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LINEAR REGRESSION



EXAMPLE: OLD FAITHFUL
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Can we meaningfully predict the time between eruptions only using the
duration of the last eruption?



EXAMPLE: OLD FAITHFUL
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EXAMPLE: OLD FAITHFUL

One model for this

(wait time) ≈ w0 + (last duration)× w1

I w0 and w1 are to be learned.
I This is an example of linear regression.
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Refresher
w1 is the slope, w0 is called the intercept, bias, shift, offset.



HIGHER DIMENSIONS

Two inputs

(output) ≈ w0 + (input 1)× w1 + (input 2)× w2

With two inputs the intuition
is the same −→

y = w0 + x1w1 + x2w2

x1 x2

y



REGRESSION: PROBLEM DEFINITION

Data
Input: x ∈ Rd (i.e., measurements, covariates, features, indepen. variables)
Output: y ∈ R (i.e., response, dependent variable)

Goal
Find a function f : Rd → R such that y ≈ f (x;w) for the data pair (x, y).
f (x;w) is called a regression function. Its free parameters are w.

Definition of linear regression
A regression method is called linear if the prediction f is a linear function of
the unknown parameters w.



LEAST SQUARES LINEAR REGRESSION MODEL

Model
The linear regression model we focus on now has the form

yi ≈ f (xi;w) = w0 +

d∑
j=1

xijwj.

Model learning
We have the set of training data (x1, y1) . . . (xn, yn). We want to use this data
to learn a w such that yi ≈ f (xi;w). But we first need an objective function to
tell us what a “good” value of w is.

Least squares
The least squares objective tells us to pick the w that minimizes the sum of
squared errors

wLS = arg min
w

n∑
i=1

(yi − f (xi;w))2 ≡ arg min
w
L.



LEAST SQUARES IN PICTURES

Observations:
Vertical length is error.

The objective function L is the
sum of all the squared lengths.

Find weights (w1,w2) plus an
offset w0 to minimize L.

(w0,w1,w2) defines this plane.



EXAMPLE: EDUCATION, SENIORITY AND INCOME

2-dimensional problem

Input: (education, seniority) ∈ R2.

Output: (income) ∈ R

Model: (income) ≈ w0 + (education)w1 + (seniority)w2

Question: Both w1,w2 > 0. What does this tell us?

Answer: As education and/or seniority goes up, income tends to go up.

(Caveat: This is a statement about correlation, not causation.)



LEAST SQUARES LINEAR REGRESSION MODEL

Thus far
We have data pairs (xi, yi) of measurements xi ∈ Rd and a response yi ∈ R.
We believe there is a linear relationship between xi and yi,

yi = w0 +

d∑
j=1

xijwj + εi

and we want to minimize the objective function

L =

n∑
i=1

ε2
i =

n∑
i=1

(yi − w0 −
∑d

j=1 xijwj)
2

with respect to (w0,w1, . . . ,wd).
Can math notation make this easier to look at/work with?



NOTATION: VECTORS AND MATRICES

We think of data with d dimensions as a column vector:

xi =


xi1
xi2
...

xid

 (e.g.)⇒


age

height
...

income


A set of n vectors can be stacked into a matrix:

X =


x11 . . . x1d

x21 . . . x2d
...

...
xn1 . . . xnd

 =


− xT

1 −
− xT

2 −
...

− xT
n −


Assumptions for now:

I All features are treated as continuous-valued (x ∈ Rd)

I We have more observations than dimensions (d < n)



NOTATION: REGRESSION (AND CLASSIFICATION)

Usually, for linear regression (and classification) we include an intercept
term w0 that doesn’t interact with any element in the vector x ∈ Rd.

It will be convenient to attach a 1 to the first dimension of each vector xi

(which we indicate by xi ∈ Rd+1) and in the first column of the matrix X:

xi =


1

xi1
xi2
...

xid

 , X =


1 x11 . . . x1d

1 x21 . . . x2d
...

...
1 xn1 . . . xnd

 =


1− xT

1 −
1− xT

2 −
...

1− xT
n −

 .

We also now view w = [w0,w1, . . . ,wd]
T as w ∈ Rd+1.



LEAST SQUARES IN VECTOR FORM

Original least squares objective function: L =
∑n

i=1(yi − w0 −
∑d

j=1 xijwj)
2

Using vectors, this can now be written: L =
∑n

i=1(yi − xT
i w)2

Least squares solution (vector version)
We can find w by setting,

∇wL = 0 ⇒
n∑

i=1

∇w(y2
i − 2wTxiyi + wTxixT

i w) = 0.

Solving gives,

−
n∑

i=1

2yixi +
( n∑

i=1

2xixT
i

)
w = 0 ⇒ wLS =

( n∑
i=1

xixT
i

)−1( n∑
i=1

yixi

)
.



LEAST SQUARES IN MATRIX FORM

Least squares solution (matrix version)
Least squares in matrix form is even cleaner.

Start by organizing the yi in a column vector, y = [y1, . . . , yn]
T . Then

L =

n∑
i=1

(yi − xT
i w)2 = ‖y− Xw‖2 = (y− Xw)T(y− Xw).

If we take the gradient with respect to w, we find that

∇wL = 2XTXw− 2XTy = 0 ⇒ wLS = (XTX)−1XTy.



