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Abstract

We consider the problem of recovering a target matrix that is a superposition of low-rank and
sparse components, from a small set of linear measurements. This problem arises in compressed
sensing of structured high-dimensional signals such as videos and hyperspectral images, as well
as in the analysis of transformation invariant low-rank structure recovery. We analyze the
performance of the natural convex heuristic for solving this problem, under the assumption that
measurements are chosen uniformly at random. We prove that this heuristic exactly recovers
low-rank and sparse terms, provided the number of observations exceeds the number of intrinsic
degrees of freedom of the component signals by a polylogarithmic factor. Our analysis introduces
several ideas that may be of independent interest for the more general problem of compressed
sensing and decomposing superpositions of multiple structured signals.

1 Introduction

In recent years, there has been tremendous interest in recovering low-dimensional structure in high-
dimensional signal or data spaces. This interest has been fueled by the striking discovery that
efficient techniques based on convex programming can accurately recover low-complexity signals
such as sparse vectors or low-rank matrices from severely compressive, incomplete, or even corrupted
observations.

One representative example arises in Robust Principal Component Analysis (RPCA). There, the
goal is to recover a low-rank matrix L0 from grossly corrupted observations. For example, suppose
we observe M = L0 + S0, where S0 is a sparse error. Under mild conditions, the following convex
program, called Principal Component Pursuit (PCP) [CLMW11, CSPW11]:

minimize ‖L‖∗ + λ‖S‖1 subject to L+ S = M , (1.1)

precisely recovers L0 and S0. In (1.1), ‖ · ‖∗ is the matrix nuclear norm (sum of singular values)
and ‖ · ‖1 is the `1 norm (sum of magnitudes). For data analysis applications, this suggests that a
low-rank matrix L0 can be recovered from the observation M despite large-magnitude sparse errors.
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This result has been extended and generalized in a number of directions: to include additional small
dense noise M = L0 +S0 +N [ZLW+10], large fractions of random errors S0 [GLW+10], and even
column-sparse or row-sparse errors [XSC11, MT11].

The conditions under which recovery is known to occur are broad: provided the low-rank term
satisfies a technical incoherence condition, correct recovery can occur even when rank(L0) almost
proportional to dimension of the matrix M , and the number of nonzero entries in S0 is proportional
to the number of entries in M [CLMW11]. On the other hand, in many applications of interest,
the rank may actually be significantly smaller than dimension (say 3 [WGS+10], or 9 [BJ03]).
Moreover, cardinality of the sparse term may also be quite small. In such a situation our number
mn of observations could be extravagantly large compared to the number degrees of freedom in the
unknowns L0,S0. Is it possible to recover L0 and S0 from smaller sets of linear measurements?

1.1 Compressive RPCA

The low-rank and sparse model described above captures properties of many signals of interest,
including foreground and background in video surveillance [CLMW11], videos [PGW+12, SA11],
structured textures [ZGLM12], hyperspectral datacubes [WSB11, GV11] and more. The ability to
recover low-rank and sparse models from small sets of linear measurements could be very useful
for developing new sensing architectures for such signals [Don06, WSB11]. Mathematically, our
observations have the form

D
.
= PQ[M ] = PQ[L0 + S0], (1.2)

where Q ⊆ Rm×n is a linear subspace, and PQ denotes the projection operator onto that sub-
space. Can we simultaneously recover the low-rank and sparse components correctly from highly
compressive measurements via the natural convex program

minimize ‖L‖∗ + λ‖S‖1 subject to PQ[L+ S] = D ? (1.3)

While this question is largely open, there is good reason to believe the answer may be positive. For
example, [CLMW11, Li11, CJSC13] have studied the “robust matrix completion” problem, with
PQ = PΩ, where Ω is a small subset of the entries of the matrix. When PQ = PΩ, it is impossible to
exactly recover S0 (many of the entries are simply not observed!), but the low-rank term L0 can be
recovered from near-minimal sets of samples [Li11]. Moreover, Chen et. al. have shown that in this
setting a small number of deterministic errors can simultaneously be corrected [CJSC13]. However,
in many applications the sparse term S0 is actually the quantity of interest: for example, in visual
surveillance, S0 might capture moving foreground objects. To recover both L0 and S0, we must
require measurements Q that are incoherent with both the low-rank and the sparse term.

In this paper, we investigate the performance of (1.3) when Q is a randomly chosen subspace,
(incoherent with L0 and S0 with high probability). As the simulation results in Figure 2 suggest, as
long as the rank and sparsity are low enough, we can expect the convex program to correctly recover
both the low-rank and sparse components from a reduced set of random linear measurements. A
similar recovery problem was recently considered by [WSB11], again, with the goal of designing
sensing strategies capable of recovering both L0 and S0. We will discuss the results of [WSB11] and
other related works in more detail in Section 3, after we have stated our main result.
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(a) The input image with initial region of interest
(red box), and the recovered transformation that
aligns it to a canonical frame (green box)

(b) The region in the canonical frame (green box)
which can be viewed as a low-rank matrix.

Figure 1: Transform Invariant Low-rank Texture [ZGLM12] utilizes the Transformed RPCA
formulation.

1.2 Transformed RPCA

Aside from the perspective of compressive sensing, there are many other practical scenarios that
require recovering a low-rank matrix from partial, incomplete, or corrupted measurements. One
example is when the given data is a transformed version of the low-rank and sparse matrices:

M ◦ τ = L0 + S0, (1.4)

where τ is an unknown nonlinear transformation from some continuous group G. The goal is to
simultaneously recover L0,S0 and τ fromM . One can view this as a “transformed RPCA” problem.
The constraint (1.4) is often highly nonlinear. One popular approach is to linearize the measurements
against parameters of the transformation:

M ◦ τ + J [∆τ ] ≈ L0 + S0,

where J is the Jacobian of M ◦ τ against of τ . We can then solve for an increment ∆τ = τk+1 − τk
in the transformation parameters via the convex program:

minimizeL,S,∆τ ‖L‖∗ + λ‖S‖1 subject to M ◦ τk + J [∆τ ] = L+ S. (1.5)

Mathematically, this program is equivalent to (1.3). To see this, let Q be the orthogonal com-
plement to the range of J , so that PQJ = 0. Let

D
.
= PQ[M ◦ τ + J [∆τ ]] = PQ[M ◦ τ ] ≈ PQ[L0 + S0].

After ∆τ is eliminated in this way, the problem now becomes recovering the low-rank and sparse
components from D:

minimizeL,S ‖L‖∗ + λ‖S‖1 subject to D = PQ[L+ S], (1.6)

which has the same form as above.
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Empirically, this iterative linearization scheme performs well in applications such as aligning mul-
tiple images [PGW+12] and rectifying low-rank textures [ZGLM12], see Figure 1 for an illustration.
Hence, it is important to understand under what conditions we should expect the associated convex
program to perform correctly. However, there are some important differences from the compressive
sensing scenario:

1. In the transformed RPCA case, we often are dealing with a finite dimensional deformation
group G whose dimension, say p, is either fixed (as in [ZGLM12]) or grows very slowly compared
to the number of entries in the matrix (as in [PGW+12]).

2. Unlike compressive sensing where the measurement operator PQ(·) can be arbitrarily chosen,
here it is determined by the given data and the associated transformation group. We can no
longer model it as a random projection. Hence, we hope to have deterministic conditions which
can be directly verified with the given data.

1.3 Compressive Sensing of Decomposable Components

From both the compressive and transformed RPCA problems, we see the need to understand under
what conditions we should expect to correctly recover the low-rank and sparse components from
compressive or partial measurements: D = PQ[L0 + S0]. In particular, we are interested in when
the convex program:

minimize ‖L‖∗ + λ‖S‖1 subject to D = PQ[L+ S], (1.7)

finds the correct solution L0 and S0. Following the terminology of [CLMW11], in this paper we
refer to this convex program as Compressive Principal Component Pursuit (CPCP).

One fundamental question is how many measurements q are needed for the above program (1.7)
to correctly recover L0 and S0. Ideally, this number should be related to the number of intrinsic
degrees of freedom in (L0,S0). If the rank r of L0 is known, we can fully specify L0 using (m+n−r)r
real numbers. So, we can consider L0 to have (m+ n− r)r degrees of freedom. S0 is slightly more
complicated: to specify it, we need to specify both its support Ω, and the ‖S0‖0 real values of S0

on its support.1 Our bounds will only explicitly depend on the second quantity, ‖S0‖0, which we
can consider to be the number of “real degrees of freedom” in S0. We can define a quantity which
counts these real degrees of freedom:2

#degrees of freedom(L0,S0)
.
= (m+ n− r)r + ‖S0‖0 . (1.8)

Intuitively, the best we can possibly hope for is a number of measurements q on this order. We will
show that when the measurements are random (say Gaussian), the desired (L0,S0) can indeed be
exactly recovered from a number of measurements that is close to this lower bound. Provided

#measurements ≥ O(log2m)×#degrees of freedom(L0,S0),

1Recall that ‖M‖0 is the number of nonzero entries in a matrix M .
2To be more precise, this quantity is the dimension of the setM of all pairs (L0,S0) consisting of a rank r matrix

L0 and a ‖S0‖0-sparse matrix S0, which is a union of manifolds. As our goal in this section is to describe our results
qualitatively and give the reader an intuitive feeling for why they are nearly optimal, we simply define the quantity
number #degrees of freedom as in (1.8), and delay a more general and rigorous treatment to Section 4.
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the compressive principal component pursuit program (1.7) correctly recovers this pair with very
high probability. This bound is nearly optimal, differing from this hard lower bound by only a
polylogarithmic factor.

Our analysis actually pertains to a more general class of problems, in which we seek to decompose
a given observation into multiple incoherent components:

minimize
∑
i

λi ‖Xi‖(i) subject to
∑
i

Xi = M . (1.9)

Here, ‖ · ‖(i) are norms that encourage various types of low-complexity structure. Principal Compo-
nent Pursuit [CLMW11, CSPW11], Outlier Pursuit [XSC11, MT11] and Morphological Component
Analysis [BSE07] are all special cases of this general problem. Roughly speaking, our analysis will
suggest that, if the above program succeeds in recovering all the components {Xi} from M , one
should also expect to recover them from the highly compressive measurements PQ[M ]. The number
of measurements required is again governed by the intrinsic degrees of freedom in the components
{Xi}, times at most a polylog(m) oversampling factor. These notions will be made precise in Section
4 below. Because of this additional generality, the results in this paper are potentially applicable
to a broad class of source separation or signal decomposition problems that may arise in signal
processing, communications, and pattern recognition.

The remainder of this paper is organized as follows. In Section 2, we first introduce the precise
mathematical model and present the main result of the paper, as well as extensions to nonvanishing
error fractions and deterministic observation operators. In Section 3, we discuss the implications of
our results and their relationships with existing work in the literature. Section 4 discusses the more
general setting of (1.9) and lays out the framework of our analysis. The remaining sections complete
the proof of our main result.

2 Models and Main Results

Our main technical contribution is a procedure for producing a certificate of optimality for (L0,S0)
for the Compressive Principal Component Pursuit problem, given that the pair is optimal for Princi-
pal Component Pursuit. In this sense, our mathematical approach is modular – it partially decouples
the analysis of the the compressive measurements from the analysis of the core low-rank and sparse
recovery problem. Combining with existing models and analyses of PCP, we can prove that the pair
(L0,S0) is indeed recoverable by the convex optimization.

