COMS 4721: Machine Learning for Data Science

 Lecture 3, 1/24/2017Prof. John Paisley
Department of Electrical Engineering
\& Data Science Institute
Columbia University

Regression: Problem Definition

Data
Measured pairs (x, y), where $x \in \mathbb{R}^{d+1}$ (input) and $y \in \mathbb{R}$ (output)

Goal

Find a function $f: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ such that $y \approx f(x ; w)$ for the data pair (x, y).
$f(x ; w)$ is the regression function and the vector w are its parameters.

Definition of linear regression
A regression method is called linear if the prediction f is a linear function of the unknown parameters w.

Least SQuares (continued)

LEAST SQUARES LINEAR REGRESSION

Least squares solution

Least squares finds the w that minimizes the sum of squared errors. The least squares objective in the most basic form where $f(x ; w)=x^{T} w$ is

$$
\mathcal{L}=\sum_{i=1}^{n}\left(y_{i}-x_{i}^{T} w\right)^{2}=\|y-X w\|^{2}=(y-X w)^{T}(y-X w) .
$$

We defined $y=\left[y_{1}, \ldots, y_{n}\right]^{T}$ and $X=\left[x_{1}, \ldots, x_{n}\right]^{T}$.
Taking the gradient with respect to w and setting to zero, we find that

$$
\nabla_{w} \mathcal{L}=2 X^{T} X w-2 X^{T} y=0 \quad \Rightarrow \quad w_{\mathrm{LS}}=\left(X^{T} X\right)^{-1} X^{T} y .
$$

In other words, w_{LS} is the vector that minimizes \mathcal{L}.

Probabilistic view

- Last class, we discussed the geometric interpretation of least squares.
- Least squares also has an insightful probabilistic interpretation that allows us to analyze its properties.
- That is, given that we pick this model as reasonable for our problem, we can ask: What kinds of assumptions are we making?

Probabilistic view

Recall: Gaussian density in n dimensions
Assume a diagonal covariance matrix $\Sigma=\sigma^{2} I$. The density is

$$
p\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{n}{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(y-\mu)^{T}(y-\mu)\right)
$$

What if we restrict the mean to $\mu=X w$ and find the maximum likelihood solution for w ?

Probabilistic view

Maximum likelihood for Gaussian linear regression
Plug $\mu=X w$ into the multivariate Gaussian distribution and solve for w using maximum likelihood.

$$
\begin{aligned}
w_{\mathrm{ML}} & =\arg \max _{w} \ln p\left(y \mid \mu=X w, \sigma^{2}\right) \\
& =\arg \max _{w}-\frac{1}{2 \sigma^{2}}\|y-X w\|^{2}-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)
\end{aligned}
$$

Least squares (LS) and maximum likelihood (ML) share the same solution:
LS: $\quad \arg \min _{w}\|y-X w\|^{2} \quad \Leftrightarrow \quad$ ML: $\arg \max _{w}-\frac{1}{2 \sigma^{2}}\|y-X w\|^{2}$

Probabilistic view

- Therefore, in a sense we are making an independent Gaussian noise assumption about the error, $\epsilon_{i}=y_{i}-x_{i}^{T} w$.
- Other ways of saying this:

1) $y_{i}=x_{i}^{T} w+\epsilon_{i}, \quad \epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right), \quad$ for $i=1, \ldots, n$,
2) $y_{i} \stackrel{i n d}{\sim} N\left(x_{i}^{T} w, \sigma^{2}\right)$, for $i=1, \ldots, n$,
3) $y \sim N\left(X w, \sigma^{2} I\right)$, as on the previous slides.

- Can we use this probabilistic line of analysis to better understand the maximum likelihood (i.e., least squares) solution?

