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REGRESSION: PROBLEM DEFINITION

Data
Measured pairs (x, y), where x ∈ Rd+1 (input) and y ∈ R (output)

Goal
Find a function f : Rd+1 → R such that y ≈ f (x; w) for the data pair (x, y).
f (x; w) is the regression function and the vector w are its parameters.

Definition of linear regression
A regression method is called linear if the prediction f is a linear function of
the unknown parameters w.



LEAST SQUARES (CONTINUED)



LEAST SQUARES LINEAR REGRESSION

Least squares solution
Least squares finds the w that minimizes the sum of squared errors. The least
squares objective in the most basic form where f (x; w) = xTw is

L =

n∑
i=1

(yi − xT
i w)2 = ‖y− Xw‖2 = (y− Xw)T(y− Xw).

We defined y = [y1, . . . , yn]T and X = [x1, . . . , xn]T .

Taking the gradient with respect to w and setting to zero, we find that

∇wL = 2XTXw− 2XTy = 0 ⇒ wLS = (XTX)−1XTy.

In other words, wLS is the vector that minimizes L.



PROBABILISTIC VIEW

I Last class, we discussed the geometric interpretation of least squares.

I Least squares also has an insightful probabilistic interpretation that
allows us to analyze its properties.

I That is, given that we pick this model as reasonable for our problem,
we can ask: What kinds of assumptions are we making?



PROBABILISTIC VIEW

Recall: Gaussian density in n dimensions
Assume a diagonal covariance matrix Σ = σ2I. The density is

p(y|µ, σ2) =
1

(2πσ2)
n
2

exp
(
− 1

2σ2 (y− µ)T(y− µ)
)
.

What if we restrict the mean to µ = Xw
and find the maximum likelihood
solution for w?



PROBABILISTIC VIEW

Maximum likelihood for Gaussian linear regression
Plug µ = Xw into the multivariate Gaussian distribution and solve for w
using maximum likelihood.

wML = arg max
w

ln p(y|µ = Xw, σ2)

= arg max
w
− 1

2σ2 ‖y− Xw‖2 − n
2

ln(2πσ2).

Least squares (LS) and maximum likelihood (ML) share the same solution:

LS: arg min
w
‖y− Xw‖2 ⇔ ML: arg max

w
− 1

2σ2 ‖y− Xw‖2



PROBABILISTIC VIEW

I Therefore, in a sense we are making an independent Gaussian noise
assumption about the error, εi = yi − xT

i w.

I Other ways of saying this:

1) yi = xT
i w + εi, εi

iid∼ N(0, σ2), for i = 1, . . . , n,

2) yi
ind∼ N(xT

i w, σ2), for i = 1, . . . , n,

3) y ∼ N(Xw, σ2I), as on the previous slides.

I Can we use this probabilistic line of analysis to better understand the
maximum likelihood (i.e., least squares) solution?



PROBABILISTIC VIEW

Expected solution
Given: The modeling assumption that y ∼ N(Xw, σ2I).

We can calculate the expectation of the ML solution under this distribution,

E[wML] = E[(XTX)−1XTy]

(
=

∫ [
(XTX)−1XTy

]
p(y|X,w) dy

)
= (XTX)−1XTE[y]

= (XTX)−1XTXw

= w

Therefore wML is an unbiased estimate of w, i.e., E[wML] = w.



REVIEW: AN EQUALITY FROM PROBABILITY

I Even though the “expected” maximum likelihood solution is the correct
one, should we actually expect to get something near it?

I We should also look at the covariance. Recall that if y ∼ N(µ,Σ), then

Var[y] = E[(y− E[y])(y− E[y])T ] = Σ.

I Plugging in E[y] = µ, this is equivalently written as

Var[y] = E[(y− µ)(y− µ)T ]

= E[yyT − yµT − µyT + µµT ]

= E[yyT ]− µµT

I Immediately we also get E[yyT ] = Σ + µµT .
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PROBABILISTIC VIEW

Variance of the solution
Returning to least squares linear regression, we wish to find

Var[wML] = E[(wML − E[wML])(wML − E[wML])
T ]

= E[wMLwT
ML]− E[wML]E[wML]

T .

The sequence of equalities follows:1

Var[wML] = E[(XTX)−1XTyyTX(XTX)−1]− wwT

= (XTX)−1XTE[yyT ]X(XTX)−1 − wwT

= (XTX)−1XT(σ2I + XwwTXT)X(XTX)−1 − wwT

= (XTX)−1XTσ2IX(XTX)−1 + · · ·
(XTX)−1XTXwwTXTX(XTX)−1 − wwT

= σ2(XTX)−1

1Aside: For matrices A, B and vector c, recall that (ABc)T = cT BT AT .



PROBABILISTIC VIEW

Variance of the solution
Returning to least squares linear regression, we wish to find

Var[wML] = E[(wML − E[wML])(wML − E[wML])
T ]

= E[wMLwT
ML]− E[wML]E[wML]

T .