We first recall conditions under whichM = L0+S0 can be exactly separated into its constituents,
by PCP. Intuitively, we should not expect to recover all possible low-rank pairs and sparse pairs
(L0,S0). Indeed, imagine the case when M is rank-one and one-sparse (i.e., M = eie

∗
j for some

i, j). In this situation the answers (L = eie
∗
j ,S = 0) and (L = 0,S = eie

∗
j ) both seem reasonable

– the decomposition problem is ambiguous!
To make the problem meaningful, we need conditions that ensure that (i) the low-rank term L0

does not “look sparse” and (ii) the sparse term S0 does not “look low-rank.” One popular way
formalizing the first intuition of doing this is via the notion of incoherence introduced by [CR08]. If
the low-rank matrix L0 has rank-reduced singular value decomposition L0 = UΣV ∗, then we say
that L0 is µ-incoherent if

∀ i ‖U∗ei‖22 ≤
µr

m
, ∀ j ‖V ∗ej‖22 ≤

µr

n
, and ‖UV ∗‖∞ ≤

√
µr

mn
. (2.1)
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Intuitively, these conditions ensure that the singular vectors of L0 are not too concentrated on only a
few coordinates – the singular vectors do not “look sparse.” For further discussion of the implications
of this condition, we refer the reader to [CR08].

At the same time, we need to ensure that the sparse term does not “look low-rank.” One
appealing way of doing this is via a random model: we assume that each (i, j) is an element of
supp (S0) independently with probability ρ bounded by some small constant. We assume that
the signs of the nonzero entries are independent symmetric ±1 random variables (i.e., Rademacher
random variables). In stating our theorems, we call such a distribution an “iid Bernoulli-Rademacher
model.”

Thus far, we have discussed only the low-rank and sparse terms, but not the properties of
the measurements Q. We state a result for Q chosen uniformly at random from the set of all q-
dimensional subspaces of Rm×n. More precisely, Q is distributed according to the Haar measure on
the Grassmannian G(Rm×n, q). On a more intuitive level, this means that Q is equal in distribution
to the linear span of a collection of q independent iid N (0, 1) matrices. In notation more familiar
from compressed sensing, we may letQ1, . . . ,Qq denote such a set of matrices, and define an operator
Q : Rm×n → Rq via

Q[M ] =
(
〈Q1,M〉 , . . . ,

〈
Qq,M

〉)∗ ∈ Rq. (2.2)

Our analysis also pertains to the equivalent convex program:

minimize ‖L‖∗ + λ ‖S‖1 subject to Q[L+ S] = Q[L0 + S0]. (2.3)

Since Q has full rank q almost surely, (2.3) and (1.7) are completely equivalent.
With these assumptions, the following theorem gives a tight bound on the number of (random)

measurements required to correctly recover the pair (L0,S0) from PQ[M ] via CPCP:

Theorem 2.1 (Compressive PCP Recovery). Let L0,S0 ∈ Rm×n, with m ≥ n, and suppose
that L0 6= 0 is a rank-r, µ-incoherent matrix with

r ≤ crank n

µ log2m
, (2.4)

and sign (S0) is iid Bernoulli-Rademacher with nonzero probability ρ < csparse. Let Q ⊂ Rm×n be a
random subspace of dimension

dim(Q) ≥ Cmeas · (ρmn+mr) · log2m (2.5)

distributed according to the Haar measure, probabilistically independent of sign(S0). Then with
probability at least 1− Cm−9 in (sign(S0), Q), the solution to

minimize ‖L‖∗ + λ ‖S‖1 subject to PQ[L+ S] = PQ[L0 + S0] (2.6)

with λ = 1/
√
m is unique, and equal to (L0,S0). Above, crank, csparse, Cmeas, and C are positive

numerical constants.

Here, the magnitudes of the nonzeros in S0 are arbitrary, and no randomness is assumed in
L0. The randomness in our this result occurs in the sign and support pattern of S0 and in the
measurements Q. We note in passing that the randomness in the signs of S0 can be removed using
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the techniques of [CLMW11] Sections 2.1-2.2. For interested readers, Appendix D sketches this
argument.

The bounds on r and ρ essentially match those of [CLMW11] for the fully observed case, possibly
with different constants. So, again, r and ‖S0‖0 can be rather large. On the other hand, when these
quantities are small, the bound on dim(Q) ensures that the number of measurements needed for
accurate recovery is also commensurately small. As we will describe in more detail in Section 4, this
result is obtained via general arguments that can also be applied to other decomposition problems.

Two Extensions: Many Errors, Deterministic Q. When the number of errors is very large
– say, ρ = Ω(1) and so a constant fraction of the entries are grossly corrupted – the bound (2.5)
in Theorem 2.1 becomes trivial. Indeed, (2.5) is only meaningful when ρ = O(1/ log2m). Using
a very different argument, which is specific to the Compressive PCP problem, one can also show
that it is possible to correct constant fractions of errors (ρ = Ω(1)), with reduced sets of random
measurements Q [GMWM12]. The price is that the reduction in measurements may be rather small
– that work show successful recovery when the codimension p = dim(Q⊥) satisfies p < Cn for an
appropriate constant C. From the compressed sensing perspective, this result does not imply strong
savings: the number of measurements required is still on the order of mn. However, compared to
the argument for Theorem 2.1, the proof of this result is much easier to derandomize.

Derandomizing the arguements and assumptions is important for the transformed low-rank re-
covery problem, since for that problem, the subspace Q is not random and actually depends on
L and S. Using arguments of [GMWM12], it is possible to show that if the rank r is small (say
r = o(n1/3)), and Q⊥ is not too coherent with low-rank matrices (i.e., it has a basis whose elements
all have small operator norm), then correct recovery is possible. In the application to transformed
low-rank recovery, Q⊥ = span(J ) is the linear span of the Jacobian operator with respect to the
transformation parameters. To first order, this is the subspace along which we can move, by trans-
forming the given image or images. The operator incoherence condition on Q⊥ can be viewed as
asserting that this subspace does not contain any approximately low-rank matrices. We view this
result as a step towards a rigorous characterization of when transformed low-rank recovery is possi-
ble, at least locally. Readers interested in the details of this these results may refer to the technical
report [GMWM12].

Notation. Bold uppercase letters A,B, . . . denote matrices. Bold lowercase letters x,y denote
vectors. Script uppercase letters A,B, . . . denote operators on matrices. In particular, if S ⊂ Rm×n
is a linear subspace, we will let PS denote the orthogonal projection onto S. The notations C, c will
always refer to numerical constants. When used in different sections they may not refer to the same
constant. All logarithms are base-e. When applied to subsets of a vector space, “+” will denote
Minkowski summation, i.e., A+B = {a+ b | a ∈ A, b ∈ B}.

Definition 2.2. We will say that subspaces S1, . . . , Sk are independent if

dim(S1 + · · ·+ Sk) = dim(S1) + · · ·+ dim(Sk).

For a matrix M , we will let ‖M‖2,2 denote the `2 operator norm. For a linear operator A :

Rm×n → Rm′×n′ , we will let ‖A‖F,F = sup‖X‖F≤1 ‖AX‖F denote the operator norm induced by
the Frobenius norm.
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3 Relationship to the Literature

As mentioned above, in recent years there has been a large amount of work on matrix recovery and
decomposition, for example see [CLMW11, CSPW11, ZLW+10, GLW+10, XSC11, MT11, ANW11,
HKZ11] and references therein. The aforementioned works mostly pertain to the case when the
matrix M is fully observed, and hence are not directly comparable to our result. In Section 4,
we will see that our analysis gives a tool for transforming a certificate of optimality for the fully
observed problem into a certificate of optimality for the compressive problem. Because this technique
is modular, it may be possible to apply it in conjunction with the aforementioned works to prove
correct recovery under different assumptions, and even with different regularizers.

Compared to the fully observed problem, there is much less dedicated work on low-rank and
sparse recovery from compressive measurements. Recently, motivated by applications in compressive
foreground and background separation and compressive hyperspectral image acquisition, [WSB11]
introduced a greedy algorithm for this problem, which aims at the objective function

minimizeL,S ‖D − PQ[L+ S]‖F subject to rank (L) ≤ r, ‖S‖0 ≤ k. (3.1)

Their algorithm is similar in spirit to the CoSaMP algorithm of [NT08] for recovering sparse sig-
nals, and performs well on numerical examples. Analyzing its behavior theoretically and proving
performance guarantees is currently an open problem.

As mentioned in the introduction, there is dedicated theoretical work analyzing matrix recovery
problems with both sparse errors and missing entries [CLMW11, Li11, CJSC13]. These works use
an entry-wise sampling model that is different from the one considered in [WSB11] and here. That
model is very sensible for problems in collaborative filtering, but may not be as useful for compressive
sensing, because it does not allow the recovery of the sparse error term. Because the undersampling
model assumed in [CLMW11, Li11, CJSC13] is different from the one considered here, these results
are not strictly comparable to ours. It is worth noting that both [Li11] and [CJSC13] prove that the
low-rank component L0 and the observed part of the sparse component S0 can be recovered from a
near minimal number of observed entries. This finding is similar in spirit to our observation that
L0 and the entire sparse component S0 can be recovered from a near minimal number of random
projections, although the details differ.

As the body of results on specific problems such as matrix recovery grows, there has been
an increasing interest in unifying or generalizing the basic insights obtained from studying special
cases. A number of groups have produced results that pertain to general structured regularizers. For
example, Negahban et. al. [NRWY10] have introduced a general geometric framework for analyzing
low-complexity signal recovery, highlighting the role of the regularizer in overcoming a lack of strong
convexity in the loss. Agarwal et. al. [ANW11] use this framework to analyze sparse and low-rank
decomposition, and have obtained tight results for estimation in noise, stronger than previously
known results by [ZLW+10]. Their analysis proceeds under different (weaker) assumptions, which
preclude exact recovery.

In a similar vein, Chandrasekaran et. al. [CRPW10] have recently produced a very general analysis
of structured signal recovery with Gaussian measurements. That work exploits the geometry of the
atomic norm ball – in particular, relating the required number of measurements to the Gaussian
width of the tangent cone at the desired solution. Based on this, they give tight bounds on the
number of measurements needed to recover a low-rank matrix or sparse vector. However, once the
atomic set contains both low-rank and sparse matrices, it is less clear how to analyze the Gaussian
width of the tangent cone. Indeed, the non-trivial analysis in [CLMW11, CSPW11] can be viewed
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as simply showing that the desired solution lies on the boundary of the norm ball. Estimating the
width of the tangent cone at that point seems to entail additional analytical difficulty.

For Gaussian measurements, the recent work of Candès and Recht [CR11] also gives simple
bounds for exact recovery, under the assumption that the regularizer (or norm) is decomposable. If
we wished to apply similar analysis to our problem, we would need to work with the quotient norm
on M :

‖M‖�
.
= inf

L+S=M
‖L‖∗ + λ‖S‖1. (3.2)

This is the infimal convolution of two decomposable terms. Its subdifferential has a number of
nice properties which we will exploit in our analysis, but decomposability (in the sense of [CR11])
does not appear to be one of them. Nevertheless, the results in this paper show that under suitable
conditions, we should expect the same type of compressive sensing results for this class of generalized
norms for superpositions of low-complexity components.

In this paper, we generalize the analysis of decomposable regularizers to their sums (or strictly
speaking infimal convolutions) and obtain nearly optimal bounds on the required number of measure-
ments for exact recovery and decomposition of low-complexity components via convex optimization.
In particular, our results provide strong theoretical justification for conducting robust principal
component analysis with highly compressive measurements.

4 General Certificate Upgrades

In this section, we present the technical result used to obtain Theorem 2.1 above. As promised,
this result will have implications for compressive variants of a large number of conceivable signal
decomposition problems. In full generality, we can imagine that the fully observed data M are given
as a sum of structured terms:

M = X1 +X2 + · · ·+Xτ , (4.1)

where each Xi satisfies a low-complexity model such as sparsity or rank-deficiency, possibly also
including more exotic types of structured sparsity [Bac10]. For each type of structure, we have a cor-
responding regularizer ‖ · ‖(i). The natural convex heuristic for decomposing M into its components
would solve

minimize
∑
i

λi ‖Xi‖(i) subject to
∑
i

Xi = M , (4.2)

where the λi > 0 are scalar weight factors. Many authors have studied special cases of this problem,
and given conditions under which correct decomposition occurs. A prime example is Principal
Component Pursuit; others include Outlier Pursuit [XSC11, MT11] and Morphological Component
Analysis [BSE07].

