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Abstract
Recovering a low-rank tensor from incomplete information is a recurring problem in sig-
nal processing andmachine learning. The most popular convex relaxation of this problem
minimizes the sum of the nuclear norms (SNN) of the unfolding matrices of the tensor.
We show that this approach can be substantially suboptimal: reliably recovering a K-
way n⇥n⇥· · ·⇥n tensor of Tucker rank (r, r, . . . , r) from Gaussian measurements requires
⌦(rnK�1) observations. In contrast, a certain (intractable) nonconvex formulation needs
only O(rK +nrK) observations. We introduce a simple, new convex relaxation, which par-
tially bridges this gap. Our new formulation succeeds with O(rbK/2cndK/2e) observations.

The lower bound for the SNNmodel follows from our new result on recovering signals
with multiple structures (e.g. sparse, low rank), which indicates the significant subopti-
mality of the common approach of minimizing the sum of individual sparsity inducing
norms (e.g. `1, nuclear norm). Our new tractable formulation for low-rank tensor recov-
ery shows how the sample complexity can be reduced by designing convex regularizers
that exploit several structures jointly.

Keywords: Tensor Recovery, Convex Relaxation, Low Rank, Lower Bound, Sample Com-
plexity

1. Introduction

Tensors arise naturally in problems where the goal is to estimate a multi-dimensional ob-
ject whose entries are indexed by several continuous or discrete variables. For example,
a video is indexed by two spatial variables and one temporal variable; a hyperspectral
datacube is indexed by two spatial variables and a frequency/wavelength variable. While
tensors often reside in extremely high-dimensional data spaces, in many applications, the
tensor of interest is low-rank, or approximately so (Kolda and Bader, 2009), and hence has
much lower-dimensional structure. The general problem of estimating a low-rank tensor
has applications in many di↵erent areas, both theoretical and applied: e.g., estimating la-
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tent variable graphical models (Anandkumar et al., 2014), classifying audio (Mesgarani
et al., 2006), mining text (Cohen and Collins, 2012), processing radar signals (Nion and
Sidiropoulos, 2010), multilinear multitask learning (Romera-Paredes et al., 2013) , to name
a few.

We consider the problem of recovering a K-way tensor X 2 Rn1⇥n2⇥···⇥nK from linear
measurements z = G[X] 2 Rm. Typically, m ⌧ N =

QK
i=1ni , and so the problem of recov-

ering X from z is ill-posed. In the past few years, tremendous progress has been made in
understanding how to exploit structural assumptions such as sparsity for vectors (Candès
et al., 2006) or low-rankness for matrices (Recht et al., 2010) to develop computationally
tractable methods for tackling ill-posed inverse problems. In many situations, convex
optimization can estimate a structured object from near-minimal sets of observations (Ne-
gahban et al., 2012; Chandrasekaran et al., 2012; Amelunxen et al., 2014). For example, an
n⇥nmatrix of rank r can, with high probability, be exactly recovered from Cnr generic lin-
ear measurements, by minimizing the nuclear norm kXk⇤ =

P

i �i(X). Since a rank r matrix
has r(2n� r) degrees of freedom, this is nearly optimal.

In contrast, the correct generalization of these results to low-rank tensors is not obvi-
ous. The numerical algebra of tensors is fraught with hardness results (Hillar and Lim,
2013). For example, even computing a tensor’s (CP) rank,

rankcp(X) := min
n

r |X =
Xr

i=1
a

(i)
1 � · · · �a

(i)
K

o

, (1)

is NP-hard in general. The nuclear norm of a tensor is also intractable, and so we cannot
simply follow the formula that has worked for vectors and matrices.

With an eye towards numerical computation, many researchers have studied how to
recover tensors of small Tucker rank (Tucker, 1966). The Tucker rank of a K-way tensorX
is a K-dimensional vector whose i-th entry is the (matrix) rank of the mode-i unfolding
X(i) ofX:

ranktc(X) :=
⇣

rank(X(1)), · · · ,rank(X(K))
⌘

. (2)

Here, the matrix X(i) 2 Rni⇥
Q

j,i nj is obtained by concatenating all the mode-i fibers of X
as column vectors. Each mode-i fiber is an ni-dimensional vector obtained by fixing every
index of X but the i-th one. The Tucker rank of X can be computed e�ciently using the
(matrix) singular value decomposition. For this reason, we focus on tensors of low Tucker
rank. However, we will see that our proposed regularization strategy also automatically
adapts to recover tensors of low CP rank, with some reduction in the required number of
measurements.

The definition (2) suggests a natural, tractable convex approach to recovering low-rank
tensors: seek the X that minimizes

P

i �i

�

�

�X(i)
�

�

�⇤ out of all X satisfying G[X] = z. We will
refer to this as the sum-of-nuclear-norms (SNN) model. Originally proposed in (Liu et al.,
2009), this approach has been widely studied (Gandy et al., 2011; Signoretto et al., 2010,
2013; Tomioka et al., 2011) and applied to various datasets in imaging (Semerci et al.,
2013; Kreimer and Sacchi, 2013; Li and Li, 2010; Li et al., 2010).

Perhaps surprisingly, we show that this natural approach can be substantially subop-
timal. Moreover, we will suggest a simple new convex regularizer with provably better
performance. Suppose n1 = · · · = nK = n, and ranktc(X) � (r, r, . . . , r). Let Tr denote the set
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of all such tensors,1 namely

Tr :=
�X 2 Rn⇥n⇥···⇥n | ranktc(X) � (r, r, . . . , r)

 

. (3)

We will consider the problem of estimating an element X of Tr from Gaussian measure-
ments G (i.e., zi = hG i ,Xi, where G i has i.i.d. standard normal entries). To describe a
generic tensor in Tr , we need at most rK + rnK parameters. In Section 2, we show that
a certain nonconvex strategy can recover all X 2 Tr exactly when m > (2r)K + 2nrK . In
contrast, the best known theoretical guarantee for SNN minimization, due to Tomioka
et al. (2011), shows thatX 2 Tr can be recovered (or accurately estimated) from Gaussian
measurements G, provided m =⌦(rnK�1). In Section 3, we prove that this number of mea-
surements is also necessary: accurate recovery is unlikely unlessm =⌦(rnK�1). Thus, there
is a substantial gap between an ideal nonconvex approach and the best known tractable
surrogate. In Section 4, we introduce a simple alternative, which we call the square reshap-
ing model, which reduces the required number of measurements to O(rbK/2cndK/2e). For
K > 3, we obtain an improvement of a multiplicative factor polynomial in n.

Our theoretical results pertain to Gaussian operators G. The motivation for studying
Gaussian measurements is threefold. First, Gaussian measurements may be of interest for
compressed sensing recovery (Donoho, 2006), either directly as a measurement strategy,
or indirectly due to universality phenomena (Bayati et al., 2012). Moreover, the available
theoretical tools for Gaussian measurements are very sharp, allowing us to rigorously in-
vestigate the e�cacy of various regularization schemes, and prove both upper and lower
bounds on the number of observations required. Furthermore, the results with respect to
Gaussian measurements have direct implications to the minimax risk for denoising (Oy-
mak and Hassibi, 2013; Amelunxen et al., 2014). In Section 4, we demonstrate that our
qualitative conclusions carry over to more realistic measurement models, such as random
subsampling (Liu et al., 2009). We expect our results to be of great interest for a wide range
of problems in tensor completion (Liu et al., 2009), robust tensor recovery/decomposition
(Li et al., 2010; Goldfarb and Qin, 2014) and sensing.

Our technical approach draws on, and enriches, the literature on general structured
model recovery. The surprisingly poor behavior of the SNN model is an example of a
phenomenon first discovered by Oymak et al. (2012): for recovering objects with multi-
ple structures, a combination of structure-inducing norms is often not significantly more
powerful than the best individual structure-inducing norm. Our lower bound for the SNN
model follows from a general result of this nature, which we prove using the novel geomet-
ric framework of (Amelunxen et al., 2014). Compared to (Oymak et al., 2012), our result
pertains to a more general family of regularizers, and gives sharper constants. In addi-
tion, for low-rank tensor recovery problem, we demonstrate the possibility to reduce the
number of generic measurements through a new convex regularizer that exploits several
sparse structures jointly.

