant c, such that for all x 2 R:

|⇢i(x)� |x|+ c|  �/2(SM5.11)

The proximal operator of the `
1 norm is the entrywise soft thresholding function S�;

the proximal operator associated to a smoothed `
1 function turns out to be a di↵erentiable

approximation to S�. In particular, we will show that it approximates S� in the following
sense:

Definition SM5.3 (
p
�-smoothed soft threshold). An odd function S�

�[·] : R ! R is a
p
�-

smoothed soft thresholding function with parameter � > 0 if it is a strictly monotone odd
function and is di↵erentiable everywhere, whose function value satisfies

0  sign(z)
⇣
S�
�[z]� S� [z]

⌘

p
��, 8z 2 R(SM5.12)
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Surrogate class ⇢i(x) r⇢i(x) r2
⇢i(x)

Log hyperbolic cosine
�

2
log

⇣
e
2x/� + e

�2x/�
⌘

e
4x/� � 1

e4x/� + 1

4e4x/�

�(e4x/� + 1)2

Pseudo Huber
p

x2 + �2
xp

x2 + �2

�
2

(x2 + �2)3/2

Gaussian convolution

Z
|x� t| f�(t)dt erf(x/

p
2�) 2f�(x)

Table SM1
Classes of smooth sparse surrogate ⇢ and how to set its parameter. Three common classes are

listed with parameter � to tune the smoothness. All the listed functions are greater then |x| pointwise and has
largest distance to |x| at origin where ⇢(0) � |x|  �, satisfies the condition (SM5.11). Also its second order
derivatives r2⇢i(x) are monotone decreasing w.r.t. |x|, hence are certified to be eligible �-smoothed `1 surrogates.

and its derivative satisfies for any given B 2 (0,�):
���rS�

�[z]�rS�[z]
��� 
p
��/B, ||z|� �| � B.(SM5.13)

If ⇢ is a �-smooth `
1 function, then for all i 2 [n], we have that prox�⇢[z]i is a

p
�-smoothed

soft threshold function of zi. This can be proven with the following lemma:

Lemma SM5.4 (Proximal operator for smoothed `
1). Suppose ⇢ is a �-smoothed `

1 function,
then zi 7! prox�⇢[z]i is a

p
�-smoothed soft threshold function.

Proof. We know that

xz := prox�⇢[z] = argmin
x2Rn

�⇢(x) + 1
2 kx� zk22 .(SM5.14)

This optimization problem is strongly convex, and so the minimizer xz is unique. Using the
stationarity condition and since ⇢ is separable, for all i 2 [n], we have �r⇢i(xzi)+xzi�zi = 0,
implies

xzi = (Id + �r⇢i)�1(zi).(SM5.15)

Since ⇢i is convex and even , r⇢i is monotone increasing and odd. By inverse function theorem,
we know that strict monotonicity and di↵erentiability of Id + �r⇢i implies its inverse is
di↵erentiable and is a strictly monotone increasing odd function. Furthermore, it implies rxzi

has the form

rxzi = ri(Id + �r⇢i)�1(zi) =
1

�r2⇢i(xzi) + 1
< 1.(SM5.16)

Notice that since r2
⇢i(x) is monotone decreasing when x � 0, hence rxzi is monotone

increasing in zi � 0.
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Now we are left to show that (SM5.12) and (SM5.13) hold, and since prox�⇢[·]i is an odd
function it su�ces to consider the case when the input vector zi is nonnegative. Firstly, via
convexity and entrywise bounded di↵erence |⇢i(x)� |x||  �/2 we are going to show

|r⇢i(x)|  1 8x 2 R, r⇢i(x) � 1�
p
�/� 8x �

p
��.(SM5.17)

Consider a positive x with r⇢i(x) > 1 + " for some " > 0, by convexity if ex > x then
r⇢i(ex) > 1 + ", hence

⇢i(x+ �/") � ⇢i(x) +r⇢i(x) · (�/") > x� �/2 + (1 + ") · (�/") = (x+ �/") + �/2,

contradicts the boundedness condition. Secondly, use mean value theorem we know for all
x �
p
��:

r⇢i(x) �
⇢i(
p
��)� ⇢i(0)p
�� � 0

� (
p
�� � �/2)� (0 + �/2)p

�� � 0
� 1�

r
�

�
.

To prove (SM5.12), when 0  zi  �, then S�[zi] = 0 and xzi 
p
�� since if xzi >

p
��,

by (SM5.17):

�r⇢i(xzi) + xzi > �(1�
p
�/�) +

p
�� = � � zi

then xzi violate the stationary condition in (SM5.15), resulting 0  xzi � S� [zi] 
p
��

whenever 0  zi  �. Likewise in the case of zi � � where S� [zi] = zi� �, (SM5.17) provides:
(
8xzi > zi � �+

p
��, �r⇢i(xzi) + xzi > �(1�

p
�/�) + zi � �+

p
�� = zi

8xzi < zi � �, �r⇢i(xzi) + xzi < �+ zi � � = zi

again violates (SM5.15) and therefore (SM5.12) holds for all zi 2 R.
Lastly (SM5.13) is a direct result of (SM5.12). For all zi  � � B, recall that rxzi is

monotone increasing in zi:

rxzi  min
y2[��B,�]

rxyi 
x�i � x(��B)i

�� (��B)
 (
p
�� + S� [�])� S� [��B]

B
=

p
��

B
;

and similarly for all zi > �+B:

rxzi � max
y2[�,�+B]

rxyi �
x(�+B)i � x�i

(�+B)� �
� S� [�+B]� (S� [�] +

p
��)

B
= 1�

p
��

B
,

implies (SM5.13) holds.

Based on (SM5.9)-(SM5.10) and denote C

V

y◆a = a

V⇤ y, the only di↵erences of Riemannian
gradient and Hessian between '⇢ and '`1 comes from the di↵erence of prox�⇢ [a

V⇤ y] and
prox�k·k1 [a

V⇤ y]. Thus for the purpose of obtaining good geometric approximation of '⇢ with
that of objective '`1 , we may apply both Definition SM5.3 and Lemma SM5.4, together suggest
if ⇢ is a �-smoothed `

1 function, then the i-th entry of prox�⇢[a

V⇤ y] will be
p
��-close to the

authentic soft thresholding function S� [a

V⇤ y]i, and its gradient r prox�⇢[a

V⇤y] is
p
��/B-close

to rS� [a

V⇤ y] as long as (a

V⇤ y)i is not close to ±� by distance B.
Firsly, we will show by utilizing the random structure of y, such that with high probability,

only a fraction of entries of a

V⇤ y will be close to ±�.
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Lemma SM5.5 (Gradients discontinuity entries). For each a 2 Sp�1, let

JB(a) :=
n
i

���
⇣
C

V

y◆a

⌘

i
2 [���B,��+B] [ [��B,�+B]

o
.(SM5.18)

Suppose the subspace dimension is at most k and signal y satisfies Definition SM2.1. Let
� = c�/

p
k and B  c

0
�✓

2
/p log n for some c�, c

0 2 (0, 1), then there is a numerical constant
C > 0 such that if n � Cp

5
✓
�2 log p, then with probability at least 1 � 3/n, for every a 2

[|⌧ |kR(S⌧ , �(cµ)), we have

|JB(a)| 
24c0n✓2

p log n
(SM5.19)

Proof. See Subsection SM9.3.

The geometric approximation between '`1 and '⇢ necessarily consists of three parts: the
gradient, the Hessian, and the coe�cients. Here we conclude the approximation result with
the following lemma:

Lemma SM5.6 ('`1 approximates '⇢). Suppose x0 ⇠i.i.d. BG(✓) in Rn, and k, cµ such that
(a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Let ⇢ 2 Rn ! R be a �-smoothed
`
1 function with

� =
c�p
k
, �  c

04
✓
8

p2 log2 n
�(SM5.20)

with some c
0
, c� 2 (0, 1), then there is a numerical constant C, c > 0 such that if n >

Cp
5
✓
�2 log p and cµ  c, then with probability at least 1� 10/n, the following statements hold

simultaneously for every a 2 [|⌧ |kR(S⌧ , �(cµ)):

(1). The coe�cients has norm di↵erence
���◆⇤[±p]C

V

x0 prox�`1 [a

V⇤ y]� ◆
⇤
[±p]C

V

x0 prox�⇢[a

V⇤ y]
���
2
 c

0
n✓

4
.(SM5.21)

(2). The gradient has norm di↵erence

kr'`1(a)�r'⇢(a)k2  c
0
n✓

4
.(SM5.22)

(3). The (pesudo) Riemmannian curvature di↵erence is bounded in all directions v 2 Sp�1 via

8v 2 Sp�1
,

���v⇤
⇣
gHess['`1 ](a)�Hess['⇢](a)

⌘
v

���  200c0n✓2.(SM5.23)

Proof. 1. (Coe�cients) From Lemma SM5.4, the proximal �-smoothed `
1 function satisfies

���S� [a

V⇤ y]� S�
� [a

V⇤ y]
���
j
<

p
�� 8j 2 [n].

Since the support of coe�cient vectors are contained in [±p], using simple norm inequality:
���◆⇤[±p]C

V

x0S� [a

V⇤ y]� ◆
⇤
[±p]C

V

x0S�
� [a

V⇤ y]
���
2

p
��n ·

���◆⇤[±p]C

V

x0

���
2
.(SM5.24)
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Apply Lemma SM1.5 by replacing a0 with standard basis e0 and extend support of ◆ to ◆[±p],
notice that in this case we have µ = 0. Condition on the event

���◆⇤[±p]C

V

x0

���
2

���◆⇤[±p]C

V

x0C
⇤
e0

���
2

p

3(1 + 2µp)n✓ 
p
3n✓,

and we gain

(SM5.24) 
p
��n ·

p
3n✓  n

p
3�✓�  c

0
n✓

4
.

2. (Gradient) From definition of Riemannian gradient (SM5.9) and apply similar norm bound
of (SM5.24), and condition on the following events of Lemma SM1.5 holds, obtain

kr'`1(a)�r'⇢(a)k2 
p
��n ·

���◆⇤C

V

y

���
2
 n

p
3�✓(1 + µp)�  c

0
n✓

4
.(SM5.25)

3. (Hessian) For every realization of JB(a) from a 2 [|⌧ |kR(S⌧ , �(cµ)), base on Lemma SM5.5,
condition on the event such that

B  c
0
�✓

2

p log n
, |J |  24c0n✓2

p log n
;(SM5.26)

and rewrite JB(a) as J . Also condition on the event using Lemma SM1.5 and (1+µp)✓ log ✓�1
<

1 ���◆⇤C

V

y

���
2

p
3n,

���◆⇤C

V

yPJ

���
2

p

8 |J | p log n,(SM5.27)

then the di↵erence of Hessian (SM5.10), in direction v 2 Sp�1 can be bounded as
���v⇤

⇣
gHess['`1 ](a)�Hess['⇢](a)

⌘
v

���


���v⇤

◆
⇤
C

V

y

⇣
PI(a) � diag

h
rS�

�

h
C

V

y◆a

ii⌘
C

V

y◆v

���+ kr'`1(a)�r'⇢(a)k2(SM5.28)

where I(a) is defined in (SM4.1). Let D = PI(a) � diag
h
rS�

�

h
C

V

y◆a

ii
and notice that D is a

diagonal matrix, which suggests (SM5.28) can be decomposed using

(PJ + PJc)D(PJ + PJc) = PJDPJ + PJcDPJc ,

where, from with property of
p
�-smoothed `

1 function Lemma SM5.4:

max
j

|PJDPJ |jj  1, max
j

|PJcDPJc |jj 
p
��/B.

Finally, once again apply � bound from (SM5.20) and bounds for B, |J | ,y from (SM5.26)-
(SM5.27), we gain

(SM5.28) 
���◆⇤C

V

yPJ

���
2

2
+

p
��

B

���◆⇤C

V

y

���
2

2
+ kr'`1(a)�r'⇢(a)k2

 8 |J | p log n+
3n
p
��

B
+ c

0
n✓

2

 8 · 24c
0
n✓

2

p log n
· p log n+

3n
�
c
04
�
2
✓
8
/p

2 log2 n
�1/2

c0�✓2/p log p
+ c

0
n✓

2

 200c0n✓2,
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where all above result holds with probability at least 1 � 10/n from Lemma SM5.5 and
Lemma SM1.5.

SM6. Analysis of geometry. In this section we prove major geometrical result in Theo-
rem 4.1. This lemma consists of three parts of geometry of '⇢; including the negative curvature
region Corollary SM6.2, large gradient region Corollary SM6.4, strong convexity region near
shift Corollary SM6.6, and retraction to subspace Corollary SM6.8, which are respectively
base on geometric properties of '`1 in Lemma SM6.1, Lemma SM6.3, Lemma SM6.5 and
Lemma SM6.7. We will handle each individual region in the following subsections. To shed
light on the technical detail of the proof, we will begin with two figures for illustration of a toy
example, which demonstrate the geometry near a two dimension solution subspace S{i,j}, as
follows:

�
2

�
2

�

�

S{i,j}(|�i|, |�j|)

S?
{i,j}(k↵⌧ ck2)

0
si[a0] sj[a0]

4
5 

|�i|
|�j | 

5
4

| {z } | {z }| {z }
|�j| < ⌫� |�i| < ⌫�

z }| { z }| {
⌫� < |�j| < 4

5 |�i| ⌫� < |�i| < 4
5 |�j|

Negative

Curvature

Large

Gradient

Large

Gradient

Strong

Convex

Strong

Convex

Retractive Gradient

Retractive Gradient

Figure SM3. The top view of geometry over subspace S{i,j}. We display the geometric properties
in the neighborhood of subspace S{i,j} (horizontal axis) which contains the solutions si[a0] and sj [a0]. When a
lies near middle of two shifts (light green region) such that |�i| ⇡ |�j |, then there exists a negative curvature
direction in subspace S{i,j}. When a leans closer to one of the shifts si[a0] (blue green region), its negative
gradient direction points at that nearest shift. When a is in the neighborhood of the shift si[a0] (dark green
region) such that |�i| ⌧ �, it will be strongly convex at a, and the unique minimizer within the convex region
will be close to si[a0]. Finally, the negative gradient will be pointing back toward the subspace S{i,j} if near
boundary (grey region).

SM6.1. Negative curvature . For any a 2 Sp�1 near the subspace S⌧ such that the
entries of leading correlation vector �(0),�(1) have balanced magnitude, the Hessian of '⇢(a)
exhibits negative curvature in the span of s(0)[a0], s(1)[a0]. We will first demonstrate the
pseudo negative curvature of '`1 in Lemma SM6.1, then show '⇢ approximates '`1 in terms
of Hessian in Corollary SM6.2 when ⇢ is properly defined as in Section SM5.

Lemma SM6.1 (Negative curvature for '`1). Suppose that x0 ⇠i.i.d. BG(✓) in Rn, and
k, cµ such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Set � = c�/

p
k

in '`1 with c� 2
⇥
1
5 ,

1
4

⇤
. There exist numerical constants C, c, c

0
, c > 0 such that if n >

Cp
5
✓
�2 log p, and cµ  c, then with probability at least 1� c

0
/n the following holds at every

a 2 [|⌧ |kR(S⌧ , �(cµ)) satisfying
���(1)

�� � 4
5

���(0)

��: for v 2 S{(0),(1)} \ Sp�1 \ a
?,

v
⇤ gHess['`1 ](a)v  �cn✓�.(SM6.1)
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Hess['](a) ⌫ 0

v⇤
Hess['](a)v < 0

�

�
kgrad['](a)k2 > 0

�

� PS?
{i,j}

Hess['](a)PS?
{i,j}

� 0

'(a)

si[a0]

sj[a0] Sp�1\ S{i,j}

Figure SM4. The side view of geometry of subspace S{i,j} on sphere. We illustrate the geometry
of S{i,j} over the sphere, in which the properties of the three regions are denoted. In negative curvature region,
there exists a direction v such that v⇤

Hess['](a)v is negative. In large gradient region, the norm of Riemannian
gradient kgrad['](a)k2 will be strictly greater then 0 and pointing at the nearest shift. Finally there is a convex
region near all shifts such that Hess['](a) is positive semidefinite.

