COMS 4721: Machine Learning for Data Science Lecture 2, 1/19/2017

Prof. John Paisley
Department of Electrical Engineering
\& Data Science Institute
Columbia University

Linear Regression

Example: Old Faithful

Example: Old Faithful

Can we meaningfully predict the time between eruptions only using the duration of the last eruption?

Example: Old Faithful

Can we meaningfully predict the time between eruptions only using the duration of the last eruption?

Example: Old Faithful

One model for this

$$
(\text { wait time }) \approx w_{0}+(\text { last duration }) \times w_{1}
$$

- w_{0} and w_{1} are to be learned.
- This is an example of linear regression.

Refresher

w_{1} is the slope, w_{0} is called the intercept, bias, shift, offset.

Higher dimensions

Two inputs
$($ output $) \approx w_{0}+($ input 1$) \times w_{1}+($ input 2$) \times w_{2}$

With two inputs the intuition is the same \longrightarrow

Regression: Problem Definition

```
Data
Input: \(x \in \mathbb{R}^{d}\) (i.e., measurements, covariates, features, indepen. variables)
Output: \(y \in \mathbb{R}\) (i.e., response, dependent variable)
```


Goal

Find a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $y \approx f(x ; w)$ for the data pair (x, y). $f(x ; w)$ is called a regression function. Its free parameters are w.

Definition of linear regression

A regression method is called linear if the prediction f is a linear function of the unknown parameters w.

LEAST SQUARES LINEAR REGRESSION MODEL

Model

The linear regression model we focus on now has the form

$$
y_{i} \approx f\left(x_{i} ; w\right)=w_{0}+\sum_{j=1}^{d} x_{i j} w_{j}
$$

Model learning
We have the set of training data $\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right)$. We want to use this data to learn a w such that $y_{i} \approx f\left(x_{i} ; w\right)$. But we first need an objective function to tell us what a "good" value of w is.

Least squares

The least squares objective tells us to pick the w that minimizes the sum of squared errors

$$
w_{\mathrm{LS}}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i} ; w\right)\right)^{2} \equiv \arg \min _{w} \mathcal{L} .
$$

LEAST SQUARES IN PICTURES

Observations:
Vertical length is error.

The objective function \mathcal{L} is the sum of all the squared lengths.

Find weights $\left(w_{1}, w_{2}\right)$ plus an offset w_{0} to minimize \mathcal{L}.
$\left(w_{0}, w_{1}, w_{2}\right)$ defines this plane.

Example: Education, Seniority and Income

2-dimensional problem
Input: (education, seniority) $\in \mathbb{R}^{2}$.
Output: (income) $\in \mathbb{R}$
Model: $($ income $) \approx w_{0}+($ education $) w_{1}+($ seniority $) w_{2}$
Question: Both $w_{1}, w_{2}>0$. What does this tell us?
Answer: As education and/or seniority goes up, income tends to go up.
(Caveat: This is a statement about correlation, not causation.)

LEAST SQUARES LINEAR REGRESSION MODEL

Thus far
We have data pairs $\left(x_{i}, y_{i}\right)$ of measurements $x_{i} \in \mathbb{R}^{d}$ and a response $y_{i} \in \mathbb{R}$. We believe there is a linear relationship between x_{i} and y_{i},

$$
y_{i}=w_{0}+\sum_{j=1}^{d} x_{i j} w_{j}+\epsilon_{i}
$$

and we want to minimize the objective function

$$
\mathcal{L}=\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-w_{0}-\sum_{j=1}^{d} x_{i j} w_{j}\right)^{2}
$$

with respect to $\left(w_{0}, w_{1}, \ldots, w_{d}\right)$.
Can math notation make this easier to look at/work with?

Notation: Vectors and Matrices

We think of data with d dimensions as a column vector:

$$
x_{i}=\left[\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
\vdots \\
x_{i d}
\end{array}\right] \quad \text { (e.g.) } \Rightarrow\left[\begin{array}{c}
\text { age } \\
\text { height } \\
\vdots \\
\text { income }
\end{array}\right]
$$

A set of n vectors can be stacked into a matrix:

$$
\mathbf{X}=\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 d} \\
x_{21} & \ldots & x_{2 d} \\
\vdots & & \vdots \\
x_{n 1} & \ldots & x_{n d}
\end{array}\right]=\left[\begin{array}{c}
-x_{1}^{T}- \\
-x_{2}^{T}- \\
\vdots \\
-x_{n}^{T}-
\end{array}\right]
$$

Assumptions for now:

- All features are treated as continuous-valued $\left(x \in \mathbb{R}^{d}\right)$
- We have more observations than dimensions $(d<n)$

Notation: REGRESSION (AND CLASSIFICATION)

Usually, for linear regression (and classification) we include an intercept term w_{0} that doesn't interact with any element in the vector $x \in \mathbb{R}^{d}$.