1. To keep the presentation in this paper compact, we state most of our results regarding tensors in Tr ,
although it is not di�cult to modify them for general tensors.
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2. Bounds for Non-Convex Recovery

In this section, we introduce a non-convex model for tensor recovery, and show that it re-
covers low-rank tensors from near-minimal numbers of measurements. While our noncon-
vex formulation is computationally intractable, it gives a baseline for evaluating tractable
(convex) approaches.

For a tensor of low Tucker rank, the matrix unfolding along each mode is low-rank.
Suppose we observe G[X0] 2 Rm. We would like to attempt to recover X0 by minimizing
some combination of the ranks of the unfoldings, over all tensors X that are consistent
with our observations. This suggests a vector optimization problem (Boyd and Vanden-
berghe, 2004, Chap. 4.7):

minimize(w.r.t. RK
+ ) ranktc(X) subject to G[X] = G[X0]. (4)

In vector optimization, a feasible point is called Pareto optimal if no other feasible point
dominates it in every criterion. In a similar vein, we say that (4) recoversX0 if there does
not exist any other tensorX that is consistent with the observations and has no larger rank
along each mode:

Definition 1 We callX0 recoverable by (4) if the set

{X0 ,X0 | G[X0] = G[X0], ranktc(X0) �RK
+
ranktc(X0)} = ;.

This is equivalent to saying thatX0 is the unique optimal solution to the scalar optimiza-
tion:

minimizeX max
i

(

rank(X(i))
rank(X0(i))

)

subject to G[X] = G[X0]. (5)

The problems (4)-(5) are not tractable. However, they do serve as a baseline for under-
standing howmany generic measurements are required to recoverX0 from an information
theoretic perspective.

The recovery performance of program (4) depends heavily on the properties of G. Sup-
pose (4) fails to recover X0 2 Tr . Then there exists another X0 2 Tr such that G[X0] =
G[X0]. So, to guarantee that (4) recovers any X0 2 Tr , a necessary and su�cient condi-
tion is that G is injective on Tr , which can be implied by the condition null(G)\T2r = {0}.
Consequently, if null(G)\T2r = {0}, (4) will recover any X0 2 Tr . We expect this to occur
when the number of measurements significantly exceeds the number of intrinsic degrees
of freedom of a generic element of Tr , which is O(rK +nrK). The following theorem shows
that whenm is approximately twice this number, with probability one, G is injective on Tr :

Theorem 2 Whenever m � (2r)K + 2nrK + 1, with probability one, null(G) \ T2r = {0}, and
hence (4) recovers everyX0 2 Tr .

The proof of Theorem 2 follows from a covering argument, which we establish in sev-
eral steps. Let

S2r = {D |D 2 T2r ,kDkF = 1} . (6)

The following lemma shows that the required number of measurements can be bounded
in terms of the exponent of the covering number for S2r , which can be considered as a
proxy for dimensionality:
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Lemma 3 Suppose that the covering number for S2r with respect to Frobenius norm, satisfies

N (S2r ,k·kF ,")  (�/")d , (7)

for some integer d and scalar � that does not depend on ". Then if m � d + 1, with probability
one null (G)\S2r = ;, which implies that null (G)\T2r = {0}.

It just remains to find the covering number of S2r . We use the following lemma, which
uses the triangle inequality to control the e↵ect of perturbations in the factors of the Tucker
decomposition

[[C;U1,U2, · · · ,UK ]] := C ⇥1U1 ⇥2U2 ⇥3 · · ·⇥K UK , (8)

where the mode-i (matrix) product of tensor A with matrix B of compatible size, denoted
asA⇥i B, outputs a tensor C such that C(i) = BA(i).

Lemma 4 Let C,C 0 2 Rr1,...,rK , and U1,U01 2 Rn1⇥r1 , . . . ,UK ,U0K 2 RnK⇥rK with U⇤iUi = U0i
⇤U0i =

I, and kCkF =
�

�

�C 0
�

�

�

F
= 1. Then

�

�

�[[C;U1, . . . ,UK ]]� [[C 0;U01, . . . ,U0K ]]
�

�

�

F


�

�

�C �C 0
�

�

�

F
+

K
X

i=1

�

�

�Ui �U0i
�

�

�

.
(9)

Using this result, we construct an "-net for S2r by building "/(K + 1)-nets for each of the
K + 1 factors C and {Ui}. The total size of the resulting " net is thus bounded by the
following lemma:

Lemma 5 N (S2r ,k·kF ,")  (3(K +1)/")(2r)
K+2nrK

With these observations in hand, Theorem 2 follows immediately.

3. Convexification: Sum of Nuclear Norms?

Since the nonconvex problem (4) is NP-hard for general G, it is tempting to seek a convex
surrogate. In matrix recovery problems, the nuclear norm is often an excellent convex
surrogate for the rank (Fazel, 2002; Recht et al., 2010; Gross, 2011). It seems natural,
then, to replace the ranks in (4) with nuclear norms. Due to convexity, the resulting vector
optimization problem can be solved by the following scalar optimization:

min
X

K
X

i=1

�ikX(i)k⇤ s.t. G[X] = G[X0], (10)

where � � 0. The optimization (10) was first introduced by (Liu et al., 2009) and has been
used successfully in applications in imaging (Semerci et al., 2013; Kreimer and Sacchi,
2013; Li and Li, 2010; Ely et al., 2013; Li et al., 2010). Similar convex relaxations have
been considered in a number of theoretical and algorithmic works (Gandy et al., 2011;
Signoretto et al., 2010; Tomioka et al., 2011; Signoretto et al., 2013). It is not too sur-
prising, then, that (10) provably recovers the underlying tensor X0, when the number of
measurements m is su�ciently large. The following is a (simplified) corollary of results of
Tomioka et. al. (2011) 2:

2. Tomioka et. al. also show noise stability when m = ⌦(rnK�1) and give extensions to the case where the
ranktc (X0) = (r1, . . . , rK ) di↵ers from mode to mode.
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Corollary 6 (of (Tomioka et al., 2011), Theorem 3) Suppose thatX0 has Tucker rank (r, . . . , r),
and m � CrnK�1, where C is a constant. Then with high probability,X0 is the optimal solution
to (10), with each �i = 1.

This result shows that there is a range in which (10) succeeds: loosely, when we under-
sample by at most a factor of m/N ⇠ r/n. However, the number of observations m ⇠ rnK�1

is significantly larger than the number of degrees of freedom inX0, which is on the order
of rK + nrK . Is it possible to prove a better bound for this model? Unfortunately, we show
that in general O(rnK�1) measurements are also necessary for reliable recovery using (10):

Theorem 7 Let X0 2 Tr be nonzero. Set  = mini
⇢

�

�

�(X0)(i)
�

�

�

2
⇤ / kX0k2F

�

⇥ nK�1. Then if the

number of measurements m   � 2, X0 is not the unique solution to (10), with probability at
least 1� 4exp(� (�m�2)

2

16(�2) ). Moreover, there existsX0 2 Tr for which  = rnK�1.

This implies that Corollary 6 (as well as some other results of (Tomioka et al., 2011)) is
essentially tight. Unfortunately, it has negative implications for the e�cacy of the SNN
model in (10): although a generic element X0 of Tr can be described using at most rK +
nrK real numbers, we require ⌦(rnK�1) observations to recover it using (10). Theorem
7 is a direct consequence of a much more general principle underlying multi-structured
recovery, which is elaborated next. After that, in Section 4, we show that for low-rank
tensor recovery, better convexifying schemes are available.

3.1 General lower bound for multiple structures

The poor behavior of (10) is an instance of a much more general phenomenon, first dis-
covered by Oymak et. al. (2012). Our target tensor X0 has multiple low-dimensional
structures simultaneously: it is low-rank along each of the K modes. In practical appli-
cations, many other such simultaneously structured objects could also be of interest. For
sparse phase retrieval problems in signal processing (Oymak et al., 2012), the task can be
rephrased to infer a block sparse matrix, which implies both sparse and low-rank struc-
tures. In robust metric learning (Lim et al., 2013), the goal is to estimate a matrix that is
column sparse and low rank concurrently. In computer vision, many signals of interest
are both low-rank and sparse in an appropriate basis (Liang et al., 2012). To recover such
simultaneously structured objects, it is tempting to build a convex relaxation by combin-
ing the convex relaxations for each of the individual structures. In the tensor case, this
yields (10). Surprisingly, this combination is often not significantly more powerful than
the best single regularizer (Oymak et al., 2012). We obtain Theorem 7 as a consquence of a
new, general result of this nature, using a geometric framework introduced in (Amelunxen
et al., 2014). Compared to (Oymak et al., 2012), this approach has a clearer geometric in-
tuition, covers a more general class of regularizers3 and yields sharper bounds.