Probabilistic view

Expected solution
Given: The modeling assumption that $y \sim N\left(X w, \sigma^{2} I\right)$.
We can calculate the expectation of the ML solution under this distribution,

$$
\begin{aligned}
\mathbb{E}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(X^{T} X\right)^{-1} X^{T} y\right] \quad\left(=\int\left[\left(X^{T} X\right)^{-1} X^{T} y\right] p(y \mid X, w) d y\right) \\
& =\left(X^{T} X\right)^{-1} X^{T} \mathbb{E}[y] \\
& =\left(X^{T} X\right)^{-1} X^{T} X w \\
& =w
\end{aligned}
$$

Therefore w_{ML} is an unbiased estimate of w, i.e., $\mathbb{E}\left[w_{\mathrm{ML}}\right]=w$.

REVIEW: AN EQUALITY FROM PROBABILITY

- Even though the "expected" maximum likelihood solution is the correct one, should we actually expect to get something near it?

Review: An equality from probability

- Even though the "expected" maximum likelihood solution is the correct one, should we actually expect to get something near it?
- We should also look at the covariance. Recall that if $y \sim N(\mu, \Sigma)$, then

$$
\operatorname{Var}[y]=\mathbb{E}\left[(y-\mathbb{E}[y])(y-\mathbb{E}[y])^{T}\right]=\Sigma .
$$

REVIEW: AN EQUALITY FROM PROBABILITY

- Even though the "expected" maximum likelihood solution is the correct one, should we actually expect to get something near it?
- We should also look at the covariance. Recall that if $y \sim N(\mu, \Sigma)$, then

$$
\operatorname{Var}[y]=\mathbb{E}\left[(y-\mathbb{E}[y])(y-\mathbb{E}[y])^{T}\right]=\Sigma
$$

- Plugging in $\mathbb{E}[y]=\mu$, this is equivalently written as

$$
\begin{aligned}
\operatorname{Var}[y] & =\mathbb{E}\left[(y-\mu)(y-\mu)^{T}\right] \\
& =\mathbb{E}\left[y y^{T}-y \mu^{T}-\mu y^{T}+\mu \mu^{T}\right] \\
& =\mathbb{E}\left[y y^{T}\right]-\mu \mu^{T}
\end{aligned}
$$

- Immediately we also get $\mathbb{E}\left[y y^{T}\right]=\Sigma+\mu \mu^{T}$.

Probabilistic view

Variance of the solution

Returning to least squares linear regression, we wish to find

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)^{T}\right] \\
& =\mathbb{E}\left[w_{\mathrm{ML}} w_{\mathrm{ML}}^{T}\right]-\mathbb{E}\left[w_{\mathrm{ML}}\right] \mathbb{E}\left[w_{\mathrm{ML}}\right]^{T}
\end{aligned}
$$

[^0]
Probabilistic View

Variance of the solution

Returning to least squares linear regression, we wish to find

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)^{T}\right] \\
& =\mathbb{E}\left[w_{\mathrm{ML}} w_{\mathrm{ML}}^{T}\right]-\mathbb{E}\left[w_{\mathrm{ML}}\right] \mathbb{E}\left[w_{\mathrm{ML}}\right]^{T}
\end{aligned}
$$

The sequence of equalities follows: ${ }^{1}$

$$
\operatorname{Var}\left[w_{\mathrm{ML}}\right]=\mathbb{E}\left[\left(X^{T} X\right)^{-1} X^{T} y y^{T} X\left(X^{T} X\right)^{-1}\right]-w w^{T}
$$

[^1]
Probabilistic view

Variance of the solution

Returning to least squares linear regression, we wish to find

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)^{T}\right] \\
& =\mathbb{E}\left[w_{\mathrm{ML}} w_{\mathrm{ML}}^{T}\right]-\mathbb{E}\left[w_{\mathrm{ML}}\right] \mathbb{E}\left[w_{\mathrm{ML}}\right]^{T}
\end{aligned}
$$