The sequence of equalities follows:1

Var[wML] = E[(XTX)−1XTyyTX(XTX)−1]− wwT

= (XTX)−1XTE[yyT ]X(XTX)−1 − wwT

= (XTX)−1XT(σ2I + XwwTXT)X(XTX)−1 − wwT

= (XTX)−1XTσ2IX(XTX)−1 + · · ·
(XTX)−1XTXwwTXTX(XTX)−1 − wwT

= σ2(XTX)−1

1Aside: For matrices A, B and vector c, recall that (ABc)T = cT BT AT .



PROBABILISTIC VIEW

Variance of the solution
Returning to least squares linear regression, we wish to find

Var[wML] = E[(wML − E[wML])(wML − E[wML])
T ]

= E[wMLwT
ML]− E[wML]E[wML]

T .

The sequence of equalities follows:1

Var[wML] = E[(XTX)−1XTyyTX(XTX)−1]− wwT

= (XTX)−1XTE[yyT ]X(XTX)−1 − wwT

= (XTX)−1XT(σ2I + XwwTXT)X(XTX)−1 − wwT

= (XTX)−1XTσ2IX(XTX)−1 + · · ·
(XTX)−1XTXwwTXTX(XTX)−1 − wwT

= σ2(XTX)−1

1Aside: For matrices A, B and vector c, recall that (ABc)T = cT BT AT .



PROBABILISTIC VIEW

Variance of the solution
Returning to least squares linear regression, we wish to find

Var[wML] = E[(wML − E[wML])(wML − E[wML])
T ]

= E[wMLwT
ML]− E[wML]E[wML]

T .

The sequence of equalities follows:1

Var[wML] = E[(XTX)−1XTyyTX(XTX)−1]− wwT

= (XTX)−1XTE[yyT ]X(XTX)−1 − wwT

= (XTX)−1XT(σ2I + XwwTXT)X(XTX)−1 − wwT

= (XTX)−1XTσ2IX(XTX)−1 + · · ·
(XTX)−1XTXwwTXTX(XTX)−1 − wwT

= σ2(XTX)−1

1Aside: For matrices A, B and vector c, recall that (ABc)T = cT BT AT .



PROBABILISTIC VIEW

Variance of the solution
Returning to least squares linear regression, we wish to find

Var[wML] = E[(wML − E[wML])(wML − E[wML])
T ]

= E[wMLwT
ML]− E[wML]E[wML]

T .

The sequence of equalities follows:1

Var[wML] = E[(XTX)−1XTyyTX(XTX)−1]− wwT

= (XTX)−1XTE[yyT ]X(XTX)−1 − wwT

= (XTX)−1XT(σ2I + XwwTXT)X(XTX)−1 − wwT

= (XTX)−1XTσ2IX(XTX)−1 + · · ·
(XTX)−1XTXwwTXTX(XTX)−1 − wwT

= σ2(XTX)−1

1Aside: For matrices A, B and vector c, recall that (ABc)T = cT BT AT .



PROBABILISTIC VIEW
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PROBABILISTIC VIEW

I We’ve shown that, under the Gaussian assumption y ∼ N(Xw, σ2I),

E[wML] = w, Var[wML] = σ2(XTX)−1.

I When there are very large values in σ2(XTX)−1, the values of wML are
very sensitive to the measured data y (more analysis later).

I This is bad if we want to analyze and predict using wML.



RIDGE REGRESSION



REGULARIZED LEAST SQUARES

I We saw how with least squares, the values in wML may be huge.

I In general, when developing a model for data we often wish to
constrain the model parameters in some way.

I There are many models of the form

wOPT = arg min
w
‖y− Xw‖2 + λ g(w).

I The added terms are

1. λ > 0 : a regularization parameter,
2. g(w) > 0 : a penalty function that encourages desired properties about w.



RIDGE REGRESSION

Ridge regression is one g(w) that addresses variance issues with wML.

It uses the squared penalty on the regression coefficient vector w,

wRR = arg min
w
‖y− Xw‖2 + λ‖w‖2

The term g(w) = ‖w‖2 penalizes large values in w.

However, there is a tradeoff between the first and second terms that is
controlled by λ.

I Case λ→ 0 : wRR → wLS

I Case λ→∞ : wRR → ~0



RIDGE REGRESSION SOLUTION

Objective: We can solve the ridge regression problem using exactly the
same procedure as for least squares,

L = ‖y− Xw‖2 + λ‖w‖2

= (y− Xw)T(y− Xw) + λwTw.

Solution: First, take the gradient of L with respect to w and set to zero,

∇wL = −2XTy + 2XTXw + 2λw = 0

Then, solve for w to find that

wRR = (λI + XTX)−1XTy.