Setup. In general, we are interested in recovering a signal x0 with several low-dimensional
structures simultaneously, based on generic measurements with respect to x0. Here the tar-
get signal x0 could lie in any finite dimensional Hilbert space (e.g. a vector in Rn, a matrix

3. (Oymak et al., 2012) studies decomposable norms, with some additional assumptions. Our result holds
for arbitrary norms.
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in Rn1⇥n2 , a tensor in Rn1⇥n2⇥···⇥nK ), but without loss of generality, we will consider x0 2 Rn.
Let k·k(i) be the penalty norm corresponding to the i-th structure (e.g. `1, nuclear norm).
Consider the following sum-of-norms (SON) model,

min
x2Rn

f (x) := �1 kxk(1) +�2 kxk(2) + · · ·+�K kxk(K) subject to G[x] = G[x0], (11)

where G[·] is a Gaussian measurement operator, and � > 0. In the subsequent analysis, we
will evaluate the performance of (11) in terms of recovering x0, where the only assumption
we require is:

Assumption 8 The target signal x0 is nonzero.

Optimality condition. Is x0 the unique optimal solution to (11)? Recall that the descent
cone of a function f at a point x0 is defined as

C(f ,x0) := cone {v | f (x0 + v)  f (x0)} , (12)

which, in short, will be denoted as C. Then x0 is the unique optimal solution if and only if
null(G)\ C = {0}. Conversely, recovery fails if null(G) has nontrivial intersection with C.

Since G is a Gaussian operator, null(G) is a uniformly oriented random subspace of
dimension (n �m). This random subspace is more likely to have nontrivial intersection
with C if C is large, in a sense we will make precise.

Denote the polar cone of C as C�, i.e.

C� :=
(

u 2 Rn | sup
x2C
hu,xi  0

)

. (13)

Because polarity reverses inclusion, we expect that C will be large whenever C� is small,
which leads us to control the size of C�.

As f (x0) , 0 = min
x2Rn f (x), it can be verified that (Rockafellar, 1997, Thm. 23.7)

C� = cone(@f (x0)) = cone

0

B

B

B

B

B

B

@

X

i2[K]

�i@fi(x0)

1

C

C

C

C

C

C

A

, (14)

where the sum is made in Minkowski sense.
In order to control the size of Co based on (14), we will next establish some basic

geometric properties for each single norm.

Properties for each single norm. Consider a general single norm k·k⇧ and denote its dual
norm (a.k.a. polar function) as k·k�⇧, i.e. for any u 2 Rn,

kuk�⇧ := sup
kxk⇧1

hx,ui . (15)

Define L := sup
x,0 kxk⇧ / kxk, which implies that k·k⇧ is L-Lipschitz: kxk⇧  Lkxk for all x.

Then we also have kuk  Lkuk�⇧ for all u as

kuk�⇧ = sup
kxk⇧1

hx,ui � sup
Lkxk1

hx,ui = sup
kxk1/L

hx,ui = 1
L
kuk . (16)
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cone(@kx0k(1))

x0

✓1

C(k·k(1) ,x0)

cone(@kx0k(2))
x0

✓2

C(k·k(2) ,x0)

Figure 1: Cones and their polars for convex regularizers k·k(1) and k·k(2) respectively.
Suppose our x0 has two sparse structures simultaneously. Regularizer k·k(1) has a larger
conic hull of subdi↵erential at x0, i.e. cone(@kx0k(1)), which results in a smaller de-
scent cone. Thus minimizing k·k(1) is more likely to recover x0 than minimizing k·k(2).
Consider convex regularizer f (x) = kx0k(1) + kx0k(2). Suppose as depicted, ✓1 � ✓2. Then
both cone(@kx0k(1)) and cone(@kx0k(2)) are in the circular cone circ(x0,✓1). Thus we have:

cone
⇣

@f (x0)
⌘

= cone(@kx0k(1) +@kx0k(2)) ✓ conv
n

circ(x0,✓1),circ(x0,✓2)
o

= circ(x0,✓1).

In addition, noting that

@k·k⇧ (x) = {u | hu,xi = kxk⇧ , kuk�⇧  1} , (17)

for any u 2 @k·k⇧ (x0), we have

cos(\(u,x0)) :=
hu,x0i
kuk kx0k

� kx0k⇧
Lkuk�⇧ kx0k

� kx0k⇧
Lkx0k

. (18)

A more geometric way of summarizing this fact is as follows: for x , 0, let

circ(x,✓) = {z | \(z,x)  ✓} , (19)

denote the circular cone with axis x and angle ✓. Then with ✓ := cos�1(kx0k⇧ /Lkx0k),

@k·k⇧ (x0) ✓ circ(x0,✓) . (20)

Table 1 describes the angle parameters ✓ for various structure inducing norms. Notice that
in general, more complicated x0 leads to smaller angles ✓. For example, if x0 is a k-sparse
vectors with entries all of the same magnitude, and k·k⇧ the `1 norm, cos2✓ = k/n. As x0
becomes more dense, @k·k⇧ is contained in smaller and smaller circular cones.
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Polar cone ✓ circular cone. For f =
P

i �i k·k(i), notice that every element of @f (x0) is a
conic combination of elements of the @k·k(i) (x0). Since each of the @k·k(i) (x0) is contained
in a circular cone with axis x0, @f (x0) itself is also contained in a circular cone, and thus
based on (14), we have

Lemma 9 For x0 , 0, set ✓i = cos�1
⇣

kx0k(i) /Li kx0k
⌘

, where Li = sup
x,0 kxk(i) / kxk. Then

C� = cone(@f (x0)) ✓ circ
 

x0,max
i2[K]

✓i

!

. (21)

So, the subdi↵erential of our combined regularizer f is contained in a circular cone whose
angle is given by the largest of the ✓i . Figure 1 visualizes this geometry.

Statistical Dimension. How does this behavior a↵ect the recoverability of x0 via (11)?
The informal reasoning above suggests that as ✓ becomes smaller, the descent cone C be-
comes larger, and we require more measurements to recover x0. This can be made precise
using the elegant framework introduced by Amelunxen et al. (2014). They define the sta-
tistical dimension of the convex cone C to be the expected norm square of the projection of
a standard Gaussian vector onto C:

�(C) := Eg⇠i.i.d.N (0,1)
h

kPC(g)k2
i

. (22)

Using tools from spherical integral geometry, Amelunxen et al. (2014) shows that for linear
inverse problems with Gaussian measurements, a sharp phase transition in recoverability
occurs around m = �(C). Since we attempt to derive a necessary condition for the success
of (11), we need only one side of their result with slight modifications:

Corollary 10 Let G : Rn! Rm be a Gaussian operator, and C a convex cone. Then if m  �(C),

P [C \null(G) = {0} ]  4exp
 

� (�(C)�m)2

16�(C)

!

. (23)

To apply this result to our problem, we need to have a lower bound on the statistical
dimension �(C), of the descent cone C of f at x0. Using the Pythagorean theorem, mono-
tonicity of �(·), and Lemma 9, we calculate

�(C) = n� �(C�) = n� � (cone(@f (x0))) � n� �(circ(x0,max
i

✓i )). (24)

Table 1: Concise models and their surrogates. For each norm k·k⇧, the third column describes the
range of achievable angles ✓. Larger cos✓ corresponds to a smaller Co , a larger C, and hence a
larger number of measurements required for reliable recovery.

Object Complexity Measure Relaxation cos2✓  = ncos2✓

Sparse x 2 Rn k = kxk0 kxk1 [ 1n ,
k
n ] [1, k]

Column-sparse x 2 Rn1⇥n2 c = #
n

j | xej , 0
o

P

j

�

�

�

xej
�

�

� [ 1
n2
, c
n2
] [n1, cn1]

Low-rank x 2 Rn1⇥n2 (n1 � n2) r = rank(x) kxk⇤ [ 1
n2
, r
n2
] [n1, rn1]
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Moreover, using the properties of statistical dimension, we are able to prove an upper
bound for the statistical dimension of circular cone, which improves the constant in exist-
ing results (Amelunxen et al., 2014; McCoy, 2013).

