
COMS 4721: Machine Learning for Data Science

Lecture 8, 2/14/2017

Prof. John Paisley

Department of Electrical Engineering
& Data Science Institute

Columbia University

LINEAR CLASSIFICATION

BINARY CLASSIFICATION

We focus on binary classification, with input xi ∈ Rd and output yi ∈ {±1}.
I We define a classifier f , which makes prediction yi = f (xi,Θ) based on

a function of xi and parameters Θ. In other words f : Rd → {−1,+1}.

Last lecture, we discussed the Bayes classification framework.

I Here, Θ contains: (1) class prior probabilities on y,
(2) parameters for class-dependent distribution on x.

This lecture we’ll introduce the linear classification framework.

I In this approach the prediction is linear in the parameters Θ.
I In fact, there is an intersection between the two that we discuss next.

A BAYES CLASSIFIER

Bayes decisions
With the Bayes classifier we predict the class of a new x to be the most
probable label given the model and training data (x1, y1), . . . , (xn, yn).

In the binary case, we declare class y = 1 if

p(x|y = 1) P(y = 1)︸ ︷︷ ︸
π1

> p(x|y = 0) P(y = 0)︸ ︷︷ ︸
π0

m

ln
p(x|y = 1)P(y = 1)

p(x|y = 0)P(y = 0)
> 0

This second line is referred to as the log odds.

A BAYES CLASSIFIER

Gaussian with shared covariance
Let’s look at the log odds for the special case where

p(x|y) = N(x|µy,Σ)

(i.e., a single Gaussian with a shared covariance matrix)

ln
p(x|y = 1)P(y = 1)

p(x|y = 0)P(y = 0)
= ln

π1

π0
− 1

2
(µ1 + µ0)TΣ−1(µ1 − µ0)︸ ︷︷ ︸
a constant, call it w0

+ xT Σ−1(µ1 − µ0)︸ ︷︷ ︸
a vector, call it w

This is also called “linear discriminant analysis” (used to be called LDA).

A BAYES CLASSIFIER

So we can write the decision rule for this Bayes classifier as a linear one:

f (x) = sign(xTw + w0).

I This is what we saw last lecture
(but now class 0 is called −1)

I The Bayes classifier produced a
linear decision boundary in the
data space when Σ1 = Σ0.

I w and w0 are obtained through a
specific equation.

2.6. DISCRIMINANT FUNCTIONS FOR THE NORMAL DENSITY 21

-2 2 4

0.1

0.2

0.3

0.4

P(ω1)=.5 P(ω2)=.5

p(x|ωi)

x

ω1 ω2

R1 R2

-2
0

2

4

-2
0

2
4

0

0.05

0.1

0.15

-2
0

2

4

-2
0

2
4

R1
R2

P(ω2)=.5
P(ω1)=.5

-2
-1

0

1

2

0

1

2

-2

-1

0

1

2

-2
-1

0

1

2

0

1

2

P(ω1)=.5

P(ω2)=.5

R2

R1

Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
is a generalized hyperplane of d − 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-, and 3-dimensional examples, we indicate p(x|ωi) and the
boundaries for the case P (ω1) = P (ω2). In the 3-dimensional case, the grid plane
separates R1 from R2.

wi =
1

σ2
µi (52)

and

wi0 =
−1

2σ2
µt

iµi + ln P (ωi). (53)

We call wi0 the threshold or bias in the ith direction. threshold

bias
A classifier that uses linear discriminant functions is called a linear machine. This

linear
machine

kind of classifier has many interesting theoretical properties, some of which will be
discussed in detail in Chap. ??. At this point we merely note that the decision
surfaces for a linear machine are pieces of hyperplanes defined by the linear equations
gi(x) = gj(x) for the two categories with the highest posterior probabilities. For our
particular case, this equation can be written as

wt(x − x0) = 0, (54)

where

w = µi − µj (55)

and

x0 =
1

2
(µi + µj) − σ2

∥µi − µj∥2
ln

P (ωi)

P (ωj)
(µi − µj). (56)

This equation defines a hyperplane through the point x0 and orthogonal to the
vector w. Since w = µi − µj , the hyperplane separating Ri and Rj is orthogonal to
the line linking the means. If P (ωi) = P (ωj), the second term on the right of Eq. 56
vanishes, and thus the point x0 is halfway between the means, and the hyperplane is
the perpendicular bisector of the line between the means (Fig. 2.11). If P (ωi) ̸= P (ωj),
the point x0 shifts away from the more likely mean. Note, however, that if the variance

LINEAR CLASSIFIERS

This Bayes classifier is one instance of a linear classifier

f (x) = sign(xTw + w0)

where

w0 = ln
π1

π0
− 1

2
(µ1 + µ0)TΣ−1(µ1 − µ0)

w = Σ−1(µ1 − µ0)

With MLE used to find values for πy, µy and Σ.

