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LINEAR CLASSIFICATION



BINARY CLASSIFICATION

We focus on binary classification, with input x; € R? and output y; € {£1}.
» We define a classifier f, which makes prediction y; = f(x;, ©) based on
a function of x; and parameters ©. In other words f : RY — {—1,+1}.
Last lecture, we discussed the Bayes classification framework.
» Here, © contains: (1) class prior probabilities on y,
(2) parameters for class-dependent distribution on x.
This lecture we’ll introduce the linear classification framework.

» In this approach the prediction is linear in the parameters O.

» In fact, there is an intersection between the two that we discuss next.



A BAYES CLASSIFIER

Bayes decisions

With the Bayes classifier we predict the class of a new x to be the most
probable label given the model and training data (x1,y;), ..., (X, Yn)-

In the binary case, we declare class y = 1 if

pixly=1)Py=1) > pxly=0)P(y=0)
—— ——

T o

)

Py =1DPh=1) > 0

pxly=0)P(y = 0)

This second line is referred to as the log odds.



A BAYES CLASSIFIER

Gaussian with shared covariance
Let’s look at the log odds for the special case where

pxly) = N(x|py, %)

(i.e., a single Gaussian with a shared covariance matrix)

plely = DP(
" oy = 0)P(

y=1) 1 1 Ty—1
= In— — = + > —
y=0) n . 2(N1 to) (111 — po)

a constant, call it wy
T y—1
+x° X7 (11 — po)
N——

a vector, call it w

This is also called “linear discriminant analysis” (used to be called LDA).



A BAYES CLASSIFIER

So we can write the decision rule for this Bayes classifier as a linear one:

f(x) = sign(x"w + wy).

» This is what we saw last lecture
(but now class 0 is called —1)

» The Bayes classifier produced a
linear decision boundary in the
data space when | = 3.

» w and wy are obtained through a
specific equation.




LINEAR CLASSIFIERS

This Bayes classifier is one instance of a linear classifier

fx) = sign(x"w 4+ wy)
where
T 1 _
wo = In— — > (u + o) S (11 — po)
0 2
wo= X7 (i — po)

With MLE used to find values for 7y, p, and 3.

Setting wy and w this way may be too restrictive:
» This Bayes classifier assumes single Gaussian with shared covariance.

» Maybe if we relax what values w( and w can take we can do better.



LINEAR CLASSIFIERS (BINARY CASE)

Definition: Binary linear classifier

A binary linear classifier is a function of the form
f(x) = sign(x"w + wy),

where w € R? and wy € R. Since the goal is to learn w, wy from data, we are
assuming that linear separability in x is an accurate property of the classes.

Definition: Linear separability

Two sets A, B C R are called linearly separable if

T >0 ifxeA (eg class +1)
X W+ wg .
<0 ifxeB (e.g class —1)

The pair (w, wo) defines an affine hyperplane. It is important to develop the
right geometric understanding about what this is doing.



HYPERPLANES

Geometric interpretation of linear classifiers:
X2

A hyperplane in R? is a linear subspace of
dimension (d — 1).

» A R2-hyperplane is a line.
» A R3-hyperplane is a plane.

> As a linear subspace, a hyperplane
X always contains the origin.

A hyperplane H can be represented by a
vector w as follows:

H:{xeRd|xTw:0}.



WHICH SIDE OF THE PLANE ARE WE ON?

X .
H \ .-~ Distance from the plane

wo_- » How close is a point x to H?

} x> - cos 6 » Cosine rule: x"w = ||x||2]|w]|> cos @

» The distance of x to the hyperplane is

lxll2 - [eos 0] = [x"wl/[|w]2.

So |xTw]| gives a sense of distance.

Which side of the hyperplane?

» The cosine satisfies cos¢ > 0if 6 € (=7, 7).

> So the sign of cos(+) tells us the side of H, and by the cosine rule

sign(cos 0) = sign(x"w).



AFFINE HYPERPLANES

Affine Hyperplanes

> An affine hyperplane H is a hyperplane
translated (shifted) using a scalar wy.

» Think of: H = x"w +wy = 0.

» Setting wy > 0 moves the hyperplane in the

| / opposite direction of w. (wg < 0 in figure)
= —wo/[[wll

Which side of the hyperplane now?

» The plane has been shifted by distance Tol H in the direction w.

» For a given w, wy and input x the inequality x”w + wy > 0 says that x is
on the far side of an affine hyperplane H in the direction w points.



CLASSIFICATION WITH AFFINE HYPERPLANES

sign(x"w + wp) > 0
H

sign(xTw +wp) < 0



POLYNOMIAL GENERALIZATIONS

The same generalizations from regression also hold for classification:
> (left) A linear classifier using x = (x1,x).

» (right) A linear classifier using x = (x1,x2,x7,x3).
The decision boundary is linear in R*, but isn’t when plotted in R2.