The goal of this paper is not to study (4.2) per se, but rather to understand what happens to
it when we only observe compressive measurements of M (or when M itself is subject to some
transformation):

minimize
∑
i

λi ‖Xi‖(i) subject to PQ

[∑
i

Xi

]
= PQM . (4.3)

Suppose we know that (4.2) correctly decomposes M into X1, . . . ,Xτ . Does this imply that (4.3)
can also recover X1, . . . ,Xτ? At a slightly more technical level, we can ask whether a certificate
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of optimality for the decomposition problem (4.2) can be refined to also certify optimality for the
compressive decomposition problem (4.3). Theorem 4.7 below will imply that this is true under
broad circumstances. Provided we have proved optimality for (4.2), we can move to optimality for
(4.3), as long as the number of measurements dim(Q) is sufficiently large. In this sense, our analysis
is modular: any technique can be used to perform the analysis of the original decomposition problem,
provided it constructs an (approximate) dual certificate.

Duality and Optimality. Our result pertains to a class of decomposable norms ‖ · ‖(i) [NRWY10,
CR11]. This notion includes many sparsity inducing norms, such as the `1 norm and nuclear norm
(as above), as well as sums of block `p norms.

Definition 4.1. We say that a norm ‖ · ‖ is locally decomposable at X if there exists a subspace
T and a matrix S such that

∂‖ · ‖(X) = {Λ | PTΛ = S, ‖PT⊥Λ‖∗ ≤ 1} , (4.4)

where ‖ · ‖∗ denotes the dual norm of ‖ · ‖, and PT⊥ is nonexpansive with respect to ‖ · ‖∗.

For example, the `1 norm satisfies this definition with

T = supp (X) ,

S = sign (X) ,

T⊥ = (supp (X))c.

For X with compact singular value decomposition X = UΣV T , the nuclear norm satisfies
Definition 4.1 with

T =
{
UP +QV T | P ∈ Rr×n,Q ∈ Rm×r

}
,

S = UV T ,

T⊥ =
{
M | UTM = 0,MV = 0

}
.

Finally, if Ω1 . . .Ωk are a disjoint partition of {1 . . .m} × {1 . . . n}, the group sparse norm

‖X‖ =

k∑
i=1

‖PΩiX‖F

satisfies Definition 4.1. Indeed, let I = {i | PΩiX 6= 0}. Then in Definition 4.1, we can set

T =
{
X | PΩj [X] = 0 ∀ j ∈ Ic

}
,

S =
∑
i∈I

PΩi [X]∥∥PΩj [X]
∥∥
F

,

T⊥ = {X | PΩi [X] = 0 ∀i ∈ I} .

Definition 4.1 is completely equivalent to that of [CR11] (and there is termed “decomposability”).
We have added the modifier “local” to distinguish it from an earlier definition of [NRWY10], which
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also encompasses all of the aforementioned structure-inducing norms, but is not strictly equivalent.
The modifier “local” is appropriate, because Definition 4.1 only refers to properties of the subdiffer-
ential at a particular point X. Appendix A discusses in more detail the relationship between these
two definitions.

Here, we assume that each ‖ · ‖(i) is locally decomposable at the target solution Xi,?, so per the
above definition we have a sequence of subspaces Ti and matrices Si that define the subdifferentials
of each of the regularizers ‖ · ‖(i). With this notation in mind, we can state a simple sufficient
optimality condition for (4.3):

Lemma 4.2. Consider a feasible solution x? = (X1,?, . . . ,Xτ,?) to (4.3). Suppose that each of the
norms ‖ · ‖(i) is locally decomposable at Xi,?. If T1, . . . , Tτ , Q

⊥ are independent subspaces and there
exists Λ satisfying PTiΛ = λiSi and ‖PT⊥i Λ‖∗(i) < λi for each i, and PQ⊥Λ = 0, then x? is the

unique optimal solution to (4.3).

Notice that this condition implies that Λ lies in the subdifferential of λi‖ · ‖(i) for each i. The
proof of Lemma 4.2 follows a familiar form3, and is given in Appendix B. Notice that if we take
Q = Rm×n in Lemma 4.2, we obtain a sufficient optimality condition for the original decomposition
problem (4.2). The condition given by Lemma 4.2 is not so convenient to directly work with,
because it demands that Λ exactly satisfies a set of equality constraints PTiΛ = λiSi. One very
useful device, due to Gross [Gro11], is to trade off between the equality constraints and the dual
norm inequality constraints ‖PT⊥i Λ‖∗(i) < λi, tightening the latter while loosening the former. The
following definition gives this idea a name:

Definition 4.3. We call Λ an (α, β)-inexact certificate for a putative solution (X1,?, . . . ,Xτ,?)
to (4.2) with parameters (λ1, . . . , λτ ) if for each i, ‖PTiΛ− λiSi‖F ≤ α, and ‖PT⊥i Λ‖∗(i) < λiβ.

Comparing to the optimality condition in Lemma 4.2, we can see that this definition is most
meaningful when α is small, and β ≤ 1. Indeed, a number of simple and powerful analyses of
problems such as matrix completion and robust low-rank matrix recovery proceed by constructing
an inexact certificate for which α is polynomial in m−1, and β is a moderate constant, say, 1/2
[CLMW11, Gro11, Rec11, Li11].

Definition 4.3 pertains to the decomposition problem (4.2), and does not involve the measurement
operator Q in any way. Adding one additional constraint, PQ⊥Λ = 0, we obtain an inexact certificate
for the compressive decomposition problem (4.3):

Definition 4.4. We call Λ an (α, β)-inexact certificate for a putative solution (X1,?, . . . ,Xτ,?)
to (4.3) with parameters (λ1, . . . , λτ ) if

(i) Λ is an (α, β) inexact certificate for (4.2), and

(ii) PQ⊥Λ = 0.

As we will see, an inexact certificate is easier to produce than the “exact” Λ demanded in the
optimality condition Lemma 4.2. Is it still sufficient to certify optimality? The following lemma
shows the answer is yes, provided α and β are small enough:

3See, e.g., the proof of Lemma 2.4 in [CLMW11], Proposition 2 in [CSPW11], or arguments in [CT05].
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Lemma 4.5. Consider a feasible solution x? = (X1,?, . . . ,Xτ,?) to the optimization problem (4.3).
Suppose that each of the norms ‖ · ‖(i) is locally decomposable at Xi,?, and that each of the ‖ · ‖(i)
majorizes the Frobenius norm. Then if T1, . . . , Tτ , Q

⊥ are independent subspaces with

‖PTiPTj‖F,F <
1

τ − 1
∀ i 6= j, (4.5)

and there exists an (α, β)-inexact certificate Λ̂, with

β +

√
τ

(1− ‖PQ⊥PT1+···+Tτ ‖2F,F )
√

1− (τ − 1) maxij ‖PTiPTj‖F,F
× α

minl λl
< 1, (4.6)

then x? is the unique optimal solution.

We prove this lemma in Section 6, using a least squares perturbation argument. The additional
technical condition that ‖ · ‖(i) majorizes the Frobenius norm (i.e., for all X, ‖X‖(i) ≥ ‖X‖F ) is
immediately satisfied by structure inducing norms such as the nuclear and `1 norms. In any case, it
can always be ensured by rescaling.

Remark 4.6. The denominator in the condition of Lemma 4.5 depends on our knowledge of the
relative orientation of the subspaces T1, . . . , Tτ and Q. We have stated the lemma in a way that
assumes bounds on the angles of each pair (Ti, Tj) and between T1 + · · · + Tτ and Q, but demands
no additional knowledge. A tighter accounting is possible if more is known about the configuration
of (T1, . . . , Tτ , Q).

It may seem counterintuitive that the denominator in (4.6) depends on the scalings λi. In fact,

the numerator α also depends on λi, since α bounds the norm of the error PTiΛ̂−λiSi. In particular,
merely scaling the (λi) to be very large does not ensure that (4.6) will be satisfied, since any certificate

Λ̂ for this new problem will have a proportionally larger relaxation parameter α.

Thus, to show that X1, . . . ,Xτ solve the compressive decomposition problem (4.3), we just have
produce an inexact certificate Λ following the specification of Definition 4.4 with (α, β) sufficiently
small. This is fortuitous, since many existing analyses of the original decomposition problem (4.2)
already give certificates for that problem. For example, for Principal Component Pursuit, we can
leverage existing constructions in [CLMW11]. To prove that the desired solution remains optimal
even when we only see a few measurements Q, we will show that a certificate for (4.2) can be
“upgraded” to a certificate for (4.3), with very high probability in the choice of random Q, and only
a small loss in the parameters (α, β).

Of course, intuitively speaking, this should only be possible if the number of measurements is
sufficient: if the number of measurements in Q is smaller than the number of degrees of freedom in x?,
then reconstruction from the compressive measurements PQM should not be possible. Interestingly,
however, we will see that the number of measurements does not need to be too much larger than
the number of degrees of freedom in x?: oversampling by O(log2m) will suffice. We have been a
bit vague about what we mean by the number of degrees of freedom in the signal. To be precise,
our theorem will refer to the quantity dim(T1 + · · · + Tτ ). As mentioned above, for the `1 norm,
dim(Ti) is the number of nonzero entries in the solution Xi. For the nuclear norm, one can check
that dim(Ti) is the number of degrees of freedom in specifying a matrix whose rank is equal to that
of Xi.
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Our main theorem states that with very high probability it is possible to “upgrade” a certificate
for the decomposition problem (4.2) to one for the compressive decomposition problem (4.3), with
only small loss in parameters (α, β). As it turns out, the loss in the dual norm ‖·‖∗(i) will be bounded

by the expected dual norm of a standard Gaussian matrix.4 We will let νi denote this quantity:

νi
.
= E

[
‖G‖∗(i)

]
, G ∼iid N (0, 1) . (4.7)

We have the following theorem:

Theorem 4.7 (Certificate Upgrade). Consider the general decomposition problem (4.2), and
suppose that each of the norms ‖ · ‖(i) majorizes the Frobenius norm. Let x? = (X1,?, . . . ,Xτ,?) be

feasible for (4.2), and suppose there exists an (α, β)-inexact certificate Λ̂ for x? for the decomposition
problem (4.2) with parameters (λi).

Then if Q ⊂ Rm×n is a random subspace distributed according to the Haar measure, with

dim(Q) ≥ Csubspace · dim(T1 + · · ·+ Tτ ) · log m, (4.8)

there exists an (α′, β′)-inexact certificate for x? for the compressive decomposition problem (4.3)
with

α′ ≤ α+m−3‖Λ̂‖F , (4.9)

β′ ≤ β + C1 max
i

νi +
√

logm

λi

(
‖Λ̂‖2F logm

dim(Q)

)1/2

, (4.10)

with probability at least 1 − C2 · τ ·m−9 in Q. Above, Csubspace, C1 and C2 are positive numerical
constants.

Remark 4.8. As will become clear in the proof, the degrees m−3 and m−9 above are arbitrary, and
can be set to be any constants by appropriate choice of Csubspace, C1, C2.

Remark 4.9 (Scaling in (4.10)). A casual glance at (4.10) may suggest that we can make β′

arbitrarily close to β, by setting (λi) large. This is actually not the case: the initial certificate Λ̂

must satisfy PTiΛ̂ ≈ λiSi. Scaling all of the λi by the same amount will also scale Λ̂, causing no
effective change to the right hand side of (4.10).