Proof. First of all the regional condition
����(0)

�(1)

���  5
4 provides a two side bound for the two

leading �’s

0.79 �
���(0)

��
q
�
2
(0) + �

2
(1)

k�⌧k2 �
���(0)

�� �
���(1)

�� � 4

5

���(0)

�� � 4

5
· k�⌧k2p

|⌧ |
� 0.79p

|⌧ |
(SM6.2)

Set J = {(0), (1)}, choose v = ◆
⇤
Ca0◆J� with kvk2 = 1 then

���k�k22 � 1
���  µ. There exists

such v satisfies condition above with a ? v by choosing � as

a
⇤
v = a

⇤
◆
⇤
Ca0◆J� = �(0)�(0) + �(1)�(1) = 0,

hence
����(1)

�(0)

��� =
����(0)

�(1)

���  5
4 . This implies �2

(0) �
16
25�

2
(1) �

16
25(1� µ� �

2
(0)) where µ  cµ

4 
1

100 , it

gives the lower bound of �(0) as

�
2
(0) �

(1� µ) · 16
25 + 16

� 0.385(SM6.3)

1. (Expand the Hessian) The (pseudo) curvature along direction v is written as

v
⇤ gHess['`1 ](a)v = v

⇤ er2
'`1(a)v � hr'`1(a),ai = ��⇤

◆
⇤
JMC

V

xPI(a)C

V

xM◆J� + �
⇤
�[�]

(SM6.4)
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expand the first term of (SM6.4) we obtain

� �
⇤
◆
⇤
JMC

V

xPI(a)C

V

xM◆J�

= ��⇤
◆
⇤
JM

�
P(0) + P(1) + PJc

�
C

V

xPI(a)C

V

x
�
P(0) + P(1) + PJc

�
M◆J�

 �
X

i2J

���PI(a)C

V

xei

���
2

2
(e⇤iM◆J�)

2 + 2
X

(i,j)2{J,Jc}
(i,j)=((0),(1))

���e⇤iC

V

xPI(a)C

V

xej

���
��(e⇤iM◆J�)

�
e
⇤
jM◆J�

���

 �
X

i2J

���PI(a)C

V

xei

���
2

2
(|�i|� µ)2

+ 2 max
i 6=j2[±p]

���e⇤iC

V

xPI(a)C

V

xej

���
�
k◆⇤JM◆J�k1 k◆

⇤
JcM◆J�k1 +

����(0)

��+ µ
� ����(1)

��+ µ
��

(SM6.5)

Consider the following events

8
<

:
Ecross :=

n
8a 2 Sp�1

, maxi 6=j2[±p]

���e⇤iC

V

xPI(a)C

V

xej

��� < 4n✓2
o

Encurv :=
n
8a 2 R(S⌧ , �(cµ)), mini2J

��PI(a)s�i[x]
��2
2
� n✓ (1� Esi(�, si) + Esi(�, si))�

cµn✓
p

o ,

(SM6.6)

and from Lemma SM2.4 we know

k◆⇤JM◆J�k1  k�k1 + 2µ  1.5, k◆⇤JcM◆J�k1  µp k�k1  1.5µp,

on the event Ecross \ Encurv, we have

� �
⇤
◆
⇤
JMC

V
xPI(a)C

V
xM◆J�

 �n✓ ·
X

i2J
(|�i|� µ)2 (1� Esierf�i(�, si) + Esif�i(�, si))

| {z }
g1(�)

+(18µp+ 8)n✓2 +
2cµn✓p

|⌧ |

(SM6.7)

Meanwhile, for the latter term of (SM6.4), consider the following event E� where we write
�i = sign(�i) as:

E� :=

(
�i�[�]i 

(
n✓ · |�i| (1� Esierf�i(�, si)) +

cµn✓
p , 8 i 2 ⌧

n✓ · |�i| 4✓ |⌧ |+ cµn✓
p , 8 i 2 ⌧

c

)
,(SM6.8)

and use both k�k1 
cµpp
|⌧ |

, k�⌧ ck22 
cµ

✓|⌧ |2 . On this event we have

�
⇤
�[�]  n✓ ·

X

i2⌧
�
2
i (1� Esierf�i(�, si)) + 4n✓2 |⌧ | k�⌧ ck22 +

cµn✓

p
k�k1

 n✓ ·
X

i2⌧
�
2
i (1� Esierf�i(�, si))

| {z }
g2(�)

+
5cµn✓p

|⌧ |
.(SM6.9)
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2. (Lower bound Ef�i) Combine the first term from each of the (SM6.7) and (SM6.9). Use

µ  cµ  1
300 and (SM6.3) to obtain

����(0)

��� µ
�2

> 0.38, we have

1
n✓ (g1(�) + g2(�))  �

X

i2J

h
(|�i|� µ)2 � �

2
i

i
(1� Esierf�i(�, si))

+
X

i2⌧\J

�
2
i (1� Esierf�i(�, si))� 0.38

X

i2J
Esif�i(�, si),(SM6.10)

now use Taylor expansion 1 for f�i , and apply the upper bound where Es2i  ✓ k�k22 

✓

✓
1 + cµp

|⌧ |
+ cµ

✓|⌧ |2

◆
 3cµ

|⌧ | ,

Esif�i(�, si) � Esi
1p
2⇡

·
✓

2�

|�i|
� �

3

|�i|3

✓
1 +

3s2i
�2

◆◆

� 1p
2⇡

·
✓

2�

|�i|
� 1

|�i|3

✓
�
3 +

9cµ�

|⌧ |

◆◆

| {z }
f(�)

,

where f(�) is concave at stationary point since

8
<

:
f
0(�⇤) = 0 =) 2��2

⇤ = 3�
⇣
�
2 + 9cµ

|⌧ |

⌘

f
00(�⇤) =

1
|�⇤|3

⇣
4�� 12�

�2
⇤

⇣
�
2 + 9cµ

|⌧ |

⌘⌘
= 1

|�⇤|3

⇣
4�� 12

3/2�

⌘
< 0

,

then combine with regional condition (SM6.2), and also apply assumption c�  1
3 and cµ  1

300 ,
we gain

0.38
X

i2J
Esif�i(�, si) � 0.3 min

�= 0.79p
|⌧ |

,0.79
f(�)

� 0.3min

⇢
2c�
0.79

�
c
3
� + 9cµc�
0.793

, �

✓
2

0.79
�

c
2
� + 9cµ
0.793

◆�

� 0.3min {2c�, 2�} � 0.6�.(SM6.11)

3. (Upper bound E�[�]i) When �
2
(0) =

����(0)

��� µ
�2 � ⌘ for some ⌘ > 0. With monotonicity

Lemma SM3.3, which implies:

⇣
1� Es(0)erf�(0)

(�, s(0))
⌘
�
⇣
1� Es(1)erf�(1)

(�, s(1))
⌘

� (1� Esierf�i(�, si)) ,(SM6.12)

1
Apply exp

⇥
�x2/2

⇤
> 1� x2/2
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then combine (22)-(SM6.12) and use µ  cµ

4
p

|⌧ |
from Lemma SM2.5

(SM6.10)  �
✓⇣���(0)

��2 � µ

⌘2
� �

2
(0) � ⌘

◆

| {z }
=0

⇣
1� Es(0)erf�(0)

(�, s(0))
⌘

+

0

@
X

i2⌧\(0)

�
2
i �

����(1)

��� µ
�2 � ⌘

1

A
⇣
1� Es(1)erf�(1)

(�, s(1))
⌘

| {z }
<1

� 0.38
X

i2J
Esif�i(�, si)


⇣
k�⌧k22 � k�k

2
2 + 2µ k�k1

⌘
� 0.6�

 2cµp
|⌧ |
� 0.6�.(SM6.13)

On the other hand, when �
2
(0) �

����(0)

��� µ
�2

> 0.38, combining (22)-(SM6.12) gives:

(SM6.10) 
⇣
k�⌧k22 � k�k

2
2 + 2µ k�k1

⌘
+
⇣����(0)

��� µ
�2 � �

2
(0)

⌘
Es(0)erf�(0)

(�, s(0))

+

0

@����(1)

��� µ
�2 �

X

i2⌧\(0)

�
2
i

1

AEs(1)erf�(1)
(�, s(1))� 0.38

X

i2J
Esif�i(�, si)


 

cµp
|⌧ |

+ 4µ

!
+
⇣
�
2
(1) � k�⌧k22 + �

2
(0)

⌘
Es(1)erf�(1)

(�, s(1))� 0.6�,(SM6.14)

where Lemma SM3.2 provides the upper bound for Es(1)erf�(1)
(�, s(1)) as

Es(1)erf�(1)
(�, s(1)) = 1� 1

n✓�(1)
E�[�](1)  1�

�(1)

n✓
���(1)

��E�[�](1)

= 1� 1���(1)

��

 
���(1)

���
r

2

⇡
�

!

r

2

⇡
· ����(1)

�� ,(SM6.15)

then calculate the constant for the second term in (SM6.14) by writing  =
����(1)

�(0)

��� =
����(0)

�(1)

���  5
4 ,

which provides �
2
(1) 

(1+µ)2

2+1 and �
2
(0) 

k�⌧ k222

2+1 where µ <
cµ
4 , and by applying

���(1)

�� >
4
5

���(0)

�� � 0.3, we have

(�2
(1) � 1) + cµ + �

2
(0)���(1)

��  � 

(2 + 1)
���(0)

�� + 
���(0)

��+ µ+ cµ

0.3

 
2 � 1p
2 + 1

+ 

⇣
k�⌧k22 � 1

⌘
+ 4.2cµ  0.36 + 6cµ,(SM6.16)
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and finally combine (SM6.15)-(SM6.16), follow from (SM6.14) and use c�  1
3 :

(SM6.10)  2cµp
|⌧ |

+

r
2

⇡

⇣
�
2
(1) � 1 + cµ + �

2
(0)

⌘
����(1)

�� � 0.6�

 2cµp
|⌧ |

+

r
2

⇡

✓
0.36�+

6cµc�
0.3

◆
� 0.6�

 4cµp
|⌧ |
� 0.3�(SM6.17)

3. (Collect all results) Combine the components of pseudo Hessian (SM6.7), (SM6.9) with
bounds for g1 + g2 from (SM6.13) and (SM6.17), and use Lemma SM2.5 which provides both
µp✓ |⌧ | < cµ

4 and ✓ |⌧ | < cµ
4 where cµ <

1
300 and c� � 1

5 , we can obtain:

v
⇤ gHess'`1

[a]v  g1(�) + g2(�) +
7cµn✓p

|⌧ |
+ (18µp+ 8)n✓2

 n✓ ·
 

4cµp
|⌧ |
� 0.3�

!
+ n✓ · 7cµp

|⌧ |
+ n✓ · 6.5cµ|⌧ |

 n✓p
|⌧ |

(0.059� 0.06)  �0.001n✓�(SM6.18)

Finally, the curvature is negative along v direction with probability at least

1� P [Ec
cross]| {z }

Lemma SM1.4

� P [Ec
ncurv]| {z }

Corollary SM4.3

� P
⇥
Ec
�

⇤
| {z }

Corollary SM3.4

.(SM6.19)

Similarly for objective '⇢, we have that

Corollary SM6.2 (Negative curvature for '⇢). Suppose that x0 ⇠i.i.d. BG(✓) in Rn, and
k, cµ such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Define � = c�/

p
k

in '⇢ where c� 2
⇥
1
5 ,

1
4

⇤
, then there exists some numerical constants C, c, c

0
, c

00
, c > 0 such that

if ⇢ is �-smoothed `
1 function where �  c

00
�✓

8
/p

2 log2 n, n > Cp
5
✓
�2 log p and cµ  c, then

with probability at least 1� c
0
/n, for every a 2 [|⌧ |kR(S⌧ , �(cµ)) satisfying

���(1)

�� � 4
5

���(0)

��:
for v 2 S{(0),(1)} \ Sp�1 \ a

?,

v
⇤ gHess['⇢](a)v  �cn✓�(SM6.20)

Proof. Choose v 2 Sp�1 according to Lemma SM6.1 and (SM5.23) from Lemma SM5.6
with constant multiplier � satisfies c001/4 < 10�3

c, we gain

v
⇤Hess['⇢](a)v  �cn✓�+ 200c0n✓2  �cn✓�/2(SM6.21)
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SM6.2. Large gradient. For any a 2 Sp�1 near subspace and the second largest correlation
�(1) much smaller then the first correlation �(0) while not being near 0, the negative gradient
of '⇢(a) will point at the largest shift. We show this in Lemma SM6.3, and the '⇢ version in
Corollary SM6.4 when ⇢ is properly defined as in Section SM5.

Lemma SM6.3 (Large gradient for '`1). Suppose that x0 ⇠i.i.d. BG(✓) in Rn, and k, cµ

such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Define � = c�/
p
k

in '`1 with some c� 2
⇥
1
5 ,

1
4

⇤
, then there exists some numerical constants C, c

0
, c, c > 0,

such that if n > Cp
5
✓
�2 log p and cµ  c, then with probability at least 1 � c

0
/n, for every

a 2 [|⌧ |kR(S⌧ , �(cµ)) satisfying
4
5

���(0)

�� >
���(1)

�� > 1
4 log ✓�1�,

⌦
�(0)◆

⇤
s(0)[a0],�grad['`1 ](a)

↵
� cn✓

�
log�2

✓
�1
�
�
2(SM6.22)

where �i = sign(�i).

Proof. 1. (Properties for ↵,�) Define ✓log = 1
log ✓�1 , we first derive upper bound on the

dominant entry
���(0)

�� as follows. Write the geodesic distance between a and ◆
⇤
si[a0] as a

function of �i as dS(a,±◆
⇤
si[a0]) = cos�1(�i), then by triangle inequality we have:

dS(a,±◆
⇤
s(0)[a0]) � dS(±◆

⇤
s(0)[a0], ◆

⇤
s(1)[a0])� dS(a, ◆

⇤
s(1)[a0])

=) cos�1±�(0) � cos�1
µ� cos�1

���(1)

��

=) ± �(0)  cos
�
cos�1

µ� cos�1
���(1)

��� = µ
���(1)

��+
r

(1� µ2)
⇣
1� �

2
(1)

⌘

 1� 1
2

����(1)

��� µ
�2

.

Use the regional condition
���(1)

�� � ✓log
4 � and since µ |⌧ |3/2 <

c�
100✓log from Definition SM2.1,

implies

���(0)

��  1�
�2
(1)

2

✓
1� 4µ

p
|⌧ |

✓logc�

◆
 1� 0.49�2

(1) =: �ub.(SM6.23)

Meanwhile a lower bound for �(0) can be easily determined by the other side of regional
condition:

���(0)

�� � 5
4

���(1)

�� =: �lb.(SM6.24)

Also since � = M↵, based on properties of M from Lemma SM2.4. When k↵⌧k2  1 + cµ

and k↵⌧ ck2  �  cµ✓2log
4µ

p
p|⌧ | , we gain:

�(0) = ↵(0) + e
⇤
(0)M↵\(0)

=)
��↵(0) � �(0)

��  µ

p
|⌧ | k↵⌧k2 + µ

p
p k↵⌧ ck2

 cµ✓2log(1+cµ)

4|⌧ | + µ
p
p�  cµ✓2log

|⌧ | .(SM6.25)

and therefore
��↵(0)

�� 
���(0)

��+ cµ✓2log
|⌧ |  1� .49

⇣
✓log
4 �

⌘2
+

cµ✓2log
|⌧ | < 1.
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2. (Upper bound of �⇤
�[�]) Define a piecewise smooth convex upper bound h for �i�[�]i as:

h(�i) :=

(
�
2
i �

⌫1�
2 |�i| |�i| � ⌫1�

1
2�

2
i |�i|  ⌫1�

,

then Lemma SM10.7 tells us since
���⌧\(0)

��
1  �(1):
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2
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⌘
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2
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|⌧ | ,

then condition on the following event using Corollary SM3.4,
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(
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(
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i ✓ |⌧ |+
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|�i| , 8i 2 ⌧
c

)
,

which provides the upper bound of �⇤
�[�] by applying 5p > log8/3(p log2 p) > (✓2log)

4/3 from

lower bound of ✓ from Definition SM2.1, k�⌧ ck2 
cµ✓logp
✓|⌧ | from Lemma SM2.5 , |⌧ |  pp from

lemma assumption and let cµ <
1

100 :

�
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2
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!
,(SM6.26)

where ⌘ = 1� ⌫1�
2�(1)

.

3. (Align the gradient with ◆
⇤
s(0)[a0]) Base on the definition �, since �(0) =

⌦
a, ◆

⇤
s(0)[a0]

↵
,

we can expect that the negative gradient is likely aligned with direction toward one of the
candidate solution ±◆

⇤
s(0)[a0]. Wlog assume that both �(0),�(1) are positive, then expand the
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gradient and use incoherent property for a0 Lemma SM2.4 we have:

D
◆
⇤
s(0)[a0],�grad'`1

[a]
E
=
⌦
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⇤
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���[�]\(0) � �
⇤
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��
1
,(SM6.27)

where \(0) is an abbreviation of the complement set [±2p0] \ (0). The latter part of (SM6.27)
has an upper bound using bounds of �⇤

�[�] < 3n✓
2 , k�[�]⌧ ck2 <

n✓�2
20 from (SM6.62), and���[�]⌧\(0)
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.(SM6.28)

On the other hand, the former term of (SM6.27) possesses a lower bound using (SM6.25)-
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(SM6.26), �[�](0) > n✓

⇣
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,(SM6.29)

combine (SM6.27) with (SM6.28)-(SM6.29) and ⌘ > 0, we have

(SM6.27) � n✓
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1� �
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⌘ �
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�
8cµ✓2log
|⌧ | Big].(SM6.30)

4. (Lower bound of f(�)) Given a fixed �(1), the cubic function f(�(0)) has zeros set �(0) 2�
±1, 1.02�(1)

 
and has negative leading coe�cient. Combine with the condition of �(0) 2

{�lb,�ub} from (SM6.23)-(SM6.24), we can observe that

�(0) 2 [�lb,�ub] =


5

4
�(1), 1� 0.49�2

(1)

�
✓
⇥
1.02�(1), 1

⇤
,
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therefore the cubic term is always positive and minimizer is either one of the boundary point.

When �(0) = �lb, use
�
1 + 25

16

�
�
2
(1) < 1.01, and use ⌫1� <

p
✓log

2
p

|⌧ |
 1

2
p
2
, since |⌧ | � 2, we have:
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On the other hand when �(0) = �ub:
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,

which is a cubic function of �(1) with negative leading coe�cient, whose zeros set is {�0.73, 0, 2.81}.
Thus it minimizes at the boundary points of �(1) 2

h
�

4 log ✓�1 , 1
i
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Finally combine (SM6.30) with the lower bound of cubic function (SM6.31)-(SM6.32) together

with condition cµ <
c2�
800 and ⌫1 =

p
✓log
2 , obtain

D
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The proof for the case where �(0) negative can be derived in the same manner.

As a consequence, we have that

Corollary SM6.4 (Large gradient for '⇢). Suppose that x0 ⇠i.i.d. BG(✓) in Rn, and k, cµ

such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Define � = c�/
p
k

in '⇢ with c� 2
⇥
1
5 ,

1
4

⇤
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0
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↵
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where �i = sign(�i).

Proof. Choose ◆
⇤
s(0)[a0] as in Lemma SM6.3, and apply (SM5.22) from Lemma SM5.6

with the constant multiplier of � satisfies c
004

< c/4, then utilize ✓ |⌧ | log2 ✓�1
< cµ from

Definition SM2.1 we have
⌦
�(0)◆

⇤
s(0)[a0],�grad['⇢](a)

↵
� cn✓(log�2

✓
�1)�� c

00
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✓
�1)�/2(SM6.35)

SM6.3. Convex near solutions. For any a 2 Sp�1 near subspace and the second largest
correlation �(1) smaller then 1

4 log ✓�1�, then '⇢ will be strongly convex at a. We show this
in Lemma SM6.5, and the '⇢ version in Corollary SM6.6 when ⇢ is properly defined as in
Section SM5.

Lemma SM6.5 (Strong convexity of '`1 near shift). Suppose that x0 ⇠i.i.d. BG(✓) in
Rn, and k, cµ such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Define
� = c�/

p
k in '`1 with c� 2

⇥
1
4 ,

1
5

⇤
, then there exists some numerical constants C, c, c

0
c > 0

such that if n > Cp
5
✓
�2 log p and cµ  c, then with probability at least 1 � c

0
/n, for every

a 2 [|⌧ |kR(S⌧ , �(cµ)) satisfying
���(1)

�� < 1
4 log ✓�1�: for all v 2 Sp�1 \ v

?,

v
⇤ gHess['`1 ](a)v > cn✓;(SM6.36)

furthermore, there exists ā as an local minimizer such that

min
`
kā� s`[a0]k2 

1
2 max

�
µ, p

�1
 
.(SM6.37)

Proof. 1. (Expectation of � near shifts) We will write x as x0 through out this proof.
When a is near one of the shift, the � operator shrinks all other smaller entries of correlation
vector �\(0) in an even larger shrinking ratio. Firstly we can show

��⌦�\(0),x\(0)
↵�� is no larger

then �/2 with probability at least 1� 4✓, since

P
��⌦�\(0),x\(0)

↵�� > �

2

�

 P
��⌦�⌧\(0),x⌧\(0)

↵�� > 2�

5

�
+ P


|h�⌧ c ,x⌧ ci| > �

10

�
 4✓(SM6.38)

via Corollary SM2.6 and Corollary SM2.7. Now recall from Lemma SM3.2 and the derivation
of (SM3.10)-(SM3.11), we know for every i 6= (0),

�iE�[�]i = n✓ |�i|Esi [1� erf�i (�, si)]

 n✓ |�i|Eg,x\i


g
21n����ig+�(0)x(0)+�⇤

\{(0),i}x\{(0),i}

���>�
o
�

 n✓ |�i|
⇣
Eg21n

|�ig|>�
2

o + P
⇥
x(0) 6= 0

⇤

+ P
⇥��⌦�\{(0),i},x\{(0),i}

↵�� > �
2

⇤ ⌘

 n✓ |�i|
⇣�

Eg2
�1/2 P

⇥���(1)g
�� > �

2

⇤1/2
+ ✓ + 4✓

⌘

 n✓ |�i|
�
exp

�
� log2 ✓�1

�
+ 5✓

�

 6n✓2 |�i|(SM6.39)
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where the third inequality is derived using union bound; the the fourth inequality is the result
of (SM6.38), and the fifth inequality is derived from Gaussian tail bound Lemma SM10.1.