RECALL FROM LINEAR ALGEBRA

Recall: Matrix × vector (XTy =
∑n

i=1 yixi)

 | | |
x1 x2 . . . xn

| | |




y1
y2
...

yn

 = y1

 |
x1
|

+ y2

 |
x2
|

+ · · ·+ yn

 |
xn

|



Recall: Matrix × matrix (XTX =
∑n

i=1 xixT
i )

 | | |
x1 x2 . . . xn

| | |



− xT

1 −
− xT

2 −
...

− xT
n −

 = x1xT
1 + · · ·+ xnxT

n .



LEAST SQUARES LINEAR REGRESSION: KEY EQUATIONS

Two notations for the key equation

wLS =
( n∑

i=1

xixT
i

)−1( n∑
i=1

yixi

)
⇐⇒ wLS = (XTX)−1XTy.

Making Predictions
We use wLS to make predictions.

Given xnew, the least squares prediction for ynew is

ynew ≈ xT
newwLS



LEAST SQUARES SOLUTION

Potential issues
Calculating wLS = (XTX)−1XTy assumes (XTX)−1 exists.

When doesn’t it exist?
Answer: When XTX is not a full rank matrix.

When is XTX full rank?
Answer: When the n× (d + 1) matrix X has at least d + 1 linearly
independent rows. This means that any point in Rd+1 can be reached by
a weighted combination of d + 1 rows of X.

Obviously if n < d + 1, we can’t do least squares. If (XTX)−1 doesn’t exist,
there are an infinite number of possible solutions.

Takeaway: We want n� d (i.e., X is “tall and skinny”).



BROADENING LINEAR REGRESSION
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BROADENING LINEAR REGRESSION

y = w0 + w1x
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BROADENING LINEAR REGRESSION

y = w0 + w1x + w2x2 + w3x3
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POLYNOMIAL REGRESSION IN R

Recall: Definition of linear regression
A regression method is called linear if the prediction f is a linear function of
the unknown parameters w.

I Therefore, a function such as y = w0 + w1x + w2x2 is linear in w.
The LS solution is the same, only the preprocessing is different.

I E.g., Let (x1, y1) . . . (xn, yn) be the data, x ∈ R, y ∈ R. For a pth-order
polynomial approximation, construct the matrix

X =


1 x1 x2

1 . . . xp
1

1 x2 x2
2 . . . xp

2
...

...
1 xn x2

n . . . xp
n


I Then solve exactly as before: wLS = (XTX)−1XTy.



POLYNOMIAL REGRESSION (MTH ORDER)
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POLYNOMIAL REGRESSION (MTH ORDER)
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POLYNOMIAL REGRESSION (MTH ORDER)
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POLYNOMIAL REGRESSION (MTH ORDER)
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POLYNOMIAL REGRESSION IN TWO DIMENSIONS

Example: 2nd and 3rd order polynomial regression in R2

The width of X grows as (order) × (dimensions) + 1.

2nd order: yi = w0 + w1xi1 + w2xi2 + w3x2
i1 + w4x2

i2

3rd order: yi = w0 + w1xi1 + w2xi2 + w3x2
i1 + w4x2

i2 + w5x3
i1 + w6x3

i2

(a) 1st order (b) 3rd order



FURTHER EXTENSIONS

More generally, for xi ∈ Rd+1 least squares linear regression can be
performed on functions f (xi;w) of the form

yi ≈ f (xi,w) =
S∑

s=1

gs(xi)ws.

For example,
gs(xi) = x2

ij

gs(xi) = log xij

gs(xi) = I(xij < a)

gs(xi) = I(xij < xij′)

As long as the function is linear in w1, . . . ,wS, we can construct the matrix
X by putting the transformed xi on row i, and solve wLS = (XTX)−1XTy.

One caveat is that, as the number of functions increases, we need more data
to avoid overfitting.



GEOMETRY OF LEAST SQUARES REGRESSION

Thinking geometrically about least squares regression helps a lot.

I We want to minimize ‖y− Xw‖2. Think of the vector y as a point in Rn.
We want to find w in order to get the product Xw close to y.

I If Xj is the jth column of X, then Xw =
∑d+1

j=1 wjXj.

I That is, we weight the columns in X by values in w to approximate y.

I The LS solutions returns w such that Xw is as close to y as possible in
the Euclidean sense (i.e., intuitive “direct-line” distance).



GEOMETRY OF LEAST SQUARES REGRESSION

arg min
w
‖y− Xw‖2 ⇒ wLS = (XTX)−1XTy.

The columns of X define a d + 1-dimensional
subspace in the higher dimensional Rn.

The closest point in that subspace is the
orthonormal projection of y into the column
space of X.

Right: y ∈ R3 and data xi ∈ R.
X1 = [1, 1, 1]T and X2 = [x1, x2, x3]

T

The approximation is ŷ = XwLS = X(XTX)−1XTy.



GEOMETRY OF LEAST SQUARES REGRESSION

y = w0 + x1w1 + x2w2

x1 x2

y

(a) yi ≈ w0 + xT
i w for i = 1, . . . , n (b) y ≈ Xw

There are some key difference between (a) and (b) worth highlighting as you
try to develop the corresponding intuitions.

(a) Can be shown for all n, but only for xi ∈ R2 (not counting the added 1).

(b) This corresponds to n = 3 and one-dimensional data: X =

[
1 x1

1 x2

1 x3

]
.