The sequence of equalities follows: ${ }^{1}$

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(X^{T} X\right)^{-1} X^{T} y y^{T} X\left(X^{T} X\right)^{-1}\right]-w w^{T} \\
& =\left(X^{T} X\right)^{-1} X^{T} \mathbb{E}\left[y y^{T}\right] X\left(X^{T} X\right)^{-1}-w w^{T}
\end{aligned}
$$

[^2]
Probabilistic view

Variance of the solution

Returning to least squares linear regression, we wish to find

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)^{T}\right] \\
& =\mathbb{E}\left[w_{\mathrm{ML}} w_{\mathrm{ML}}^{T}\right]-\mathbb{E}\left[w_{\mathrm{ML}}\right] \mathbb{E}\left[w_{\mathrm{ML}}\right]^{T} .
\end{aligned}
$$

The sequence of equalities follows: ${ }^{1}$

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(X^{T} X\right)^{-1} X^{T} y y^{T} X\left(X^{T} X\right)^{-1}\right]-w w^{T} \\
& =\left(X^{T} X\right)^{-1} X^{T} \mathbb{E}\left[y y^{T}\right] X\left(X^{T} X\right)^{-1}-w w^{T} \\
& =\left(X^{T} X\right)^{-1} X^{T}\left(\sigma^{2} I+X w w^{T} X^{T}\right) X\left(X^{T} X\right)^{-1}-w w^{T}
\end{aligned}
$$

[^3]
Probabilistic view

Variance of the solution

Returning to least squares linear regression, we wish to find

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)^{T}\right] \\
& =\mathbb{E}\left[w_{\mathrm{ML}} w_{\mathrm{ML}}^{T}\right]-\mathbb{E}\left[w_{\mathrm{ML}}\right] \mathbb{E}\left[w_{\mathrm{ML}}\right]^{T}
\end{aligned}
$$

The sequence of equalities follows: ${ }^{1}$

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right]= & \mathbb{E}\left[\left(X^{T} X\right)^{-1} X^{T} y y^{T} X\left(X^{T} X\right)^{-1}\right]-w w^{T} \\
= & \left(X^{T} X\right)^{-1} X^{T} \mathbb{E}\left[y y^{T}\right] X\left(X^{T} X\right)^{-1}-w w^{T} \\
= & \left(X^{T} X\right)^{-1} X^{T}\left(\sigma^{2} I+X w w^{T} X^{T}\right) X\left(X^{T} X\right)^{-1}-w w^{T} \\
= & \left(X^{T} X\right)^{-1} X^{T} \sigma^{2} I X\left(X^{T} X\right)^{-1}+\cdots \\
& \left(X^{T} X\right)^{-1} X^{T} X w w^{T} X^{T} X\left(X^{T} X\right)^{-1}-w w^{T}
\end{aligned}
$$

[^4]
Probabilistic view

Variance of the solution
Returning to least squares linear regression, we wish to find

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)\left(w_{\mathrm{ML}}-\mathbb{E}\left[w_{\mathrm{ML}}\right]\right)^{T}\right] \\
& =\mathbb{E}\left[w_{\mathrm{ML}} w_{\mathrm{ML}}^{T}\right]-\mathbb{E}\left[w_{\mathrm{ML}}\right] \mathbb{E}\left[w_{\mathrm{ML}}\right]^{T}
\end{aligned}
$$

The sequence of equalities follows: ${ }^{1}$

$$
\begin{aligned}
\operatorname{Var}\left[w_{\mathrm{ML}}\right] & =\mathbb{E}\left[\left(X^{T} X\right)^{-1} X^{T} y y^{T} X\left(X^{T} X\right)^{-1}\right]-w w^{T} \\
= & \left(X^{T} X\right)^{-1} X^{T} \mathbb{E}\left[y y^{T}\right] X\left(X^{T} X\right)^{-1}-w w^{T} \\
= & \left(X^{T} X\right)^{-1} X^{T}\left(\sigma^{2} I+X w w^{T} X^{T}\right) X\left(X^{T} X\right)^{-1}-w w^{T} \\
= & \left(X^{T} X\right)^{-1} X^{T} \sigma^{2} I X\left(X^{T} X\right)^{-1}+\cdots \\
& \left(X^{T} X\right)^{-1} X^{T} X w w^{T} X^{T} X\left(X^{T} X\right)^{-1}-w w^{T} \\
= & \sigma^{2}\left(X^{T} X\right)^{-1}
\end{aligned}
$$