It will be convenient to attach a 1 to the first dimension of each vector x_{i} (which we indicate by $x_{i} \in \mathbb{R}^{d+1}$) and in the first column of the matrix X :

$$
x_{i}=\left[\begin{array}{c}
1 \\
x_{i 1} \\
x_{i 2} \\
\vdots \\
x_{i d}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{cccc}
1 & x_{11} & \ldots & x_{1 d} \\
1 & x_{21} & \ldots & x_{2 d} \\
\vdots & & \vdots & \\
1 & x_{n 1} & \ldots & x_{n d}
\end{array}\right]=\left[\begin{array}{c}
1-x_{1}^{T}- \\
1-x_{2}^{T}- \\
\vdots \\
1-x_{n}^{T}-
\end{array}\right]
$$

We also now view $w=\left[w_{0}, w_{1}, \ldots, w_{d}\right]^{T}$ as $w \in \mathbb{R}^{d+1}$.

LEAST SQUARES IN VECTOR FORM

Original least squares objective function: $\mathcal{L}=\sum_{i=1}^{n}\left(y_{i}-w_{0}-\sum_{j=1}^{d} x_{i j} w_{j}\right)^{2}$
Using vectors, this can now be written: $\mathcal{L}=\sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}$
Least squares solution (vector version)
We can find w by setting,

$$
\nabla_{w} \mathcal{L}=0 \quad \Rightarrow \quad \sum_{i=1}^{n} \nabla_{w}\left(y_{i}^{2}-2 w^{T} x_{i} y_{i}+w^{T} x_{i} x_{i}^{T} w\right)=0
$$

Solving gives,

$$
-\sum_{i=1}^{n} 2 y_{i} x_{i}+\left(\sum_{i=1}^{n} 2 x_{i} x_{i}^{T}\right) w=0 \Rightarrow w_{\mathrm{LS}}=\left(\sum_{i=1}^{n} x_{i} x_{i}^{T}\right)^{-1}\left(\sum_{i=1}^{n} y_{i} x_{i}\right) .
$$

LEAST SQUARES IN MATRIX FORM

Least squares solution (matrix version)
Least squares in matrix form is even cleaner.
Start by organizing the y_{i} in a column vector, $y=\left[y_{1}, \ldots, y_{n}\right]^{T}$. Then

$$
\mathcal{L}=\sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}=\|y-X w\|^{2}=(y-X w)^{T}(y-X w) .
$$

If we take the gradient with respect to w, we find that

$$
\nabla_{w} \mathcal{L}=2 X^{T} X w-2 X^{T} y=0 \quad \Rightarrow \quad w_{\mathrm{LS}}=\left(X^{T} X\right)^{-1} X^{T} y .
$$

RECALL FROM LINEAR ALGEBRA

Recall: Matrix \times vector $\left(X^{T} y=\sum_{i=1}^{n} y_{i} x_{i}\right)$

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \ldots & x_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=y_{1}\left[\begin{array}{c}
\mid \\
x_{1} \\
\mid
\end{array}\right]+y_{2}\left[\begin{array}{c}
\mid \\
x_{2} \\
\mid
\end{array}\right]+\cdots+y_{n}\left[\begin{array}{c}
\mid \\
x_{n} \\
\mid
\end{array}\right]
$$

Recall: Matrix \times matrix $\left(X^{T} X=\sum_{i=1}^{n} x_{i} x_{i}^{T}\right)$

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \ldots & x_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
-x_{1}^{T}- \\
-x_{2}^{T}- \\
\vdots \\
-x_{n}^{T}-
\end{array}\right]=x_{1} x_{1}^{T}+\cdots+x_{n} x_{n}^{T} .
$$

Least squares linear regression: Key equations

Two notations for the key equation

$$
w_{\mathrm{LS}}=\left(\sum_{i=1}^{n} x_{i} x_{i}^{T}\right)^{-1}\left(\sum_{i=1}^{n} y_{i} x_{i}\right) \quad \Longleftrightarrow \quad w_{\mathrm{LS}}=\left(X^{T} X\right)^{-1} X^{T} y .
$$

Making Predictions
We use w_{LS} to make predictions.
Given $x_{\text {new }}$, the least squares prediction for $y_{\text {new }}$ is

$$
y_{\mathrm{new}} \approx x_{\mathrm{new}}^{T} w_{\mathrm{LS}}
$$

LEAST SQUARES SOLUTION

Potential issues

Calculating $w_{\mathrm{LS}}=\left(X^{T} X\right)^{-1} X^{T} y$ assumes $\left(X^{T} X\right)^{-1}$ exists.
When doesn't it exist?
Answer: When $X^{T} X$ is not a full rank matrix.
When is $X^{T} X$ full rank?
Answer: When the $n \times(d+1)$ matrix X has at least $d+1$ linearly independent rows. This means that any point in \mathbb{R}^{d+1} can be reached by a weighted combination of $d+1$ rows of X.

Obviously if $n<d+1$, we can't do least squares. If $\left(X^{T} X\right)^{-1}$ doesn't exist, there are an infinite number of possible solutions.
Takeaway: We want $n \gg d$ (i.e., X is "tall and skinny").

