
COMS 4721: Machine Learning for Data Science

Lecture 4, 1/26/2017

Prof. John Paisley

Department of Electrical Engineering
& Data Science Institute

Columbia University



REGRESSION WITH/WITHOUT REGULARIZATION

Given:
A data set (x1, y1), . . . , (xn, yn), where x ∈ Rd and y ∈ R. We standardize
such that each dimension of x is zero mean unit variance, and y is zero mean.

Model:
We define a model of the form

y ≈ f (x; w).

We particularly focus on the case where f (x; w) = xTw.

Learning:
We can learn the model by minimizing the objective (aka, “loss”) function

L =
∑n

i=1(yi − xT
i w)2 + λwTw ⇔ L = ‖y− Xw‖2 + λ‖w‖2

We’ve focused on λ = 0 (least squares) and λ > 0 (ridge regression).



BIAS-VARIANCE TRADE-OFF



BIAS-VARIANCE FOR LINEAR REGRESSION

We can go further and hypothesize a generative model y ∼ N(Xw, σ2I) and
some true (but unknown) underlying value for the parameter vector w.

I We saw how the least squares solution, wLS = (XTX)−1XTy, is unbiased
but potentially has high variance:

E[wLS] = w, Var[wLS] = σ2(XTX)−1.

I By contrast, the ridge regression solution is wRR = (λI + XTX)−1XTy.
Using the same procedure as for least squares, we can show that

E[wRR] = (λI + XTX)−1XTXw, Var[wRR] = σ2Z(XTX)−1ZT ,

where Z = (I + λ(XTX)−1)−1.



BIAS-VARIANCE FOR LINEAR REGRESSION

The expectation and covariance of wLS and wRR gives insight into how well
we can hope to learn w in the case where our model assumption is correct.

I Least squares solution: unbiased, but potentially high variance
I Ridge regression solution: biased, but lower variance than LS

So which is preferable?

Ultimately, we really care about how well our solution for w generalizes to
new data. Let (x0, y0) be future data for which we have x0, but not y0.

I Least squares predicts y0 = xT
0 wLS

I Ridge regression predicts y0 = xT
0 wRR



BIAS-VARIANCE FOR LINEAR REGRESSION

In keeping with the square error measure of performance, we could calculate
the expected squared error of our prediction:

E
[
(y0 − xT

0 ŵ)2|X, x0
]

=

∫
R

∫
Rn

(y0 − xT
0 ŵ)2p(y|X,w)p(y0|x0,w) dy dy0.

I The estimate ŵ is either wLS or wRR.
I The distributions on y, y0 are Gaussian with the true (but unknown) w.
I We condition on knowing x0, x1, . . . , xn.

In words this is saying:
I Imagine I know X, x0 and assume some true underlying w.
I I generate y ∼ N(Xw, σ2I) and approximate w with ŵ = wLS or wRR.
I I then predict y0 ∼ N(xT

0 w, σ2) using y0 ≈ xT
0 ŵ.

What is the expected squared error of my prediction?



BIAS-VARIANCE FOR LINEAR REGRESSION

We can calculate this as follows (assume conditioning on x0 and X),

E[(y0 − xT
0 ŵ)2] = E[y2

0]− 2E[y0]xT
0E[ŵ] + xT

0E[ŵŵT ]x0

I Since y0 and ŵ are independent, E[y0ŵ] = E[y0]E[ŵ].

I Remember: E[ŵŵT ] = Var[ŵ] + E[ŵ]E[ŵ]T

E[y2
0] = σ2 + (xT

0 w)2

Plugging these values in:

E[(y0 − xT
0 ŵ)2] = σ2 + (xT

0 w)2 − 2(xT
0 w)(xT

0E[ŵ]) + (xT
0E[ŵ])2 + xT

0 Var[ŵ]x0

= σ2 + xT
0 (w− E[ŵ])(w− E[ŵ])Tx0 + xT

0 Var[ŵ]x0
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BIAS-VARIANCE FOR LINEAR REGRESSION

We have shown that if
1. y ∼ N(Xw, σ2) and y0 ∼ N(xT

0 w, σ2), and
2. we approximate w with ŵ according to some algorithm,

then

E[(y0 − xT
0 ŵ)2|X, x0] = σ2︸︷︷︸

noise

+ xT
0 (w− E[ŵ])(w− E[ŵ])Tx0︸ ︷︷ ︸

squared bias

+ xT
0 Var[ŵ]x0︸ ︷︷ ︸

variance

We see that the generalization error is a combination of three factors:
1. Measurement noise – we can’t control this given the model.
2. Model bias – how close to the solution we expect to be on average.
3. Model variance – how sensitive our solution is to the data.