[^5]
Probabilistic view

- We've shown that, under the Gaussian assumption $y \sim N\left(X w, \sigma^{2} I\right)$,

$$
\mathbb{E}\left[w_{\mathrm{ML}}\right]=w, \quad \operatorname{Var}\left[w_{\mathrm{ML}}\right]=\sigma^{2}\left(X^{T} X\right)^{-1}
$$

- When there are very large values in $\sigma^{2}\left(X^{T} X\right)^{-1}$, the values of $w_{\text {ML }}$ are very sensitive to the measured data y (more analysis later).
- This is bad if we want to analyze and predict using $w_{\text {mL }}$.

Ridge Regression

REGULARIZED LEAST SQUARES

- We saw how with least squares, the values in $w_{\text {ML }}$ may be huge.
- In general, when developing a model for data we often wish to constrain the model parameters in some way.
- There are many models of the form

$$
w_{\mathrm{opT}}=\arg \min _{w}\|y-X w\|^{2}+\lambda g(w) .
$$

- The added terms are

1. $\lambda>0$: a regularization parameter,
2. $g(w)>0$: a penalty function that encourages desired properties about w.

Ridge Regression

Ridge regression is one $g(w)$ that addresses variance issues with $w_{\text {ML }}$.
It uses the squared penalty on the regression coefficient vector w,

$$
w_{\mathrm{RR}}=\arg \min _{w}\|y-X w\|^{2}+\lambda\|w\|^{2}
$$

The term $g(w)=\|w\|^{2}$ penalizes large values in w.
However, there is a tradeoff between the first and second terms that is controlled by λ.

- Case $\lambda \rightarrow 0 \quad: w_{\mathrm{RR}} \rightarrow w_{\mathrm{LS}}$
- Case $\lambda \rightarrow \infty: w_{\text {RR }} \rightarrow \overrightarrow{0}$

Ridge regression solution

Objective: We can solve the ridge regression problem using exactly the same procedure as for least squares,

$$
\begin{aligned}
\mathcal{L} & =\|y-X w\|^{2}+\lambda\|w\|^{2} \\
& =(y-X w)^{T}(y-X w)+\lambda w^{T} w .
\end{aligned}
$$

Solution: First, take the gradient of \mathcal{L} with respect to w and set to zero,

$$
\nabla_{w} \mathcal{L}=-2 X^{T} y+2 X^{T} X w+2 \lambda w=0
$$

Then, solve for w to find that

$$
w_{\mathrm{RR}}=\left(\lambda I+X^{T} X\right)^{-1} X^{T} y .
$$

Ridge regression geometry

There is a tradeoff between squared error and penalty on w.

We can write both in terms of level sets: Curves where function evaluation gives the same number.

The sum of these gives a new set of levels with a unique minimum.

You can check that we can write:

$$
\|y-X w\|^{2}+\lambda\|w\|^{2}=\left(w-w_{\mathrm{LS}}\right)^{T}\left(X^{T} X\right)\left(w-w_{\mathrm{LS}}\right)+\lambda w^{T} w+(\text { const. w.r.t. } w) .
$$

DATA PREPROCESSING

Ridge regression is one possible regularization scheme. For this problem, we first assume the following preprocessing steps are done:

1. The mean is subtracted off of y :

$$
y \leftarrow y-\frac{1}{n} \sum_{i=1}^{n} y_{i} .
$$

2. The dimensions of x_{i} have been standardized before constructing X :

$$
x_{i j} \leftarrow\left(x_{i j}-\bar{x}_{. j}\right) / \hat{\sigma}_{j}, \quad \hat{\sigma}_{j}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{. j}\right)^{2}} .
$$

i.e., subtract the empirical mean and divide by the empirical standard deviation for each dimension.
3. We can show that there is no need for the dimension of 1 's in this case.