Setting w0 and w this way may be too restrictive:

I This Bayes classifier assumes single Gaussian with shared covariance.

I Maybe if we relax what values w0 and w can take we can do better.

LINEAR CLASSIFIERS (BINARY CASE)

Definition: Binary linear classifier
A binary linear classifier is a function of the form

f (x) = sign(xTw + w0),

where w ∈ Rd and w0 ∈ R. Since the goal is to learn w,w0 from data, we are
assuming that linear separability in x is an accurate property of the classes.

Definition: Linear separability
Two sets A,B ⊂ Rd are called linearly separable if

xTw + w0

{
> 0 if x ∈ A (e.g, class +1)

< 0 if x ∈ B (e.g, class −1)

The pair (w,w0) defines an affine hyperplane. It is important to develop the
right geometric understanding about what this is doing.

HYPERPLANES

Geometric interpretation of linear classifiers:

x1

x2

H

w

A hyperplane in Rd is a linear subspace of
dimension (d − 1).

I A R2-hyperplane is a line.

I A R3-hyperplane is a plane.

I As a linear subspace, a hyperplane
always contains the origin.

A hyperplane H can be represented by a
vector w as follows:

H =
{

x ∈ Rd | xTw = 0
}
.

WHICH SIDE OF THE PLANE ARE WE ON?

H

w

x

‖x‖2 · cos θ
θ

Distance from the plane

I How close is a point x to H?

I Cosine rule: xTw = ‖x‖2‖w‖2 cos θ

I The distance of x to the hyperplane is

‖x‖2 · | cos θ| = |xTw|/‖w‖2.

So |xTw| gives a sense of distance.

Which side of the hyperplane?
I The cosine satisfies cos θ > 0 if θ ∈ (−π

2 ,
π
2).

I So the sign of cos(·) tells us the side of H, and by the cosine rule

sign(cos θ) = sign(xTw).

AFFINE HYPERPLANES

x1

x2 H

w

−w0/‖w‖2

Affine Hyperplanes

I An affine hyperplane H is a hyperplane
translated (shifted) using a scalar w0.

I Think of: H = xTw + w0 = 0.

I Setting w0 > 0 moves the hyperplane in the
opposite direction of w. (w0 < 0 in figure)

Which side of the hyperplane now?

I The plane has been shifted by distance −w0
‖w‖2

in the direction w.

I For a given w, w0 and input x the inequality xTw + w0 > 0 says that x is
on the far side of an affine hyperplane H in the direction w points.

CLASSIFICATION WITH AFFINE HYPERPLANES

H

w

sign(xTw + w0) < 0

sign(xTw + w0) > 0

−w0
‖w‖2

POLYNOMIAL GENERALIZATIONS

The same generalizations from regression also hold for classification:
I (left) A linear classifier using x = (x1, x2).
I (right) A linear classifier using x = (x1, x2, x2

1, x
2
2).

The decision boundary is linear in R4, but isn’t when plotted in R2.

ANOTHER BAYES CLASSIFIER

Gaussian with different covariance
Let’s look at the log odds for the general case where p(x|y) = N(x|µy,Σy)
(i.e., now each class has its own covariance)

ln
p(x|y = 1)P(y = 1)

p(x|y = 0)P(y = 0)
= something complicated not involving x︸ ︷︷ ︸

a constant

+ xT(Σ−1
1 µ1 − Σ−1

0 µ0)︸ ︷︷ ︸
a part that’s linear in x

+ xT(Σ−1
0 /2− Σ−1

1 /2)x︸ ︷︷ ︸
a part that’s quadratic in x

Also called “quadratic discriminant analysis,” but it’s linear in the weights.

ANOTHER BAYES CLASSIFIER

I We also saw this last lecture.

I Notice that

f (x) = sign(xTAx + xTb + c)

is linear in A, b, c.

I When x ∈ R2, rewrite as

x← (x1, x2, 2x1x2, x2
1, x

2
2)

and do linear classification in R5.

26 CHAPTER 2. BAYESIAN DECISION THEORY

-10
0

10

20

-10

0

10

20

0

.01

.02

.03

.04

p

-10
0

10

20 -20

-10
0

10
20

-10

0

10

20

0

0.005

0.01

p

-20

-10
0

10
20

-10

0

10

20

-10

0

10

0

0.01

0.02

0.03

p

-10

0

10

20

-10

0

10

20

-10

0

10

0

0.01

0.02

0.03

0.04

0.05

p

-10

0

10

20

-10
0

10
20

-10

0

10

20

0

0.005

0.01

P

-10
0

10
20

0

0.005

0.01

p

-5

0

5 -5

0

5

0

0.05

0.1

0.15

p

-5

0

5

Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.