Lemma 11 �(circ(x0,✓))  nsin2✓ +2.

Finally, by combining (24) and Lemma 11, we have �(C) � nmini cos2✓i � 2. Using Corol-
lary 10, we obtain:

Theorem 12 (SONmodel.) Suppose the target signal x0 , 0. For each i-th norm (i 2 [K]),
define Li := sup

x,0 kxk(i) / kxk. Set

i =
nkx0k2(i)
L2i kx0k

2 = ncos2(✓i ), and  =min
i

i .

Then the statistical dimension of the descent cone of f at the point x0: � (C (f ,x0)) �  � 2, and
thus if the number of generic measurements m   � 2,

P [x0 is the unique optimal solution to (11)]  4exp
 

� ( �m� 2)
2

16( � 2)

!

. (25)

Consequently, for reliable recovery, the number of measurements needs to be at least
proportional to .4 Notice that  =mini i is determined by only the best of the structures.
Per Table 1, i is often on the order of the number of degrees of freedom in a generic object
of the i-th structure. For example, for a k-sparse vector whose nonzeros are all of the same
magnitude,  = k.

Theorem 12 together with Table 1 leads us to the phenomenon that recently discovered
by Oymak et al. (2012): for recovering objects with multiple structures, a combination
of structure-inducing norms tends to be not significantly more powerful than the best
individual structure-inducing norm. As we demonstrate, this general behavior follows a
clear geometric interpretation that the subdi↵erential of a norm at x0 is contained in a
relatively small circular cone with central axis x0.

Extension. Here we consider a slightly more general setup: a signal x0 2 Rn, after ap-
propriate linear transforms, has K low-dimensional structures simultaneously. These linear
transforms can be quite general, and could be either prescribed by experts or adaptively
learned from training data.

In specific, for any i in [K], there exists an appropriate linear transform Ai : Rn! Rmi

such that Ai [x0] follows a parsimonious model in Rmi (e.g. sparsity, low-rank). Let k·k(i)
be the penalty norms corresponding to the i-th structure (e.g. `1, nuclear norm). Based
on generic measurements collected, it is natural to recover x0 using the following sum-of-
composite-norms (SOCN) formulation

min
x2Rn

f (x) := �1 kA1[x]k(1) +�2 kA2[x]k(2) + · · ·+�K kAK [x]k(K) s.t. G[x] = G[x0], (26)

where G[·] is a Gaussian measurement operator, and � > 0. Essentially following the same
reasoning as above, a result similar to Theorem 12, stating a lower bound on the number
of generic measurements required, can be achieved:

4. E.g., if m = ( � 2)/2, the probability of success is at most 4exp(�( � 2)/64).
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Theorem 13 (SOCNmodel) Suppose the target signal x0 < \i2[K]null(Ai ). For each i 2 [K],
define Li = sup

x 2 Rmi \{0} kxk(i) / kxk. Set

i =
nkAix0k2(i)

L2i kAik2 kx0k2
, and  =min

i
i .

Then if m   � 2,

P [x0 is the unique optimal solution to (26)]  4exp
 

� ( �m� 2)
2

16( � 2)

!

. (27)

Remark 14 Clearly, Theorem 12 can be regarded as a special case of Theorem 13, where A0i s
are all identity operators.

3.2 Low-rank tensors

We can specialize Theorem 12 to low-rank tensors as follows: if the target signalX0 2 Tr ,
i.e. a K-mode n ⇥ n ⇥ · · · ⇥ n tensor of Tucker rank (r, r, . . . , r), then for each i 2 [K], k·k(i) :=
�

�

�(·)(i)
�

�

�⇤ is Li =
p
n-Lipschitz. Hence

 =min
i

⇢

�

�

�(X0)(i)
�

�

�

2
⇤ / kX0k2F

�

nK�1. (28)

The term mini
⇢

�

�

�(X0)(i)
�

�

�

2
⇤ / kX0k2F

�

lies between 1 and r, inclusively. For example, if X0 2
T1, then that term is equal to 1; ifX0 = [[C,U1, . . . ,UK ]] withU⇤iUi = I and C (super)diagonal
(C i1...ir = 1{i1=i2=···=ir }), then that term is equal to r. That exactly yields Theorem 7.

Empirical estimates of the statistical dimension. As noted in Theorem 12, the statis-
tical dimension of the descent cone �(C) plays a crucial role in deriving our lower bound
for the number of generic measurements. In the following, we will empirically justify our
theoretical result for �(C) under the setting of our interest, low-rank tensors.

Consider X0 as a K-mode n ⇥ n ⇥ · · · ⇥ n (super)diagonal tensor with only the first r
diagonal entries as 1 and 0 elsewhere. Clearly,X0 2 Tr , and Corollary 6, Theorem 12 and
expression (28) yield

�(C) := �

0

B

B

B

B

B

@

C
0

B

B

B

B

B

@

K
X

i=1

�

�

�X(i)
�

�

�⇤ , X0

1

C

C

C

C

C

A

1

C

C

C

C

C

A

� rnK�1 � 2, and �(C) =⇥(rnK�1). (29)

In the following, we will empirically corroborate (29) based on recent results developed in
statistical decision theory.

In order to estimate �(C), we construct a perturbed observation Z0 =X0 + �G, where
vec(G) is a standard normal vector and � is the standard deviation parameter. Then

X̂ := argmin
X
kZ0 �XkF s.t.

K
X

i=1

�

�

�X(i)
�

�

�⇤  Kr =
K

X

i=1

�

�

�(X0)(i)
�

�

�⇤ , (30)
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is computed as an estimate of X0. Due to the recent results from Oymak and Hassibi
(2013), the normalized mean-squared error (NMSE), defined as

NMSE(�) :=
E



�

�

�X̂ �X0
�

�

�

2
F

�

�2 , (31)

is a decreasing function over � > 0 and

�(C) := lim
�!0+

NMSE(�). (32)

Therefore, for small � , NMSE serves a good estimator for �(C). For more discussions on
related tensor denoising problems, see Appendix D.

In our experiment, we take � = 10�8 and for di↵erent triples of (K,r,n), we measure
the empirical NMSE averaged over 10 repeats. Dykstra’s Algorithm (see Appendix E.1) is
exploited to solve problem (30). The numerical outputs are presented in Figure 2, which
firmly conforms to the theoretical results displayed in (29).

4. A Better Convexification: Square Deal

The number of measurements promised by Corollary 6 and Theorem 7 is actually the same
(up to constants) as the number of measurements required to recover a tensorX0 which is
low-rank along just one mode. Since matrix nuclear normminimization correctly recovers
a n1 ⇥n2 matrix of rank r when m � Cr(n1 +n2) (Chandrasekaran et al., 2012), solving

minimize kX(1)k⇤ subject to G[X] = G[X0] (33)

also recoversX0 w.h.p. when m � CrnK�1.

This suggests a more mundane explanation for the di�culty with (10): the term rnK�1

comes from the need to reconstruct the right singular vectors of the n ⇥ nK�1 matrix X(1).
If we had some way of matricizing a tensor that produced a more balanced (square) matrix
and also preserved the low-rank property, we could remedy this e↵ect, and reduce the overall
sampling requirement. In fact, this is possible when the order K ofX0 is four or larger.