RIDGE REGRESSION GEOMETRY

There is a tradeoff between
squared error and penalty on w.

We can write both in terms of
level sets: Curves where function
evaluation gives the same number.

The sum of these gives a new set
of levels with a unique minimum.

You can check that we can write:

w1

w2

x1

wLS

λwTw

(w-wLS)
T(XTX)(w-wLS)

‖y−Xw‖2 +λ‖w‖2 = (w−wLS)
T(XTX)(w−wLS)+λwTw+(const. w.r.t. w).



DATA PREPROCESSING

Ridge regression is one possible regularization scheme. For this problem, we
first assume the following preprocessing steps are done:

1. The mean is subtracted off of y:

y← y− 1
n

n∑
i=1

yi.

2. The dimensions of xi have been standardized before constructing X:

xij ← (xij − x̄·j)/σ̂j, σ̂j =

√√√√1
n

n∑
i=1

(xij − x̄·j)2.

i.e., subtract the empirical mean and divide by the empirical standard
deviation for each dimension.

3. We can show that there is no need for the dimension of 1’s in this case.



SOME ANALYSIS OF RIDGE

REGRESSION



RIDGE REGRESSION VS LEAST SQUARES

The solutions to least squares and ridge regression are clearly very similar,

wLS = (XTX)−1XTy ⇔ wRR = (λI + XTX)−1XTy.

I We can use linear algebra and probability to compare the two.

I This requires the singular value decomposition, which we review next.



REVIEW: SINGULAR VALUE DECOMPOSITIONS

I We can write any n× d matrix X (assume n > d) as X = USVT , where

1. U: n× d and orthonormal in the columns, i.e. UT U = I.
2. S: d × d non-negative diagonal matrix, i.e. Sii ≥ 0 and Sij = 0 for i 6= j.
3. V: d × d and orthonormal, i.e. VT V = VVT = I.

I From this we have the immediate equalities

XTX = (USVT)T(USVT) = VS2VT , XXT = US2UT .

I Assuming Sii 6= 0 for all i (i.e., “X is full rank”), we also have that

(XTX)−1 = (VS2VT)−1 = VS−2VT .

Proof: Plug in and see that it satisfies definition of inverse

(XTX)(XTX)−1 = VS2VTVS−2VT = I.



LEAST SQUARES AND THE SVD

Using the SVD we can rewrite the variance,

Var[wLS] = σ2(XTX)−1 = σ2VS−2VT .

This inverse becomes huge when Sii is very small for some values of i.
(Aside: This happens when columns of X are highly correlated.)

The least squares prediction for new data is

ynew = xT
newwLS = xT

new(XTX)−1XTy = xT
newVS−1UTy.

When S−1 has very large values, this can lead to unstable predictions.



RIDGE REGRESSION VS LEAST SQUARES I

Relationship to least squares solution

Recall for two symmetric matrices, (AB)−1 = B−1A−1.

wRR = (λI + XTX)−1XTy

= (λI + XTX)−1(XTX) (XTX)−1XTy︸ ︷︷ ︸
wLS

= [(XTX)(λ(XTX)−1 + I)]−1(XTX)wLS

= (λ(XTX)−1 + I)−1(XTX)−1(XTX)wLS

= (λ(XTX)−1 + I)−1wLS

Can use this to prove that the solution shrinks toward zero: ‖wRR‖2 ≤ ‖wLS‖2.



RIDGE REGRESSION VS LEAST SQUARES II

Continue analysis with the SVD: X = USVT → (XTX)−1 = VS−2VT :

wRR = (λ(XTX)−1 + I)−1wLS

= (λVS−2VT + I)−1wLS

= V(λS−2 + I)−1VTwLS

:= VMVTwLS

M is a diagonal matrix with Mii =
S2

ii
λ+S2

ii
. We can pursue this to show that

wRR = VS−1
λ UTy, S−1

λ =


S11

λ+S2
11

0
. . .

0 Sdd
λ+S2

dd


Compare with wLS = VS−1UTy, which is the case where λ = 0 above.



RIDGE REGRESSION VS LEAST SQUARES III

Ridge regression can also be seen as a special case of least squares.

Define ŷ ≈ X̂w in the following way,
y

0
...
0

 ≈

− X −
√
λ 0

. . .
0

√
λ


 w1

...
wd



If we solved wLS for this regression problem, we find wRR of the original
problem: Calculating (ŷ− X̂w)T(ŷ− X̂w) in two parts gives

(ŷ− X̂w)T(ŷ− X̂w) = (y− Xw)T(y− Xw) + (
√
λw)T(

√
λw)

= ‖y− Xw‖2 + λ‖w‖2



SELECTING λ

Degrees of freedom:

df (λ) = trace
[
X(XTX + λI)−1XT]

=

d∑
i=1

S2
ii

λ+ S2
ii

This gives a way of
visualizing relationships.

We will discuss methods for
picking λ later.