2. (Local strong convexity) Let � = C
⇤
a0
◆v, for any kvk2 = 1 we have k�k22  1 + µp.

Furthermore:
���(0)

�� =
��⌦◆⇤s(0)[a0],v

↵�� =
��⌦Pa?◆

⇤
s(0)[a0],v

↵�� =
��⌦◆⇤s(0)[a0]� �(0)a,v

↵��


��◆⇤s(0)[a0]� �(0)a

��
2

q
1� �

2
(0).(SM6.40)

Consider any such v, the pseudo Hessian can be lower bounded as

v
⇤ er2

'`1(a)v = ��⇤
C

V

xPI(a)C

V

x�

� ��2
(0)

���PI(a)C

V

xe(0)

���
2

2
�

X

i 6=(0)

���PI(a)C

V

xei

���
2

2
�
2
i

� 2
X

i 6=j

���e⇤iC

V

xPI(a)C

V

xej

��� |�i| |�j |

� �
⇣
1� �

2
(0)

⌘
kxk22 �max

i 6=(0)

��PI(a)s�i[x]
��2
2
k�k22

� 2max
i 6=j

���e⇤iC

V

xPI(a)C

V

xej

��� k�k21 ,(SM6.41)

where the second term is bounded by using its expectation derived in Lemma SM4.2, and utilize
P [|si| > �/2] < 4✓ from (SM6.38), E� from (SM6.39) and regional condition

���(1)

��  �
4 log ✓�1

to acquire

E
��PI(a)s�i[x]

��2
2
= n✓ [1� Esierf�i (�, si) + Esif�i (�, si)]

 |E�[�]i|
|�i|

+ n✓ ·
 

max
|si|�

2

f�i(�, si) + P

|si| >

�

2

�!

 6n✓2 +
2n✓p
2⇡

max
|si|�

2

✓
�+ |si|
|�i|

· exp

�(�� |si|)2

2�2
i

�◆
+ 4n✓2

 10n✓2 + n✓ · log ✓�1 exp
�
�2 log2 ✓�1

�

 11n✓2,(SM6.42)

and define the events Ekxk2 , Ecross and Epcurv as follows:

8
>>><

>>>:

Epcurv :=
n
8a 2 [|⌧ |kR(S⌧ , �(cµ)),

��PI(a)s�i[x]
��2
2
 11n✓2 + cµn✓

p

o

Ecross :=
n
8a 2 [|⌧ |kR(S⌧ , �(cµ)),

���(1)

��  �
4 log ✓�1 , maxi 6=j2[±p]

���e⇤iC

V

xPI(a)C

V

xej

���  8n✓3
o

Ekxk2 :=
n
kxk22  n✓ + 3

p
n✓ log n

o
.

(SM6.43)

For the Hessian term, on the event Epcurv \ Ecross \ Ekxk2 , and use all µp2✓2, µp✓ |⌧ | and ✓
p
p

are all less then cµ
4 log2 ✓�1 , from Lemma SM2.5, and from lemma assumption with su�ciently
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large C we have n > ✓
�136 log2 n, thus v⇤ er2

'`1(a)v can be lower bounded from (SM6.41) as

v
⇤ er2

'`1(a)v � �
⇣
1� �

2
(0)

⌘⇣
n✓ + 3

p
n✓ log n

⌘

� (1 + µp)

✓
11n✓2 +

cµn✓

p

◆
� 8p (1 + µp) · 8n✓3

� �1

2
n✓ · (1� �

2
(0))� n✓ ·

✓
11cµ
4

+ c
2
µ +

64cµ
4

+
64cµ
4

◆

� �1

2
n✓ ·

⇣
1� �

2
(0) + 20cµ

⌘
.(SM6.44)

The bounds of �⇤
�[�] can be derive on the event whose expectation is drawn from Lemma SM3.2

and (SM6.39) as

E� :=

((
�i�[�]i � n✓S⌫2� [|�i|]� cµn✓

p , 8 i 2 [±p]

�i�[�]i  6n✓2 |�i|+ cµn✓
p3/2

, 8 i 6= (0)

)
,

then use k�k1  1 + �p
4 log ✓�1  �p

2 , implies:

�
⇤
�[�] � n✓

���(0)

�� ����(0)

��� ⌫2�
�
� cµ k�k1

n✓
p

� n✓

✓
�
2
(0) �

q
2
⇡��

cµ
2 �

◆

� n✓

⇣
�
2
(0) � �

⌘
.(SM6.45)

Finally via the regional condition
���(1)

��  �
4 log ✓�1 , the absolute value of leading correlation

�
2
(0) � k�⌧k22 � |⌧ |�2

(1) � 1� 2cµ � 0.12 > 0.9,(SM6.46)

then we collect all above results and obtain:

v
⇤ gHess['`1 ](a)v = v

⇤ er2
'`1(a)v � �

⇤
�[�] �

⇣
1.5�2

(0) � 0.5� �� 20cµ
⌘
n✓ � 0.3n✓,

(SM6.47)

with probability at least

1� P [Ec
cross]| {z }

Lemma SM4.4

� P
⇥
Ec
pcurv

⇤
| {z }

Corollary SM4.3

� P
h
Ec
kxk2

i

| {z }
Lemma SM1.2

� P
⇥
Ec
�

⇤
| {z }

Corollary SM3.4

� 1� c
0
/n.(SM6.48)

3. (Identify local minima) Wlog let a⇤ be a local minimum where its gradient is zero that is

close to a0. The strong convexity (SM6.47), provides the upper bound on ka⇤ � a0k22 via

'`1(a⇤) � '`1(a0) + ha⇤ � a0, grad['`1 ](a0)i+ 0.3
2 n✓ ka⇤ � a0k22

=) kgrad['`1 ](a0)k2 � 0.15n✓ ka⇤ � a0k2(SM6.49)
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Thus we only require to bound the gradient at a0, whose coe�cients ↵ = e0 and correlation �

has properties �0 = 1 and
���\0

��
1  µ hence

���\0
��

p
2pµ. Expand the gradient term and

condition on E�, since µp
2
✓
2  cµ

4 and ✓ <
cµ
4
p
p , we can upper bound the gradient at a0 as

kgrad['`1 ](a0)k2 = k◆
⇤
Ca0 (� [�]� �

⇤
�[�]e0)k2  k◆

⇤
Ca0k2

���[�]\0
��
2


p
1 + µp

⇣
6n✓2

���\0
��
2
+ n✓ · cµ

p3/2
·
p
2p
⌘

 n✓
p
1 + µp

⇣
6µ
p
2p · ✓ + 2cµ

p

⌘

 n✓

⇣
3cµµ+ 6µ ·

p
2µ · p✓ + 2cµ

p +
2cµ

p
µp

p

⌘

 7
p
cµn✓ ·max

n
µ,

1
p

o
.(SM6.50)

Thus we conclude that with su�ciently small cµ:

ka⇤ � a0k2  50
p
cµmax

�
µ, p

�1
 
 1

2 max
�
µ, p

�1
 
.(SM6.51)

and we complete the proof by generalize this result from minima near a0 to any of its shifts
si[a0].

Similarly, for objective '⇢ we have

Corollary SM6.6 (Strong convexity of '⇢ of near shift). Suppose that x0 ⇠i.i.d. BG(✓) in
Rn, and k, cµ such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Define
� = c�/

p
k in '⇢ with c� 2

⇥
1
5 ,

1
4

⇤
, then there exists some numerical constant C, c, c0, c00, c > 0

such that if ⇢ is �-smoothed `
1 function where �  c

0
�✓

8
/p

2 log2 n and n > Cp
5
✓
�2 log p and

cµ  c, then with probability at least 1 � c
00
/n, for every a 2 [|⌧ |kR(S⌧ , �(cµ)) satisfying���(1)

�� < ⌫1�: for all v 2 Sp�1 \ a
?,

v
⇤ gHess['⇢](a)v > cn✓;(SM6.52)

furthermore, there exists ā as an local minimizer such that

min
`
kā� s`[a0]k2 

1
2 max

�
µ, p

�1
 

(SM6.53)

Proof. The strong convexity (SM6.52) is derived by combining (SM6.36) and (SM5.23) by
letting constant multiplier of � satisfies c01/4 < 10�3

c. On the other hand the local minimizer
near solution (SM6.53) is derived via combining (SM6.49), (SM5.21) and utilize both ✓

p
p < cµ

and µp
2
✓
2
< cµ such that:

kgrad['⇢](a)k2  k◆
⇤
Ca0k2

����[�]�C

V

x0S�
�

h
C

V

y◆a

i���
2
+ k◆⇤Ca0k2

���[�]\0
��
2


p
1 + µp · n✓3 + 7

p
cµn✓ ·max

�
µ, p

�1
 

 8n✓
p
cµ ·max

�
µ, p

�1
 

(SM6.54)
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SM6.4. Retraction toward subspace. As in Figure SM4, the function value grows in
direction away from subspace S⌧ , we will illustrate this phenomenon by proving the negative
gradient direction �g will point toward the subspace S⌧ . To show this, we prove for every
coe�cients of a as ↵, there exists coe�cients of g as ⇣ satisfies

h↵⌧ c(g),↵⌧ c(a)i > c k↵⌧ ck2 k⇣⌧ ck2(SM6.55)

whenever d↵(a,S⌧ ) 2
⇥�
2 , �

⇤
. Apparently, the gradient will decrease d↵(a,S⌧ ), hence being

addressed as retractive toward subspace S⌧ . This retractive phenomenon is true for gradient of
both '`1 and '⇢.

Lemma SM6.7 (Retraction of '`1 toward subspace). Suppose that x0 ⇠i.i.d. BG(✓) in
Rn, and k, cµ such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Define
� = c�/

p
k in '`1 with c� 2

�
0, 13

⇤
, then there exists some numerical constants C, c, c > 0

such that if n > Cp
5
✓
�2 log p and cµ  c, then with probability at least 1 � c

0
/n, for every

a 2 [|⌧ |kR(S⌧ , �(cµ)) such that if

(SM6.56) d↵(a,S⌧ ) � �(cµ)/2

then for every ↵ satisfying a = ◆
⇤
Ca0↵, there exists some ⇣ satisfying grad['`1 ](a) = ◆

⇤
Ca0⇣

that

h⇣⌧ c ,↵⌧ ci � 1
4n✓ k⇣⌧ ck22 .(SM6.57)

Proof. Write � = �(cµ) Recall the gradient can be derived as

grad['`1 ](a) = �Pa?◆
⇤
Ca0�[�] = (aa⇤ � I) ◆⇤Ca0�[�] = ◆

⇤
Ca0 (�

⇤
�[�]↵� �[�]) ,

(SM6.58)

for every ↵ satisfies a = ◆
⇤
Ca0↵. Now via Corollary SM3.4, condition on the event:

E� :=

(
�i�[�]i 

(
n✓ · |�i|+ cµn✓

p , 8 i 2 ⌧

n✓ · |�i| 4✓ |⌧ |+ cµn✓
p , 8 i 2 ⌧

c
, �i�[�]i � n✓ · Sp

2/⇡�
[|�i|]

)
,

(SM6.59)

and on this event, utilize Lemma SM2.5, bounds of �⇤
�[�] and k�[�]⌧ ck2 can be derived with

cµ <
1

100 as:

�
⇤
�[�]  n✓

⇣
k�⌧k22 + 4✓ |⌧ | k�⌧ ck22 + cµ

⌘
� n✓

�
1 + cµ + 4c2µ + cµ

�
 3

2n✓

(SM6.60)

�
⇤
�[�] � n✓

⇣
k�⌧k22 �

p
2/⇡� k�⌧k1 � cµ

⌘
� n✓

⇣
1� 4cµ �

p
2/⇡c� � cµ

⌘
� 1

2n✓

(SM6.61)

k�[�]⌧ ck2  4n✓2 |⌧ | k�⌧ ck2 +
cµn✓
p

p
p  n✓ (4cµ� + cµ�)  1

20n✓�.

(SM6.62)
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Let ↵(g) = �
⇤
�[�]↵� �[�], derive

h↵(g)⌧ c ,↵⌧ ci � 1
4n✓ k↵(g)⌧ ck22

= �
⇤
�[�] k↵⌧ ck22 � h↵⌧ c ,�[�]⌧ ci
� 1

4n✓ k�
⇤
�[�]↵⌧ c � �[�]⌧ ck22

� �
⇤
�[�] k↵⌧ ck22 � k↵⌧ ck2 k�[�]⌧ ck2
� 1

2n✓ |�
⇤
�[�]|2 k↵⌧ ck22 �

1
2n✓ k�[�]⌧ ck22

�
�
�
⇤
�[�]� 1

2n✓ (�
⇤
�[�])2

�
k↵⌧ ck22 �

1
20n✓� k↵⌧ ck2 �

1
1000n✓�

2
,(SM6.63)

notice that this is a quadratic function of �⇤
�[�] with negative leading coe�cient and zeros at

{0, 2n✓}, hence (SM6.63) is minimized when �
⇤
�[�] = 1

2n✓. Plugging in,

(SM6.63) � 3
8n✓ k↵⌧ ck22 �

1
20n✓� k↵⌧ ck2 �

1
1000n✓�

2(SM6.64)

then again this is a quadratic function of k↵⌧ ck2 with positive leading coe�cient and zeros at�
0, 8

60�
 
, thus (SM6.64) is minimized at k↵⌧ ck2 =

�
2 . Plugging in again,

(SM6.64) � 3
8n✓ k↵⌧ ck22 �

1
20n✓� k↵⌧ ck2 �

1
1000n✓�

2 �
�

3
32 �

1
80 �

1
1000

�
n✓�

2
> 0

(SM6.65)

which concludes our proof.

As a consequence, we have that

Corollary SM6.8 (Retraction of '⇢ toward the subspace). Suppose that x0 ⇠i.i.d. BG(✓) in
Rn, and k, cµ such that (a0, ✓, k) satisfies the sparsity-coherence condition SCC(cµ). Define
� = c�/

p
|k| in '⇢ with c� 2

�
0, 13

⇤
, then there exists some numerical constants C, c, c0, c00, c > 0

such that if ⇢ is �-smoothed `
1 function where �  c

00
�✓

8
/p

2 log2 n and n > Cp
5
✓
�2 log p and

cµ  c, then with probability at least 1� c
0
/n, for every a 2 [|⌧ |kR(S⌧ , �(cµ)) such that if

(SM6.66) d↵(a,S⌧ ) � �(cµ)/2

then for every ↵ satisfying a = ◆
⇤
Ca0↵, there exists some ⇣ satisfying grad['⇢](a) = ◆

⇤
Ca0⇣

that

h⇣⌧ c ,↵⌧ ci � 1
6n✓ k⇣⌧ ck22 .(SM6.67)

Proof. Write � = �(cµ). Define

�`1 [�] = C

V

x0S� [a

V⇤ y] , �⇢[�] = C

V

x0S�
� [a

V⇤ y] ,

which, and on event (SM6.59) and Lemma SM5.6, we know

�
⇤
�`1 [�]  3

2n✓,(SM6.68)

k�`1 [�]⌧ ck2 
1
20n✓�,(SM6.69)

k�`1 [�]� �⇢[�]k2  c1n✓
4
,(SM6.70)
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for some constant c1 > 0. Now given any ↵ satisfies a = ◆
⇤
Ca0↵, the gradient of both objective

can be derived as

grad['`1 ](a) = �Pa?◆
⇤
Ca0 prox�k·k1 [a

V⇤ y] = (aa⇤ � I) ◆⇤Ca0�`1 [�]

= ◆
⇤
Ca0 (�

⇤
�`1 [�]↵� �`1 [�]) ,(SM6.71)

grad['⇢](a) = �Pa?◆
⇤
Ca0 prox�⇢[a

V⇤ y] = (aa⇤ � I) ◆⇤Ca0�⇢[�]

= ◆
⇤
Ca0 (�

⇤
�⇢[�]↵� �⇢[�]) .(SM6.72)

In the same spirit, define the coe�cient of each gradient vector

⇣`1 = �
⇤
�`1 [�]↵� �`1 [�],(SM6.73)

⇣⇢ = �
⇤
�⇢[�]↵� �⇢[�],(SM6.74)

which, by norm inequality from (SM6.68)-(SM6.70) and Lemma SM6.7 , we can derive

k⇣`1 � ⇣⇢k2  k(I �↵�
⇤) (�⇢[�]� �`1 [�])k2  c1n✓

4
,(SM6.75)

k(⇣`1)⌧ ck2 � |�⇤
�`1 [�]| k↵⌧ ck2 � k�`1 [�]⌧ ck2 �

1
5n✓�,(SM6.76)

h(⇣`1)⌧ c ,↵⌧ ci � 1
4n✓ k(⇣`1)⌧ ck22 ,(SM6.77)

where the first inequality is derived by observing (I �↵�
⇤) is a projection operator, as such:

�
⇤
↵ = a

⇤
◆
⇤
Ca0↵ = a

⇤
a = 1,

(I �↵�
⇤)2 = I � 2↵�

⇤ +↵(�⇤
↵)�⇤ = I �↵�

⇤
.

Now we are ready to derive (SM6.57):

h(⇣⇢)⌧ c ,↵⌧ ci � h(⇣`1)⌧ c ,↵⌧ ci � k↵⌧ ck2 k⇣⇢ � ⇣`1k2
� 1

4n✓ k(⇣`1)⌧ ck22 � c1n✓
4
�

� 1
12n✓ k(⇣`1)⌧ ck22
+ 1

6n✓

⇣
k(⇣⇢)⌧ ck22 � 2 k(⇣`1)⌧ ck2 k⇣`1 � ⇣⇢k2 � k⇣`1 � ⇣⇢k22

⌘
� c1n✓

4
�

� 1
6n✓ k(⇣⇢)⌧ ck22 +

1
12n✓

�
1
5n✓�

�2 � 1
3n✓

�
1
5n✓�

� �
c1n✓

4
�

� 1
6n✓

�
c1n✓

4
�2 � c1n✓

4
�

� 1
6n✓ k(⇣⇢)⌧ ck22 .(SM6.78)

where the last inequality is true since ✓
3 ⌧ �.