Broadening Linear regression

Broadening Linear regression

$$
y=w_{0}+w_{1} x
$$

BROADENING LINEAR REGRESSION

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}
$$

Polynomial Regression in \mathbb{R}

Recall: Definition of linear regression

A regression method is called linear if the prediction f is a linear function of the unknown parameters w.

- Therefore, a function such as $y=w_{0}+w_{1} x+w_{2} x^{2}$ is linear in w. The LS solution is the same, only the preprocessing is different.
- E.g., Let $\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right)$ be the data, $x \in \mathbb{R}, y \in \mathbb{R}$. For a p th-order polynomial approximation, construct the matrix

$$
\mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{p} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{p} \\
\vdots & & & \vdots & \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{p}
\end{array}\right]
$$

- Then solve exactly as before: $w_{\mathrm{LS}}=\left(X^{T} X\right)^{-1} X^{T} y$.

POLYNOMIAL REGRESSION (MTH ORDER)

Polynomial regression in two dimensions

Example: 2 nd and 3rd order polynomial regression in \mathbb{R}^{2}
The width of X grows as (order) $\times($ dimensions $)+1$.

$$
\begin{aligned}
\text { 2nd order: } & y_{i}=w_{0}+w_{1} x_{i 1}+w_{2} x_{i 2}+w_{3} x_{i 1}^{2}+w_{4} x_{i 2}^{2} \\
\text { 3rd order: } & y_{i}=w_{0}+w_{1} x_{i 1}+w_{2} x_{i 2}+w_{3} x_{i 1}^{2}+w_{4} x_{i 2}^{2}+w_{5} x_{i 1}^{3}+w_{6} x_{i 2}^{3}
\end{aligned}
$$

(a) 1st order

(b) 3rd order

Further extensions

More generally, for $x_{i} \in \mathbb{R}^{d+1}$ least squares linear regression can be performed on functions $f\left(x_{i} ; w\right)$ of the form

$$
y_{i} \approx f\left(x_{i}, w\right)=\sum_{s=1}^{S} g_{s}\left(x_{i}\right) w_{s}
$$

For example,

$$
\begin{aligned}
g_{s}\left(x_{i}\right) & =x_{i j}^{2} \\
g_{s}\left(x_{i}\right) & =\log x_{i j} \\
g_{s}\left(x_{i}\right) & =\mathbb{I}\left(x_{i j}<a\right) \\
g_{s}\left(x_{i}\right) & =\mathbb{I}\left(x_{i j}<x_{i j^{\prime}}\right)
\end{aligned}
$$

As long as the function is linear in w_{1}, \ldots, w_{S}, we can construct the matrix X by putting the transformed x_{i} on row i, and solve $w_{\mathrm{LS}}=\left(X^{T} X\right)^{-1} X^{T} y$.

One caveat is that, as the number of functions increases, we need more data to avoid overfitting.

GEOMETRY OF LEAST SQUARES REGRESSION

Thinking geometrically about least squares regression helps a lot.

- We want to minimize $\|y-X w\|^{2}$. Think of the vector y as a point in \mathbb{R}^{n}. We want to find w in order to get the product $X w$ close to y.
- If X_{j} is the j th column of X, then $X w=\sum_{j=1}^{d+1} w_{j} X_{j}$.
- That is, we weight the columns in X by values in w to approximate y.
- The LS solutions returns w such that $X w$ is as close to y as possible in the Euclidean sense (i.e., intuitive "direct-line" distance).

GEOMETRY OF LEAST SQUARES REGRESSION

$$
\arg \min _{w}\|y-X w\|^{2} \quad \Rightarrow \quad w_{\mathrm{LS}}=\left(X^{T} X\right)^{-1} X^{T} y
$$

The columns of X define a $d+1$-dimensional subspace in the higher dimensional \mathbb{R}^{n}.

The closest point in that subspace is the orthonormal projection of y into the column space of X.

Right: $y \in \mathbb{R}^{3}$ and data $x_{i} \in \mathbb{R}$.

$$
X_{1}=[1,1,1]^{T} \text { and } X_{2}=\left[x_{1}, x_{2}, x_{3}\right]^{T}
$$

The approximation is $\hat{y}=X w_{\mathrm{LS}}=X\left(X^{T} X\right)^{-1} X^{T} y$.

GEOMETRY OF LEAST SQUARES REGRESSION

(a) $y_{i} \approx w_{0}+x_{i}^{T} w$ for $i=1, \ldots, n$

(b) $y \approx X w$

There are some key difference between (a) and (b) worth highlighting as you try to develop the corresponding intuitions.
(a) Can be shown for all n, but only for $x_{i} \in \mathbb{R}^{2}$ (not counting the added 1).
(b) This corresponds to $n=3$ and one-dimensional data: $X=\left[\begin{array}{ll}1 & x_{1} \\ 1 & x_{2} \\ 1 & x_{3}\end{array}\right]$.