On the other hand, Theorem 4.7 suggests an interesting practical role for the expected norms νi
in choosing the relative values of λi. Namely, it suggests setting λi ∝ νi. This is consistent (within
logarithmic factors) with suggestions in [CLMW11], and could suggest a principled way of combining
many such structure-inducing norms as in (4.3).

Our proof uses a variant of the “golfing scheme” of Gross [Gro11]. This general approach divides
the observations into (probabilistically) independent subsets, and then constructs a dual certificate
iteratively, one subset at a time. While this approach may lose logarithmic factors in the number of
measurements, the independence between the current block and the error makes subsequent analysis
much more convenient.

4This quantity equal, up to a scale of C
√
mn to the mean width, or Gaussian width, of the norm ball for ‖ · ‖(i).

See, e.g., [Ver09] for more details and calculations of mean widths for various norm balls of interest.
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Proof of Theorem 4.7. Let
S = T1 + · · ·+ Tτ + span(Λ̂), (4.11)

where + denotes Minkowski summation. Then S is a linear subspace of dimension at most dim(T1 +

· · ·+ Tτ ) + 1 containing Λ̂. Our goal is to generate a certificate Λ? that is close to Λ̂ on S, and also
satisfies

PQ⊥Λ? = 0. (4.12)

Such a Λ? would inherit the good properties of Λ̂ on T1 +· · ·+Tτ ⊆ S, and also satisfy the additional
equality constraint (4.12) – in effect, certifying that the measurements are sufficient.

To this end, we will set
Λ0 = 0, (4.13)

We will generate inductively a sequence (Λj)j=1,...,k for appropriate k, such that with high proba-
bility Λ? = Λk is the desired certificate. The initial guess Λ0 obviously satisfies (4.12), but could

be very far from Λ̂ on S. Define the error at step j to be

Ej = PS [Λj ]− Λ̂ ∈ S. (4.14)

We will generate a sequence of corrections, each of which lies in Q, that drive Ej toward zero.
By orthogonal invariance, Q is equal in distribution to the linear span of

H1, . . . ,Hdim(Q),

where Hj are independent iid N (0, 1/mn) random matrices. Choose from {1, . . . ,dim(Q)},

k = d3 log2me (4.15)

disjoint subsets I1, . . . , Ik of size

γ =

⌊
dim(Q)

k

⌋
. (4.16)

Our choice of constant ensures that 2−k ≤ m−3. We will require that

γ ≥ C3 · dim(S), (4.17)

where C3 is a numerical constant to be specified later. Since by assumption

dim(Q) ≥ Csubspace · dim(T1 + · · ·+ Tτ ) · log(m),

once C3 is chosen, we can ensure that Csubspace is large enough that (4.17) holds.
Let Aj : Rm×n → Rm×n denote the semidefinite operator that acts via

Aj [·] =
∑
i∈Ij

Hi〈Hi, ·〉. (4.18)

Notice that E [Aj ] = γ
mnI. For j = 1, . . . , k, let

Λj = Λj−1 −
mn

γ
AjEj−1

= −
j∑
i=1

mn

γ
AiEi−1. (4.19)
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Then we have

Ej = PS [Λj ]− Λ̂

= PS [Λj−1]− Λ̂− PS
mn

γ
AjEj−1

= PS
(
I − mn

γ
Aj
)
PSEj−1. (4.20)

In paragraph (i) below, we will use this expression to control the Frobenius norm of Ek. We may
further write

Λk = PS [Λk] + PS⊥ [Λk],

= Λ̂ +Ek −
k∑
j=1

PS⊥
mn

γ
AjPSEj−1, (4.21)

where in (4.21) we have used that Ej ∈ S for all j. In paragraphs (ii)-(iii) below, we will use this
final expression to control the dual norms of Λk.

(i) Driving E to zero. Ensuring that C3 in (4.17) is sufficiently large that the hypotheses of
Lemma 5.1 are verified, we have that with probability at least 1− C4 exp(−c1γ),∥∥∥∥PS (I − mn

γ
Aj
)
PS
∥∥∥∥
F,F

=

∥∥∥∥PSmnγ AjPS − PS
∥∥∥∥
F,F

≤ 1

2
. (4.22)

Hence, by (4.20), we have ‖Ej‖F ≤
1
2 ‖Ej−1‖F for each j, on the complement of a bad event Eerr of

probability at most C4k exp(−c1γ). On Ecerr, ‖Ej‖F ≤ 2−j ‖E0‖F for each j, giving

‖Ek‖F ≤ 2−k‖Λ̂‖F and

k∑
j=0

‖Ej‖F ≤ 2‖Λ̂‖F . (4.23)

(ii) Analysis of α′. From the definition, we may set α′ = maxi ‖PTiΛk − λiSi‖F . On Ecerr,

‖PTiΛk − λiSi‖F = ‖PTi [Λ̂ +Ek]− λiSi‖F ,
≤ ‖PTiΛ̂− λiSi‖F + ‖Ek‖F ,
≤ ‖PTiΛ̂− λiSi‖F + 2−k‖Λ̂‖F ,
≤ ‖PTiΛ̂− λiSi‖F +m−3‖Λ̂‖F . (4.24)

Since the first term is bounded by α, the claim in (4.9) is established.

(iii) Analysis of β′. Similarly, for β′, we can take

β′ = max
i=1,...,τ

λ−1
i ‖Λk‖∗(i) (4.25)
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From (4.21) and the triangle inequality, we have

‖Λk‖∗(i) ≤ ‖Λ̂‖∗(i) + ‖Ek‖F +

k∑
j=1

∥∥∥∥PS⊥mnγ AjPSEj−1

∥∥∥∥∗
(i)

, (4.26)

where we used the fact that whenever the primal norm majorizes the Frobenius norm, its dual
minorizes the Frobenius norm. Applying Lemma 5.2, this is bounded by

‖Λk‖∗(i) ≤ λiβ + 2−k ‖E0‖F + 10
νi +

√
logm
√
γ

k∑
j=1

‖Ej−1‖F ,

≤ λiβ +

(
2−k + 20

νi +
√

logm
√
γ

)
‖E0‖F ,

≤ λiβ + 21
νi +

√
logm
√
γ

‖Λ̂‖F (4.27)

on the complement of an event E∞ of probability at most 2km−10 + k exp
(
−γ2
)

+ P [ Eerr ]. In the

final line, we have used that 2−k ≤ m−3 and γ ≤ m2. Since γ ≥ c·dim(Q)
logm , for some numerical

constant C5,

λ−1
i ‖Λk‖∗(i) ≤ β + C5

νi +
√

logm

λi

(
‖Λ̂‖2F logm

dim(Q)

)1/2

. (4.28)

Taking a union bound over i = 1, . . . , τ demonstrates the desired bound on β′, completing the
proof.

5 Key Probabilistic Lemmas

This section introduces two probabilistic lemmas used in the analysis of the golfing scheme. The first
lemma shows that PS mnγ AjPS ≈ PS . Its (routine) proof is delayed to the appendix. The second
lemma is crucial for controlling the dual norms of PS⊥ mnγ AjPS , and is proved in this section.

Lemma 5.1. There exist numerical constants C1, C2, c > 0 such that the following holds. Let
S ⊆ Rm×n be a fixed linear subspace, and let A =

∑γ
j=1Hj〈Hj , ·〉, where (Hj) is a sequence of

independent iid N (0, 1/mn) random matrices, and let R = range(A) ⊆ Rm×n. Then if

γ ≥ C1 · dim(S), (5.1)

with probability at least 1− C2 exp (−cγ),∥∥∥∥PSmnγ APS − PS
∥∥∥∥
F,F

≤ 1

2
, (5.2)

and ∥∥∥PSPRPS − γ

mn
PS
∥∥∥
F,F
≤ 1

16

γ

mn
. (5.3)
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The proof of this result follows a familiar covering argument (see, e.g., [Ver11]). For completeness,
we give this proof in Appendix C. We next state and prove the key probabilistic lemma for analyzing
the “upgrade” procedure introduced in the proof of Theorem 4.7. This lemma allows us to control
the dual norm of the constructed certificate. The result is as follows:

Lemma 5.2. Let S be any fixed subspace of Rm×n (m ≥ n), M any fixed matrix. Let A =∑γ
l=1H l〈H l, ·〉 be a random semidefinite operator constructed from a sequence of independent iid

N (0, 1/mn) matrices H1, . . . ,Hγ . Let ‖ · ‖ be any norm that majorizes the Frobenius norm, and let
‖ · ‖∗ be its dual norm. Set ν = E [ ‖G‖∗], with G iid N (0, 1). Then we have∥∥∥∥PS⊥mnγ APSM

∥∥∥∥∗ ≤ 10 ‖PSM‖F
ν +
√

logm
√
γ

, (5.4)

with probability at least 1−m−10 − exp
(
−γ2
)
.

Proof. Let Γ = {N | ‖N‖ ≤ 1} ⊂ {N | ‖N‖F ≤ 1} denote the unit ball for ‖ · ‖. Then

‖PS⊥APSM‖∗ = sup
N∈Γ

〈N ,PS⊥APSM〉 .

Inner products of this form are particularly easy to control because they involve projections of A
onto orthogonal subspaces. Since S and S⊥ are orthogonal and H l is iid Gaussian, PSH l and
PS⊥H l are probabilistically independent. So, letting H ′1, . . . ,H

′
γ denote an independent copy of

H1, . . . ,Hγ , we have

PS⊥APS [ · ] = PS⊥
∑
l

H l 〈H l,PS [ · ]〉

=
∑
l

PS⊥ [H l] 〈PSH l, · 〉

≡d
∑
l

PS⊥ [H l]
〈
PSH ′l, ·

〉 .
= D, (5.5)

where ≡d denotes equality in distribution. Hence, we have

‖PS⊥APSM‖∗ ≡d ‖DM‖∗.

We find the second term more convenient to analyze. Conditioned on H ′1, . . . ,H
′
γ ,

ξN
.
= 〈N ,DM〉 =

∑
l

〈
PSH ′l,M

〉
〈PS⊥N ,H l〉 (5.6)

is zero-mean Gaussian. We have ‖DM‖∗ = supN∈Γ ξN . A quick calculation shows that for any N
and N ′,

E
[
(ξN − ξN ′)2 |H ′1, . . . ,H

′
γ

]
=

∥∥PS⊥(N −N ′)
∥∥2

F

mn

γ∑
l=1

〈
PSH ′l,M

〉2
≤ ‖N −N ′‖2F

mn

γ∑
l=1

〈
PSH ′l,M

〉2
=

Ξ2‖N −N ′‖2F
mn

, (5.7)
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where we have let

Ξ =

(
γ∑
l=1

〈
H ′l,PSM

〉2)1/2

(5.8)

Consider a second zero-mean Gaussian process (ζN )N∈Γ, defined by letting G be an iid N (0, 1/mn)
matrix, and setting ζN = 〈N ,G〉. From the definition of ν,

E
[

sup
N∈Γ

ζN

]
=

ν√
mn

. (5.9)

Another calculation shows that

E
[
(ζN − ζN ′)2

]
=
‖N −N ′‖2F

mn
. (5.10)

By Slepian’s inequality (e.g., [Ver11] Lemma 5.33, [LT91] Chapter 3), we have

E
[
sup
N

ξN |H ′1, . . . ,H
′
γ

]
≤ Ξ · E

[
sup
N

ζN

]
=

ν Ξ√
mn

. (5.11)

Moreover, for any fixed values of H ′1, . . . ,H
′
γ , and any N ∈ Γ, ξN is a Ξ-Lipschitz function of

the iid Gaussian sequence (H1, . . . ,Hγ).5 Hence, the supremum ‖DM‖∗ is also Ξ-Lipschitz. By
Lipschitz concentration ([Led01] Proposition 2.18),

P
[
‖DM‖∗ > E

[
‖DM‖∗ | (H ′l)