SM6.5. Proof of Theorem 4.1. By collecting result from above, we are ready to prove
the acclaimed geometric result in Theorem 4.1. It guarantees that for every a near S⌧ , either
one of the following in true

�min (Hess['⇢](a))  �c1n✓�,(SM6.79)
⌦
�(0)◆

⇤
s(0)[a0],�grad['⇢](a)

↵
� c2n✓

�
log�2

✓
�1
�
�
2
,(SM6.80)

Hess['⇢](a) � c3n✓ · Pa? ,(SM6.81)
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all local minimizer ā satisfies for some a⇤ 2
�
±◆

⇤
s`[a]

�� ` 2 [±p0]
 
,

kā� a⇤k2  c4
p
cµmax

�
µ, p

�1
0

 
,(SM6.82)

and whenever �
2  d↵ (a,S⌧ )  �, coe�cient of a and its gradient g, ↵, written as ⇣, satisfies

h⇣⌧ c ,↵⌧ ci � c5
n✓ k⇣⌧ ck22 .(SM6.83)

To connect the geometric results introduced in Lemma SM6.1, Lemma SM6.3, Lemma SM6.5
and Lemma SM6.7, we are only required to prove the required signal condition claimed in
Theorem 4.1 is necessary from Definition SM2.1. In particular, when the subspace dimension
|⌧ |  4p0✓. On top of that, we are also required to show the chosen smooth parameter � in
the pseudo-Huber penalty ⇢(x) =

p
x2 + �2 approximate |x| su�ciently well, hence results of

Corollary SM6.2, Corollary SM6.4, Corollary SM6.6 and Corollary SM6.8 also holds.

Proof. Firstly we will show when largest solution subspace dimension k = 4p0✓, the signal
condition of Definition SM2.1 will be satisfied. Recall that the signal condition of Theorem 4.1
requests

2

p0 log
2
p0
 ✓  c�

p0
p
µ+
p
p0
�
log2 p0

,(SM6.84)

since p = 3p0 � 2, this implies the lower bounds for sparsity ✓ as:

✓ � 1

2p0
�
1
2 log p0

�2 �
1

p log2 ✓�1
;(SM6.85)

the upper bound of ✓ via ✓
p
p0 log

2
p0  c :

✓  9c
p
p0(3 log p0)2

 16c
p
p log2 ✓�1

, ✓  4c2

k log4 p0
 36c2

k(3 log p0)2
 36c2

k log2 ✓�1
;(SM6.86)

and the upper bound for coherence µ as:

µmax
�
k
2
, (p✓)2

 
log2 ✓�1  µmax

�
16(p0✓)

2
, 9(p0✓)

2
 
log2 ✓�1

 16 (
p
µp0✓)

2 log2 p0  16c.(SM6.87)

Therefore Definition SM2.1 holds if max
�
16c, 36c2

 
 cµ/4 via (SM6.85)-(SM6.87).

Furthermore, we know from lemma assumption all interested a are near subspace S⌧ by

d↵(a.S⌧ ) 
c

p
p0 log

2
✓�1

·min

(
1p
✓
,

1
p
µ
.

1

µ (p0✓)
3/2

)

 c

log2 ✓�1
min

⇢
2p
k
,

1
p
p0µ

,
4

µp0

p
✓k

�
 �(SM6.88)

where � is defined in Definition SM2.3 of widened subspace R(S⌧ , �(cµ)).
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Lastly, the pseudo-Huber function ⇢(x) =
p
x2 + �2 is an `

1 smoothed sparse surrogate
defined in Definition SM5.2, by observing that it is convex, smooth, even, whose second order
derivative (according to Table SM1) r2

⇢(x) = �2

(x2+�2)3/2
is monotone decreasing in |x|. More

importantly

sup
x2R

|⇢(x)� |x|| = |⇢(0)� |0|| = �.(SM6.89)

Hence, by choosing �  c04✓8

p2 log2 n
�, for some su�ciently small constant c

0 and letting

� = 0.2
p
k = 0.1/

p
p0✓ in '⇢. We obtain the geometrical results in Corollary SM6.2 when���(1)

�� � 4
5

���(0)

��, Corollary SM6.4 when 4
5

���(0)

�� �
���(1)

�� � �
4 log2 ✓�1 and Corollary SM6.6 when

�
4 log2 ✓�1 �

���(1)

��, and the retraction result in Corollary SM6.8.

SM7. Analysis of algorithm — minimization within widened subspace. In this section,
we prove convergence of the first part of our algorithm—minimization of '⇢ near S⌧ . We begin
by proving the initialization method guarantees that a(0) is near S⌧ , in the sense that

d↵(a
(0)

,S⌧ )  �,(SM7.1)

where the distance d↵ is defined in (4.16). We then demonstrate that small-stepping curvilinear
search converges to a desired local minimum of '⇢ at rate O(1/k), where k is the iteration
number. To do this, it is important to utilize(i) the retractive property to show that the
iterates stay near S⌧ and (ii) the geometric properties of '⇢ near S⌧ .

SM7.1. Initialization near subspace. The following lemma shows that the initialization
a
(0) = PSp�1

⇥
r'`1(a

(�1))
⇤
, where

a
(�1) = PSp�1

⇥P
`2⌧ x0`◆

⇤
p0s`[a0]

⇤
,(SM7.2)

and is very close to the subspace S⌧ :

Lemma SM7.1 (Initialization from a piece of data). Let x 2 R2p0�1 indexed by [±p0], with
xi ⇠i.i.d. BG(✓). Define y = x ⇤ a0, and a

(0) as

a
(0) = �PSp�1r'`1

�
PSp�1

⇥
0p0�1; [y0; · · · ;yp0�1];0

p0�1
⇤�

,(SM7.3)

with � = 0.2/
p
p✓ in '1. Set ⌧ = supp(x). Suppose that (a0, ✓, k) satisfies the sparsity-

coherence condition SCC(cµ) and a0 satisfies maxi 6=j

��⌦◆⇤p0si[a0], ◆⇤p0sj [a0]
↵��  µ. Then there

exists some constant c, c > 0 such that if p0✓ > 1000c and cµ  c, then with probability at least
1� 1/c, we have

d↵

⇣
a
(0)

,S⌧

⌘
 cµ

4 log2 ✓�1
min

(
1p
|⌧ |

,
1
p
µp

,
1

µp
p
✓ |⌧ |

)
.(SM7.4)

Proof. 1. (Distance to S⌧ from a
(0)) Let ⌘ =

��◆⇤p0(a0 ⇤ x)
��
2
=
��◆⇤p0Ca0x

��
2
and � = �(cµ),

as in (SM7.4). Expand the expression of a(0) from (SM7.3) we have

a
(0) = PSp�1◆

⇤
C

V

yS�

h
C

V

y◆p0PSp0�1◆
⇤
p0(a0 ⇤ x)

i

= PSp�1◆
⇤
Ca0�

h
1
⌘C

⇤
a0
◆p0◆

⇤
p0Ca0x

i
(SM7.5)
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To relate a(0) to its coe�cient, introduce the truncated autocorrelation matrix fM = C
⇤
a0
◆p0◆

⇤
p0Ca0 ,

define e↵, e� as

e� = 1
⌘
fMx, e↵ = �

h
1
⌘
fMx

i
= �[e�](SM7.6)

and note that fM is bounded entrywise as

��� fMij

��� 

8
><

>:

1 i = j 2 [�p0 + 1, p0 � 1]

µ i 6= j 2 [�p0 + 1, p0 � 1], |i� j| < p0

0 otherwise

.(SM7.7)

From (SM7.5), we can write a
(0) = PSp�1◆

⇤
Ca0 e↵, meaning that the normalized version of e↵ is

a valid coe�cient vector for a(0). Let ⌧ c = [±2p0] \ ⌧ . The distance d↵ to subspace S⌧ (4.16)
is upper bounded as

d↵(a
(0)

,S⌧ ) 
ke↵⌧ ck2
k◆⇤Ca0 e↵k2

 ke↵⌧ ck2
k◆⇤Ca0 e↵⌧k2 � k◆⇤Ca0 e↵⌧ ck2

 ke↵⌧ ck2p
1� µ |⌧ | ke↵⌧k2 �

p
1 + µp ke↵⌧ ck2

where the last inequality is derived with Lemma SM2.4. Therefore, it is su�cient to show

⇣
1 + �

p
1 + µp

⌘
ke↵⌧ ck2  �

p
1� µ |⌧ | ke↵⌧k2(SM7.8)

to complete the proof that d↵(a(0)
,S⌧ )  �.

2. (Bound ⌘) Condition on the following two events

E⌧ := {|⌧ | < 4p0✓} , Ekxk2 :=
np

p0✓  kxk2 
p

3p0✓
o

(SM7.9)

and utilize µ bound from Lemma SM2.5 such that µ |⌧ | < 0.1. An upper bound on ⌘ can be

obtained using properties of fM of (SM7.7):

⌘ =
��◆⇤p0Ca0x

��
2
 k◆⇤Ca0xk2 

p
1 + µ |⌧ | kxk2  2

p
p0✓(SM7.10)

To lower bound ⌘, use ⌘
2 = g

⇤
P⌧

fMP⌧g where g is the standard Gaussian vector. Observe
the submatrix of fM is diagonal dominant:

8
>><

>>:

fMii =
��◆⇤p0si[a0]

��2
2
2 [0, 1]

tr
⇣
fM
⌘
=

X

i2[±p0]

��◆⇤p0si[a0]
��2
2
= ka0k22 +

p0�1X

i=1

⇣��◆⇤p0si[a0]
��2
2
+
��◆⇤p0si�p0 [a0]

��2
2

⌘
= p0

.

(SM7.11)
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Write x = g �w where w and g are Bernoulli and Gaussian vector respectively with supp(w) =

⌧ , then the trace of P⌧
fMP⌧ can be written as sum of independent r.v.s as:

tr
⇣
P⌧

fMP⌧

⌘
=

X

i2[±p0]

wi

��◆⇤p0si[a0]
��2
2
,

Bernstein inequality Lemma SM10.4 and (SM7.11) gives

P

tr
⇣
P⌧

fMP⌧

⌘
<

3p0✓

4

�
 P


tr
⇣
P⌧

fMP⌧

⌘
� p0✓  �

p0✓

4

�

 2 exp

✓
�(p0✓/4)2

2p0✓ + p0✓/2

◆
 2 exp

✓
�p0✓
40

◆
,(SM7.12)

thus condition on ! satisfies tr
⇣
P⌧

fMP⌧

⌘
� 3p0✓/4 and E⌧ , expectation ⌘

2 has lower bound

Eg|w⌘
2 = Eg|w

h
g
⇤
P⌧

fMP⌧g

i
= tr

⇣
P⌧

fMP⌧

⌘
� 3p0✓

4

then apply Bernstein inequality again by first writing svd of P⌧
fMP⌧ = U⌃U

⇤ with ⌃ being
rank |⌧ | < 4p0✓ and square orthobasis U . Let g0 = U

⇤
g, then g

0 is standard i.i.d. Gaussian

vector, provides alternative expression ⌘
2
<
P4p0✓

i=1 g
0
i
2
�i where �i  1 + µ |⌧ |  1.1. We obtain

probability of ⌘2 to be small as

Pg|w


⌘
2
<

p0✓

2

�
 Pg|w


⌘
2 � Eg|w⌘

2
< �p0✓

4

�

 2 exp

✓
�(p0✓/4)2

2(1 + µ |⌧ |)(12p0✓ + p0✓/2)

◆
 2 exp

✓
�p0✓
440

◆
(SM7.13)

by applying moment bounds (�2
, R) = (12p0✓(1 + µ |⌧ |), 2(1 + µ |⌧ |)). We thereby define event

E⌘ =
np

p0✓/2  ⌘  2
p
p0✓

o
,(SM7.14)

which holds w.h.p. based on (SM7.9), (SM7.12) and (SM7.13).

3. (Bound e↵) Condition on E⌘ \ Ekxk2 \ E⌧ . Use definition e� = 1
⌘
fMx from (SM7.6), and

properties of fM from (SM7.7) we can obtain:

8
><

>:

ke�⌧ ck2  1
⌘

���◆⇤⌧ c
fM◆⌧

���
2
kxk2 

µ
p

p0|⌧ |p
p0✓/2

·
p
3p0✓  3µ

p
p0 |⌧ |

ke�⌧k2 � 1
⌘

���◆⇤⌧ fM◆⌧

���
2
kxk2 �

p
1�µ|⌧ |
2
p
p0✓

·
p
p0✓ � 0.45

.(SM7.15)

Use definition ke↵k2 = k�[e�]k2, condition on event

E� :=

((
�i�[�]i � n✓S⌫2� [|�i|]�

c2µn✓
p , 8 i 2 ⌧

�i�[�]i  4n✓2 |⌧ | |�i|+ cµn✓
p , 8 i 2 ⌧

c

)
,
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also from Definition SM2.1 we have µ (p✓)1/2 |⌧ |3/2 <
cµ

4 log2 ✓�1 and from lemma assumption

� = 1
5
p
p✓
, provides bounds of ke↵k2 via triangle inequality as:

8
><

>:

ke↵⌧ ck2  4n✓2 |⌧ | · ke�⌧ ck2 + cµn✓
p ·

p
2p0  3cµn✓

⇣ p
✓

log2 ✓�1 + cµ
p

⌘

ke↵⌧k2 � n✓

⇣
ke�⌧k2 � ⌫2�

p
|⌧ |� cµ

p

p
|⌧ |

⌘
� n✓

✓
0.45�

q
2
⇡ · 1

5 � cµ

◆
� 0.2n✓

,

(SM7.16)

since both ✓ |⌧ |, µp✓ |⌧ | < cµ, we have

8
><

>:

p
1 + µp ke↵⌧ ck2  3cµn✓

p
1 + µp

⇣p
✓ + p

�1
⌘
 6cµn✓

ke↵⌧ ck2 
6c

3/2
µ n✓

log2 ✓�1 min

⇢
1p
|⌧ |

,
1p
µp ,

1
µp

p
✓|⌧ |

�
 24

p
cµn✓�

,

which satisfies (SM7.8), since µ |⌧ | < cµ <
1

1000 ,

(1 + �
p
1 + µp) ke↵⌧ ck2 

�
24
p
cµ + 6cµ

�
n✓�  0.1n✓�

 �

p
1� µ |⌧ | ke↵⌧k2 .(SM7.17)

Finally, given p0✓ > 1000c, this result holds with probability at least

1� P [Ec
⌧ ]| {z }

Lemma SM1.1

� P
h
Ec
kxk2

i

| {z }
Lemma SM1.2

� P
⇥
Ec
⌘

⇤
| {z }
(SM7.14)

� P
⇥
Ec
�

⇤
| {z }

Corollary SM3.4

� 1� 2

p0✓
� 1

n
� 4 exp

✓
�p0✓
440

◆
� 1� 1

c
(SM7.18)

SM7.2. Minimization near subspace (Proof of Theorem 5.1) . Before we start the proof
of theorem, writing g = grad['⇢](a) and H = Hess['⇢](a), we will first restate the results of
Theorem 4.1 in simplified terms. The theorem shows that for any a 2 Sp�1 whose distance to
subspace d↵(a,S⌧ )  �, then at least one of the the following statement hold:

kgk2 � ⌘g(SM7.19)

�min (H)  �⌘v(SM7.20)

H � ⌘c · Pa? .(SM7.21)

Furthermore, '⇢ is retractive near S⌧ : wherever d↵(a,S⌧ ) � �
2 , writing ↵(a), ↵(g) to be the

coe�cient of a, g, we have

h↵(a)⌧ c ,↵(g)⌧ ci � ⌘r k↵(g)⌧ ck2 .(SM7.22)

Also, the the gradient, Hessian and the third order derivative are all bounded as follows:
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Remark SM7.2. With high probability, for every a whose d↵(a,S⌧ ) < �, its
max {kgk2 , kHk2 , krHk2}  ⌘ = poly(n, p).

We state Remark SM7.2 without explicit proof since its derivation is similar to the proof in
Theorem 4.1.

We prove that if the negative curvature direction �v is chosen to be the least eigenvector
with v

⇤
Hv < �⌘v and v

⇤
g (if cannot, let v = 0), then the iterates

a
(k+1) = PSp�1

h
a
(k) � tg

(k) � t
2
v
(k)
i

(SM7.23)

converges toward the minimizer ā in `
2-norm with rateO(1/k). Notice that here all ⌘g, ⌘v, ⌘c, ⌘r, ⌘̄

are all greater then 0 and are rational functions of the dimension parameters n, p.
Finally, we should note that a0 being µ-truncated shift coherent implies that a0 is at at

most 2µ-shift coherent. Hence we utilize the usual incoherence condition in the proof.

Proof. Notice that when a is in the region near some signed shift ā of a0, the function
'⇢ is strongly convex, and the iterates coincide with the Riemannian gradient method, which
converges at a linear rate. Indeed, if for all k larger than some k̄, a(k) is in this region, then��a(k) � ā

��
2
 (1�t⌘c)�(k�k̄)ka(k̄)� āk2 [SM1](Theorem 4.5.6) where the step size t = ⌦(1/n✓)

hence t⌘c = ⌦(1). We will argue that the iterates a(k) remain close to the subspace S⌧ and
that after k̄ = poly(n, p) iterations they indeed remain in the strongly convex region around
some ā.

1. (Existence of Armijo steplength). First, we show there exists a nontrivial step size t at
every iteration, in the sense that for all a 2 Sp�1, there exists T > 0 such that for all
t 2 (0, T ), the Armijo step condition (5.11) is satisfied. Note that since '⇢ is a smooth function,
a! '⇢ � PSp�1(a) admits a version of Taylor’s theorem (see also [SM1](Section 7.1.3)): for
any ⇠ ? a, writing a

+ = PSp�1 [a+ ⇠],
��'⇢(a

+)�
�
'⇢(a) + hgrad['⇢](a), ⇠i+ 1

2⇠
⇤Hess['⇢](a)⇠

���  ⌘̄ k⇠k32 ,(SM7.24)

using krHk2  ⌘̄. Now, let ⇠ = �tg � t
2
v as in the iterates (5.10). Suppose the Armijo step

condition (5.11) does not hold, so

'⇢(a
+) > '⇢(a)� 1

2

⇣
t kgk22 +

1
2 t

4
⌘v kvk22

⌘
.(SM7.25)

Since g
⇤
v � 0 and v

⇤
Hv  �⌘v kvk22 or v = 0, using ka+ bk32  4 kak32 + 4 kbk32 (Hölder’s

inequality) and kHk2 < ⌘̄, we can derive
⌦
g,�tg � t

2
v
↵
+ 1

2(tg + t
2
v)⇤H

�
tg + t

2
v
�

+ c
��tg + t

2
v
��3
2
> �1

2

⇣
t kgk22 +

1
2 t

4
⌘v kvk22

⌘

=) � 1
2 t kgk

2
2 +

1
2 t

2
g
⇤
Hg + t

3
v
⇤
Hg

� 1
4 t

4
⌘v kvk22 + 4⌘̄t3 kgk32 + 4⌘̄t6 kvk32 > 0

=) � 1
2 t kgk

2
2 + t

2
⇣
1
2 ⌘̄ kgk

2
2 + t⌘̄ kvk2 kgk2 + 4⌘̄t kgk32

⌘

� 1
4 t

4
⌘v kvk22 + 4⌘̄t6 kvk32 > 0.(SM7.26)
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If

t < T = min

(
kgk2

⌘̄ kgk2 + 2⌘̄t kvk2 + 8⌘̄t kgk22
,

r
⌘v

16⌘̄ kvk2

)
,(SM7.27)

then (SM7.26) < 0 contradicting (SM7.25). Using our bounds on kgk2, ⌘̄, ⌘v and kvk, it
follows that T is lower bounded by a polynomial poly

�
n
�1

, p
�1
�
.