We saw how we can find E[ŵ] and Var[ŵ] for the LS and RR solutions.



BIAS-VARIANCE TRADE-OFF

This idea is more general:
I Imagine we have a model: y = f (x; w) + ε, E(ε) = 0, Var(ε) = σ2

I We approximate f by minimizing a loss function: f̂ = arg minf Lf .

I We apply f̂ to new data, y0 ≈ f̂ (x0) ≡ f̂0.

Then integrating everything out (y,X, y0, x0):

E[(y0 − f̂0)2] = E[y2
0]− 2E[y0 f̂0] + E[f̂ 2

0 ]

= σ2 + f 2
0 − 2f0E[f̂0] + E[f̂0]2 + Var[f̂0]

= σ2︸︷︷︸
noise

+ (f0 − E[f̂0])2︸ ︷︷ ︸
squared bias

+ Var[f̂0]︸ ︷︷ ︸
variance

This is interesting in principle, but is deliberately vague (What is f ?) and
usually can’t be calculated (What is the distribution on the data?)



CROSS-VALIDATION

An easier way to evaluate the model is to use cross-validation.

The procedure for K-fold cross-validation is very simple:
1. Randomly split the data into K roughly equal groups.
2. Learn the model on K − 1 groups and predict the held-out Kth group.
3. Do this K times, holding out each group once.
4. Evaluate performance using the cumulative set of predictions.

For the case of the regularization parameter λ, the above sequence can be
run for several values with the best-performing value of λ chosen.

The data you test the model on should never be used to train the model!



BAYES RULE



PRIOR INFORMATION/BELIEF

Motivation
We’ve discussed the ridge regression objective function

L =

n∑
i=1

(yi − xT
i w)2 + λwTw.

The regularization term λwTw was imposed to penalize values in w that are
large. This reduced potential high-variance predictions from least squares.

In a sense, we are imposing a “prior belief” about what values of w we
consider to be good.

Question: Is there a mathematical way to formalize this?

Answer: Using probability we can frame this via Bayes rule.



REVIEW: PROBABILITY STATEMENTS

Imagine we have two events, A and B, that may or may not be related, e.g.,
I A = “It is raining”
I B = “The ground is wet”

We can talk about probabilities of these events,
I P(A) = Probability it is raining
I P(B) = Probability the ground is wet

We can also talk about their conditional probabilities,
I P(A|B) = Probability it is raining given that the ground is wet
I P(B|A) = Probability the ground is wet given that it is raining

We can also talk about their joint probabilities,
I P(A,B) = Probability it is raining and the ground is wet



CALCULUS OF PROBABILITY

There are simple rules for moving from one probability to another
1. P(A,B) = P(A|B)P(B) = P(B|A)P(A)

2. P(A) =
∑

b P(A,B = b)

3. P(B) =
∑

a P(A = a,B)

Using these three equalities, we automatically can say

P(A|B) =
P(B|A)P(A)

P(B)
=

P(B|A)P(A)∑
a P(B|A = a)P(A = a)

P(B|A) =
P(A|B)P(B)

P(A)
=

P(A|B)P(B)∑
b P(A|B = b)P(B = b)

This is known as “Bayes rule.”



BAYES RULE

Bayes rule lets us quantify what we don’t know. Imagine we want to say
something about the probability of B given that A happened.

Bayes rule says that the probability of B after knowing A is:

P(B|A)︸ ︷︷ ︸
posterior

= P(A|B)︸ ︷︷ ︸
likelihood

P(B)︸︷︷︸
prior

/ P(A)︸︷︷︸
marginal

Notice that with this perspective, these probabilities take on new meanings.

That is, P(B|A) and P(A|B) are both “conditional probabilities,” but they
have different significance.