]
+

tΞ√
mn
| (H ′l)

]
≤ exp

(
− t

2

2

)
. (5.12)

Combining with our previous estimates, we have

P
[
‖DM‖∗ > Ξ (ν + t)√

mn
| (H ′l)

]
≤ exp

(
− t

2

2

)
. (5.13)

Since this estimate holds for any value of (H ′l), it holds unconditionally:

P
[
‖DM‖∗ > Ξ (ν + t)√

mn

]
≤ exp

(
− t

2

2

)
. (5.14)

5Indeed, if we fix H′1 . . .H
′
γ , and consider two sequences H1 . . .Hγ and H̃1 . . . H̃γ , we have

∣∣∣ξN (H1 . . .Hγ)− ξN (H̃1 . . . H̃γ)
∣∣∣ =

∣∣∣∣∣
γ∑
l=1

〈
PSH′l,M

〉 〈
PS⊥N ,Hl − H̃l

〉∣∣∣∣∣
≤

(∑
l

〈
PSH′l,M

〉2)1/2(∑
l

〈
PS⊥N ,Hl − H̃l

〉2)1/2

= Ξ

(∑
l

∥∥∥Hl − H̃l

∥∥∥2
F

)1/2

,

where in the final line we have used that ‖PS⊥N‖F ≤ ‖N‖F ≤ 1.
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Moreover, it is easy to notice that Ξ is itself a ‖PSM‖F -Lipschitz function of the iid Gaussian
sequence (H ′1, . . . ,H

′
γ), with

E [Ξ] ≤
(
E
[
Ξ2
])1/2

= ‖PSM‖F

√
γ

mn
. (5.15)

From Lipschitz concentration,

P [ Ξ > E [Ξ] + s ‖PSM‖F ] ≤ exp

(
−s

2mn

2

)
, (5.16)

and so

P
[

Ξ > 2 ‖PSM‖F

√
γ

mn

]
≤ exp

(
−γ

2

)
. (5.17)

Combining this estimate with (5.14), setting t =
√

20 logm, and rescaling by mn
γ , we obtain the

result.

6 Proof of Lemma 4.5: Upgrade to Exact Certificate

In this section, we prove Lemma 4.5, which shows how an inexact dual certificate can be upgraded
to an exact certificate of optimality. We use the following lemma, whose proof mimics a standard
proof of the Gershgorin disc theorem (see [HJ90]):

Lemma 6.1. Let T1, . . . , Tk be independent subspaces of Rm×n, and S1 ∈ T1, . . . ,Sk ∈ Tk. Then
the system of equations

PTiX = Si, i = 1, . . . , k, (6.1)

has a solution X ∈ T1 + · · ·+ Tk satisfying

‖X‖F ≤

√ ∑
i ‖Si‖2F

1− (k − 1) maxi 6=j ‖PTiPTj‖F,F
. (6.2)

Proof. Let vec : Rm×n → Rmn denote the operator that vectorizes a matrix by stacking its columns.
For each i, let U i ∈ Rmn×dim(Ti) denote a matrix whose columns form an orthonormal basis for
vec [Ti]. The system of equations is equivalent to U∗1

...
U∗k

x =

 U∗1 · vec [S1]
...

U∗k · vec [Sk]

 , (6.3)

where x = vec [X]. Let U∗ denote the matrix on the left hand side, and s denote the vector

on the right hand side. Then ‖s‖22 =
∑k
i=1 ‖Si‖2F . The system of equations has a solution x ∈

range(U) = vec [T1 + · · ·+ Tk] with `2 norm at most ‖s‖2/σmin(U), and hence (6.1) has a solution
whose Frobenius norm is bounded by the same quantity. Write

U∗U =


I U∗1U2 . . . U∗1Uk

U∗2U1 I . . . U∗2Uk

...
...

. . .
...

U∗kU1 U∗kU2 . . . I

 . (6.4)
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Let λ be any eigenvalue of U∗U , with corresponding eigenvector x = (x∗1, x
∗
2, . . . ,x

∗
k)∗. Let

p = arg maxj ‖xj‖2. Then, looking at just the p-th block of the equation λx = UU∗x, we have

|λ− 1|‖xp‖2 =
∥∥∥∑
j 6=p

U∗pU jxj

∥∥∥
2

≤
∑
j 6=p

‖U∗pU j‖‖xj‖2

≤ ‖xp‖2 × (k − 1) max
i 6=j
‖U∗iU j‖. (6.5)

Since ‖U∗iU j‖ = ‖PTiPTj‖, we conclude that λmin(U∗U) ≥ 1− (k−1) maxi 6=j ‖PTiPTj‖, and hence
σmin(U) is at least as large as the square root of this quantity. This establishes the result.

Proof of Lemma 4.5. The assumption implies that T1, . . . , Tτ are independent subspaces, and so
the system of equations

PTi∆ = λiSi − PTiΛ̂, i = 1, . . . , τ (6.6)

is feasible, and has a solution ∆0 ∈ T1 + · · ·+ Tτ of Frobenius norm at most

‖∆0‖F ≤

√ ∑
i ‖λiSi − PTiΛ̂‖2F

1− (τ − 1) maxi 6=j ‖PTiPTj‖F,F
≤

√
α2τ

1− (τ − 1) maxi6=j ‖PTiPTj‖F,F
. (6.7)

Moreover, since T1 + · · ·+ Tτ and Q⊥ are independent, the system of equations

PT1+···+Tτ∆ = ∆0, PQ⊥∆ = 0 (6.8)

is feasible (indeed, underdetermined). We consider a solution ∆? of minimum Frobenius norm.
Under the stated hypotheses, this solution is given by the Neumann series

∆? = PQ
∞∑
i=0

(PT1+···+TτPQ⊥PT1+···+Tτ )i∆0, (6.9)

whose norm is bounded as

‖∆?‖F ≤
‖∆0‖F

1− ‖PT1+···+TτPQ⊥‖2F,F
. (6.10)

Set Λ = Λ̂ + ∆?, and observe that by construction, for each i, PTiΛ = λiSi. For each i, we have

‖PT⊥i Λ‖∗(i) ≤ ‖PT⊥i Λ̂‖∗(i) + ‖PT⊥i ∆?‖∗(i). (6.11)

Because ‖ · ‖(i) majorizes the Frobenius norm, its dual minorizes the Frobenius norm, and so we
have

λ−1
i ‖PT⊥i Λ‖∗(i) ≤ λ−1

i ‖PT⊥i Λ̂‖∗(i) + λ−1
i ‖PT⊥i ∆?‖F . (6.12)

Under the stated hypotheses, this quantity is strictly smaller than one, and so Λ satisfies the
conditions of Lemma 4.2.
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7 Proof of Theorem 2.1: Compressive PCP Recovery

In this section, we prove Theorem 2.1, using the general upgrade provided by Theorem 4.7. In the
language of Section 4, we have ‖ · ‖(1) = ‖ · ‖∗, ‖ · ‖(2) = ‖ · ‖1. Both of these norms majorize the
Frobenius norm. For PCP, we take λ1 = 1, λ2 = 1/

√
m.

Let L0,S0 denote the target pair, and r the rank of L0. If we let L0 = USV ∗ denote the
rank-reduced singular value decomposition of L0, and T denote the subspace

T
.
=
{
UX∗ + Y V ∗ |X ∈ Rn×r, Y ∈ Rm×r

}
, (7.1)

then the subdifferential of the nuclear norm at L0 is [Wat92]

∂‖ · ‖∗(L0) = {Λ | PTΛ = UV ∗, ‖PT⊥Λ‖2,2 ≤ 1} . (7.2)

It is easy to check that PT⊥ : M 7→ (I − UU∗)M(I − V V ∗) is nonexpansive with respect to the
operator norm ‖ · ‖2,2, and so ‖ · ‖∗ indeed satisfies our criteria for local decomposability. Similarly,
let Ω = supp(S0) denote the support of the sparse term. By abuse of notation, we will also identify
Ω with the subspace of matrices whose support is contained in Ω. Let Σ = sign(S0), then

∂‖ · ‖1(S0) = {Λ | PΩΛ = Σ, ‖PΩcΛ‖∞ ≤ 1} . (7.3)

Again, PΩc does not increase the `∞ norm, and ‖ · ‖1 is also decomposable. In the language of
Theorem 4.7, we have T1 = T , S1 = UV ∗, T2 = Ω, S2 = Σ. For the PCP problem, an (α, β)-
inexact certificate is therefore a matrix ΛPCP satisfying

‖PTΛPCP −UV ∗‖F ≤ α,

‖PΩΛPCP − λΣ‖F ≤ α,

‖PT⊥ΛPCP‖2,2 ≤ β,

‖PΩcΛPCP‖∞ ≤ βλ.

Such a certificate was constructed in [CLMW11],6 under the hypotheses of Theorem 2.1. More
precisely, we have the following:

Proposition 7.1 (Dual Certification for PCP [CLMW11]). Under the conditions of Theorem
2.1, on an event of probability at least 1− Cm−10 the following hold:

(i) ‖PΩPT ‖F,F ≤ 1/2, (7.4)

and (ii) there exists a (m−2, 1/4)-inexact PCP certificate ΛPCP for (L0,S0), which satisfies

‖ΛPCP‖F ≤ C ′
√

rank(L0) + 2λ
√
‖S0‖0. (7.5)

Above, C and C ′ are numerical.

The careful reader may notice that the relaxation parameters (α, β) in Proposition 7.1 are stricter
than those provided by [CLMW11], which gives α = 1/4

√
m, β = 1/2. In fact, by modifying the

constants in the construction of [CLMW11], we can achieve β smaller than any desired constant,

6In the notation of [CLMW11], the certificate constructed there is ΛPCP = UV ∗ + WL + WS .
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and α smaller than any polynomial in m−1, at the expense of slightly more stringent (but qualita-
tively equivalent) demands on (L0,S0). The bound (7.5) is implied by the probabilistic lemmas in
[CLMW11], but requires a bit of manipulation to obtain. Below, we will first prove Theorem 2.1,
and then sketch a proof of the modifications to [CLMW11] needed to obtain the supporting result
Proposition 7.1.

Proof of Theorem 2.1. From Lemma 4.5, to show that (L0,S0) is the unique optimal solution
to the compressive PCP problem, it is enough to show that

(I) ‖PTPΩ‖F,F ≤ 1/2.

(II) There exists an (α′, 1/2)-inexact CPCP certificate ΛCPCP with α′ <
1−‖P

Q⊥PT⊕Ω‖2F,F
4
√
m

.

We accomplish this in three parts. In paragraph (i) below, we apply Lemma 5.1 to lower bound
1 − ‖PQ⊥PT⊕Ω‖2F,F . In paragraph (ii), we use Proposition 7.1 to show (I) and the existence of an
inexact PCP certificate ΛPCP. In paragraph (iii) we use Theorem 4.7 to upgrade this to an inexact
CPCP certificate ΛCPCP that satisfies property (II). Paragraph (iv) completes the proof by showing
that the probability of failure is appropriately small.

(i) Bounding 1−‖PQ⊥PT⊕Ω‖2F,F . We will apply Lemma 5.1 with S = T+Ω. The lemma requires

dim(Q) ≥ C1 · dim(T + Ω).