2.(Bounds on d↵(g,S⌧ ), d↵(v,S⌧ )) We will show there are numerical constants cg, cv such
that

d↵(g,S⌧ )  cgn✓� and d↵(v,S⌧ )  cvn✓p.(SM7.28)

Define

�`1 [�] = C

V

x0 prox�`1 [a

V⇤ y] , �⇢[�] = C

V

x0 prox�⇢ [a

V⇤ y] ,

then the gradient can be written as (SM6.58)

grad['`1 ](a) = ◆
⇤
Ca0 (�

⇤
�`1 [�]↵� �`1 [�]) ,(SM7.29)

grad['⇢](a) = ◆
⇤
Ca0 (�

⇤
�⇢[�]↵� �⇢[�]) .(SM7.30)

Use the following inequalities:

1
2n✓  |�⇤

�`1 [�]|  3
2n✓,

k�`1 [�]⌧ ck2 
1
20n✓�,

kI �↵�
⇤k2  4

p
p,

k�`1 [�]� �⇢[�]k2  n✓
4
,

where the first and second bounds of �`1 [�] based on event (SM6.59); the third by observing
k↵k2  2 and k�k2  2+ cµ

p
p; the last from (SM5.21) of Lemma SM5.6 when � is su�ciently

small. Hence, by definition of d↵( ·,S⌧ ) (4.16) and knowing a is close to subspace k↵⌧ ck2  �,
via triangle inequality, we get

d↵(g,S⌧ )  d↵(grad['`1 ](a),S⌧ ) + d↵(grad['⇢](a)� grad['`1 ](a),S⌧ )

 k�⇤
�`1 [�]↵⌧ c � �`1 [�]⌧ ck2 + k(I �↵�

⇤) (�⇢[�]� �`1 [�])k2 .
 3

2n✓� + 1
20n✓� + 4

p
pn✓

4

 3n✓�.(SM7.31)

To bound the d↵ norm of least eigenvector v, note that �⇤
�⇢[�] > 0, we can conclude

v
⇤r2

'⇢(a)v  v
⇤
Pa?r2

'⇢(a)Pa?v + �
⇤
�⇢[�] = v

⇤
Hv < �⌘v,

expand r2
'⇢(a) as in (SM5.8), and since v is the eigenvector of smallest eigenvalue �min < �⌘v,

Pa?r2
'⇢(a)Pa?v = (I � aa

⇤) ◆⇤Ca0C

V

x0rprox�⇢ [a

V⇤ y]C

V

x0C
⇤
a0
◆v = �minv,(SM7.32)
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hence there exists ↵(v) satisfies v = ◆
⇤
Ca0↵(v) and

↵(v) = �
�1
min

h
C

V

x0rprox�⇢ [a

V⇤ y]C

V

x0C
⇤
a0
◆v �

⇣
�
⇤
C

V

x0rprox�⇢ [a

V⇤ y]C

V

x0C
⇤
a0
◆v

⌘
↵

i
.

Now since rprox�⇢ [a

V⇤ y] is a diagonal matrix with entries in [0, 1],

d↵(v,S⌧ )  k↵(v)k2  |�min|�1 k◆Ca0k2 kx0k21 kvk2 (1 + k↵k2 k�k2) < cvn✓p,(SM7.33)

where we use upper bound of kx0k1 < cn✓ from Lemma SM1.2 and |�min| > ⌘v > cn✓� from
Corollary SM6.2.

3. (Iterates stay within widened subspace). Suppose (SM7.22) holds. We will show that
whenever

t  T
0 =

1

10n✓
,(SM7.34)

then setting a
+ = PSp�1

⇥
a� tg � t

2
v
⇤
, we have

��d↵
�
a
+
,S⌧

�
� d↵ (a,S⌧ )

��  �
2 ,(SM7.35)

and whenever d↵(a,S⌧ ) 2
⇥�
2 , �

⇤

d
2
↵

�
a
+
,S⌧

�
 d

2
↵ (a,S⌧ )� t · c0n✓�2.(SM7.36)

If both (SM7.35) and (SM7.36) hold, then all iterates a
(k) will stay near the subspace:

d↵(a(k)
,S⌧ ) < �.

To derive (SM7.35), since both g ? a and v ? a we have
��a� tg � t

2
v
��2
2
= kak22 +��tg + t

2
v
��2
2
> 1, and since d↵(·,S⌧ ) is a seminorm Lemma SM2.2:

d↵
�
a
+
,S⌧

�
= d↵(PSp�1

⇥
a� tg � t

2
v
⇤
,S⌧ )  d↵

�
a� tg � t

2
v,S⌧

�

 d↵(a,S⌧ ) + td↵(g,S⌧ ) + t
2
d↵(v,S⌧ )(SM7.37)

suggests (SM7.35) holds via (SM7.28) and let n > Cp
5
✓
�2, we have

td↵(g,S⌧ ) + t
2
d↵(v,S⌧ )  cgn✓�

10n✓ + cvn✓p
(10n✓)2 <

�
2(SM7.38)

with su�ciently large C.
To derive (SM7.36), let ↵(a) to be a coe�cient vector satisfying d↵(a,S⌧ ) = k↵(a)⌧ ck2,

and based on (SM7.30) and (32), define

↵(g) = �
⇤
�⇢[�]↵(a)� �⇢[�](SM7.39)

↵(v) = �
�1
minC

V

x0rprox�⇢ [a

V⇤ y]C

V

x0C
⇤
a0
◆v.(SM7.40)

By the retraction property and norm bounds,

h↵(a)⌧ c ,↵(g)⌧ ci � 1
6n✓ k↵(g)⌧ ck22(SM7.41)

k↵(a)⌧ ck2  �(SM7.42)

k↵(v)k2  cvn✓p.(SM7.43)
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Since k↵⌧ ck2 >
�
2 ,

ka(g)⌧ ck2 � k�
⇤
�`1 [�]↵⌧ c � �`1 [�]⌧ ck2 � k(I �↵�

⇤) (�⇢[�]� �`1 [�])k2
� |�⇤

�`1 [�]| k↵⌧ ck2 � k�`1 [�]⌧ ck2 � k(I �↵�
⇤)k2 k(�⇢[�]� �`1 [�])k2

� 1
2n✓ ⇥

�
2 �

1
20n✓� + 2n✓4

� 1
10n✓�.(SM7.44)

Finally, we can bound d↵(a+
,S⌧ ) as

d
2
↵(a

+
,S⌧ )  d

2
↵(a� tg � t

2
v,S⌧ )


��⇥↵(a)� t↵(g)� t

2
↵(v)

⇤
⌧ c

��2
2

= k↵(a)⌧ ck22 � 2t
⌦
↵(a)⌧ c ,

⇥
↵(g) + t↵(v)

⇤
⌧ c

↵
+ t

2
��⇥↵(g) + t↵(v)

⇤
⌧ c

��2
2

 k↵(a)⌧ ck22 � 2t h↵(a)⌧ c ,↵(g)⌧ ci+ 2t2 k↵(a)⌧ ck2 k↵(v)k2
+ 2t2 k↵(g)⌧ ck22 + 2t4 k↵(v)k22

 d
2(a,S⌧ )� 2t

h�
1

3n✓ � t
�
k↵(g)⌧ ck22 � tn✓p� � t

3(cvn✓p)
2
i

 d
2(a,S⌧ )� t · c0n✓�2(SM7.45)

where the last inequality holds when t <
0.1
n✓ with su�ciently large n.

4. (Polynomial time convergence) The iterates a(k) remain within a � neighborhood of S⌧ for

all k. At any iteration k, a(k) is in at least one of three regions: strong gradient, negative
curvature, or strong convexity. In the gradient and curvature regions, we obtain a decrease
in the function value which is at least some (nonzero) rational function of n and p. On the
strongly convex region, the function value does not increase. The suboptimality at initialization
is bounded by a polynomial in n and p,poly(n, p), and hence the total number of steps in the
gradient and curvature regions is bounded by a polynomial in n, p. After the iterates reach
the strongly convex region, the number of additional steps required to achieve ka(k) � āk2  "

is bounded by poly(n, p) log "�1. In particular, the number of iterations required to achieve
ka(k) � āk2  µ+ 1/p is bounded by a polynomial in (n, p), as claimed.

SM8. Analysis of algorithm — local refinement. In this section, we describe and analyze
an algorithm which refines an estimate a

(0) ⇡ a0 of the kernel to exactly recover (a0,x0). Set

�
(0)  5Ieµ and I

(0)  supp(S�

⇥
C

⇤
a(0)y

⇤
),(SM8.1)

where as each iteration of the algorithm consists of the following key steps:
• Sparse Estimation using Reweighted Lasso: Set

x
(k+1)  argmin

x

1
2ka

(k) ⇤ x� yk22 +
X

i 62 I(k)

�
(k) |xi| ;(SM8.2)

• Kernel Estimation using Least Squares: Set

a
(k+1)  PSp�1

⇥
argmin

a

1
2ka ⇤ x

(k+1) � yk22
⇤
;(SM8.3)
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• Continuation and reweighting by decreasing sparsity regularizer: Set

�
(k+1)  1

2�
(k) and I

(k+1)  supp(x(k+1)).(SM8.4)

Our analysis will show that a
(k) converges to a0 at a linear rate. In the remainder of this

section, we describe the assumptions of our analysis. In subsequent sections, we prove key
lemmas analyzing each of the three main steps of the algorithm.

Below, we will write

(SM8.5) eµ = max
�
µ, p

�1
 
.

Our refinement algorithm will demand an initialization satisfying

(SM8.6) ka(0) � a0k2  eµ.

Our goal is to show that the proposed annealing algorithm exactly solves the SaS deconvo-
lution problem, i.e., exactly recovers (a0,x0) up to a signed shift. We will denote the support
sets of true sparse vector x0 and recovered x

(k) in the intermediate k-th steps as

I = supp(x0), I
(k) = supp(x(k)).(SM8.7)

It should be clear that exact recovery is unlikely if x0 contains many consecutive nonzero
entries: in this situation, even non-blind deconvolution fails. We introduce the notation I as
an upper bound for number of nonzero entries of x0 in a length-p window:

(SM8.8) I = 6max {✓p, log n} ,

then in the Bernoulli-Gaussian model, with high probability,

(SM8.9) max
`

|I \ ([p] + `)|  I .

Here, indexing and addition should be interpreted modulo n. The log n term reflects the fact
that as n becomes enormous (exponential in p) eventually it becomes likely that some length-p
window of x0 is densely occupied. In our main theorem statement, we preclude this possibility
by putting an upper bound on n (w.r.t eµ). We find it useful to also track the maximum `

2

norm of x0 over any length-p window:

(SM8.10) kx0k⇤ := max
`

��P([p]+`)x0

��
2
.

Below, we will sometimes work with the ⇤-induced operator norm:

(SM8.11) kMk⇤!⇤ = sup
kxk⇤1

kMxk⇤

For now, we note that in the Bernoulli-Gaussian model, kx0k⇤ is typically not large

(SM8.12) kx0k⇤ 
p
I .
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SM8.1. Reweighted Lasso finds the large entries of x0. The following lemma asserts
that when a is close to a0, the reweighted Lasso finds all of the large entries of x0. Our
reweighted Lasso is modified version from [SM3], we only penalize x on entries outside of its
known support subset. We write T to be the subset of true support I, and define the sparsity
surrogate as

X

i2T c

|xi|(SM8.13)

The reweighted Lasso recovers more accurate x on set T compares to the vanilla Lasso problem,
it turns out to be very helpful in our analysis which proves convergence of the proposed
alternating minimization.

Lemma SM8.1 (Accuracy of reweighted Lasso estimate). Suppose that y = a0 ⇤ x0 with a0

is eµ-shift coherent and kx0k⇤ 
p
I with I � 1. If eµ2I  cµ, then for every T ✓ I and a

satisfying ka� a0k2  eµ, the solution x
+ to the optimization problem

(SM8.14) min
x

n
1
2ka ⇤ x� yk22 + �

X

i2T c

|xi|
o
,

with

(SM8.15) � > 5Ika� a0k2,

is unique with the form

x
+ = ◆J (C

⇤
aJCaJ)

�1
◆
⇤
J

�
C

⇤
ay � �PJ\T�

�
(SM8.16)

where � = sign(x+). Its support set J satisfies

(T [ I�3� ) ✓ J ✓ I(SM8.17)

and its entrywise error is bounded as

(SM8.18)
��x+ � x0

��
1  3�.

Above, cµ > 0 is a positive numerical constant.

We prove Lemma SM8.1 below. The proof relies heavily on the fact that when a0 is shift-
incoherent and a ⇡ a0, a is also shift-incoherent, an observation which is formalized in a
sequence of calculations in Subsection SM8.4.

Proof. 1. (Restricted support Lasso problem). We first consider the restricted problem

(SM8.19) min
w2R|I|

n
1
2 ka ⇤ ◆Iw � yk22 + �

X

i2T c

|(◆Iw)i|
o
.
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Under our assumptions, provided c <
1
9 , Lemma SM8.6 implies that

(SM8.20) ◆
⇤
IC

⇤
aCa◆I = [C⇤

aCa]I,I � 0,

and the restricted problem is strongly convex and its solution is unique. The KKT conditions
imply that a vector w? is the unique optimal solution to this problem if and only if

(SM8.21) ◆
⇤
IC

⇤
aCa◆Iw? 2 ◆

⇤
IC

⇤
ay � � @ kPT c [·] k1 (w?).

Writing J = supp(◆Iw?) ✓ I, CaJ = Ca◆J , wJ = ◆
⇤
J◆Iw? the corresponding sub-vector

containing the nonzero entries of w? and �J\T = ◆
⇤
JPT c [sign(◆Iw⇤)], the condition (SM8.21)

is satisfied if and only if

Ca
⇤
JCaJwJ = Ca

⇤
Jy � ��J\T ,(SM8.22)

kCa
⇤
I\J (CaJwJ � y) k1  �.(SM8.23)

We will argue that under our assumptions, J necessarily contains all of the large entries of x0:

(SM8.24) I>3� = {` 2 I | |x0`| > 3�} ✓ J.

We show this by contradiction – namely, if some large entry of x0 is not in J , then the dual
condition (SM8.23) is violated, contradicting the optimality of w?. To this end, note that by
Corollary SM8.7, Ca

⇤
JCaJ has full rank. From (SM8.22),

(SM8.25) wJ = [Ca
⇤
JCaJ ]

�1 ⇥
Ca

⇤
Jy � ��J\T

⇤
.

Write x0J = ◆
⇤
Jx0 and (x0)I\J = PI\Jx0. We can further notice that

CaJwJ � y =
⇣
CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J � I

⌘
y � �CaJ [Ca

⇤
JCaJ ]

�1
�J\T

=
⇣
CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J � I

⌘
Ca0Jx0J

+
⇣
CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J � I

⌘
Ca0I\J(x0)I\J

� �CaJ [Ca
⇤
JCaJ ]

�1
�J\T

=
⇣
CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J � I

⌘
Ca0�aJx0J

+
⇣
CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J � I

⌘
Ca0I\J(x0)I\J

� �CaJ [Ca
⇤
JCaJ ]

�1
�J\T ,(SM8.26)

where in the final line we have used that

(SM8.27)
⇣
CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J � I

⌘
CaJ = 0.

Suppose that J is a strict subset of I (otherwise, if J = I, we are done). Take any i 2 I \ J
such that |x0i| =

��(x0)I\J
��
1, and let ⇠ = sign(x0i). Using (SM8.26), Corollary SM8.7 and
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Lemma SM8.8, and simplify the induced norms k·k1!1 and k·k⇤!⇤ as k·k1 and k·k⇤, we
have

�⇠si[a]⇤ (CaJwJ � y) = ⇠si[a]
⇤
⇣
I �CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J

⌘
si[a0]x0i

+ ⇠si[a]
⇤
⇣
I �CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J

⌘
Ca0(x0)I\(J[{i})

+ ⇠si[a]
⇤
⇣
I �CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J

⌘
Ca0�aJx0J

+ ⇠�si[a]
⇤
CaJ [Ca

⇤
JCaJ ]

�1
�J\T(SM8.28)

�
⇣
hsi[a], si[a0]i

� ksi[a]⇤CaJk1
���[Ca

⇤
JCaJ ]

�1
���
1
kCa

⇤
Jsi[a0]k1

⌘��(x0)I\J
��
1

�
⇣���si[a]⇤Ca0I\{i}

���
1

+ ksi[a]⇤CaJk1
���[Ca

⇤
JCaJ ]

�1
���
1

���Ca
⇤
JCa0I\J

���
1

⌘��(x0)I\J
��
1

�
⇣
ksi[a]⇤Ca0�aJk2

+ ksi[a]⇤CaJk2
���[Ca

⇤
JCaJ ]

�1
���
⇤
kCa

⇤
JCa0�aJk⇤

⌘p
2 kx0k⇤

� � ksi[a]⇤CaJk1
���[Ca

⇤
JCaJ ]

�1
���
1

���J\T
��
1(SM8.29)

�
⇣
(1� ka� a0k2)� C1Ieµ⇥ 1⇥ eµ

⌘��(x0)I\J
��
1

� C2

⇣
Ieµ+ Ieµ⇥ 1⇥ Ieµ

⌘��(x0)I\J
��
1

�
⇣
2
p
Ika� a0k2 + C3

p
Ieµ⇥ 1⇥ Ika� a0k2

⌘
kx0k⇤

� �C4Ieµ(SM8.30)

�
⇣
1 � C

0
1Ieµ� C2 (Ieµ)2

⌘
k(x0)I\Jk1

� 2Ika� a0k2 �
⇣
C3

3/2
I eµ

⌘
I ka� a0k2 � (C4Ieµ)�(SM8.31)

� 1
2

��(x0)I\J
��
1 � �/2,(SM8.32)

where the last line holds provided eµ2I  cµ to be a su�ciently small numerical constants.
If k(x0)I\Jk1 > 3�, this is strictly larger than �, implying that |a⇤

i (CaJwJ � y)| > �, and
contradicting the KKT conditions for the restricted problem. Hence, under our assumptions

(SM8.33)
��(x0)I\J

��
1  3�.