BAYES RULE WITH CONTINUOUS VARIABLES

Bayes rule generalizes to continuous-valued random variables as follows.
However, instead of probabilities we work with densities.

I Let θ be a continuous-valued model parameter.
I Let X be data we possess. Then by Bayes rule,

p(θ|X) =
p(X|θ)p(θ)∫
p(X|θ)p(θ)dθ

=
p(X|θ)p(θ)

p(X)

In this equation,

I p(X|θ) is the likelihood, known from the model definition.
I p(θ) is a prior distribution that we define.
I Given these two, we can (in principle) calculate p(θ|X).



EXAMPLE: COIN BIAS

We have a coin with bias π towards “heads”. (Encode: heads = 1, tails = 0)

We flip the coin many times and get a sequence of n numbers (x1, . . . , xn).
Assume the flips are independent, meaning

p(x1, . . . , xn|π) =

n∏
i=1

p(xi|π) =

n∏
i=1

πxi(1− π)1−xi .

We choose a prior for π which we define to be a beta distribution,

p(π) = Beta(π|a, b) =
Γ(a + b)

Γ(a)Γ(b)
πa−1(1− π)b−1.

What is the posterior distribution of π given x1, . . . , xn?



EXAMPLE: COIN BIAS

From Bayes rule,

p(π|x1, . . . , xn) =
p(x1, . . . , xn|π)p(π)∫ 1

0 p(x1, . . . , xn|π)p(π)dπ
.

There is a trick that is often useful:
I The denominator only normalizes the numerator, doesn’t depend on π.
I We can write p(π|x) ∝ p(x|π)p(π). (“∝”→ “proportional to”)
I Multiply the two and see if we recognize anything:

p(π|x1, . . . , xn) ∝
[∏n

i=1 π
xi(1− π)1−xi

] [ Γ(a+b)
Γ(a)Γ(b)π

a−1(1− π)b−1
]

∝ π
∑n

i=1 xi+a−1(1− π)
∑n

i=1(1−xi)+b−1

We recognize this as p(π|x1, . . . , xn) = Beta(
∑n

i=1 xi + a,
∑n

i=1(1− xi) + b).



MAXIMUM A POSTERIORI



LIKELIHOOD MODEL

Least squares and maximum likelihood
When we modeled data pairs (xi, yi) with a linear model, yi ≈ xT

i w, we saw
that the least squares solution,

wLS = arg min
w

(y− Xw)T(y− Xw),

was equivalent to the maximum likelihood solution when y ∼ N(Xw, σ2I).

The question now is whether a similar probabilistic connection can be made
for the ridge regression problem.



PRIOR MODEL

Ridge regression and Bayesian modeling
The likelihood model is y ∼ N(Xw, σ2I). What about a prior for w?

Let us assume that the prior for w is Gaussian, w ∼ N(0, λ−1I). Then

p(w) =
( λ

2π

) d
2
e−

λ
2 wT w.

We can now try to find a w that satisfies both the data likelihood, and our
prior conditions about w.



MAXIMUM A POSERIORI ESTIMATION

Maximum a poseriori (MAP) estimation seeks the most probable value w
under the posterior:

wMAP = arg max
w

ln p(w|y,X)

= arg max
w

ln
p(y|w,X)p(w)

p(y|X)

= arg max
w

ln p(y|w,X) + ln p(w)− ln p(y|X)

I Contrast this with ML, which only focuses on the likelihood.

I The normalizing constant term ln p(y|X) doesn’t involve w. Therefore,
we can maximize the first two terms alone.

I In many models we don’t know ln p(y|X), so this fact is useful.



MAP FOR LINEAR REGRESSION

MAP using our defined prior gives:

wMAP = arg max
w

ln p(y|w,X) + ln p(w)

= arg max
w
− 1

2σ2 (y− Xw)T(y− Xw)− λ

2
wTw + const.

Calling this objective L, then as before we find w such that

∇wL =
1
σ2 XTy− 1

σ2 XTXw− λw = 0

I The solution is wMAP = (λσ2I + XTX)−1XTy.
I Notice that wMAP = wRR (modulo a switch from λ to λσ2)
I RR maximizes the posterior, while LS maximizes the likelihood.