The dimension of T + Ω is a random variable, which depends on the size of the support set Ω. Let
EΩ denote the event

EΩ = {|Ω| ≤ 2ρmn+m} . (7.6)

Notice that |Ω| is a sum of mn Ber(ρ) random variables. By Bernstein’s inequality,

P [ |Ω| ≥ ρmn+ t ] ≤ exp

(
−t2/2

ρmn+ t/3

)
. (7.7)

Setting t = ρmn+m and simplifying, we obtain

P [ EcΩ ] ≤ exp

(
−3m

10

)
. (7.8)

On EΩ, we have
dim(Ω + T ) < 2ρmn+m+ 2mr ≤ 3 · ( ρmn+mr ). (7.9)

Comparing (7.9) to the condition on dim(Q) in Theorem 2.1, we can see that on EΩ, the conditions
of Lemma 5.1 are satisfied. Now, let S = T + Ω, set B = {X ∈ S | ‖X‖F = 1} and notice that

1− ‖PQ⊥PS‖2F,F = inf
X∈B

〈X,X〉 − 〈PQ⊥PSX,PQ⊥PSX〉

= inf
X∈B

〈
X,
(
PS − PSPQ⊥PS

)
X
〉

= inf
X∈B

〈
X,

(
dim(Q)

mn
PS + PSPQPS −

dim(Q)

mn
PS
)
X

〉
≥ dim(Q)

mn
− sup

X∈B

〈
X,

(
PSPQPS −

dim(Q)

mn
PS
)
X

〉
≥ dim(Q)

mn
−
∥∥∥∥PSPQPS − dim(Q)

mn
PS
∥∥∥∥
F,F

. (7.10)

22



Let EQ be the event
{
‖PSPQPS − dim(Q)

mn PS‖F,F ≤
1
16

dim(Q)
mn

}
. Using Lemma 5.1 and dim(S) =

dim(T + Ω) ≥ m, we have
P [ EQ | EΩ ] ≥ 1− C2 exp(−c1m). (7.11)

On EQ,

1− ‖PQ⊥PS‖2F,F ≥
15

16

dim(Q)

mn
.

Since by assumption dim(Q) ≥ Cmeas × log2m × dim(T + Ω) ≥ Cmeas × log2m × m and m ≥ n,
ensuring that Cmeas > 16/15, we can further conclude that

1− ‖PQ⊥PS‖2F,F ≥
1

m
. (7.12)

(ii) Inexact PCP Certificate. By Proposition 7.1, on an event EPCP of probability at least
1 − C2m

−10, we have ‖PTPΩ‖F,F < 1/2, and there exists an (m−2, 1/4)-inexact PCP certificate
ΛPCP for (L0,S0), with

‖ΛPCP‖F ≤ C3

√
rank(L0) + 2λ|Ω|. (7.13)

Moreover, EPCP is independent of Q. We rewrite the bound (7.13) a bit for later use. We have

m ‖ΛPCP‖2F ≤ m
(

2C3 r + 4λ2|Ω|2
)
,

which on EΩ gives
m ‖ΛPCP‖2F ≤ C4 ( ρmn+mr ), (7.14)

where C4 is numerical.

(iii) Upgrade to CPCP Certificate. Now, condition on EPCP and EΩ. By our assumption on
dim(Q) (and ensuring Cmeas is sufficiently large), the conditions of Theorem 4.7 are satisfied. On
an event Eupgrade of conditional probability at least 1−C5m

−9, the certificate ΛPCP can be refined
to an (α′, β′)-inexact CPCP certificate ΛCPCP, with

α′ ≤ m−2 +m−3‖ΛPCP‖F , (7.15)

and

β′ ≤ 1

4
+ C6

[
‖ΛPCP‖2F logm

dim(Q)

]1/2

max
{
E [ ‖G‖2,2] +

√
logm , E [ ‖G‖∞]

√
m+

√
m logm

}
,

where G is iid N (0, 1). Furthermore, provided mn > 1, we have the bounds

E‖G‖2,2 ≤ 2
√
m and E‖G‖∞ ≤ 3

√
2 logm. (7.16)

The first bound follows from Theorem 2.13 of [DS01], noting that m ≥ n. The second can be found
e.g., on [Ver09] p. 44. So,

β′ ≤ 1

4
+ C7

[
m ‖ΛPCP‖2F log2m

dim(Q)

]1/2

≤ 1

4
+

[
C8(ρmn+mr) log2m

dim(Q)

]1/2

,
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where we have used (7.14). Ensuring that the constant Cmeas in the statement of the theorem is
larger than 16C8, we can conclude that β′ ≤ 1/2.

Referring to property (II) above, all that is left to show is that α′ <
1−‖P

Q⊥PT⊕Ω‖2F
4
√
m

. Using

paragraph (i), on EΩ ∩ EQ, it suffices to show α′ < 1
4m3/2 . Using (7.14), ensuring that the constants

crank, csparse in the statement of Theorem 2.1 are sufficiently small (say, each smaller than 1/2C4),
we may conclude that ‖ΛPCP‖F ≤

√
m. Hence, we have α′ ≤ m−2 +m−5/2, which is strictly smaller

than 1
4m3/2 provided m is sufficiently large.

We have shown that on
Egood

.
= EΩ ∩ EQ ∩ EPCP ∩ Eupgrade,

(I)-(II) hold, and hence (L0,S0) is the unique optimal solution to the CPCP problem.

(iv) Probability. We have

P
[
Ecgood

]
≤ P [ (EQ ∩ EΩ)c ] + P [ (Eupgrade ∩ EPCP ∩ EΩ)c ]

= 1− P [ EQ | EΩ ]P [ EΩ ] + 1− P [ Eupgrade | EPCP ∩ EΩ ]P [ EPCP ∩ EΩ ]

≤ 1− P [ EQ | EΩ ] + P [ EcΩ ] + 1− P [ Eupgrade | EPCP ∩ EΩ ] + P [ EcPCP ] + P [ EcΩ ]

≤ C2 exp(−c1m) + C2m
−10 + C5m

−9 + 2 exp(−3m/10),

provided that m is larger than some m0. Consolidating bounds, we may conclude that correct
recovery occurs with probability at least 1−C9m

−9, choosing C9 such that the bound is nontrivial
only for m > m0. This completes the proof of Theorem 2.1.

We close by sketching the proof of Proposition 7.1:

Proof of Proposition 7.1 (sketch). Under the hypotheses, the bound ‖PΩPT ‖ ≤ 1/2 follows

immediately from Corollary 2.7 of [CLMW11]. [CLMW11] constructs a certificate Λ̂ in three parts
as

ΛPCP = UV ∗ +WL +W S . (7.17)

The two terms WL, W S will both be elements of T⊥, so

‖PTΛPCP −UV ∗‖F = 0. (7.18)

Moreover, the term W S will satisfy PΩW
S = λ sign(S0). So, we have

‖PΩΛPCP − λ sign(S0)‖F = ‖PΩ[UV ∗ +WL]‖F . (7.19)

We can therefore take α = ‖PΩ[UV ∗ +WL]‖F . To prove Proposition 7.1, it is therefore enough to
show that with high probability the following properties are satisfied:

• (I) Structure constraint: ‖PΩ[UV ∗ +WL]‖F ≤ m−2.

• (II) Dual norm constraints:

‖PT⊥WL‖2,2 ≤ 1/8, ‖PΩc [UV
∗ +WL]‖∞ ≤

λ

8
, (7.20)

and

‖PT⊥W S‖2,2 ≤ 1/8, ‖PcΩW
S‖∞ ≤

λ

8
. (7.21)

24



• (III) Frobenius norm bounds: We have ‖ΛPCP‖F ≤ ‖UV ∗‖F + ‖WL‖F + ‖W S‖F . The
first term is simply

√
r. We will show that

‖WL‖F ≤ 3
√
r, (7.22)

‖W S‖F ≤ 4

3
λ
√
‖S0‖0. (7.23)

In paragraph (i) below, we review the construction of WL from [CLMW11], and show that with
slight changes in the constants, (I) and (7.20) are satisfied with high probability. In paragraph (ii)
we review the construction of W S and show that with high probability (7.21) is satisfied. Together,
this implies that ΛPCP is an (m−2, 1/4)-certificate for the PCP problem. Paragraph (ii) will also
show (7.23). Finally, in paragraph (iii), we show (7.22). This step involves the most additional work.
Taken together, this establishes the theorem.

(i) Constructing WL. The term WL is constructed to lie in T⊥ and satisfy

PΩ[UV ∗ +WL ] ≈ 0.

This is accomplished via a golfing argument that writes the complement Ωc as a union of j0 subsets
Υ1, . . . ,Υj0 , with Υj ∼iid Ber(q).7 The parameter q is set so that ρ = (1− q)j0 , which ensures that
Ω is indeed Ber(ρ). Notice that with this setting, we have q ≥ (1− ρ)/j0.

The certificate is generated inductively, starting with Y 0 = 0. The error at step j is

Zj = PTY j −UV ∗

and the corrective update
Y j = Y j−1 − q−1PΥjZj−1.

This leads to a recursive expression for the error Zj :

Zj = PT (I − q−1PΥj )PTZj−1, (7.24)

which implies that the error decays quickly in both `∞ and Frobenius norm:

‖Zj‖∞ ≤ 1
2‖Zj−1‖∞ ≤ 2−j‖Z0‖∞,

‖Zj‖F ≤ 1
2‖Zj−1‖F ≤ 2−j‖Z0‖F .

These inequalities are [CLMW11] (3.4)-(3.6). Using

‖Z0‖∞ ≤
√

µr

mn
, and ‖Z0‖F = ‖UV ∗‖F =

√
r, (7.25)

we obtain

j0∑
j=0

‖Zj‖∞ ≤ 2

√
µr

mn
, and

j0∑
j=0

‖Zj‖F ≤ 2
√
r. (7.26)

7In [CLMW11], Υj is denoted Ωj ; we use the notation Υ to avoid confusion between the support Ω and the subsets
Υ of the complement of the support.
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From arguments of [CLMW11], these bounds hold simultaneously on an event EZ of probability at
least 1− C1m

−10. After j0 steps, the component WL is generated as

WL .
= PT⊥Y j0 = PT⊥

j0∑
j=1

q−1PΥjZj−1. (7.27)

The proof of Lemma 2.8(b) of [CLMW11] shows that

‖PΩ[UV ∗ +WL]‖F ≤ ‖Zj0‖F . (7.28)

In [CLMW11], j0 was chosen to ensure that ‖Zj0‖F ≤ 1/4
√
m. Here, we set j0 = d3 log2me,

ensuring that ‖Zj0‖F ≤ 2−m
√
r ≤ m−2. The arguments of [CLMW11] establish the following:

‖PT⊥WL‖2,2 ≤ 2C ′0

√
m logm

q
‖UV ∗‖∞, (7.29)

‖PΩcW
L‖∞ ≤ ‖Zj0‖∞ + 2q−1‖UV ∗‖∞. (7.30)

where C ′0 is numerical. Moreover, we know that q > c
logm , where c > 0 is numerical. Hence, we

have

‖PT⊥WL‖2,2 ≤ C

√
µr log2m

n
, (7.31)

‖PΩcW
L‖∞ ≤ 1√

m

√µr

n
+

2

c

√
µr log2m

n

 . (7.32)

Recalling that by assumption r ≤ crankn/µ log2m, we have the desired bounds (7.20), provided the
constant crank is sufficiently small.

(ii) Constructing W S. The term W S is constructed to satisfy W S ∈ T⊥, PΩW
S = λ sign(S0).