2. (Solution of Full Lasso problem) We next argue that the solution of the restricted support
Lasso problem, wJ , when extended to Rn as x+ = ◆JwJ , is the unique optimal solution to the
full Lasso problem

(SM8.34) min
x

'lasso(x) ⌘ 1
2 ka ⇤ x� yk22 + �

X

i2T c

|xi| .
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To prove that x+ is the unique optimal solution, it su�ces to show that for every i 2 I
c,

(SM8.35) | si[a]⇤(a ⇤ x+ � y) | < �.

Indeed, suppose that this inequality is in force. Write " = � �maxi2Ic |si[a]⇤(a ⇤ x+ � y)|,
and notice that from the KKT conditions for the restricted problem,

(SM8.36) 0 2 PI@x'lasso(x)

Combining with (SM8.35), we have that for every vector ⇣ with supp(⇣) ✓ I
c and k⇣k1  1,

then "⇣ 2 @'lasso(x+). Let x0 be any vector with x
0
Ic 6= 0 and set ⇣ = PIcsign(x0), then from

the subgradient inequality,

'lasso(x
0) � 'lasso(x

+) +
⌦
"⇣,x

0 � x
+
↵

� 'lasso(x
+) + "

��x0
Ic
��
1
,(SM8.37)

which is strictly larger than 'lasso(x+). Hence, when (SM8.35) holds, any optimal solution
x̄ to the full Lasso problem must satisfy supp(x̄) ✓ I. By strong convexity of the restricted
problem, the solution to (SM8.34) is unique and equal to x

+.
We finish by showing (SM8.35). Using the same expansion as above, we obtain

|si[a]⇤(CaJwJ � y)| 
���si[a]⇤

⇣
I �CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J

⌘
Ca0I\J(x0)I\J

���

+
���si[a]⇤

⇣
I �CaJ [Ca

⇤
JCaJ ]

�1
Ca

⇤
J

⌘
Ca0�aJx0J

���

+ �

���si[a]⇤CaJ [Ca
⇤
JCaJ ]

�1
�J\T

���(SM8.38)


⇣���si[a]⇤Ca0I\J

���
1

+ ksi[a]⇤CaJk1
���[Ca

⇤
JCaJ ]

�1
���
1

���Ca
⇤
JCa0I\J

���
1

⌘��(x0)I\J
��
1

+
⇣
ksi[a]⇤Ca0�aJk2

+ ksi[a]⇤CaJk2
���[Ca

⇤
JCaJ ]

�1
���
⇤
kCa

⇤
JCa0�aJk⇤

⌘p
2 kx0k⇤

+ � ksi[a]⇤CaJk1
���[Ca

⇤
JCaJ ]

�1
���
1

���J\T
��
1(SM8.39)

 C1 (eµI + eµI ⇥ 1⇥ eµI)⇥ 2�

+ (2
p
Ika� a0k2 + C2

p
Ieµ⇥ 1⇥ Ika� a0k2)⇥

p
I

+ �C3 ⇥ eµI(SM8.40)


�
(C1 + C3) eµI + C1(eµI)2

�
�+

�
2 + C2eµI

�
I ka� a0k2(SM8.41)

< �,(SM8.42)

where the last line holds as long as cµ is a su�ciently small numerical constant. This establishes
that x+ is the unique optimal solution to the full Lasso problem.
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3. (Entrywise di↵erence to x0) Finally we will be controlling
��x+

J � (x0)J
��
1. Indeed, from

Corollary SM8.7, Lemma SM8.8,

��x+
J � (x0)J

��
1 =

���[Ca
⇤
JCaJ ]

�1
Ca

⇤
JCa0x0 � � [Ca

⇤
JCaJ ]

�1
�J\T � (x0)J

���
1


��[Ca

⇤
JCaJ ]

�1
Ca

⇤
JCa0�aJ(x0)J

��
1 + �

��[Ca
⇤
JCaJ ]

�1
�J\T

��
1

+
��[Ca

⇤
JCaJ ]

�1
Ca

⇤
JCaI\J(x0)I\J

��
1

 2 kCa
⇤
JCa0�aJk⇤!1 k(x0)Jk⇤+

2�+ 2
��Ca

⇤
JCaI\J

��
1

��(x0)I\J
��
1

 2
p
2I ka� a0k2 kx0k⇤ + 2�+ 2⇥ 3eµ⇥ 2I\J ⇥ 3�

 3Ika� a0k2 + 2�+ 36�eµI
 3�,(SM8.43)

establishing the claim.

SM8.2. Least squares solution a
(k) contracts. In this section, given x to be the solution

to the reweighted Lasso from a, we will show the solution of the least squares problem

a
+  argmin

a02Rp

1
2

��a0 ⇤ x � y
��2
2

(SM8.44)

is closer to a0 compared to a. Observe that in Lemma SM8.1, the solution of (SM8.16)

x = ◆J (C
⇤
aJCaJ)

�1
◆
⇤
J

�
C

⇤
aCa0x0 � �PJ\T�

�
,(SM8.45)

by assuming C
⇤
aJCaJ ⇡ I, a ⇡ a0 and J \ T ⇡ ;, is a good approximation to the true sparse

map x0

x ⇡ I (x0 � 0) = x0 ;(SM8.46)

furthermore, its di↵erence to the true sparse map kx0 � xk2 is proportional to ka0 � ak2 as

x� x0 ⇡ PI (C
⇤
aCa0x0 �C

⇤
aCax0) ⇡ PI

⇥
C

⇤
a0
Cx0◆(a0 � a)

⇤
.(SM8.47)

To this end, since we know the solution of least square problem a
+ is simply

a
+ = (◆⇤C⇤

xCx◆)
�1 (◆⇤C⇤

xCx0◆a0) ,(SM8.48)

this implies the di↵erence between the new a
+ and a0, has the relationship with a�a0 roughly

a
+ � a0 = (◆⇤C⇤

xCx◆)
�1 (◆⇤C⇤

xCx0◆a0 � ◆
⇤
C

⇤
xCx◆a0)

⇡ (n✓)�1
◆
⇤
C

⇤
x0
Ca0(x0 � x)

⇡ (n✓)�1
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆(a� a0).(SM8.49)

To make this point precise, we introduce the following lemma:
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Lemma SM8.2 (Approximation of least square estimate). Given a0 2 Rp0 to be eµ-shift
coherent and x0 ⇠ BG(✓) 2 Rn. There exists some constants C,C

0
, c, c

0
, cµ such that if

� < c
0eµI , eµ2I  cµ and n > Cp

2 log p, then with probability at least 1 � c/n, for every a

satisfying ka� a0k2  eµ and x of the form

x = ◆J (C
⇤
aJCaJ)

�1
◆
⇤
J

�
C

⇤
ay � �PJ\T�

�
(SM8.50)

where the set J, T satisfies I>6� ✓ T ✓ J ✓ I, we have

1

n✓

�� ◆⇤C⇤
xCx�x0◆a0 � ◆

⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆(a0 � a)

��
2

 C
0
�

⇣
e�+ eµI

⌘
+

1

32
ka� a0k2(SM8.51)

with e� = �+ lognp
n✓2

.

Proof. We will begin with listing the conditions we use for both x and x0. First, we know
from Lemma SM8.1 and our assumptions on the set T , then x approximates x0 in the sense
that

kx� x0k1  3�(SM8.52) ��(x0)I\J
��
1  3�(SM8.53)

��(x0)I\T
��
1  6�.(SM8.54)

Write x0 = g �! with g iid standard normal, ! iid Bernoulli and g and ! independent. From
(SM8.53) we know |I \ J | = |{ i | |gi|  3�, !i 6= 0 }|. Since P [!i 6= 0] = ✓ and P [|gi|  3�] 
3�, Lemma SM1.1 implies that with probability at least 1� 2/n:

|I \ J |  3�n✓ + 6
p
�n✓ log n  3e�n✓(SM8.55)

|I \ T |  6�n✓ + 12
p
�n✓ log n  6e�n✓,(SM8.56)

and

|(I \ J) \ s`[I]|  3�n✓2 + 6
p
�n✓2 log n  3e�n✓2;(SM8.57)

together with base on properties of Bernoulli-Gaussian vector x0 from Section SM1 and we
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conclude with probability at least 1� c/n, all the following events hold:
1
2n✓  |I|  2n✓,(SM8.58)

max
` 6=0

|I \ s`[I]|  2n✓2(SM8.59)

max
6̀=0

|(I \ J) \ s`[I]|  6e�n✓2,(SM8.60)

kx0k2⇤  I ,(SM8.61)

kaV0 ⇤ x0k2⇤  I ,(SM8.62)

kx0k22  2n✓,(SM8.63)

kx0k1  2n✓,(SM8.64)

max
` 6=0
kPI\s`[I]x0k22  2n✓2,(SM8.65)

max
6̀=0

��PI\s`[I\J ]x0

��
1
 12e�n✓2,(SM8.66)

kCx0◆k
2
2  3n✓,(SM8.67)

provided by n � C✓
�2 log p for su�ciently large constant C.

1. (Approximate Cx with Cx0) Since

◆
⇤
C

⇤
xCx�x0◆a0 = ◆

⇤
C

⇤
x0
Cx�x0◆a0 + ◆

⇤
C

⇤
x�x0

Cx�x0◆a0(SM8.68)

where
��◆⇤C⇤

x�x0
Cx�x0◆a0

��
2
 ka0k2 kx� x0k22 + kCa0◆k2

p
2pmax

6̀=0
|hs`[x� x0],x� x0i|

 kx� x0k21 ⇥ |I| +
p

2eµp2
✓
kx� x0k21 ⇥max

6̀=0
|I \ s`[I]|

◆

 C1

⇣
�
2
n✓ +

p
2eµp2

�
�
2
n✓

2
�⌘

 2C1�
2
n✓,(SM8.69)

we have that

k ◆⇤C⇤
xCx�x0◆a0 � ◆

⇤
C

⇤
x0
Cx�x0◆a0 k2  2C1�

2
n✓.(SM8.70)

2. (Extract the a0 � a term) Observe that

◆
⇤
C

⇤
x0
Cx�x0◆a0 = ◆

⇤
C

⇤
x0
Ca0(x� x0)

= ◆
⇤
C

⇤
x0
Ca0

⇣
◆J (C

⇤
aJCaJ)

�1
◆
⇤
J

�
C

⇤
aCa0x0 � �PJ\T�

�

� ◆J (C
⇤
aJCaJ)

�1 (C⇤
aJCaJ) (x0)J � PI\Jx0

⌘

= ◆
⇤
C

⇤
x0
Ca0J(C

⇤
aJCaJ)

�1
C

⇤
aJ (Ca0�ax0)

+ ◆
⇤
C

⇤
x0
Ca0J(C

⇤
aJCaJ)

�1
C

⇤
aJ (Cax0 �CaJ(x0)J)

� ◆
⇤
C

⇤
x0
Ca0PI\Jx0

� � ◆
⇤
C

⇤
x0
Ca0J(C

⇤
aJCaJ)

�1
◆
⇤
JPJ\T�,(SM8.71)
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where, the second term in (SM8.71) is bounded as

��◆⇤C⇤
x0
Ca0J(C

⇤
aJCaJ)

�1
C

⇤
aJ (Cax0 �CaJ(x0)J)

��
2

 kCx0◆k2 ⇥ kCa0Jk2
��(C⇤

aJCaJ)
�1
��
2

⇥
��C⇤

aJCaI\J
��
2
⇥
��(x0)I\J

��
2

 C2

⇣p
n✓ ⇥ 3⇥ eµI ⇥ �

p
e�n✓

⌘

 3C2eµI�n✓;(SM8.72)

the third term in (SM8.71) is bounded as

��◆⇤C⇤
x0
Ca0PI\Jx0

��
2
=
��◆⇤Ca0

�
P[±p]\0 + e0e

⇤
0

�
C

⇤
x0
PI\Jx0

��
2

 ka0k2
��(x0)I\J

��2
2

+ kCa0◆k2 ⇥
p
2p⇥max

`6=0

��PI\s`[I\J ]x0

��
1
⇥
��(x0)I\J

��
1

 C3

⇣
�
2 ⇥ e�n✓ +

p
eµp2 ⇥ e�n✓2 ⇥ �

⌘

 2C3
e��n✓;(SM8.73)

and finally, write � = (C⇤
aJCaJ)�1 � I, then the forth term in (SM8.71) is bounded as

�
��◆⇤C⇤

x0
Ca0◆J(C

⇤
aJCaJ)

�1
◆
⇤
JPJ\T�

��
2

= �
��◆⇤Ca0

�
P[±p]\0 + e0e

⇤
0

�
C

⇤
x0
◆J (I +�) ◆⇤JPJ\T�

��
2

 �
��C⇤

a0
◆
��
2

p
2pmax

`6=0

��PI\s`[I\T ]x0

��
1
+ � ka0k2

��PI\Tx0

��
1

+ �
��C⇤

a0
◆
��
2

p
2p

��PI\s`[I]x0

��
1
k�k1!1

+ � ka0k2 kx0k2 k�k2
p
|J \ T |

 C4�

⇣p
eµp2 ⇥ e�n✓2 + �e�n✓

+
p
eµp2 ⇥ n✓

2 ⇥ eµI +
p
n✓ ⇥ eµI

p
e�n✓

⌘

 2C4

⇣
e�+ eµI

⌘
�n✓.(SM8.74)

Therefore, combining (SM8.72)-(SM8.74) we obtain

��◆⇤C⇤
x0
Cx�x0◆a0 � ◆

⇤
C

⇤
x0
Ca0J(C

⇤
aJCaJ)

�1
C

⇤
aJCa0�ax0

��
2

 C5

⇣
e�+ eµI

⌘
�n✓.(SM8.75)

3. (Extract the set J) Lastly, we will further simplify the term with a � a0 in (SM8.75) by
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extracting the set J :

◆
⇤
C

⇤
x0
Ca0J(C

⇤
aJCaJ)

�1
C

⇤
aJCa0�ax0

= ◆
⇤
C

⇤
x0
Ca0J (I +�)C⇤

a0+(a�a0)J
Cx0◆ (a0 � a)

= ◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆(a0 � a)

+ ◆
⇤
C

⇤
x0
Ca0J�C

⇤
a0JCx0◆(a0 � a)

+ ◆
⇤
C

⇤
x0
Ca0J (C

⇤
aJCaJ)

�1
C

⇤
a�a0JCx0◆(a0 � a)

� ◆
⇤
C

⇤
x0
Ca0PI\JC

⇤
a0
Cx0◆(a0 � a),(SM8.76)

where, the latter terms in (SM8.76) are bounded as

��◆⇤C⇤
x0
Ca0J�C

⇤
a0JCx0◆

��
2
 kCx0◆k

2
2 kCa0Jk

2
2 k�k2  C6eµIn✓���◆⇤C⇤

x0
Ca0J (C

⇤
aJCaJ)

�1
C

⇤
a�a0JCx0◆

���
2

 kCx0◆k
2
2 kCa0Jk2

��(C⇤
aJCaJ)

�1
��
2
kCa0�a◆Jk2  C7eµ

p
In✓

��PI\JC
⇤
a0
Cx0◆

��2
2
 |I \ J | kaV0 ⇤ x0k2⇤

 C8
e�n✓ ⇥ I  C8

⇣
�I +

I lognp
n✓2

⌘
n✓,(SM8.77)

whence we conclude, that since cµ2I  cµ and �I  5cµ, as long as cµ <
1

100

⇣
1
C6

+ 1
C7

+ 1
5C8

⌘

and n > 106C2
8✓

�2

2
I log

2
n, we gain:

k◆⇤C⇤
x0
Ca0J(C

⇤
aJCaJ)

�1
C

⇤
aJCa0�ax0

� ◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆(a0 � a)k2


�

3
100 + 1

1000

�
n✓ ka0 � ak2

 1
32n✓ ka0 � ak2 .(SM8.78)

The claimed result therefore is followed by combining (SM8.70), (SM8.75) and (SM8.78).

The next thing is to show the operator

(n✓)�1
�
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆

�
(SM8.79)

contracts a toward a0. We first will show that

(n✓)�1
�
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆

�
⇡ a0a

⇤
0(SM8.80)

by seeing ◆
⇤
C

⇤
x0
PICx0◆ ⇡ (n✓) e0e⇤0 via sparsity of x0. Finally since the local perturbation

on sphere is close to a quadratic function in `
2-norm of di↵erence, we have

|ha0,a� a0i|  1
2 ka� a0k22 .(SM8.81)

Again, we introduce the following lemma to solidify our claim:
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Lemma SM8.3 (Contraction of a to a0). Given a0 2 Rp0 to be eµ-shift coherent and
x0 ⇠ BG(✓) 2 Rn. There exists some constants C,C 0

, c, c
0
, cµ such that if � < c

0eµI , eµ2I  cµ

and n > C✓
�2

p
2 log p, then with probability at least 1� c/n, for every ka� a0k2  eµ,

�� ◆⇤C⇤
x0
Ca0PIC

⇤
a0
Cx0◆(a0 � a)

��
2
 1

32
ka� a0k2 n✓.(SM8.82)

Proof. Since E hPIsi[x0], sj [x0]i = 0 for all i 6= j and set I, we calculate

E
h
◆
⇤
[±p]C

⇤
x0
PICx0◆[±p]

i
=

X

i2[±p]

E
⇥
e
⇤
iC

⇤
x0
PICx0ei

⇤
eie

⇤
i

= E kx0k22 e0e
⇤
0 +

X

i2[±p]\0

E kPIsi[x0]k22 eie
⇤
i

= n✓e0e
⇤
0 + n✓

2
P[±p]\0

= n✓
2
I + n✓(1� ✓) e0e

⇤
0.(SM8.83)

whence

E
⇥
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆

⇤
= ◆

⇤
C

⇤
a0
E
⇥
C

⇤
x0
PICx0

⇤
Ca0◆

= n✓
2
◆
⇤
C

⇤
a0
Ca0◆ + n✓(1� ✓)a0a

⇤
0,(SM8.84)

implying the expectation is a contraction mapping for a0 � a when cµ <
1

200 :
��E

⇥
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆

⇤
(a0 � a)

��
2

 n✓
2
��◆⇤C⇤

a0
Ca0◆

��
2
ka0 � ak2 + n✓ ka0k2 |ha0,a0 � ai|

 n✓
2 ⇥ 2eµp⇥ ka0 � ak2 +

1
2n✓ ka0 � ak22


�
2cµ + 1

2cµ
�
ka0 � ak2 n✓

 1
64 ka0 � ak2 n✓.(SM8.85)

For each entry of C⇤
x0
PICx0 , again from Section SM1 we know with probability at least

1� c/n:

��e⇤iC⇤
x0
PICx0ej � E

⇥
e
⇤
iC

⇤
x0
PICx0ej

⇤�� 
⇢

C
0p

n✓ log n i = j = 0

C
0
p
n✓2 log n otherwise

.