ANOTHER BAYES CLASSIFIER

Gaussian with different covariance

Let’s look at the log odds for the general case where p(x]y) = N(x|uy, Xy)
(i.e., now each class has its own covariance)

1 Pely=DPly =1)
plxly=0)P(y = 0)

= something complicated not involving x

a constant

+ xS = 2g " o)

a part that’s linear in x

+xT(=5 2 -2 2)x

a part that’s quadratic in x

Also called “quadratic discriminant analysis,” but it’s linear in the weights.



ANOTHER BAYES CLASSIFIER

» We also saw this last lecture.

» Notice that
f(x) = sign(x"Ax + x"b + ¢)
is linear in A, b, c.
» When x € R2, rewrite as

2 2
X+ (x1,x2, 2x1x2, X7, X5)

and do linear classification in R3.

Whereas the Bayes classifier with shared covariance is a version of linear
classification, using different covariances is like polynomial classification.



LEAST SQUARES ON {—1,+1}

How do we define more general classifiers of the form
f(x) = sign(x"w + wp) ?

» One simple idea is to treat classification as a regression problem:

1. Lety = (y1,...,y)", where y; € {—1, 41} is the class of x;.

2. Add dimension equal to 1 to x; and construct the matrix X = [x1, ..., x,]".
3. Learn the least squares weight vector w = (X" X)™'X"y.
4

. For a new point xo declare yo = sign(x{w) <— wy is included in w.
» Another option: Instead of LS, use £, regularization.

» These are “baseline” options. We can use them, along with k-NN, to get
a quick sense what performance we’re aiming to beat.



SENSITIVITY TO OUTLIERS
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Least squares can do well, but it is sensitive to outliers. In general we can
find better classifiers that focus more on the decision boundary.

> (left) Least squares (purple) does well compared with another method
» (right) Least squares does poorly because of outliers



THE PERCEPTRON ALGORITHM



EASY CASE: LINEARLY SEPARABLE DATA

(Assume data x; has a 1 attached.)

Suppose there is a linear classifier
with zero training error:

y; = sign(x!w), forall i.
5 Then the data is “linearly separable”

. Left: Can separate classes with a line.
. (Can find an infinite number of lines.)




PERCEPTRON (ROSENBLATT, 1958)

Using the linear classifier
y =f(x) = sign(x"w),

the Perceptron seeks to minimize

n

£= =" (i w)L{y # sign(&lw)}.

i=1

Because y € {—1,+1},

T . > 0 if y; = sign(x/w)
yixiw s . R
< 0 if y; # sign(x}w)

1

By minimizing £ we’re trying to
always predict the correct label.




LEARNING THE PERCEPTRON

» Unlike other techniques we’ve talked about, we can’t find the minimum
of L by taking a derivative and setting to zero:

VwL =0 cannot be solved for w analytically.

However V,,L does tell us the direction in which L is increasing in w.
» Therefore, for a sufficiently small 7, if we update
w —w—nV,L,

then £L(w') < L(w) — i.e., we have a better value for w.

» This is a very general method for optimizing an objective functions
called gradient descent. Perceptron uses a “stochastic” version of this.



LEARNING THE PERCEPTRON

Input: Training data (x;,y;),. .., (x.,y,) and a positive step size 7
1. Setw) =0
2. Forstept=1,2,... do
a) Search for all examples (x;,y;) € D such that y; # sign(x! w(")
b) If such a (x;,y;) exists, randomly pick one and update

w T = O 4y,

Else: Return w'” as the solution since everything is classified correctly.

If M, indexes the misclassified observations at step ¢, then we have

n

L=— Z (yi 'xiTW)]l{yi # Sign(xirw)}7 VL =— Z YiXi

i=1 ieM,

The full gradient step is w(*") = w() — nV L. Stochastic optimization just
picks out one element in V,,£ —we could have also used the full summation.



LEARNING THE PERCEPTRON

red=+1, blue=—-1, n=1

1. Pick a misclassified (x;, y;)

2. Setw < w + nyix;

-1 -0.5 0 0.5 1



LEARNING THE PERCEPTRON
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¢ red = +1, blue=—1, =1
0
o The update to w defines a new
decision boundary (hyperplane)
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LEARNING THE PERCEPTRON
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LEARNING THE PERCEPTRON

Y [ ]
05
red =41, blue=—-1, n=1
0
Again update w, i.e., the hyperplane
05 This time we’re done.
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DRAWBACKS OF PERCEPTRON

The perceptron represents a first attempt at linear classification by directly
learning the hyperplane defined by w. It has some drawbacks:

1. When the data is separable, there are an infinite # of hyperplanes.

» We may think some are better than others, but this algorithm doesn’t take
“quality” into consideration. It converges to the first one it finds.

2. When the data isn’t separable, the algorithm doesn’t converge. The
hyperplane of w is always moving around.

» It’s hard to detect this since it can take a long time for the algorithm to
converge when the data is separable.

Later, we will discuss algorithms that use the same idea of directly learning
the hyperplane w, but alters the objective function to fix these problems.