More precisely, [CLMW11] set this term to be the minimum Frobenius norm solution to the system
of equations

PTW S = 0, PΩW
S = λ sign(S0). (7.33)

This solution is given by the Neumann series

W S = PT⊥
∞∑
j=0

(PΩPTPΩ)j [λ sign(S0)]. (7.34)

So,

‖W S‖F ≤
‖λ sign(S0)‖F

1− ‖PΩPT ‖2F,F
≤ 4

3λ
√
‖S0‖0. (7.35)

Similar to paragraph (i) above, one can quickly check that by ensuring ρ is smaller than some fixed
constant, (7.21) is satisfied with high probability.
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(iii) Bounding ‖WL‖F . We use the fact that Υj and Zj−1 are independent random variables.
By (7.27), it is enough to control the Frobenius norm q−1PΥjZj−1 for each j. Notice that

‖q−1PΥjZj−1‖2F = ‖Zj−1‖2F +
∑
kl

(q−1δkl − 1)[Zj−1]2kl
.
= ‖Zj−1‖2F +

∑
kl

Hkl,

where δkl is an indicator for the event (k, l) ∈ Υj . Then E[Hkl] = 0, |Hkl| ≤ q−1‖Zj−1‖2∞ almost
surely, and E[H2

kl] ≤ q−1[Zj−1]4kl. Summing, we have∑
kl

E[H2
kl] ≤ q−1‖Zj−1‖2∞‖Zj−1‖2F . (7.36)

By Bernstein’s inequality,

P
[
‖q−1PΥjZj−1‖2F > ‖Zj−1‖2F + t

]
≤ exp

(
− t2

2q−1‖Zj−1‖2∞
(
‖Zj−1‖2F + t

3

)) .
By setting

tj = C2 max
{
‖Zj−1‖2∞q−1 logm, ‖Zj−1‖∞‖Zj−1‖F

√
q−1 logm

}
, (7.37)

with appropriate numerical constant C2, we can ensure that for each j,

P
[
‖q−1PΥjZj−1‖2F > ‖Zj−1‖2F + tj

]
≤ m−11. (7.38)

Since we have q > c
logm for some positive numerical constant c, using

√
s+ t ≤

√
s +
√
t, on an

event with overall probability at least 1− j0m−11,

‖WL‖F ≤
j0∑
j=1

‖q−1PΥjZj−1‖F

≤
j0∑
j=1

‖Zj−1‖F +
√
tj

≤
j0∑
j=1

‖Zj−1‖F + C3‖Zj−1‖∞ logm+ C4

√
‖Zj−1‖∞‖Zj−1‖F logm

≤ 2
√
r + 2C3 log(m)

√
µr

mn
+ C4

√
logm×

j0∑
j=1

2−j‖Z0‖1/2∞ ‖Z0‖1/2F

≤ 2
√
r + 2C3

√
1

m

µr log2m

n
+ 2C4

4

√
r

m

µr log2m

n
.

Recalling again the assumption r ≤ crankn/µ log2m, and ensuring that crank is sufficiently small, the
final two terms above are bounded by constants. In particular, we can conclude that ‖WL‖F ≤ 3

√
r.

This completes the proof.
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8 Numerical Experiments

In this section, we corroborate our theoretical results with simulations on both synthetic data and
real images. Before proceeding to the simulation results, we provide a brief description of the
optimization algorithm below.

8.1 Efficient Algorithm

Algorithm 1 TFOCS-inspired solution for (1.7)

while not converged (j = 1, 2, . . .) do
Initialize R1 ← Θ1, ξ1 ← 1
while not converged (k = 1, 2, . . .) do
Mk ← (1− ξk)Rk + ξkΘk

(Uk,Σk,V k)← svd
(
L

(0)
j + µ−1

j PQMk

)
Lk+1 ← Uk · shrink

(
Σk, µ

−1
j

)
· V ∗k

Sk+1 ← shrink
(
S

(0)
j + µ−1

j PQMk, λµ
−1
j

)
Θk+1 ← Θk +

µj
2 (Y − PQ(Lk+1 + Sk+1))

Rk+1 ← (1− ξk)Rk + ξkΘk+1

ξk+1 ← 2/(1 +
√

1 + 4/ξ2
k)

end while
(Let (L†,S†) be the converged solution)(
L

(0)
j+1,S

(0)
j+1

)
← (L†,S†)

µj+1 ← γ · µj
end while

The problem (1.7) is a convex program, and can be solved by interior-point methods. These
algorithms are known to have excellent iteration complexity and are available as part of public
software packages. However, the main disadvantage of these methods is that they do not scale
very well with problem size. Fortunately, there has been a flurry of work recently on fast first-
order methods for nuclear-norm minimization. In this work, we adopt the framework described in
[BCG10], called TFOCS, to solve (1.7) efficiently. The main idea is to apply an optimal gradient
method to a smoothed version of the dual of problem (1.7). We provide a brief description of the
algorithm here.

The objective function in (1.7) is continuous but not smooth. Hence, the first step is to modify
it by adding a smooth regularization term as follows:

min
L,S
‖L‖∗ + λ‖S‖1 +

µ

2
(‖L−L(0)‖2F + ‖S − S(0)‖2F ) subj. to Y = PQ(L+ S), (8.1)

where L(0) and S(0) are fixed, and µ > 0. While (8.1) remains nonsmooth, this modification has the
effect of smoothing the Lagrange dual function. We can then apply fast gradient methods to the
smoothed dual problem. If µ is very small, then the solution to (8.1) is close to that of the original
problem (1.7). In fact, recent results suggest that these solutions may coincide exactly for small
(nonzero) values of µ [ZCZ12].
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(a) p = 0 (b) p = 500

(c) p = 2, 000 (d) p = 5, 000

Figure 2: Compressive sensing of low-rank and sparse matrices via convex program (1.7).
We use the TFOCS algorithm [BCG10] to solve the convex program for recovering an m×m matrix
M = L0+S0 with m = 100 from q = m2−p random linear measurements PQ[M ]. For each subplot:
the x-axis is the rank r of the matrix L0 and the y-axis is the percentage of non-zero entries in S0.
The intensity is proportional to the probability of success with pure white color meaning 100% (out
of 10 random trials).

Let us now focus on the smoothed problem. The Lagrangian of this problem is given by

L(L,S,Θ) = ‖L‖∗ + λ‖S‖1 +
µ

2
(‖L−L(0)‖2F + ‖S − S(0)‖2F )− 〈Θ,PQ(L+ S)− Y 〉, (8.2)

where Θ ∈ Rm×n is a matrix of Lagrange multipliers. The dual function can then be defined as

g(Θ) = inf
L,S
L(L,S,Θ). (8.3)

The dual function has some attractive properties that can be exploited for optimization. We note
that g(·) is concave in Θ and its gradient is given by

∇g(Θ) = Y − PQ(L̂(Θ) + Ŝ(Θ)),

where (L̂(Θ), Ŝ(Θ)) is the unique optimal solution to the problem (8.3) (with Θ fixed). This pair
is given in closed form by

L̂(Θ) = U ′ · shrink
(
Σ′, µ−1

)
· V ′∗,

Ŝ(Θ) = shrink
(
S(0) + µ−1PQΘ, λµ−1

)
,

(8.4)
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where U ′Σ′V ′∗ is the reduced Singular Value Decomposition (SVD) of L(0) + µ−1PQΘ, and the
shrinkage operator, denoted by shrink(·, ·), is defined as follows:

shrink(x, α) = sign(x) ·max{|x| − α, 0},

where x ∈ R and α ≥ 0. The shrinkage operator is extended to vectors and matrices by applying it
elementwise.

Let Θ̂ be the point of maxima of g(·). Then, it is possible to compute Θ̂ by a simple gradient
ascent iteration as follows:

UkΣkV
∗
k = svd(L(0) + µ−1PQΘk),

Lk+1 = Uk · shrink
(
Σk, µ

−1
)
· V ∗k,

Sk+1 = shrink
(
S(0) + µ−1PQΘk, λµ

−1
)
,

Θk+1 = Θk + tk(Y − PQ(Lk+1 + Sk+1)),

where tk > 0 is the step size satisfying tk ≤ µ/2. Once we obtain the dual optimal solution Θ̂,
the primal optimal solution can be computed using (8.4). While this iteration provably converges
to an optimal solution to the dual problem (and hence yields a solution to the primal problem),
faster convergence can be obtained by replacing simple gradient ascent method with an accelerated
gradient method, such as Nesterov’s optimal method [Nes83]. This modification yields Algorithm 1.

The above iterative scheme has two free parameters, µ and (L(0),S(0)). While a small µ is

desirable for accuracy, it leads to slower convergence in practice. This is particularly true if L(0)

and S(0) are far from the optimal solution. Thus, we follow a continuation strategy suggested in
[BCG10], in which we successively solve (8.1) while monotonically decreasing the value of µ. The
optimal solution from one complete iteration is used to initialize the subsequent one. The entire

algorithm is summarized as Algorithm 1. For our experiments, we initialize (L
(0)
1 ,S

(0)
1 ) to (Y ,0).

We also fix µ1 = 100 and γ = 0.9. We terminate the outer loop of this algorithm when the relative
change in L(0),S(0) is sufficiently small:∥∥∥L(0)

j+1 −L
(0)
j

∥∥∥2

F
+
∥∥∥S(0)

j+1 − S
(0)
j

∥∥∥2

F
< ε2 ×

(∥∥∥L(0)
j

∥∥∥2

F
+
∥∥∥S(0)

j

∥∥∥2

F

)
.

In our numerical experiments, we set ε = 0.001.
The major computational burdens in Algorithm 1 are (a) computing the partial singular value

decomposition and (b) applying the projection operator PQ. The cost of the singular value decom-
position can be ameliorated using rank prediction and partial singular value decomposition. This
heuristic can dramatically reduce the computational complexity of practical implementations. We
should note, however, that we are currently not aware of any algorithm that provably solves (1.7)
(or its close variants) and provably controls the rank of the iterates. As noted above, the other
main cost is that of storing and applying the operator PQ. For imaging applications, this operator
is often either almost full rank, or has special structure (such as acting column-wise) that renders
its contribution to the computational complexity negligible compared to the SVD. However, when
Q is unstructured (e.g., an isotropic random subspace) the costs of representing it in memory and
applying it to matrices are both proportional to mn ·dim(Q). Reducing this burden using structured
random projections is another interesting direction for future work.
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8.2 Simulation Results

We test our algorithm on some randomly generated data to corroborate our theoretical results.
Given n, r, k and p, we generate the data as follows:

• L0 = UV ∗, where U ,V ∈ Rn×r are random matrices each of whose entries is i.i.d. according
to the standard normal distribution.

• S0 ∈ Rn×n is a sparse matrix with exactly k non-zero entries whose support is uniformly dis-
tributed among all possible sets of cardinality k and whose non-zero entries are i.i.d. uniformly
in the range [−10, 10].

• Q is generated as the linear subspace spanned by p independent random matricesG1, . . . ,Gp ∈
Rn×n. Each of the Gi’s have entries that are i.i.d. according to N (0, 1/n2).

We fix n = 100 in all our simulations. To observe the recovery behavior as a function of r, k and p,
we plot our results in the following fashion. We fix p and subsequently the subspace Q. Then, we
vary r and k, and empirically observe the probability of recovery success. For each pair (r, k), we
carry out 10 independent trials. A trial is considered successful if

‖L̂−L0‖F
‖L0‖F

≤ 10−2,

where L̂ is the recovered low-rank component.
The simulation results are summarized in a series of plots in Figure 2. The case p = 0 is basically

the PCP scenario when all the entries of the corrupted matrix are directly observed. We note that
as p increases, the region of reliable recovery shrinks. Notice that when p = 5, 000, the number of
linear measurements is only half of the number of entries and there remains a small region where
the convex program succeeds.

8.3 Removing shadows from faces images

We next show the result of applying Algorithm 1 to a dataset of real faces images. It is known
from [CLMW11] that faces images can often be decomposed as the low-rank part, capturing the
face appearances under different illuminations, and a sparse error part, representing shadows and
specularities. In this task, we prepare the face images as in [CLMW11], with one key difference:
only the matrix D = PQ[M ] is observed, where M is the corrupted face data matrix, and Q is a
subspace we generate randomly.