Thus via Gershgorin disc theorem, when n > 103C 02
✓
�2

p
2 log n:

�max

⇣
◆
⇤
[±p]C

⇤
x0
PICx0◆[±p] � E

h
◆
⇤
[±p]C

⇤
x0
PICx0◆[±p]

i⌘
 C

0
p

p
n✓2 log n

 1
64n✓

2
.(SM8.86)

Finally we combine (SM8.85), (SM8.86) and get

�� ◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆(a0 � a)

��
2


⇣
1
64n✓ +

1
64n✓

2 kCa0◆±pk22
⌘
ka0 � ak2

 1
32 ka0 � ak2 n✓.(SM8.87)



SUPPLEMENTARY MATERIALS: GEOMETRY AND SYMMETRY IN SHORT AND SPARSE DECONVO-
LUTION SM67

Lemma SM8.1-SM8.3 together implies the single iterate contract of alternating minimization
contracts a toward a0. We show it with the following lemma:

Lemma SM8.4 (Contraction of least square estimate). Given a0 2 Rp0 to be eµ-shift coherent
and x0 ⇠ BG(✓) 2 Rn. There exists some constants C,C

0
, c, cµ such that if eµ2I  cµ and

n > C✓
�2

p
2 log n, then with probability at least 1� c/n, for every � and a satisfying

(SM8.88) 5eµI � � � 5I ka� a0k2 ,

and suppose x
+ has the form of (SM8.16), then the solution a

+ to

(SM8.89) min
a02Rp

n��a0 ⇤ x+ � y
��2
2

o

is unique and satisfies

(SM8.90)
��PSp�1

⇥
a
+
⇤
� a0

��
2
 1

2
ka� a0k2 .

Proof. Write x as x+, then

�p (◆
⇤
C

⇤
xCx◆) = �

2
min (Cx0◆+Cx�x0◆)

�
h
�min(Cx0◆)� kCx�x0◆k

i2
+

�
h
�min(Cx0◆)� 2

p
I kx� x0k2

i2
+

�
h
2
3

p
✓n� 8�

p
I

p
✓n

i2
+

� 1
2✓n,(SM8.91)

where the fourth inequality is derived from using the upper bound of sparse convolution matrix
from Remark SM1.6, and the last line holds by knowing � < 5cµ

�1
I . From (SM8.91) we know

the least square problem of (SM8.89) has unique solution a
+, written as

a
+ = (◆⇤C⇤

xCx◆)
�1

◆C
⇤
xy,(SM8.92)

whence

a
+ � a0 = (◆⇤C⇤

xCx◆)
�1 (◆⇤C⇤

xCx0◆)a0 � a0

= (◆⇤C⇤
xCx◆)

�1 (◆⇤C⇤
xCx0�x◆)a0.(SM8.93)

Combine Lemma SM8.2 and Lemma SM8.3, we know

k ◆⇤C⇤
xCx0�x◆ k2 

⇣
C1�

⇣
e�+ eµI

⌘
+ 1

16 ka� a0k2
⌘
n✓(SM8.94)

for some constant C1. Combine (SM8.91), (SM8.93), (SM8.94) and since � < eµI , by letting
cµ <

1
4C1

, we gain

��a+ � a0

��
2
 k◆

⇤
C

⇤
xCx0�x◆k2

�p(◆⇤C⇤
xCx◆)

 2C1�

⇣
e�+ eµI

⌘
+

1

8
ka� a0k2 

1

4
.(SM8.95)
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For the final bound,

����
a
+

ka+k2
� a0

����
2

 ka
+ � a0k2 + |ka+k2 � 1|

ka+k2

 2 ka+ � a0k2
1� ka+ � a0k2

 8

3

��a+ � a0

��
2
,

 C2�

⇣
e�+ eµI

⌘
+

1

3
ka� a0k2 ,(SM8.96)

and since � > I ka� a0k2, finally we gain

(SM8.96)  C2

✓
�I +

pI log n

n✓
+ eµ2I

◆
ka� a0k2 +

1

3
ka� a0k2

 1

2
ka� a0k2(SM8.97)

as long as n > 20C2✓
�1

pI log n and cµ <
1

20C2
.

SM8.3. Linear convergence of alternating minimization (Proof of Theorem 5.2 ). In
the first two sections we have shown the iterate contract a toward a0, under our signal
assumption. We tie up these result by showing the following theorem which proves that the
iterates produced by alternating minimization converge linearly to a0:

Proof. We will prove our claim by induction on k. Clearly, when k = 0, we have
5I

��a(0) � a0

��
2
 �

(0) = 5eµI and I
(0) =

�
i :

��si[a(0)]⇤◆⇤Ca0x0

�� > �
(0)
 
. Then for all

|xj | > 6�(0), we have

���sj
⇥
a
(0)
⇤⇤
Ca0x0

��� �
⇣
1�

��ha(0)
a0i

��
⌘
|xj | �

���P[±p]\{j}C
⇤
a0
◆sj

⇥
a
(0)
⇤���

2
⇥
p
2 kx0k⇤

� (1� 2eµ) 6�(0) � 2eµ
p
I ⇥

p
2I

� 5�(0) � 4�(0)

= �
(0)

.(SM8.98)

hence I>6�(0) ✓ I
(0), therefore the condition of Lemma SM8.4 is satisfied, implies (5.32) holds

for k = 0.
Suppose it is true for 1, 2, . . . , k � 1, such that

(SM8.99) I

��a(k) � a0

��
2
 1

2�
(k�1) = �

(k)
, and I>3�(k�1) ✓ I

(k)

and since I>6�(k) = I>3�(k�1) ✓ I
(k), we can again apply Lemma SM8.4, resulting

(SM8.100) I

��a(k+1) � a
��
2
 1

2I

��a(k) � a0

��
2
 1

2�
(k)

as claimed.
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SM8.4. Supporting lemmas for refinement. The following lemma controls the shift
coherence of a:

Lemma SM8.5 (Coherence of a near a0 ). Suppose that a0 is eµ-shift coherent, and ka� a0k2 
eµ. Then

ko↵ [C⇤
aCa0 ]k1  2eµ(SM8.101)

ko↵ [C⇤
aCa]k1  3eµ(SM8.102)

Proof. Notice that for any ` 6= 0, | ha, s`[a0]i |  | ha0, s`[a0]i | + | ha� a0, s`[a0]i | 
eµ+ka0�ak2  2eµ. Similarly, | ha, s`[a]i |  | ha� a0, s`[a0]i |+| ha, s`[a0]i |  ka�a0k2+2eµ 
3eµ, as claimed.

From this we obtain the following spectral control on C
⇤
aCa, to simply the notations, we will

write

C
⇤
aICaI = ◆

⇤
IC

⇤
aCa◆I = [C⇤

aCa]I,I(SM8.103)

in the latter part of this section.

Lemma SM8.6 (O↵-diagonals of [C⇤
aCa]I,I ). Suppose that a0 is eµ-shift coherent and

ka� a0k2  eµ. Then

(SM8.104)
���[C⇤

aCa � I]I,I

���
2
 9Ieµ.

We prove this lemma by noting that C⇤
aCa = Cra,a is the convolution matrix associated with

the autocorrelation ra,a of a. Since supp(ra,a) ✓ {�p+ 1, . . . , p� 1} is confined to a (cyclic)
stripe of width 2p� 1, we can tightly control the norm of this matrix by dividing it into three
block-diagonal submatrices with blocks of size p⇥ p. Formally:

Proof. Divide I into r = dn/pe subsets I0, . . . , Ir�1 such that for all ` = 0, . . . , r � 1:

I` = I \ {p`, p`+ 1, . . . , p`+ (p� 1)} = I \ ([p] + p`).

Notice that for each `:

supp ([C⇤
aCa]I`,I) ✓ I` ⇥

⇣
I`�1 ] I` ] I`+1

⌘
,

where `+ 1 and `� 1 are interpreted cyclically modulo r.
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For an arbitrary v 2 R|I|, we calculate

���[C⇤
aCa � I]I,I v

���
2

2
=

r�1X

`=0

���[C⇤
aCa � I]I`,I v

���
2

2
(SM8.105)

=
r�1X

`=0

���[C⇤
aCa � I]I`,I`�1]I`]I`+1

vI`�1]I`]I`+1

���
2

2
(SM8.106)


r�1X

`=0

���[C⇤
aCa � I]I`,I`�1]I`]I`+1

���
2

F

��vI`�1]I`]I`+1

��2
2

(SM8.107)

 32I ⇥ (3eµ)2 ⇥
r�1X

`=0

��vI`�1]I`]I`+1

��2
2

(SM8.108)

 32I ⇥ 9eµ2 ⇥ 3 kvk22 ,(SM8.109)

giving the claimed result.

As a consequence, we have that

Corollary SM8.7 (Inverse of [C⇤
aCa]J,J ). Suppose that a0 is µ-shift coherent, that ka� a0k2 

eµ and that Ieµ <
1
18 . Then for every J ✓ I and any norm k·k} 2 { k·k⇤!⇤ , k·k1!1 , k·k2 },

we have

���[C⇤
aCa � I]J,J

���
}
 9Ieµ(SM8.110)

���[C⇤
aCa]

�1
J,J � I

���
}
 18Ieµ(SM8.111)

���[C⇤
aCa]

�1
J,J

���
}
 2.(SM8.112)

Proof. First we prove

���[C⇤
aCa � I]J,J

���
2
 9Ieµ,(SM8.113)

���[C⇤
aCa � I]J,J

���
1!1

 6Ieµ,(SM8.114)
���[C⇤

aCa � I]J,J

���
⇤!⇤

 6Ieµ(SM8.115)

Where the first claim follows from Lemma SM8.6. The second follows by noting that the `
1

operator norm is the maximum row `
1 norm, and that each row has at most 2I entries, of

size at most 3eµ. The last follows by noting that

���[C⇤
aCa � I]J,J

���
⇤!⇤

 max
`,`0

���[C⇤
aCa � I]J\([p]+`), J\([2p]+`0)

���
F

 6Ieµ.(SM8.116)
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Then we prove

���[C⇤
aCa]

�1
J,J � I

���
2
 18Ieµ,

���[C⇤
aCa]

�1
J,J � I

���
1!1

 12Ieµ,
���[C⇤

aCa]
�1
J,J � I

���
⇤!⇤

 12Ieµ,(SM8.117)

which are followed from the fact that if k · k} is a matrix norm and k�k} < 1, then

��(I +�)�1 � I
��
} 

k�k}
1� k�k}

.

Finally, (SM8.112) follows from the triangle inequality.

Also, we need to bound the convolution of a0 � a with ka0 � ak2 requiring for bounds of the
lasso solution:

Lemma SM8.8 (Convolution of a0�a). Suppose that a0 is µ-shift coherent and ka� a0k2 
eµ, then for every J ✓ I,

k[C⇤
aCa0�a]J,Jk⇤!1 

p
2I ka� a0k2(SM8.118)

k[C⇤
aCa0�a]J,Jk⇤!⇤ 

p
2I ka� a0k2(SM8.119)

Proof. For the first inequality, we have

k[C⇤
aCa0�a]J,Jvk⇤!1 = max

j2J, kvk⇤=1
|hsj [a], (a0 � a) ⇤ vi|

 max
j2[n], kvk⇤=1

��P[p]+j [(a0 � a) ⇤ v]
��
2

 ka� a0k2 ⇥ max
j2[n], kvk⇤=1

��P[±p]+jv
��
1


p
2I ka0 � ak2(SM8.120)

The second inequality is derived by

k[C⇤
aCa0�a]J,Jk⇤!⇤  max

`,`0

��[C⇤
aCa0�a]J\([p]+`),J\([2p]+`0)

��
F


q
22I maxi,j |hsi[a], sj [a0 � a]i|2


p
2I ka� a0k2 ,(SM8.121)

finishing the proof.

Again, using a variant of the argument for Lemma SM8.6, we have the following:
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Lemma SM8.9 (O↵-diagonal of submatrix of C⇤
aCa0). Suppose that a0 is µ-shift coherent

and ka� a0k2  eµ. For any J ⇢ I, if

J = max
`

|J \ {`, `+ 1, . . . , `+ p� 1}|(SM8.122)

I\J = max
`

|(I \ J) \ {`, `+ 1, . . . , `+ p� 1}|(SM8.123)

Then

(SM8.124)
���[C⇤

aCa0 ]J,I\J

���
2
 6

p
JI\Jeµ.

Proof. Take r = dn/pe and for ` = 0, . . . , r � 1, write

J` = J \ ([p] + p`), L` = (I \ J) \ ([p] + p`),

Take v 2 R|I\J | arbitrary and notice that

���[C⇤
aCa0 ]J,I\J v

���
2

2
=

r�1X

`=0

���[C⇤
aCa0 ]J`,I\J v

���
2

2

=
r�1X

`=0

���[C⇤
aCa0 ]J`,L`�1[L`[L`+1

vL`�1[L`[L`+1

���
2

2

 4eµ2 ⇥ J ⇥ 3I\J ⇥
r�1X

`=0

��vL`�1[L`[L`+1

��2
2

 4eµ2 ⇥ J ⇥ 3I\J ⇥ 3kvk22,(SM8.125)

giving the result.

Lemma SM8.10 (Perturbation of vector over sphere). If both a,a0 are unit vectors in inner
product space, then

|ha,a� a0i|  1
2 ka� a0k22 .(SM8.126)

Proof. Via simple norm inequalities:

1
2 ka� a0k22 = 1� ha,a0i = 1� ha,a0 � a+ ai = ha,a� a0i > 0(SM8.127)

Lemma SM8.11 (Convolution of short and sparse). Suppose � 2 Rp, and v 2 Rn where
supp(v) = I satisfies

max
`2[n]

| I \ ([p] + `) |  (SM8.128)

then

k� ⇤ vk2 
p
2 k�k2 kvk2(SM8.129)
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Proof. Since every p-contiguous segment of I has at most  elements, by splitting I =
I1 ] I2], . . . ,]I ]R such that each sets Ii are p-separated:

I1 = {i1, i+1, i2+1, . . .} \ {0, . . . , n� p� 1} ,
I2 = {i2, i+2, i2+2, . . .} \ {0, . . . , n� p� 1} ,

.

.

.

I = {i, i2, i3, . . .} \ {0, . . . , n� p� 1} ,(SM8.130)

R = I \ {n� p, . . . , n� 1} .(SM8.131)

Then the p-separating property gives k� ⇤ PIivk2 = k�k2 kPIivk2. Hence:

k� ⇤ PIvk2 =

�����
X

i2
� ⇤ PIiv + � ⇤ PRv

�����
2


X

i2
k� ⇤ PIivk2 + k� ⇤ PRvk

= k�k2
X

i2
kvIik2 + k�k2 kPRvk1


p
 kvI1,],...,]Ik2 k�k2 +

p
 kvRk2 k�k2


p
2 kvk2 k�k2 ,(SM8.132)

where the last two inequalities were coming from Cauchy-Schwartz.

SM9. Finite sample approximation. In this section we collect several major components
of proof about large sample deviation. In particular, the concentration for shift space gradient
�(�)i, shift space Hessian diagonals

��PI(a)s�i[x0]
��
2
, and the set of gradients discontinuity

entries |JB(a)|.

SM9.1. Proof of Corollary SM3.4.

Proof. 1. ("-net) Write x as x0 and k�k2 = ⌘ through out this proof, firstly from
Definition SM2.1 for every a 2 [|⌧ |kR(S⌧ , �(cµ)), we know ⌘  1 + cµ + cµp

✓k log ✓�1 
p
p.

Define " = c2
2n3/2p3/2

and consider the "-net N" for sphere of radius ⌘. From Lemma SM10.5 we

know for any c2 < 1:

|N"| 
✓
3⌘

"

◆2p


 
3n3/2

p
2

c2

!2p


✓
3np2

c2

◆3p

(SM9.1)

for each i 2 [n] define such net as N",i, and define an event such that all center of subsets in
N",i are being well-behaved:

ENet :=

⇢
8 i 2 [n], �in

�1
�[�"]i � �in

�1E�[�"]i <
c1✓

p3/2
8�" 2 N",i,

�
(SM9.2)

2. (Lipschitz constant) The Lipschitz constant L of �[·]i w.r.t � is bounded in terms of x
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regardless of entry i:

���[�]i � �[�0]i
�� 

���e⇤iC

V

xS�

h
C

V

x�

i
� e

⇤
iC

V

xS�

h
C

V

x�
0
i���

 kxk2
���S�

h
C

V

x�

i
� S�

h
C

V

x�
0
i���

2

 kxk2

vuut
X

j2[n]

����S�

h
C

V

x�

i

j
� S�

h
C

V

x�
0
i

j

����
2

 kxk2
���C

V

x� �C

V

x�
0
���
2

 kxk2 · kxk1 ·
��� � �

0��
2
=: L

��� � �
0��

2
(SM9.3)

Define the event that �[�]i that has small Lipschitz constant as

ELip :=
n
L < 2n3/2

✓

o
(SM9.4)

on the event ELip, for every points in R(S⌧ , �(cµ)) and i 2 [n], there exists some �" 2 N",i

such that
���
⇣
�in

�1
�[�]i � �in

�1E�[�]i
⌘
�
⇣
�in

�1
�[�"]i � �in

�1E�[�"]i

⌘���  2L"  c2✓

p3/2
(SM9.5)

On event ELip \ ENet, (SM9.2), (SM9.5) implies �[�] is well concentrated entrywise and
anywhere in [|⌧ |kR(S⌧ , �(cµ)):

����in
�1

�[�]i � �in
�1E�[�]i

��� 
(c1 + c2)✓

p3/2
, 8a 2 [kkR(S⌧ , �(cµ)), 8 i 2 [n](SM9.6)

as desired, where, using Lemma SM1.2,

P
⇥
Ec
Lip

⇤
 P

h
kxk22 > 2n✓

i
 1/n;(SM9.7)

and using union bound,

P [Ec
Net]  P

2

64 max
a"2N",i

i2[n]

�in
�1

�[�"]i � �in
�1E�[�"]i >

c1✓

p3/2

3

75

 n |N"|P

�0n

�1
�[�"]0 � �0n

�1E�[�"]0 >
c1✓

p3/2

�
.(SM9.8)

3. ( Bound P [Ec
Net]) Wlog write n = t · (2p) for some integer t and 2p � 4p0 � 3 and replace

x0 with x. Observe that Zj(�) from (SM3.9) is independent of Zj+2p(�) for all j 2 [n] while
all Zj are identical distributed. We write �[�]0 as sum of iid r.v.s. as

�[�]0 =
X

j2[n]

Zj(�) =
X

k2[2p]

0

@
n/2p�1X

t=0

Zk+2tp(�)

1

A
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wlog let �0 = 1 and split the independent r.v.s, write EZ0 = EZ, bound the tail probability of
�[�]0 as

P

n
�1

�[�]0 > n
�1E�(�)0 +

c1✓

p3/2

�
 2p · P

2

4
n/2p�1X

t=0

Z2tp(�) >
n

2p
EZ(�) +

c1n✓

2p5/2

3

5(SM9.9)

The moments of Z0 can be bounded by using |Z0(�)|  |x0| |�0x0 + s0|  �0x
2
0 + |x0| |s0|

where s0 =
P

6̀=0 x`�`, write x = ! � g ⇠i.i.d. BG(✓). For the 2-norm we know

E |s0|2 = E
�����
X

`

x`�`

�����

2

 ✓ k�k22  ✓

⇣
1 + cµ +

cµ

✓k2

⌘
 1

2
(SM9.10)

As for the q-norm, use the moment generating function bound, such that for all t � 0:

E |s0|q  q!t�qE exp [t |s0|]  q!t�q
Y

`

E!`,g` exp [t!` |g`| |�`|]

 2q!t�q
Y

`

E!` exp
⇥
!`t

2
�
2
` /2

⇤

 2q!t�q
Y

`

�
1� ✓ + ✓ exp

⇥
t
2
�
2
` /2

⇤�
(SM9.11)

notice that the entrywise twice derivative of (SM9.11) w.r.t. �
2
` ’s are always positive, this

function is convex for all �2
` . Constrain on the polytope

P
` �

2
`  k�k

2
2, the maximizer of

(SM9.11) w.r.t. �2
` ’s occurs and a vertex point where �

2
0 = k�k22. Thus

(SM9.11)  2q!t�q
⇣
1� ✓ + ✓ exp

h
t
2 k�k22 /2

i⌘Y

`6=0

(1� ✓ + ✓e
0)  2q!t�q(1 + ✓ exp[k�k22 t

2
/2]).