Square reshaping. For A 2 Rm1⇥n1 , and integers m2 and n2 satisfying m1n1= m2n2, the
reshaping operator reshape(A,m2,n2) returns an m2⇥n2 matrix whose elements are taken
columnwise from A. This operator rearranges elements in A and leads to a matrix of
di↵erent shape. In the following, we reshape matrix X(1) to a more square matrix while
preserving the low-rank property. Let X 2 Rn1⇥n2⇥···⇥nK . Select some j 2 [K]. Then we

12
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Figure 2: Lower bound for statistical dimension. Each red cross represents the empirical
estimate of �(C) for one particular triple (K,r,n). The blue curves fit the red dots based
on the relationship �(C) =⇥(rnK�1). In specific, in the left top (resp. left bottom) figure,
we fit the red crosses with a quadratic (resp. cubic) curve; and in the right figures, we
fit the red crosses with linear curves. Note that the red crosses fit pretty well with the
blue curves, which is consistent with our result that �(C) = ⇥(rnK�1). The blue curves
correspond to our lower bound rnK�1 � 2, which tightly lie below the red crosses. This
empirically corroborates the lower bound result �(C) � rnK�1 � 2.

define matrixX[j] as5

X[j] = reshape
✓

X(1),

j
Y

i=1

ni ,
K

Y

i=j+1

ni

◆

. (34)

5. One can also think of (34) as embedding the tensor X into the matrix X[j] as follows: Xi1,i2,··· ,iK =
⇣

X[j]
⌘

a,b
, where

a = 1+
j

X

m=1

0

B

B

B

B

B

@

(im � 1)
m�1
Y

l=1

nl

1

C

C

C

C

C

A

b = 1+
K
X

m=j+1

0

B

B

B

B

B

B

B

@

(im � 1)
m�1
Y

l=j+1

nl

1

C

C

C

C

C

C

C

A

.
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We can view X[j] as a natural generalization of the standard tensor matricization. When
j = 1, X[j] is nothing but X(1). However, when some j > 1 is selected, X[j] could become
a more balanced matrix. This reshaping also preserves some of the algebraic structures
of X. In particular, we will see that if X is a low-rank tensor (in either the CP or Tucker
sense),X[j] will be a low-rank matrix.

Lemma 15 (1) IfX has CP decompositionX =
Pr

i=1�ia
(1)
i �a

(2)
i � · · · �a

(K)
i , then

X[j] =
r

X

i=1

�i(a
(j)
i ⌦ · · ·⌦a

(1)
i ) � (a(K)

i ⌦ · · ·⌦a
(j+1)
i ). (35)

(2) IfX has Tucker decompositionX = C ⇥1U1 ⇥2U2 ⇥3 · · ·⇥K UK , then

X[j] = (Uj ⌦ · · ·⌦U1)C[j] (UK ⌦ · · ·⌦Uj+1)⇤. (36)

Using Lemma 15 and the fact that rank(A⌦B) = rank(A) rank(B), we obtain:

Lemma 16 Let ranktc (X) = (r1, r2, · · · , rK ), and rankcp (X) = rcp. Then rank(X[j])  rcp, and

rank(X[j]) min
⇢

Qj
i=1 ri ,

QK
i=j+1 ri

�

.

Thus, X[j] is not only more balanced but also maintains the low-rank property of the
tensorX, which motivates us to recoverX0 by solving

minimize
�

�

�X[j]
�

�

�⇤ subject to G[X] = G[X0]. (37)

Using Lemma 16 and (Chandrasekaran et al., 2012), we can prove that this relaxation
exactly recoversX0, when the number of measurements is su�ciently large:

Theorem 17 Consider a K-way tensor with the same length (say n) along each mode. (1) If
X0 has CP rank r, using (37) with j = dK2 e, m � Crnd

K
2 e is su�cient to recover X0 with high

probability. (2) If X0 has Tucker rank (r, r, · · · , r), using (37) with j = dK2 e, m � Crb
K
2 cnd

K
2 e is

su�cient to recoverX0 with high probability.

The number of measurementsO(rb
K
2 cnd

K
2 e) required to recoverX with square reshaping

(37), is always within a constant of the number O(rnK�1) with the sum-of-nuclear-norms
model, and is significantly smaller when r is small and K � 4. E.g., we obtain an im-
provement of a multiplicative factor of nbK/2c�1 when r is a constant. This is a significant
improvement.
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Low-rank tensor completion. We corroborate the improvement of square reshapingwith
numerical experiments on low-rank tensor completion (LRTC). LRTC attempts to recon-
struct the low-rank tensorX0 from a subset ⌦ of its entries. By imposing appropriate in-
coherence conditions, it is possible to prove exact recovery guarantees for both our square
model (Gross, 2011) and the SNN model (Huang et al., 2014) for LRTC. However, unlike
the recovery problem under Gaussian random measurements, due to the lack of sharp
bounds, it is more di�cult to establish a negative result for the SNN model (like Theo-
rem 7). Nonetheless, numerical results below clearly indicate the advantage of our square
approach, complementing our theoretical results established in previous sections.

We generate our four-way tensors X0 2 Rn⇥n⇥n⇥n as X0 = C0 ⇥1 U1 ⇥2 U2 ⇥3 U3 ⇥4 U4,
where C0 2 Rr1⇥r2⇥r3⇥r4 and Ui 2 Rni⇥ri for each i 2 [4] are constructed under the random
Gaussian models (by MATLAB command): each entry of C0, U1, U2, U3 and U4 is gener-
ated using randn(). The observed entries are chosen uniformly with ratio ⇢. We compare
the recovery performances between

minimizeX
K

X

i=1

kX(i)k⇤ subject to P⌦[X] = P⌦[X0], and (38)

minimizeX
�

�

�X{1,2}
�

�

�⇤ subject to P⌦[X] = P⌦[X0]. (39)

We fix (r1, r2, r3, r4) as (1,1,1,1) and (1,1,2,2) respectively. For each choice of (r1, r2, r3, r4),
we increase the problem size n from 10 to 30 with increment 1, and the observation ratio
⇢ from 0.01 to 0.2 with increment 0.01. For each (⇢,n)-pair, we simulate 10 test instances
and declare a trial to be successful if the recoveredX? satisfies

�

�

�X? �X0
�

�

�

F
/kX0kF  10�2.

The optimization problems are solved using e�cient first-order methods. Since (39)
is equivalent to standard matrix completion, we use the existing solver ALM (Lin et al.,
2010). For the sum of nuclear norms minimization (38), we implement the Douglas-
Rachford algorithm (see Appendix E.2 for details).

Figure 3 plots the fraction of correct recovery for each pair. Clearly, the square ap-
proach succeeds in a much larger region.

General reshaping. Our square reshaping can be generalized to group together any j
modes (say modes i1, i2, . . . , ij ) rather than the first j modes. Denote I = {i1, i2, . . . , ij } ✓ [K]

and J = [K]\I = {ij+1, ij+2, . . . , iK }. Then the embedded matrix XI 2 R
Qj

k=1 nik⇥
QK

k=j+1 nik can
be defined similarly as in (34) but with a relabeling preprocessing. In specific, for 1  k 
K , we relabel the k-th mode as the original ik-th mode. Regarding this relabeled tensorX,
we can define

XI :=X[j] = reshape
✓

X(1),

j
Y

k=1

nik ,
K

Y

k=j+1

nik

◆

. (40)

Lemma 16 and Theorem 17 can then also be easily extended. As suggested by Theorem 17
(after modification), to maximize the e↵ect of our square model, we would like to choose
I to minimize the quantity,

rank(XI ) ·max
⇢

j
Y

k=1

nik ,
K

Y

k=j+1

nik

�

. (41)
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Figure 3: Tensor completion with Gaussian random data. The colormap indicates the
fraction of instances that are correctly recovered for each (⇢,n)-pair, which in-
creases with brightness from 100% failure (black) to 100% success (white).

In practice, normally we do not know the exact rank of each mode, and hence (41) cannot
be computed directly. However, prior knowledege of the physical properties of the un-
derlying tensor can provide some guidance – e.g., in multi-spectral video data, the video
tensor tends to be low rank in both the wavelength and the temporal modes, so grouping
these two modes would lead to a natural low-rank matrix. Hence, practically, we should
set I by taking both the size and the physical characteristics of the true tensor into con-
sideration.
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Remark 18 Note that for tensors with di↵erent lengths or ranks, the comparison between SNN
and our square reshaping becomes more subtle. It is possible to construct examples for which
the square reshaping model does not have an advantage over the SNN model, even for K > 3.
Nevertheless, for a large class of tensors, our square reshaping is capable of reducing the number
of generic measurements required by the SNN model.