Some Analysis of Ridge Regression

Ridge regression vs Least squares

The solutions to least squares and ridge regression are clearly very similar,

$$
w_{\mathrm{LS}}=\left(X^{T} X\right)^{-1} X^{T} y \quad \Leftrightarrow \quad w_{\mathrm{RR}}=\left(\lambda I+X^{T} X\right)^{-1} X^{T} y .
$$

- We can use linear algebra and probability to compare the two.
- This requires the singular value decomposition, which we review next.

Review: Singular value decompositions

- We can write any $n \times d$ matrix X (assume $n>d$) as $X=U S V^{T}$, where

1. $U: n \times d$ and orthonormal in the columns, i.e. $U^{T} U=I$.
2. $S: d \times d$ non-negative diagonal matrix, i.e. $S_{i i} \geq 0$ and $S_{i j}=0$ for $i \neq j$.
3. $V: d \times d$ and orthonormal, i.e. $V^{T} V=V V^{T}=I$.

- From this we have the immediate equalities

$$
X^{T} X=\left(U S V^{T}\right)^{T}\left(U S V^{T}\right)=V S^{2} V^{T}, \quad X X^{T}=U S^{2} U^{T}
$$

- Assuming $S_{i i} \neq 0$ for all i (i.e., " X is full rank"), we also have that

$$
\left(X^{T} X\right)^{-1}=\left(V S^{2} V^{T}\right)^{-1}=V S^{-2} V^{T}
$$

Proof: Plug in and see that it satisfies definition of inverse

$$
\left(X^{T} X\right)\left(X^{T} X\right)^{-1}=V S^{2} V^{T} V S^{-2} V^{T}=I
$$

LEAST SQUARES AND THE SVD

Using the SVD we can rewrite the variance,

$$
\operatorname{Var}\left[w_{\mathrm{LS}}\right]=\sigma^{2}\left(X^{T} X\right)^{-1}=\sigma^{2} V S^{-2} V^{T} .
$$

This inverse becomes huge when $S_{i i}$ is very small for some values of i. (Aside: This happens when columns of X are highly correlated.)

The least squares prediction for new data is

$$
y_{\mathrm{new}}=x_{\mathrm{new}}^{T} w_{\mathrm{LS}}=x_{\mathrm{nev}}^{T}\left(X^{T} X\right)^{-1} X^{T} y=x_{\mathrm{new}}^{T} V S^{-1} U^{T} y .
$$

When S^{-1} has very large values, this can lead to unstable predictions.

Ridge Regression vs Least squares I

Relationship to least squares solution
Recall for two symmetric matrices, $(A B)^{-1}=B^{-1} A^{-1}$.

$$
\begin{aligned}
w_{\mathrm{RR}} & =\left(\lambda I+X^{T} X\right)^{-1} X^{T} y \\
& =\left(\lambda I+X^{T} X\right)^{-1}\left(X^{T} X\right) \underbrace{\left(X^{T} X\right)^{-1} X^{T} y}_{w_{\mathrm{LS}}} \\
& =\left[\left(X^{T} X\right)\left(\lambda\left(X^{T} X\right)^{-1}+I\right)\right]^{-1}\left(X^{T} X\right) w_{\mathrm{LS}} \\
& =\left(\lambda\left(X^{T} X\right)^{-1}+I\right)^{-1}\left(X^{T} X\right)^{-1}\left(X^{T} X\right) w_{\mathrm{LS}} \\
& =\left(\lambda\left(X^{T} X\right)^{-1}+I\right)^{-1} w_{\mathrm{LS}}
\end{aligned}
$$

Can use this to prove that the solution shrinks toward zero: $\left\|w_{\mathrm{RR}}\right\|_{2} \leq\left\|w_{\mathrm{LS}}\right\|_{2}$.