For M ∈ Rm×n, we let the dimension of the random subspace dim(Q) = 0.75mn, reducing
25% measurements of the original face data. Nevertheless, from Figure 3 we can see that both the
low-rank and sparse parts are successfully recovered from the reduced measurements D. The main
reason we can only discard 25% of the measurements in this case is that n is relatively small (20
images in this example). For larger n more significant reductions are possible.
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A Decomposable Norms

In this appendix, we briefly compare the notion of local decomposability in Definition 4.1 (and
[CR11]) to the notion of decompsability in [NRWY10]. In the sense of [NRWY10], a norm ‖ · ‖ is
decomposable over a subspace pair (T, T⊥) if for all x ∈ T , y ∈ T⊥, ‖x + y‖ = ‖x‖ + ‖y‖. If
x ∈ T , and ‖ · ‖ is decomposable over (T, T⊥) in the sense of [NRWY10], and the restriction of ‖ · ‖
to T is differentiable at x, then ‖·‖ is locally decomposable at x. However, there exist norms that
are decomposable in the sense of [NRWY10], but are not locally decomposable. For example, for
x ∈ R4, let

Γ = {(s, t, 0, 0) | s, t ∈ R},

and
‖x‖♦ = ‖PΓx‖∞ + ‖PΓ⊥x‖∞ .

In the sense of [NRWY10], this norm is evidently decomposable over T = Γ, T⊥ = Γ⊥. At the point
x = (1, 1, 0, 0), the subdifferential is

∂ ‖·‖♦ (x) = {(a, b, c, d) | a ≥ 0, b ≥ 0, a+ b = 1, |c|+ |d| ≤ 1} .

Since the projection of the subdifferential onto T is not a singleton, this norm is not locally decom-
posable at x.

On the other hand, if a norm ‖ · ‖ is locally decomposable at x, it is easy to show that for any
y ∈ T⊥, we have

‖x+ y‖ = ‖x‖ + ‖y‖ .

So, if the norm is locally decomposable at every x ∈ T , it is decomposable over (T, T⊥), in the sense
of [NRWY10].

B Proof of Lemma 4.2: Optimality Conditions

Proof. Let f denote the objective function. Consider a feasible perturbation δ = (∆1, . . . ,∆τ ), so
PQ
∑
i ∆i = 0. Then for any W 1, . . . ,W τ such that ∀ i, W i ∈ ∂‖ · ‖(i)(Xi,?), we have

f(x? + δ) ≥ f(x?) +
∑
i

λi〈W i,∆i〉. (B.1)

By duality of norms, for each i there exists Hi ∈ Rm×n with ‖Hi‖∗(i) ≤ 1 and

〈Hi,PT⊥i ∆i〉 = ‖PT⊥i ∆i‖(i). (B.2)
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Set W i = Si +PT⊥i Hi. From our definition of a locally decomposable norm, PT⊥i is nonexpansive,

and so ‖PT⊥i Hi‖∗(i) ≤ 1, and W i ∈ ∂‖ · ‖(i)(Xi,?). Moreover,

〈W i,∆i〉 = 〈PTiW i,∆i〉+ 〈PT⊥i W i,∆i〉
= 〈PTiW i,PTi∆i〉+ 〈PT⊥i W i,PT⊥i ∆i〉
= 〈Si,PTi∆i〉+ 〈Hi,PT⊥i ∆i〉
= 〈Si,PTi∆i〉+ ‖PT⊥i ∆i‖(i) (B.3)

Plugging in to (B.1), we have

f(x? + δ) ≥ f(x?) +
∑
i

〈λiSi,PTi∆i〉+ λi‖PT⊥i ∆i‖(i)

= f(x?) +
∑
i

〈PTiΛ,PTi∆i〉+ λi‖PT⊥i ∆i‖(i)

= f(x?) +
∑
i

〈Λ,PTi∆i〉+ λi‖PT⊥i ∆i‖(i)

= f(x?) +
∑
i

〈Λ,∆i〉 − 〈Λ,PT⊥i ∆i〉+ λi‖PT⊥i ∆i‖(i)

≥ f(x?) +
〈
Λ,
∑
j

∆j

〉
+
∑
i

−‖PT⊥i Λ‖∗(i)‖PT⊥i ∆i‖(i) + λi‖PT⊥i ∆i‖(i)

= f(x?) +
〈
PQ⊥Λ,

∑
j

∆j

〉
+
∑
i

(
λi − ‖PT⊥i Λ‖∗(i)

)
‖PT⊥i ∆i‖(i)

= f(x?) +
∑
i

(
λi − ‖PT⊥i Λ‖∗(i)

)
‖PT⊥i ∆i‖(i), (B.4)

where we have used that 〈PQΛ,
∑
j ∆j〉 = 〈Λ,PQ

∑
j ∆j〉 = 0, since δ is feasible. Since each of the

‖PT⊥i Λ‖∗(i) is strictly smaller than λi, if any of the PT⊥i ∆i are nonzero, then f(x?+δ) > f(x?). If, on

the other hand, all of the PT⊥i ∆i are zero, then ∆i ∈ Ti for all i, and the constraint PQ
∑
i ∆i = 0

implies that
∑
i ∆i ∈ (T1 + · · · + Tτ ) ∩ Q⊥. If

∑
i ∆i 6= 0, this contradicts independence of

(T1, . . . , Tτ , Q
⊥). If

∑
i ∆i = 0, this contradicts independence of T1, . . . , Tτ (which follows from

independence of (T1, . . . , Tτ , Q
⊥)). So, we conclude that for any feasible perturbation δ, f(x? + δ)

is strictly larger than f(x?).

C Proof of Lemma 5.1: Operator Approximations

Proof. Fix an 1/4-net Γ for the unit ball of the Frobenius norm, restricted to S. By [Ver11]
Lemma 5.2, there exists such a net of size at most exp(dim(S) log 9). Let H : Rγ → Rm×n
via Hx =

∑γ
i=1Hixi, and let ψ : Rγ → Rm×n via ψx =

∑γ
i=1 H̄ixi, where (H̄i) is an or-

thonormal sequence of matrices that span R. By the Bartlett decomposition, we may assume that[
vec
[
H̄1

]
| · · · | vec

[
H̄γ

]]
∈ Rmn×γ is distributed according to the Haar measure on the Stiefel man-

ifold of mn× γ matrices with orthonormal columns. Moreover, we have A = HH∗ and PR = ψψ∗.
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A standard argument (see [Ver11] Lemma 5.4) gives that∥∥∥∥PSmnγ APS − PS
∥∥∥∥
F,F

= sup
X ∈ S

‖X‖F = 1

∣∣∣∣mnγ ‖H∗X‖22 − 1

∣∣∣∣ ≤ 2 sup
X∈Γ

∣∣∣∣mnγ ‖H∗X‖22 − 1

∣∣∣∣ . (C.1)

Notice that
√

mn
γ H

∗X is distributed as an iid N (0, 1/γ) random vector. Using Lemma 1 of [LM00],

P
[ ∣∣∣∣mnγ ‖H∗X‖22 − 1

∣∣∣∣ ≥ 2

√
t

γ
+ 2

t

γ

]
≤ 2 e−t. (C.2)

Choose t = c1γ, with c1 small enough that 4
√
c1 + 4c1 ≤ 1/2. Take a union bound over all

exp(dim(S) log 9) elements of Γ to get

P

[∥∥∥∥PSmnγ APS − PS
∥∥∥∥
F,F

≥ 1

2

]
≤ 2 exp (−c1γ + dim(S) log 9) . (C.3)

Using the assumption that γ > C1dim(S), and ensuring that C1 is large enough that c1 > log 9
C1

completes the proof of (5.2).
For the second term, we repeat the argument, noting that∥∥∥∥mnγ PSPRPS − PS

∥∥∥∥
F,F

≤ 2 sup
X∈Γ

∣∣∣∣mnγ ‖ψ∗X‖22 − 1

∣∣∣∣ . (C.4)

Note that ‖ψ∗X‖22 = ‖(vec ◦ ψ)∗vec [X] ‖22. The operator vec ◦ ψ : Rγ → Rmn can be identified
with an mn× γ matrix U , which per the above discussion can be taken to be distributed according
to the Haar measure. By orthogonal invariance, for any fixed x, U∗x is equal in distribution to
the restriction of a uniformly distributed random unit vector r ∈ Smn−1 to its first γ coordinates.
Lemma 2.2 of [DG03] provides convenient tail bounds for the norm of such a coordinate restriction.
Applying that lemma, we have that for every t > 0, there exists ct > 0 such that

P
[ ∣∣∣∣mnγ ‖ψ∗X‖22 − 1

∣∣∣∣ > t

]
≤ exp (−ctγ) . (C.5)

Set t = 1/32. As above, ensuring that C1 is larger than log 9
ct

and taking a union bound shows that

with the desired probability
∥∥∥mnγ PSPRPS − PS∥∥∥

F,F
≤ 1/16. Rescaling gives the bound quoted in

the statement of the lemma.

D Derandomizing the Signs

In this section, we show how the assumption that the signs of the sparse term S0 are random can be
removed. To be clear, one can replace the assumtion that sign (S0) follows a Bernoulli-Rademacher
model with nonzero probability ρ, with the assumption that sign (S0) = PΩΣ, where Σ is any
fixed matrix of signs, and PΩ is an independent Bernoulli subset with nonzero probability ρ/2. The
argument follows very directly that of [CLMW11].
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Lemma D.1. Suppose that (L0,S0) is the unique optimal solution to the Compressive Principal
Component Pursuit problem

minimize ‖L‖∗ + λ ‖S‖1 subject to PQ[L+ S] = D (D.1)

with input data D = PQ[L0 + S0]. Then for any subset W ⊂ [m] × [n], if we set S′0 = PWS0,
the pair (L0,S

′
0) is the unique optimal solution to the Compressive PCP problem with input data

D′ = PQ[L0 + S′0].

Proof. Let (L̂, Ŝ) denote an optimal solution with input D′. Then∥∥∥L̂∥∥∥
∗

+ λ
∥∥∥Ŝ∥∥∥

1
≤ ‖L0‖∗ + λ

∥∥S′0∥∥1
.

Consider the pair (L̂, Ŝ + S0 − S′0). By linearity,

PQ[L̂+ Ŝ + S0 − S′0] = PQ[L̂+ Ŝ] + PQ[S0 − S′0]

= PQ[L0 + S0] + PQ[S0 − S′0] = D,

and so this pair is feasible for the original problem.
By the triangle inequality, we have∥∥∥L̂∥∥∥

∗
+ λ

∥∥∥Ŝ + S0 − S′0
∥∥∥

1
≤

∥∥∥L̂∥∥∥
∗

+ λ
∥∥∥Ŝ∥∥∥

1
+ λ

∥∥S0 − S′0
∥∥

1

≤ ‖L0‖+ λ
∥∥S′0∥∥1

+ λ
∥∥S0 − S′0

∥∥
1

= ‖L0‖+ λ ‖S0‖1 .

In the final equality, we have used the fact that for any coordinate subspace W and matrix X,
‖PWX‖1 + ‖PW⊥X‖1 = ‖X‖1. By unique optimality of (L0,S0) for the problem with input D,

we have L̂ = L0, and Ŝ = S′0.

Lemma D.2. Suppose that the solution to the CPCP problem with input data D = PQ[L0 +S0] is
unique and equal to (L0,S0), with probability p0 in the model in which the entries of sign (S0) are iid
Bernoulli-Rademacher random variables with nonzero probability ρ. Then with the same probability
p0, the solution is unique and equal to (L0,S0), in the model in which sign (S0) = PWΣ, where PW
is an iid Bernoulli(ρ/2) random matrix, and Σ is any fixed matrix of signs.

Proof. Let Σ0 be iid Bernoulli-Rademacher, with nonzero probability ρ, as in Theorem 2.1. Set

W = {(i, j) | [Σ0]i,j = [Σ]i,j} .

By Lemma D.1, whenever (L0,S0) is uniquely recovered by CPCP, so is (L0,PWS0). The result
follows by observing that (i, j) ∈W independently with probability ρ/2.

38