5. Conclusion

In this paper, we establish several theoretical bounds for the problem of low-rank tensor
recovery using random Gaussian measurements. For the nonconvex model (4), we show
that (2r)K+2nrK+1 measurements are su�cient to recover anyX0 2 Tr almost surely. For
the conventional convex surrogate sum-of-nuclear-norms (SNN) model (10), we prove a
necessary condition that⌦(rnK�1) Gaussian measurements are required for reliable recov-
ery. This lower bound is derived from our study of multi-structured object recovery in a
very general setting, which can be applied to many other scenarios (e.g. signal processing,
metric learning, computer vision). To narrow the apparent gap between the non-convex
model and the SNN model, we unfold the tensor into a more balanced matrix while pre-
serving its low-rank property, leading to our square reshaping model (37). We then prove
that O(rb

K
2 cnd

K
2 e) measurements are su�cient to recover a tensorX0 2 Tr with high proba-

bility. Though the theoretical results only pertain to Gaussian measurements, our numer-
ical experiments still suggest the square reshaping model outperforms the SNN model in
other settings. Compared with ⌦(rnK�1) measurements required by the SNN model, the
sample complexity, O(rb

K
2 cnd

K
2 e), required by the square reshaping (37), is always within

a constant of it, and is much better for small r and K � 4. Although this is a significant
improvement, in contrast with the nonconvex model (4), the improved sample complex-
ity achieved by the square model is still suboptimal. It remains an open and intriguing
problem to obtain near-optimal tractable convex relaxations for all K > 2.

Since the release of our work (Mu et al., 2013) online, we note that several interest-
ing models and algorithms have been proposed and analyzed, focusing on the low-rank
tensor completion (LRTC) problem. Oymak et al. (2014) extended the negative result for
the SNN model to more general sampling schemes. Yuan and Zhang (2014) analyzed the
tensor nuclear norm model (though not computationally tractable) and established bet-
ter sampling complexity result. Several other works – e.g. (Jain and Oh, 2014; Aswani,
2014), achieved better sample complexity using tractable methods by considering special
subclasses of low-rank tensors. In addition, many works in the field of numerical opti-
mization have designed e�cient methods to solve LRTC related non-convex models, e.g.
alternating minimization (Romera-Paredes et al., 2013; Xu et al., 2013), Riemannian op-
timization (Kressner et al., 2014), where empirical successes have been greatly witnessed.
Further analyzing these methods is an interesting problem for future research.

Putting our work in a broader setting, to recover objects with multiple structures, reg-
ularizing with a combination of individual structure-inducing norms is proven to be sub-
stantially suboptimal (Theorem 12 and also (Oymak et al., 2012)). The resulting sample
requirements tend to be much larger than the intrinsic degrees of freedom of the low-
dimensional manifold in which the structured signal lies. Our square model for low-rank
tensor recovery demonstrates the possibility that a better exploitation of those structures
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can significantly reduce this sample complexity (see also (Richard et al., 2013, 2014) for
ideas in this direction). However, there are still no clear clues on how to intelligently utilize
several simultaneous structures generally, and moreover how to design tractable methods
to recover multi-structured objects with near minimal numbers of measurements. These
problems are definitely worth future study.
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Appendix A. Proofs for Section 2

Proof of Lemma 3. The arguments we used below are primarily adapted from (Eldar
et al., 2012), where their interest is to establish the number of Gaussian measurements
required to recover a low rank matrix by rank minimization.

Notice that everyD 2 S2r , and every i, hG i ,Di is a standard Gaussian random variable,
and so

8 t > 0, P [ |hG i ,Di| < t ] < 2t · 1p
2⇡

= t

r

2
⇡
. (42)

Let N be an "-net for S2r in terms of k·kF . Because the measurements are independent, for
any fixed D̄ 2 S2r ,

P
h

�

�

�G[D̄ ]
�

�

�1 < t
i

<
⇣

t
p
2/⇡

⌘m
. (43)

Moreover, for any D 2 S2r , we have

kG[D ]k1 � max
D̄2N

n

�

�

�G[D̄ ]
�

�

�1 � kGkF!1
�

�

�D̄ �D
�

�

�

F

o

(44)

� min
D̄2N

n

�

�

�G[D̄ ]
�

�

�1

o

� " kGkF!1 . (45)

Hence,

P
"

inf
D2S2r

kG[D ]k1 < " log(1/")
#

 P


min
D2N
kG[D ]k1 < 2" log(1/")

�

+P [kGkF!1 > log(1/") ]

 #N⇥
⇣

2
p
2/⇡ ⇥ " log(1/")

⌘m
+P [kGkF!1 > log(1/") ]

 �d(2
p
2/⇡)m"m�d log(1/")m +P [kGkF!1 > log(1/") ] . (46)

Since m � d + 1, (46) goes to zero as "& 0. Hence, taking a sequence of decreasing ", we
can show that P

h

infD2S2r kG[D ]k1 = 0
i

 t for every positive t, establishing the result.

Proof of Lemma 4. This follows from the basic fact that for any tensor X and matrix U
of compatible size,

kX ⇥k UkF =
�

�

�UX(k)
�

�

�

F
 kUk

�

�

�X(k)
�

�

�

F
= kUk kXkF . (47)

Write
�

�

�[[C;U1, . . . ,UK ]]� [[C 0;U01, . . . ,U0K ]]
�

�

�

F


�

�

�[[C;U1, . . . ,UK ]]� [[C 0;U1, . . . ,UK ]]
�

�

�

F

+

�

�

�

�

�

�

�

K
X

i=1

[[C 0;U01, . . . ,U0i ,Ui+1, . . .Uk]]� [[C 0;U01, . . . ,U0i�1,Ui , . . .UK ]]

�

�

�

�

�

�

�

F


�

�

�C �C 0
�

�

�

F
+

K
X

i=1

�

�

�Ui �U0i
�

�

�

,

where the first inequality follows from triangle inequality and the second inequality fol-
lows from the fact that kCkF = 1,

�

�

�Uj

�

�

� = 1, U⇤iUi = I and U0i
⇤U0i = I.
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Proof of Lemma 5. The idea of this proof is to construct a net for each component of
the Tucker decomposition and then combine those nets to form a compound net with the
desired cardinality.

Denote C = {C 2 R2r⇥2r⇥···⇥2r | kCkF = 1} and O = {U 2 Rn⇥r | U⇤U = I}. Clearly, for
any C 2 C, kCkF = 1, and for any U 2 O, kUk = 1. Thus by (Vershynin, 2007, Prop. 4)
and (Vershynin, Lemma 5.2), there exists an "

K+1-net C
0 covering C with respect to the

Frobenius norm such that #C0  (3(K+1)
" )(2r)

K
, and there exists an "

K+1-net O0 covering O
with respect to the operator norm such that #O0  (3(K+1)

" )2nr . Construct

S02r = {[[C 0;U01, . . . ,U0K ]] | C 0 2C0 , U0i 2 O0}. (48)

Clearly #S02r 
⇣3(K+1)

"

⌘(2r)K+2nrK
. The rest is to show that S02r is indeed an "-net covering

S2r with respect to the Frobenius norm.
For any fixed D = [[C;U1, · · · ,UK ]] 2 S2r where C 2 C and Ui 2 O, by our constructions

above, there exist C 0 2 C0 and U0i 2 O0 such that
�

�

�C �C 0
�

�

�

F
 3(K+1)

" and
�

�

�Ui �U0i
�

�

�  3(K+1)
" .

Then D 0 = [[C 0;U01, · · · ,U0K ]] 2 S02r is within "-distance from D , since by the triangle in-
equality derived in Lemma 2, we have

�

�

�D �D 0
�

�

�

F
=

�

�

�[[C;U1, . . . ,UK ]]� [[C 0;U01, . . . ,U0K ]]
�

�

�

F


�

�

�C �C 0
�

�

�

F
+

K
X

i=1

�

�

�Ui �U0i
�

�

�  ". (49)

This completes the proof.

Appendix B. Proofs for Section 3

Proof of Corollary 10. Denote � = �(C)�m. Then following the result derived by Amelunxen
et al. (2014, Theorem 7.2), we have

P [C \null(G) = {0} ]  4exp
 

� �2/8
min{�(C),�(C�)}+�

!

(50)

 4exp
 

� �2/8
�(C) +�

!

 4exp
 

� (�(C)�m)2

16�(C)

!

.