Ridge regression vs Least squares II

Continue analysis with the SVD: $X=U S V^{T} \rightarrow\left(X^{T} X\right)^{-1}=V S^{-2} V^{T}$:

$$
\begin{aligned}
w_{\mathrm{RR}} & =\left(\lambda\left(X^{T} X\right)^{-1}+I\right)^{-1} w_{\mathrm{LS}} \\
& =\left(\lambda V S^{-2} V^{T}+I\right)^{-1} w_{\mathrm{LS}} \\
& =V\left(\lambda S^{-2}+I\right)^{-1} V^{T} w_{\mathrm{LS}} \\
& :=V M V^{T} w_{\mathrm{LS}}
\end{aligned}
$$

M is a diagonal matrix with $M_{i i}=\frac{S_{i i}^{2}}{\lambda+S_{i i}^{2}}$. We can pursue this to show that

$$
w_{\mathrm{RR}}=V S_{\lambda}^{-1} U^{T} y, \quad S_{\lambda}^{-1}=\left[\begin{array}{ccc}
\frac{S_{11}}{\lambda+S_{11}^{2}} & & 0 \\
0 & \ddots & \\
0 & & \frac{S_{d d}}{\lambda+S_{d d}^{2}}
\end{array}\right]
$$

Compare with $w_{\mathrm{LS}}=V S^{-1} U^{T} y$, which is the case where $\lambda=0$ above.

Ridge regression vs Least squares III

Ridge regression can also be seen as a special case of least squares.
Define $\hat{y} \approx \hat{X} w$ in the following way,

$$
\left[\begin{array}{c}
y \\
0 \\
\vdots \\
0
\end{array}\right] \approx\left[\begin{array}{ccc}
- & X & - \\
\sqrt{\lambda} & & 0 \\
& \ddots & \\
0 & & \sqrt{\lambda}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]
$$

If we solved w_{LS} for this regression problem, we find w_{RR} of the original problem: Calculating $(\hat{y}-\hat{X} w)^{T}(\hat{y}-\hat{X} w)$ in two parts gives

$$
\begin{aligned}
(\hat{y}-\hat{X} w)^{T}(\hat{y}-\hat{X} w) & =(y-X w)^{T}(y-X w)+(\sqrt{\lambda} w)^{T}(\sqrt{\lambda} w) \\
& =\|y-X w\|^{2}+\lambda\|w\|^{2}
\end{aligned}
$$

SELECTing λ

Degrees of freedom:
$d f(\lambda)=\operatorname{trace}\left[X\left(X^{T} X+\lambda I\right)^{-1} X^{T}\right]$

$$
=\sum_{i=1}^{d} \frac{S_{i i}^{2}}{\lambda+S_{i i}^{2}}
$$

This gives a way of visualizing relationships.

We will discuss methods for picking λ later.

[^0]: ${ }^{1}$ Aside: For matrices A, B and vector c, recall that $(A B c)^{T}=c^{T} B^{T} A^{T}$.

[^1]: ${ }^{1}$ Aside: For matrices A, B and vector c, recall that $(A B c)^{T}=c^{T} B^{T} A^{T}$.

[^2]: ${ }^{1}$ Aside: For matrices A, B and vector c, recall that $(A B c)^{T}=c^{T} B^{T} A^{T}$.

[^3]: ${ }^{1}$ Aside: For matrices A, B and vector c, recall that $(A B c)^{T}=c^{T} B^{T} A^{T}$.

[^4]: ${ }^{1}$ Aside: For matrices A, B and vector c, recall that $(A B c)^{T}=c^{T} B^{T} A^{T}$.

[^5]: ${ }^{1}$ Aside: For matrices A, B and vector c, recall that $(A B c)^{T}=c^{T} B^{T} A^{T}$.