Choose t =
p
q/ k�k2, use q!! > (q!/2) · (e/q)q/2, we have

E |s0|q  2q!q�q/2 k�kq2 (1 + ✓ exp [q/2])  8 k�kq2max
n
e
�q/2

, ✓

o
q!!.(SM9.12)

Apply Jensen’s inequality
⇣PN

i=1 zi

⌘q
 N

q�1PN
i=1 z

q
i , use Gaussian moment Lemma SM10.2

, (SM9.10) and (SM9.12), obtain for q � 3,

EZ(�)2  E
�
�0x

2
0 + |x0| |s0|

�2  2E
⇥
�
2
0x

4
0 + x

2
0s

2
0

⇤
 6✓ + 2✓2 k�k22  7✓,

EZ(�)q  E
�
�0x

2
0 + |x0| |s0|

�q  2q�1
⇣
Ex2q

0 + E |x0|q E |s0|q
⌘

 ✓2q�1(2q � 1)!! + ✓2q�1(q � 1)!!
⇣
8 k�kq2max

n
e
�q/2

, ✓

o
q!!
⌘

 ✓4qq! + ✓2q k�kq2 q!.



SM76 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

Thus, recall that k�k2 = ⌘, use (�2
, R) = (8✓⌘2, 4⌘), from (SM9.8)-(SM9.9), apply Bernstein

inequality Lemma SM10.4 with n � Cp
5
✓
�2 log p, and c1, c2 2 [0, 1] we have

P [Ec
Net]  2np |N"| · P

2

4
n/2p�1X

t=0

Z2tp(�) >
n

2p
EZ(�) +

c1n✓

2p5/2

3

5

 2np

✓
3np2

c2

◆3p

exp

 
�
�
c1n✓/2p5/2

�2

16n✓⌘2/2p+ 8⌘c1n✓/2p5/2

!

 exp

 
4p log

✓
3np2

c2

◆
�
�
c1n✓/2p5/2

�2

16n✓⌘2/p

!

 exp

✓
4p log

✓
3np2

c2

◆
� c

2
1n✓

2

64p4

◆

 exp

✓
�c21n✓2

100p4

◆
 1

n
(SM9.13)

when C
logC >

105

c21c2
. The proof of lower bound and negative �0 is derived in the same manner.

SM9.2. Proof of Corollary SM4.3.

Proof. Write x as x0 though our this proof. Write �ixj + sj =
P

`2[±p] �`x`�i+j =⌦
�,x[±p]�i+j

↵
, and the support w.r.t. some a as I(�). Define the random variable Zij(�) as

��PI(�)s�i[x]
��2
2
=

X

j2[n]

x
2
j1{|h�,x[±p]�i+ji|>�} =:

X

j2[n]

Zij(�)(SM9.14)

and define
�
Zij(�)

 
j2[n] that are independent r.v.s. and as a upper bounding function of

Zij(�) as

Zij(�) :=

8
>><

>>:

x
2
j ,

��⌦�,x[±p]�i+j

↵�� > �

0,
��⌦�,x[±p]�i+j

↵�� < �/2
x2
j

�/2

���⌦�,x[±p]�i+j

↵��� �/2
�
, otherwise

,(SM9.15)

Similar to proof of Corollary SM3.4. Let k�k2  ⌘  pp. Define " =
c02�

24np
p

p✓ logn log ✓�1
for

some c
0
2 > 0 and consider the "-net N" for sphere of radius ⌘. From Lemma SM10.5 we know

|N"| 
✓
3⌘

"

◆2p


✓

72

c02c�
np

2
p
✓ |⌧ | log n log ✓�1

◆2p


✓

72

c02c�
np

2 log n

◆2p

,(SM9.16)

for each i 2 [n] define such net as N",i, and define an event such that all center of subsets in
N",i are being well-behaved:

ENet :=

8
<

:8 i 2 [n],

������
n
�1

X

j2[n]

Zij(�")� EZi(�")

������
 c

0
1✓

p
8�" 2 N",i

9
=

; ,(SM9.17)
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Also,
P

j Zij(�) is a Lipchitz function over � for every i 2 [n] as

������

X

j2[n]

Zij(�)�
X

j2[n]

Zij(�
0)

������


X

j2[n]

x
2
j

�/2

��⌦� � �
0
,x[±p]�i+j

↵��


X

j2[n]

x
2
j

��x[±p]�i+j

��
2

�/2

��� � �
0��

2
,

 1

�/2
kxk22 ·max

j2[n]

��x[±p]+j

��
2
·
��� � �

0��
2

:= L
��� � �

0��
2
,(SM9.18)

and define event ELip such that the Lipchitz constant is bounded as

ELip :=
n
L  12n✓

p
p✓ log n log ✓�1�

�1
o
,(SM9.19)

then on event ELip, for any points � in R(S⌧ , �(cµ)) and i 2 [n], there exists some �" in N",i

with k� � �"k2  ", and thus

������

0

@n
�1

X

j2[n]

Zij(�)� EZi(�)

1

A�

0

@n
�1

X

j2[n]

Zij(�")� EZi(�")

1

A

������
 2L"  c

0
2✓

p
.(SM9.20)

On event ELip \ ENet, from (SM9.17), (SM9.20), we can conclude that for all � 2 R(S⌧ , �(cµ))
and i 2 [n] that:

n
�1

��PI(�)s�i[x0]
��2
2
� n

�1E
��PI(�)s�i[x0]

��2
2
 n

�1
X

j2[n]

Zij(�)� EZi(�)

 (c01 + c
0
2)✓

p
(SM9.21)

as desired, where the error probability of Ec
Lip is bounded using Lemma SM1.2 and Lemma SM1.3,

which give

P
⇥
Ec
Lip

⇤
 P

h
kxk22 > 2n✓

i
+ P


max
j2[n]

��x[±p]+j

��
2
> 3

p
p✓ log n log ✓�1

�

 3/n,(SM9.22)

when n > 103✓�1. As for Ec
Net use union bound and split the r.v.s since Zj ,Zj+2p are

independent for all j:

P [Ec
Net]  2np · |N"| · P

2

4

������

n/2pX

k

Zi,2kj(�)�
n

2p
EZi(�)

������
� c

0
1n✓

2p2

3

5 .
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Now we calculate the variance and L
q-norm of

P
k Zi,2kj for q � 3:

(
EZ2

i,j  Ex4
j  3✓

EZq
i,j  Ex2q

j  ✓(2q � 1)!!  1
2 · (3✓) · 2q�2

q!
(SM9.23)

and apply Bernstein inequality with (�2
, R) = (3✓, 2), then use n � Cp

4
✓
�1 log p and c

0
1, c

0
2 < 1

to obtain

2np |N"|P

2

4

������

n/2pX

k

Zi,2kj(�)�
n

2p2
EZi

������
� c

0
1n✓

2p2

3

5

 exp


log(2np) + 2p log

✓
72

c02c�
np

2 log n

◆
� (c01n✓/2p

2)2

6n✓/2p+ 4c01n✓/2p
2

�

 exp


3p log

✓
72

c02c�
np

2 log n

◆
� c

02
1 n✓

24p3

�

 exp[�c021 n✓/(50p3)]  1/n,(SM9.24)

where the last two inequalities holds when C
logC �

105

c021 c02c�
. The other side of inequality of

(SM4.9) can be derived by defining Zij as

Zij(�) :=

8
>><

>>:

x
2
j ,

��⌦�,x[±p]�i+j

↵�� > 3�/2

0,
��⌦�,x[±p]�i+j

↵�� < �

x2
j

�/2

���⌦�,x[±p]�i+j

↵��� �
�
, otherwise

,(SM9.25)

and define ENet, ELip similarly, such that on intersection of these events,

n
�1

��PI(�)s�i[x]
��2
2
� n

�1E
��PI(�)s�i[x]

��2
2
� n

�1
X

j2[n]

Zij(�)� EZi(�)

� (c01 + c
0
2)✓

p
(SM9.26)

as desired.

SM9.3. Proof of Lemma SM5.5 .

Proof. 1. (Expectation upper bound) We will write x as x0. Similar to proof of Corol-
lary SM3.4 let k�k2  ⌘  pp. For each i 2 [n], define the random variable

Xi(�) = 1{|hsi[x],�i��|B} + 1{|hsi[x],�i+�|B},(SM9.27)

then number of indices for vector x ⇤ �

V

that are within B of ±� is a random variableP
i2[n]Xi(�). For each of the Xi(�)’s consider an upper bound Xi(�) defined as

Xi(�) =

8
>>>><

>>>>:

1
M (|hsi[x],�i|� (��B �M)) |hsi[x],�i| 2 [��B �M,��B]

1 |hsi[x],�i| 2 [��B,�+B]
1
M ((�+B +M)� |hsi[x],�i|) |hsi[x],�i| 2 [�+B,�+B +M ]

0 else

(SM9.28)
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where B < M = c�✓
2
/ (p log n)  �/4 for some constant 0 < c < 1.

Notice that x ⇠i.i.d. BG(✓) is equal in distribution to PI(a)g, where g ⇠i.i.d. N (0, 1), and
I(a) ✓ [n] is an independent Bernoulli subset. Conditioned on I(a), hx,�i =

⌦
g,PI(a)�

↵
⇠

N (0,
��PI(a)�

��2
2
). For all realizations of I(a), the variance

��PI(a)�
��2
2
is bounded by

��PI(a)�
��2
2


k�k22  p. Using these observations, and letting f�(t) =
�p

2⇡�
��1

exp
�
�t2/2�2

�
denote the

pdf of an N (0,�2) random variable, the expectation of
P

iXi(�) can be upper bounded as

X

i2[n]

E
⇥
Xi(�)

⇤
 (2n) · P [hx,�i 2 [��B �M,�+B +M ]]

 (2n) · 2(B +M) sup
�22(0,p]

max
t2[��B�M,�+B+M ]

f�(t)

 4n(B +M) sup
�22(0,p]

f� (��B �M)

 4n(B +M) sup
�22(0,p]

f� (�/2) .(SM9.29)

Notice that

d

d�
f�

✓
�

2

◆
=

d

d�

1p
2⇡�

exp

✓
� �

2

8�2

◆
=

�
2 � 4�2

4
p
2⇡�4

exp

✓
� �

2

8�2

◆
,

and hence f�(�/2) is maximized at either �2 = 0, �2 = p or �2 = �
2
/4. Comparing values at

these points, we obtain that

sup
�22(0,p]

f�(�/2)  f�/2(�/2) 
1p

2⇡(�/2)
exp

✓
�1

2

◆
 1

2�
,(SM9.30)

whence, by letting B  c�✓
2
/ (p log n), the upper bound of expectation become:

X

i2[n]

E
⇥
Xi(�)

⇤
 4n

2�
(B +M)  4cn✓2

p log n
=: nEX(�).(SM9.31)

2. ("-net) Define " = c2�✓3.5

3p2.5 log2.5 n log0.5 ✓�1 . Write � = c�/
p
|⌧ | and consider the "-net N" for

sphere of radius ⌘  pp. From Lemma SM10.5 we know

|N"| 
✓
3⌘

"

◆2p


✓
81 |⌧ | p6 log5 n log ✓�1

c4c2�✓
7

◆p


✓
2p log n

c · c�

◆13p

(SM9.32)

and define an event such that all center of subsets in N" are being well-behaved:

ENet :=

8
<

:
X

i2[n]

Xi(�")� nEX(�") <
18cn✓2

p log n
8�" 2 N",

9
=

;(SM9.33)
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3. (Lipschitz constant) Furthermore, the function
Pn

i Xi(�) is Lipchitz over � such that

������

X

i2[n]

Xi(�)�
X

i2[n]

Xi(�
0)

������


nX

i2[n]

1

M

��⌦si[x],� � �
0↵��

 n

M
max
i2[n]

��P[±p]+ix
��
2

��� � �
0��

2

=: L
��� � �

0��
2

define the set N" where Lipschitz constant is well bounded:

ELip :=

(
L  3n

p
p✓ log n log ✓�1

M

)
,

then on event ELip, for every � in R(S⌧ , �(cµ)), there exists some �" in N",i with k� � �"k2  ",
thus

������

0

@
X

i2[n]

Xi(�)� nEX(�)

1

A�

0

@
X

i2[n]

Xi(�")� nEX(�")

1

A

������
 2L"  2cn✓2

p log n
.(SM9.34)

On event ELip \ ENet, from (SM9.31), (SM9.33) and (SM9.34), we can conclude that for every
� 2 R(S⌧ , �(cµ)) and i 2 [n],

X

i2[n]

Xi(�) 
24cn✓2

p log n
(SM9.35)

as desired, where the error probability of Ec
Lip is bounded using Lemma SM1.3, which gives

P
⇥
Ec
Lip

⇤
 P


max
j2[n]

��x[±p]+j

��
2
> 3

p
p✓ log n log ✓�1

�
 2/n,(SM9.36)

4. (Bound P [Ec
Net]) Wlog let us assume that 2p divides n. By applying union bound and

observing that Xi(�) is independent of Xi+2p(�) for any i 2 [n], we split
P

iXi(�) into n/2p
independent sums of r.v.s, we have

P [Ec
Net]  2p |N"| · P

2

4
n/2p�1X

j=0

�
X2pj(�)� E

⇥
X(�)

⇤�
>

9cn✓2

p2 log n

3

5 ,

where each summand has bounded variance and L
q-norm derived similarly as its expectation

such that

EXi(�)
q  2 · P [hsi[x],�i 2 [��B �M,�+B +M ]]  2 · 1

2�
· 2(B +M)  4c✓2

p log n
,
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and apply Bernstein inequality Lemma SM10.4 with (�2
, R) = (4c✓2/ (p log n) , 1), obtains

P

2

4
n/2p�1X

j=0

�
X2pj(�)� E

⇥
X(�)

⇤�
>

9cn✓2

p2 log n

3

5  exp


�(9cn✓2/p2 log n)2

2cn✓2/p2 log n+ 2(9cn✓2/p2 log n)

�

 exp


�4cn✓2

p2 log n

�
,

thus when n = Cp
5
✓
�2 log p:

P [Ec
Net]  exp


log(2p) + 13p log

✓
2p log n

c · c�

◆
� 4cn✓2

p2 log n

�
 1/n(SM9.37)

as long as C
logC > 105/

�
c
2 · c�

�
.

SM10. Tools.

Lemma SM10.1 (Tail bound for Gaussian r.v.). If X ⇠ N (0,�2), then its tail bound for
t > 0 can be

P [X > t]  �

t
p
2⇡

exp

✓
� t

2

2�2

◆
(SM10.1)

Lemma SM10.2 (Moments of the Gaussian random variables). If X ⇠ N
�
0,�2

�
, then for

all integer p � 1,

E [|X|p]  �
p (p� 1)!!.(SM10.2)

Lemma SM10.3 (Gaussian concentration inequality). Let x = (x1, . . . ,xn) be a vector of n
independent standard normal variables. Let f : Rn ! R be an L-Lipschitz function. Then for
all t > 0,

P [|f(x)� Ef(x)| � t]  2 exp

✓
� t

2

2L2

◆
.(SM10.3)

Lemma SM10.4 (Moment control Bernstein inequality for scalar r.v.s). ([SM4], Theorem 7.30)
Let x1, . . . ,xn be independent real-valued random variables. Suppose that there exist some
positive number R and �

2 such that 1
n

Pn
i=1 E

⇥
X

2
i

⇤
 �

2 and

1
n

Pn
i=1 E [|xk|p]  1

2�
2
R

p�2
p!, for all integers p � 3.

Let S
.
=
Pn

i=1 xi, then for all t > 0, it holds that

P [|S � E [S]| � t]  2 exp

✓
� t

2

2n�2 + 2Rt

◆
.(SM10.4)

Lemma SM10.5 ("-net on sphere). [SM6] Let (X, d) be a metric space and let " > 0. A
subset N" of X is called an "-net of X if for every point x 2 X there exists some point y 2 N"

so that d(x, y)  ". There exists an "-net N" for the sphere Sn�1 of size |N"|  (3/")n.
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Lemma SM10.6 (Hanson-Wright). [SM5] Let x1, . . . ,xn be independent, subgaussian random

variables with subgaussian norm supp�1 p
�1/2 (E |xpi |)

1/p  �. Let A 2 Rn⇥n, then for every
t > 0,

P [|x⇤
Ax� Ex⇤

Ax| � t]  2 exp

 
�cmin

 
t
2

64�4 kAk2F
,

t

8
p
2�2 kAk2

!!
.(SM10.5)

Lemma SM10.7 (Maximum of separable convex function). Let f : R+ ! R+ be a convex
function of the form f(x) = x� s(x) with s : R+ ! R+ satisfying

s(x)

x
 s(y)

y
, for all x � y > 0.

Then for n 2 N and 0 < N  nL,

max
0xL, kxk1N

nX

i=1

f(xi)  N

✓
1� s(L)

L

◆
(SM10.6)

Proof. Since the feasible set is a convex polytope; the convex function
Pn

i=1 f(xi) is
maximized at a vertex, and that its vertices consist of 0 and permutations of the vector⇥
L, . . . , L| {z }
bN/Lc

, r, 0, . . . , 0
⇤
, where r = N�bN/LcL  L. Then the function value at the maximizing

vector x⇤ can be derived as:

nX

i=1

f(x⇤i) =
⌅
N
L

⇧
f(L) + f(r) = N�r

L (L� s(L)) + (r � s(r))

= N

⇣
1� s(L)

L

⌘
+ r

⇣
s(L)
L �

s(r)
r

⌘
 N

⇣
1� s(L)

L

⌘
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