Proof of Lemma 11. Denote circ(en,✓) as circn(✓), where en is the nth standard basis for
Rn. Since �

⇣

circ(x0,✓)
⌘

= �
⇣

circ(en,✓)
⌘

, it is su�cient to prove �
⇣

circn(✓)
⌘

 nsin2✓ +2.
Let us first consider the case where n is even. Define a discrete random variable V

supported on {0,1,2, · · · ,n} with probability mass function P [V = k ] = vk . Here vk denotes
the k-th intrinsic volumes of circn(✓). Then it can be verified (see Amelunxen, 2011, Ex.
4.4.8)

vk =
1
2

 1
2(n� 2)
1
2(k � 1)

!

sink�1(✓)cosn�k�1(✓) for k = 1,2, · · · ,n� 1. (51)
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From Prop. 5.11 of (Amelunxen et al., 2014), we know that

�
⇣

circn(✓)
⌘

= E [V ] =
n

X

k=1

P [V � k ] . (52)

Moreover, by the interlacing result (Amelunxen et al., 2014, Prop. 5.6) and the fact that
P [V � 2k ] = P [V � 2k � 1]�P [V = 2k � 1], we have

P [V � 1]  2P [V = 1] + 2P [V = 3] + · · ·+2P [V = n� 1] ,
P [V � 2]  P [V = 1] + 2P [V = 3] + · · ·+2P [V = n� 1] ;

P [V � 3]  2P [V = 3] + 2P [V = 5] + · · ·+2P [V = n� 1] ,
P [V � 4]  P [V = 3] + 2P [V = 5] + · · ·+2P [V = n� 1] ;

...
...

...

P [V � n� 1]  2P [V = n� 1] ,
P [V � n ]  P [V = n� 1] .

Summing up the above inequalities, we have

E [V ] =
n

X

k=1

P [V � k ] (53)


X

k=1,3,··· ,n�1
2(k � 1)vk +

X

k=1,3,··· ,n�1
3vk

 (n� 2)sin2✓ +
3
2

n
X

k=0

vk

 (n� 2)sin2✓ +
3
2

= nsin2✓ +2cos2✓ � 1
2
,

where the second last inequality follows from the observations that
P

k=1,3,··· ,n�1
k�1
2 ·(2vk) =

E
h

Bin(n�22 ,sin2✓)
i

and
Pn

k=0 vk �
P

k=1,3,··· ,n�1 2vk again by the interlacing result (Amelunxen
et al., 2014, Prop. 5.6).

Suppose n is odd. Since the intersection of circn+1(✓) with any n-dimensional linear
subspace containing en+1 is an isometric image of circn(✓), by Prop. 4.1 of (Amelunxen
et al., 2014), we have

�(circn(✓)) = �(circn(✓)⇥ {0})  �(circn+1(✓))  (n+1)sin2✓ +2cos2✓ � 1
2
 nsin2✓ + cos2✓ +

1
2
.

(54)

Thus, taking both cases (n is even and n is odd) into consideration, we have

�
⇣

circn(✓)
⌘

 nsin2✓ + cos2✓ +
1
2
< nsin2✓ +2. (55)
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Proof of Theorem 12. Notice that for any fixedm > 0, the function f : t! 4exp
✓

� (t�m)2
16t

◆

is decreasing for t � m. Then due to Corollary 10 and the fact that �(C) �  � 2 � m, we
have

P [x0 is the unique optimal solution to (11)] = P [C \null(G) = {0} ] (56)

 4exp
 

� (�(C)�m)2

16�(C)

!

 4exp
 

� ( �m� 2)
2

16( � 2)

!

.

Proof of Theorem 13. The argument for Theorem 12 can be easily adapted to prove The-
orem 13, with the following additional observation regarding the function kA[·]k⇧, where
k·k⇧ is a norm in Rm with dual norm k·k�⇧, and A : Rn ! Rm is a linear operator satisfying
A[x0] , 0. Essentially, we will next prove that @kA[·]k⇧ (x0) is contained in a circular cone,
which is analogous to (20).

For any u 2 @kA[·]k⇧ (x0), there exists a v 2 @k·k⇧ (A[x0]) such that u = A?
v. Thus we

have

cos(\(u,x0)) =
hu,x0i
kuk kx0k

=
hA⇤v,x0i
kA⇤vk kx0k

� hv,Ax0i
kAk kvk kx0k

. (57)

Define L := sup
x,0 kxk⇧ / kxk2, which implies that k·k⇧ is L-Lipschitz: kxk⇧  Lkxk for all x.

Then kvk  Lkvk�⇧ for all v as well. Thus, we have

cos(\(u,x0)) �
hv,Ax0i

LkAk kvk�⇧ kx0k
. (58)

Recall that

@k·k⇧ (x) = {v | hv,xi = kxk⇧ , kvk�⇧  1} . (59)

We can therefore further simplify

cos(\(u,x0)) �
kAx0k⇧

LkAk kx0k
, (60)

which is equivalent to saying

@kA[·]k⇧ (x0) ✓ circ(x0,✓), (61)

with ✓ := cos�1
⇣ kAx0k⇧
LkAkkx0k

⌘

.

Appendix C. Proofs for Section 4

C.1 Proof of Lemma 15.

Proof (1) By the definition of X[j], it is su�cient to prove that the vectorization of the
right hand side of (4.3) equals vec(X(1)).
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SinceX =
Pr

i=1�ia
(1)
i �a

(2)
i � · · · �a

(K)
i , we have

vec(X(1)) = vec
⇣

r
X

i=1

�ia
(1)
i � (a

(K)
i ⌦a

(K�1)
i ⌦ · · ·⌦a(2)i )

⌘

(62)

=
r

X

i=1

�ivec
⇣

a

(1)
i � (a

(K)
i ⌦a

(K�1)
i ⌦ · · ·⌦a(2)i )

⌘

=
r

X

i=1

�i(a
(K)
i ⌦a

(K�1)
i ⌦ · · ·⌦a(2)i ⌦a

(1)
i ),

where the last equality follows from the fact that vec(a�b) = b⌦a. Similarly, we can derive
that the vectorization of the right hand side of (4.3),

vec(
r

X

i=1

�i(a
(j)
i ⌦a

(j�1)
i ⌦ · · ·⌦a(1)i ) � (a(K)

i ⌦a
(K�1)
i · · ·⌦a(j+1)i )) (63)

=
r

X

i=1

�ivec
⇣

(a(j)i ⌦a
(j�1)
i ⌦ · · ·⌦a(1)i ) � (a(K)

i ⌦a
(K�1)
i · · ·⌦a(j+1)i )

⌘

=
r

X

i=1

�i(a
(K)
i ⌦a

(K�1)
i ⌦ · · ·⌦a(2)i ⌦a

(1)
i )

= vec(X(1)).

Thus, equation (4.3) is valid.

(2) The above argument can be easily adapted to prove the second claim. Since X =
C ⇥1U1 ⇥2U2 ⇥3 · · ·⇥K UK , we have

vec(X(1)) = vec
 

U1 C(1) (UK ⌦UK�1 ⌦ · · ·⌦U2)⇤
!

(64)

= (UK ⌦UK�1 ⌦ · · ·⌦U1) vec(C(1)),

where the last equality follows from the fact that vec(ABC) = (C⇤ ⌦A)vec(B). Similarly, we
can derive that the vectorization of the right hand side of (4.4),

vec
 

(Uj ⌦Uj�1 ⌦ · · ·⌦U1) C[j] (UK ⌦UK�1 ⌦ · · ·⌦Uj+1)⇤
!

(65)

= (UK ⌦UK�1 ⌦ · · ·⌦U1) vec(C[j])
= (UK ⌦UK�1 ⌦ · · ·⌦U1) vec(C(1))
= vec(X(1)).

Thus, equation (4.4) is valid.
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Appendix D. Tensor denoising

A classical problem in statistical inference is to estimate the target signal with Gaussian
perturbed observations. Here, we briefly discuss this denoising problem under the context
of low-rank tensors.

In specific, the target signal is a low-rank tensor (in terms of Tucker rank), sayX0 2 Tr ,
and we observeZ0 =X0+�G,where vec(G) is a standard norm vector and � is an unknown
standard deviation parameter. To estimate X0, a natural way is to solve the following
convex optimization problem6

bX⌧ := argmin
X
kZ0 �XkF s.t. f (X0)  ⌧, (67)

where f is a convex function promoting the low-rank tensor structure, and ⌧ > 0 balances
the structural penalty and the date fidelity term.