Whereas the Bayes classifier with shared covariance is a version of linear
classification, using different covariances is like polynomial classification.

LEAST SQUARES ON {−1,+1}

How do we define more general classifiers of the form

f (x) = sign(xTw + w0) ?

I One simple idea is to treat classification as a regression problem:

1. Let y = (y1, . . . , yn)
T , where yi ∈ {−1,+1} is the class of xi.

2. Add dimension equal to 1 to xi and construct the matrix X = [x1, . . . , xn]
T .

3. Learn the least squares weight vector w = (XT X)−1XT y.

4. For a new point x0 declare y0 = sign(xT
0 w)←− w0 is included in w.

I Another option: Instead of LS, use `p regularization.

I These are “baseline” options. We can use them, along with k-NN, to get
a quick sense what performance we’re aiming to beat.

SENSITIVITY TO OUTLIERS

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

Least squares can do well, but it is sensitive to outliers. In general we can
find better classifiers that focus more on the decision boundary.

I (left) Least squares (purple) does well compared with another method
I (right) Least squares does poorly because of outliers

THE PERCEPTRON ALGORITHM

EASY CASE: LINEARLY SEPARABLE DATA

(Assume data xi has a 1 attached.)

Suppose there is a linear classifier
with zero training error:

yi = sign(xT
i w), for all i.

Then the data is “linearly separable”

Left: Can separate classes with a line.
(Can find an infinite number of lines.)

PERCEPTRON (ROSENBLATT, 1958)

Using the linear classifier

y = f (x) = sign(xTw),

the Perceptron seeks to minimize

L = −
n∑

i=1

(yi·xT
i w)1{yi 6= sign(xT

i w)}.

Because y ∈ {−1,+1},

yi·xT
i w is

{
> 0 if yi = sign(xT

i w)

< 0 if yi 6= sign(xT
i w)

By minimizing L we’re trying to
always predict the correct label.

LEARNING THE PERCEPTRON

I Unlike other techniques we’ve talked about, we can’t find the minimum
of L by taking a derivative and setting to zero:

∇wL = 0 cannot be solved for w analytically.

However ∇wL does tell us the direction in which L is increasing in w.

I Therefore, for a sufficiently small η, if we update

w′ ← w− η∇wL,

then L(w′) < L(w) — i.e., we have a better value for w.

I This is a very general method for optimizing an objective functions
called gradient descent. Perceptron uses a “stochastic” version of this.

LEARNING THE PERCEPTRON

Input: Training data (x1, y1), . . . , (xn, yn) and a positive step size η

1. Set w(1) = ~0

2. For step t = 1, 2, . . . do

a) Search for all examples (xi, yi) ∈ D such that yi 6= sign(xT
i w(t))

b) If such a (xi, yi) exists, randomly pick one and update

w(t+1) = w(t) + ηyixi,

Else: Return w(t) as the solution since everything is classified correctly.

IfMt indexes the misclassified observations at step t, then we have

L = −
n∑

i=1

(yi · xT
i w)1{yi 6= sign(xT

i w)}, ∇wL = −
∑

i∈Mt

yixi .

The full gradient step is w(t+1) = w(t) − η∇wL. Stochastic optimization just
picks out one element in∇wL—we could have also used the full summation.

LEARNING THE PERCEPTRON

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

red = +1, blue = −1, η = 1

1. Pick a misclassified (xi, yi)

2. Set w← w + ηyixi

LEARNING THE PERCEPTRON

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

red = +1, blue = −1, η = 1

The update to w defines a new
decision boundary (hyperplane)

LEARNING THE PERCEPTRON

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

red = +1, blue = −1, η = 1

1. Pick another misclassified (xj, yj)

2. Set w← w + ηyjxj

LEARNING THE PERCEPTRON

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

red = +1, blue = −1, η = 1

Again update w, i.e., the hyperplane

This time we’re done.

DRAWBACKS OF PERCEPTRON

The perceptron represents a first attempt at linear classification by directly
learning the hyperplane defined by w. It has some drawbacks:

1. When the data is separable, there are an infinite # of hyperplanes.

I We may think some are better than others, but this algorithm doesn’t take
“quality” into consideration. It converges to the first one it finds.

2. When the data isn’t separable, the algorithm doesn’t converge. The
hyperplane of w is always moving around.

I It’s hard to detect this since it can take a long time for the algorithm to
converge when the data is separable.

Later, we will discuss algorithms that use the same idea of directly learning
the hyperplane w, but alters the objective function to fix these problems.

