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LOGISTIC REGRESSION



BINARY CLASSIFICATION

Linear classifiers
Given: Data (x1, y1), . . . , (xn, yn), where xi ∈ Rd and yi ∈ {−1,+1}

A linear classifier takes a vector w ∈ Rd and scalar w0 ∈ R and predicts

yi = f (xi; w,w0) = sign(xT
i w + w0).

We discussed two methods last time:

I Least squares: Sensitive to outliers
I Perceptron: Convergence issues, assumes linear separability

Can we combine the separating hyperplane idea with probability to fix this?



BAYES LINEAR CLASSIFICATION

Linear discriminant analysis
We saw an example of a linear classification rule using a Bayes classifier.

For the model y ∼ Bern(π) and x | y ∼ N(µy,Σ), declare y = 1 given x if

ln
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0)
> 0 .

In this case, the log odds is equal to

ln
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0)
= ln

π1

π0
− 1

2
(µ1 + µ0)TΣ−1(µ1 − µ0)︸ ︷︷ ︸

a constant w0

+ xT Σ−1(µ1 − µ0)︸ ︷︷ ︸
a vector w



LOG ODDS AND BAYES CLASSIFICATION

Original formulation
Recall that originally we wanted to declare y = 1 given x if

ln
p(y = 1|x)

p(y = 0|x)
> 0

We didn’t have a way to define p(y|x), so we used Bayes rule:

I Use p(y|x) = p(x|y)p(y)
p(x) and let the p(x) cancel each other in the fraction

I Define p(y) to be a Bernoulli distribution (coin flip distribution)

I Define p(x|y) however we want (e.g., a single Gaussian)

Now, we want to directly define p(y|x). We’ll use the log odds to do this.



LOG ODDS AND BAYES CLASSIFICATION

Log odds and hyperplanes
Classifying x based on the log odds

L = ln
p(y = +1|x)

p(y = −1|x)
,

we notice that

1. L� 0 : more confident y = +1,
2. L� 0 : more confident y = −1,
3. L = 0 : can go either way

x1

x2 H

w

−w0/‖w‖2

x

The linear function xTw + w0 captures these three objectives:

I The distance of x to a hyperplane H defined by (w,w0) is
∣∣ xT w
‖w‖2

+ w0
‖w‖2

∣∣.
I The sign of the function captures which side x is on.
I As x moves away/towards H, we become more/less confident.



LOG ODDS AND HYPERPLANES

Logistic link function
We can directly plug in the hyperplane representation for the log odds:

ln
p(y = +1|x)

p(y = −1|x)
= xTw + w0

Question: What is different from the previous Bayes classifier?

Answer: There was a formula for calculating w and w0 based on the prior
model and data x. Now, we put no restrictions on these values.

Setting p(y = −1|x) = 1− p(y = +1|x), solve for p(y = +1|x) to find

p(y = +1|x) =
exp{xTw + w0}

1 + exp{xTw + w0}
= σ(xTw + w0).

I This is called the sigmoid function.
I We have chosen xTw + w0 as the link function for the log odds.



LOGISTIC SIGMOID FUNCTION
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I Red line: Sigmoid function σ(xTw + w0), which maps x to p(y = +1|x).

I The function σ(·) captures our desire to be more confident as we move
away from the separating hyperplane, defined by the x-axis.

I (Blue dashed line: Not discussed.)



LOGISTIC REGRESSION

As with regression, absorb the offset: w←
[

w0
w

]
and x←

[
1
x

]
.

Definition
Let (x1, y1), . . . , (xn, yn) be a set of binary labeled data with y ∈ {−1,+1}.
Logistic regression models each yi as independently generated, with

P(yi = +1|xi,w) = σ(xT
i w), σ(xi; w) =

exT
i w

1 + exT
i w
.

Discriminative vs Generative classifiers
I This is a discriminative classifier because x is not directly modeled.

I Bayes classifiers are known as generative because x is modeled.

Discriminative: p(y|x) Generative: p(x|y)p(y).



LOGISTIC REGRESSION LIKELIHOOD

Data likelihood
Define σi(w) = σ(xT

i w). The joint likelihood of y1, . . . , yn is

p(y1, . . . , yn|x1, . . . , xn,w) =

n∏
i=1

p(yi|xi,w)

=

n∏
i=1

σi(w)1(yi=+1) (1− σi(w))
1(yi=−1)

I Notice that each xi modifies the probability of a ‘+1’ for its respective yi.

I Predicting new data is the same:

I If xT w > 0, then σ(xT w) > 1/2 and predict y = +1, and vice versa.
I We now get a confidence in our prediction via the probability σ(xT w).



LOGISTIC REGRESSION AND MAXIMUM LIKELIHOOD

More notation changes
Use the following fact to condense the notation:

eyixT
i w

1 + eyixT
i w︸ ︷︷ ︸

σi(yi·w)

=
( exT

i w

1 + exT
i w︸ ︷︷ ︸

σi(w)

)1(yi=+1)(
1− exT

i w

1 + exT
i w︸ ︷︷ ︸

1−σi(w)

)1(yi=−1)

therefore, the data likelihood can be written compactly as

p(y1, . . . , yn|x1, . . . , xn,w) =

n∏
i=1

σi(yi · w)

We want to maximize this over w.