One way to evaluate the denoising performance of this convex regularizer f is to mea-
sure the minimax normalized mean-squared-error (NMSE) risks, defined as

Rmm (f , f (X0)) := sup
X02Tr ,�>0

1
�2E



�

�

�

bXf (X0) �X0
�

�

�

2
F

�

, (68)

Rmm (f ) := sup
X02Tr ,�>0

inf
⌧>0

1
�2E



�

�

�

bX⌧ �X0
�

�

�

2
F

�

, (69)

i.e. the risk corresponds to the normalized mean-squared error (NMSE) for either the fixed
oracle value ⌧ = f (X0) or the best tuned ⌧, at worst choices of the underlying signal X0
and the noise level � . Due to the general result proved by Oymak and Hassibi (2013,
Theorem 3.1), quantities in (68) and (69) are closely related with statistical dimension,

Rmm (f , f (X0)) = sup
X02Tr

� (C (f ,X0)) and Rmm (f ) = sup
X02Tr

� (C (f ,X0))�O(nK/2), (70)

where we recall that C (f ,X0) denotes the descent cone of f at the point X0. Based on
this result, we can easily characterize the Minimax MSE risks of several convex functions
f discussed in the paper (see Table 2). 7

To empirically verify the results in Table 2, we constructX0 as a 4-mode n⇥n⇥n⇥n (su-
per)diagonal tensor with only the first r diagonal entries as 1 and 0 elsewhere, and choose

6. Problem (67) is equivalent to its Lagrangian formulation

min
X

1
2
kZ0 �Xk2F +�f (X0) (66)

with a proper choice of � � 0.
7. For the SNNmodel (f =

P

i2[K]�i
�

�

�X(i)
�

�

�⇤), we also have �i ’s to choose, and so Rmm (f , f (X0)) and Rmm (f )
are instead naturally defined as

Rmm (f , f (X0)) := sup
X02Tr ,�>0

inf
�>0

1
�2E



�

�

�

bXf (X0) �X0
�

�

�

2
F

�

, (71)

Rmm (f ) := sup
X02Tr ,�>0

inf
⌧>0,�>0

1
�2E



�

�

�

bX⌧ �X0
�

�

�

2
F

�

. (72)
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Table 2: Minimax NMSE risks of di↵erent convex regularizers for the low-rank tensor
estimation. Note that the risks for the Single Norm model and the SNN model are essentially
on the same order, which is substantially higher than the one for the Square model. This can be
viewed as a dual phenomenon of our results (Theorem 7 and Theorem 17) regarding the exact low-
rank tensor recovery using generic measurements. Both of these two results arise from the study
on the statistical dimension of the descent cone of certain convex function f at the target signal x0.

Model Convex regularizer f (·) Rmm,f (X0)(f ) Rmm(f )

Single Norm
�

�

�X(1)
�

�

�⇤ ⇥(rnK�1) ⇥(rnK�1)

SNN
P

i2[K]�i

�

�

�X(i)
�

�

�⇤ ⇥(rnK�1) ⇥(rnK�1)

Square kX⇤k⇤ ⇥(rb
K
2 cnd

K
2 e) ⇥(rb

K
2 cnd

K
2 e)

� = 10�8. Convex regularizers f (·) listed in Table 2:
�

�

�X(1)
�

�

�⇤,
P

i2[K]

�

�

�X(i)
�

�

�⇤, and kX⇤k⇤, are
respectively tested. For di↵erent pairs (r,n), we compute the empirical NMSE by averaging
1
�2

�

�

�

bXf (X0) �X0
�

�

�

2
F
over 10 repeats. Curves are fitted based on the complexities displayed

in Table 2. It can be clearly observed that the obtained curves fit the empirical NMSE quite
tightly.
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Figure 4: Tensor denoising. Each cross corresponds to the empirical estimate of NMSE for
a (r,n)-pair. Di↵erent colors are used to indicate di↵erent convex models. The blue
dashed lines are fitted using polynomials consistent with the complexities displayed in
Table 2.
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Appendix E. Algorithms

Here, we briefly describe the first-order methods we designed for tensor optimization
problems involved in the paper. 8

E.1 Dykstra’s Algorithm for (30)

By splittingX into {Xi}i2[K], problem (30) can be reformulated as

min
{Xi }i2[K]

X

i2[K]

�

�

�Z0 �X(i)
�

�

�

2
F

s.t.
X

i2[K]

�

�

�(Xi )(i)
�

�

�⇤  ⌧ := Kr (73)

X1 =X2 = · · · =XK 2 Rn⇥n⇥···⇥n.

This is essentially to compute PC1\C2[z0]: the projection of z0 := (Z0,Z0, · · · ,Z0)
|              {z              }

K

onto

the intersection of two closed convex sets C1 and C2 in the Hilbert space H, where H :=
⇣

i2[K]R
n⇥n⇥···⇥n and

C1 :=

8

>

>

>

<

>

>

>

:

(X1,X2, · · · ,XK ) 2H

�

�

�

�

�

�

�

�

X

i2[K]

�

�

�(Xi )(i)
�

�

�⇤  ⌧

9

>

>

>

=

>

>

>

;

, (74)

C2 := {(X1,X2, · · · ,XK ) 2H | X1 =X2 = · · · =XK } . (75)

As both PC1[·] andPC2[·] have closed form solutions that can be easily computed, we apply
Dykstra’s algorithm (see Bauschke and Combettes, 2011, Chap. 29.1) to tackle problem
(30).

Algorithm 1 Dykstra’s algorithm for problem (30)

1: Initialization: z(0) (Z0,Z0, · · · ,Z0) 2H, q(�1) 0 2H, q(0) 0 2H;
2: for n 1,2, . . . do
3: if 2 | n then
4: z

(n) PC2[z(n�1) + q

(n�2)] ;
5: q

(n) z

(n�1) + q

(n�2) � z(n);
6: else
7: z

(n) PC1[z(n�1) + q

(n�2)] ;
8: q

(n) z

(n�1) + q

(n�2) � z(n);
9: end if

10: end for

For the sequence {z(n)} generated by Algorithm 1, its convergence to the optimal so-
lution of problem (30) follows directly from Theorem 29.2 of the book by Bauschke and
Combettes (2011).

8. MATLAB codes are available on CM’s personal website: https://sites.google.com/site/mucun1988/.
MATLAB Tensor Toolbox (Bader and Kolda, 2015) has been utilized in our implementation.
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E.2 Douglas-Rachford Algorithm for problem (38)

By splittingX into {Xi}i2[K+1], problem (38) can be reformulated as

min
{Xi }i2[K+1]

X

i2[K]

�

�

�(Xi )(i)
�

�

�

⇤

s.t. P⌦[XK+1] =M (76)
X1 =X2 = · · · =XK+1 2 Rn⇥n⇥···⇥n.

If we denote x := (X1,X2, · · · ,XK+1) 2 H :=
⇣

i2[K+1]R
n⇥n⇥···⇥n, then problem (76) can be

compactly expressed as

min
x2H

F(x) +G(x), (77)

where

F(x) :=
X

i2[K]

�

�

�(Xi )(i)
�

�

�

⇤ + 1{P⌦ [XK+1]=M}, (78)

G(x) := 1{X1=X2=···=XK+1}, and (79)

here the indicator function for a set C, 1C(x), equals 0 if x 2 C and +1 otherwise. Note
that the proximity operators of F and G, i.e.

proxF(x) := argmin
y2H

F(y) +
1
2

�

�

�

x � y
�

�

�

2
and (80)

proxG(x) := argmin
y2H

G(y) +
1
2

�

�

�

x � y
�

�

�

2
(81)

can be both easily computed. Therefore, it is quite suitable to apply the Douglas-Rachford
algorithm here (see Combettes and Pesquet, 2011, for more details).

Algorithm 2 Douglas-Rachford algorithm for problem (38)

1: Initialization: x(0) 0 2H;
2: for n 0,1,2, . . . do
3: y

(n) proxG(x
(n));

4: x

(n+1) proxF(2y
(n) � x(n)) + x

(n) � y(n);
5: end for
6: Output proxG(x

(n+1));
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