LOGISTIC REGRESSION AND MAXIMUM LIKELIHOOD

Maximum likelihood
The maximum likelihood solution for w can be written

wML = arg max
w

n∑
i=1

lnσi(yi · w)

= arg max
w
L

As with the Perceptron, we can’t directly set∇wL = 0, and so we need an
iterative algorithm. Since we want to maximize L, at step t we can update

w(t+1) = w(t) + η∇wL, ∇wL =

n∑
i=1

(1− σi(yi · w)) yixi.

We will see that this results in an algorithm similar to the Perceptron.



LOGISTIC REGRESSION ALGORITHM (STEEPEST ASCENT)

Input: Training data (x1, yi), . . . , (xn, yn) and step size η > 0

1. Set w(1) = ~0

2. For iteration t = 1, 2, . . . do

• Update w(t+1) = w(t) + η
n∑

i=1

(
1 − σi(yi · w(t))

)
yixi

Perceptron: Search for misclassified (xi, yi), update w(t+1) = w(t) + ηyixi.

Logistic regression: Something similar except we sum over all data.

I Recall that σi(yi · w) picks out the probability model gives to the observed yi.
I Therefore 1 − σi(yi · w) is the probability the model picks the wrong value.
I Perceptron is “all-or-nothing.” Either it’s correctly or incorrectly classified.
I Logistic regression has a probabilistic “fudge-factor.”



BAYESIAN LOGISTIC REGRESSION

Problem: If a hyperplane can separate all training data, then ‖wML‖2 →∞.
This drives σi(yi · w)→ 1 for each (xi, yi).

Even for nearly separable data it might get a few very wrong in order to be
more confident about the rest. This is a case of “over-fitting.”

A solution: Regularize w with λwTw :

wMAP = arg maxw
∑n

i=1 lnσi(yi·w)−λwTw

We’ve seen how this corresponds to a
Gaussian prior distribution on w.

How about the posterior p(w|x, y)?
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LAPLACE APPROXIMATION



BAYESIAN LOGISTIC REGRESSION

Posterior calculation
Define the prior distribution on w to be w ∼ N(0, λ−1I). The posterior is

p(w|x, y) =
p(w)

∏n
i=1 σi(yi · w)∫

p(w)
∏n

i=1 σi(yi · w) dw

This is not a “standard” distribution and we can’t calculate the denominator.

Therefore we can’t actually say what p(w|x, y) is.

Can we approximate p(w|x, y)?



LAPLACE APPROXIMATION

One strategy
Pick a distribution to approximate p(w|x, y). We will say

p(w|x, y) ≈ Normal(µ,Σ).

Now we need a method for setting µ and Σ.

Laplace approximations
Using a condensed notation, notice from Bayes rule that

p(w|x, y) =
eln p(y,w|x)∫
eln p(y,w|x)dw

.

We will approximate ln p(y,w|x) in the numerator and denominator.



LAPLACE APPROXIMATION

Let’s define f (w) = ln p(y,w|x).

Taylor expansions
We can approximate f (w) with a second order Taylor expansion.

Recall that w ∈ Rd+1. For any point z ∈ Rd+1,

f (w) ≈ f (z) + (w− z)T∇f (z) +
1
2

(w− z)T (∇2f (z)
)

(w− z)

The notation ∇f (z) is short for∇wf (w)|z, and similarly for the matrix of
second derivatives. We just need to pick z.

The Laplace approximation defines z = wMAP.



LAPLACE APPROXIMATION (SOLVING)

Recall f (w) = ln p(y,w|x) and z = wMAP. From Bayes rule and the Laplace
approximation we now have

p(w|x, y) =
e f (w)∫
e f (w)dw

≈ e f (z)+(w−z)T∇f (z)+ 1
2 (w−z)T(∇2f (z))(w−z)∫

e f (z)+(w−z)T∇f (z)+ 1
2 (w−z)T(∇2f (z))(w−z)dw

This can be simplified in two ways,

1. The term e f (wMAP) in the numerator and denominator can be viewed as a
multiplicative constant since it doesn’t vary in w. They therefore cancel.

2. By definition of how we find wMAP, the vector ∇w ln p(y,w|x)|wMAP = 0.



LAPLACE APPROXIMATION (SOLVING)

We’re therefore left with the approximation

p(w|x, y) ≈ e−
1
2 (w−wMAP)

T(−∇2 ln p(y,wMAP|x))(w−wMAP)∫
e−

1
2 (w−wMAP)T(−∇2 ln p(y,wMAP|x))(w−wMAP)dw

The solution comes by observing that this is a multivariate normal,

p(w|x, y) ≈ Normal(µ,Σ),

where
µ = wMAP, Σ =

(
−∇2 ln p(y,wMAP|x)

)−1

We can take the second derivative (Hessian) of the log joint likelihood to find

∇2 ln p(y,wMAP|x) = −λI −
n∑

i=1

σi(yi · wMAP) (1− σi(yi · wMAP)) xixT
i



BAYESIAN LOGISTIC REGRESSION

Laplace approximation for logistic regression
Given labeled data (x1, y1), . . . , (xn, yn) and the model

P(yi|xi,w) = σi(yi · w), w ∼ N(0, λ−1I), σi(yi · w) =
eyixT

i w

1 + eyixT
i w

1. Find: wMAP = arg max
w

n∑
i=1

lnσi(yi · w)− λ

2
wTw

2. Set: −Σ−1 = −λI −
n∑

i=1

σi(yi · wMAP) (1− σi(yi · wMAP)) xixT
i

3. Approximate: p(w|x, y) = N (wMAP,Σ).


