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LLOGISTIC REGRESSION



BINARY CLASSIFICATION

Linear classifiers
Given: Data (x1,y1), ..., (Xs,ya), where x; € R and y; € {—1,+1}

A linear classifier takes a vector w € R? and scalar wy € R and predicts
yi = f(xi; w, wo) = sign(x] w -+ wy).

We discussed two methods last time:

» Least squares: Sensitive to outliers

» Perceptron: Convergence issues, assumes linear separability

Can we combine the separating hyperplane idea with probability to fix this?



BAYES LINEAR CLASSIFICATION

Linear discriminant analysis

We saw an example of a linear classification rule using a Bayes classifier.
For the model y ~ Bern(w) and x |y ~ N(p,, X), declare y = 1 given x if

pixly=Dp(y=1)
p(xly=0)p(y =0)

In >0.

In this case, the log odds is equal to
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LOG ODDS AND BAYES CLASSIFICATION

Original formulation

Recall that originally we wanted to declare y = 1 given x if

We didn’t have a way to define p(y|x), so we used Bayes rule:
» Use p(y|x) = ’% and let the p(x) cancel each other in the fraction
» Define p(y) to be a Bernoulli distribution (coin flip distribution)

» Define p(x|y) however we want (e.g., a single Gaussian)

Now, we want to directly define p(y|x). We’ll use the log odds to do this.



LOG ODDS AND BAYES CLASSIFICATION

Log odds and hyperplanes
Classifying x based on the log odds

=41
L=mPO=+1
p(y=—1lx)

we notice that

1. L> 0: more confidenty = +1,
2. L < 0: more confidenty = —1,

3. L =0: can go either way

The linear function x”w + wy captures these three objectives:

Wo

» The distance of x to a hyperplane H defined by (w, wy) is ’”";—"IVZ +

[wll2 1+

» The sign of the function captures which side x is on.

» As x moves away/towards H, we become more/less confident.



LOG ODDS AND HYPERPLANES

Logistic link function
We can directly plug in the hyperplane representation for the log odds:

— 41
1np(y +1]x)

T
————L =X W+ Ww

ply=—1x)
Question: What is different from the previous Bayes classifier?

Answer: There was a formula for calculating w and wy based on the prior
model and data x. Now, we put no restrictions on these values.

Setting p(y = —1|x) = 1 — p(y = +1]x), solve for p(y = +1]x) to find

exp{xTw + wo} T
=+1lx) = = + .
p(y |x) T explatw + wol o(x"w+ wp)

» This is called the sigmoid function.
» We have chosen x”w + wy as the link function for the log odds.



LOGISTIC SIGMOID FUNCTION

a(x"w + wp)

xTw+ wo

» Red line: Sigmoid function o (x”w +wy), which maps x to p(y = +1|x)

» The function o(-) captures our desire to be more confident as we move
away from the separating hyperplane, defined by the x-axis.

» (Blue dashed line: Not discussed.)



LOGISTIC REGRESSION

As with regression, absorb the offset: w <— [ v:‘? } and x < { )1c }

Definition

Let (x1,y1), ..., (x4, ) be a set of binary labeled data withy € {—1,+1}.
Logistic regression models each y; as independently generated, with

T
eXl» w

P(y; = +1]xi,w) = o(xiw), olx;w) =

1

1 +e5v

Discriminative vs Generative classifiers
» This is a discriminative classifier because x is not directly modeled.

» Bayes classifiers are known as generative because x is modeled.

Discriminative: p(y|x) Generative: p(x|y)p(y).



LOGISTIC REGRESSION LIKELIHOOD

Data likelihood
Define o;(w) = o(x/w). The joint likelihood of yy, . .., y, is
P()’1,-~-,Yn|x|,---,Xn,W) = Hp(yi|xivw)

i=1

= Ho‘ (w)Lo=+1 (1 — a,»(w))]l(y’:_l)

» Notice that each x; modifies the probability of a ‘41’ for its respective y;.
» Predicting new data is the same:

> Ifx"w > 0, then o(x"w) > 1/2 and predict y = -1, and vice versa.

> We now get a confidence in our prediction via the probability o (x"w).



LOGISTIC REGRESSION AND MAXIMUM LIKELIHOOD

More notation changes

Use the following fact to condense the notation:

eni Y e\ L=+ v\ 1i=—1)
1+e}’iXiTW - (l+ex,TW) (1_1+3X,TW)
—— —— —_——

ai(yi-w) oi(w) 1—o;(w)

therefore, the data likelihood can be written compactly as

n
POy YnlXty ey Xy W) = Ha,-(y,-~w)
i=1

We want to maximize this over w.



LOGISTIC REGRESSION AND MAXIMUM LIKELIHOOD

Maximum likelihood
The maximum likelihood solution for w can be written

n

Wae = argmax Zln oi(yi-w)
i=1
= argmax L
w

As with the Perceptron, we can’t directly set V,,£ = 0, and so we need an
iterative algorithm. Since we want to maximize L, at step t we can update

w* ) = w0 v, VL= Z - W) yixi-

We will see that this results in an algorithm similar to the Perceptron.



LOGISTIC REGRESSION ALGORITHM (STEEPEST ASCENT)

Input: Training data (x;,y;), ..., (X, y,) and step size n > 0
1. Set w) =0

2. For iterationr =1,2,... do

e Update wlD =)@ 4 772 (1 —oi(yi 'W(’))) ViXi

i=1

Perceptron: Search for misclassified (x;, y;), update w1 = w4 nyix;.

Logistic regression: Something similar except we sum over all data.

> Recall that o;(y; - w) picks out the probability model gives to the observed y;.
» Therefore 1 — oi(y; - w) is the probability the model picks the wrong value.

» Perceptron is “all-or-nothing.” Either it’s correctly or incorrectly classified.
>

Logistic regression has a probabilistic “fudge-factor.”



BAYESIAN LOGISTIC REGRESSION

Problem: If a hyperplane can separate all training data, then ||wy, |2 — oo.
This drives o;(y; - w) — 1 for each (x;,y;).

Even for nearly separable data it might get a few very wrong in order to be
more confident about the rest. This is a case of “over-fitting.”

4

A solution: Regularize w with wlw: 2 .
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We’ve seen how this corresponds to a ©

Gaussian prior distribution on w.

How about the posterior p(w|x,y)? -8




LAPLACE APPROXIMATION



BAYESIAN LOGISTIC REGRESSION

Posterior calculation
Define the prior distribution on w to be w ~ N(0, A~'I). The posterior is

pw) [Tz oi(yi - w)
pw) [Tz, oi(yi - w) aw

p(w‘x,y) = f

This is not a “standard” distribution and we can’t calculate the denominator.
Therefore we can’t actually say what p(w|x,y) is.

Can we approximate p(w|x, y)?



LAPLACE APPROXIMATION

One strategy

Pick a distribution to approximate p(w|x,y). We will say
p(wlx,y) &~ Normal(u, X).

Now we need a method for setting p and X..

Laplace approximations

Using a condensed notation, notice from Bayes rule that

elnp(y,w|x)
pwlx,y) = T et gy

We will approximate In p(y, w|x) in the numerator and denominator.



LAPLACE APPROXIMATION

Let’s define f(w) = Inp(y, w|x).

Taylor expansions

We can approximate f(w) with a second order Taylor expansion.

Recall that w € R?*!. For any point z € R4+,
1
fw) = f(2) +(w—2)"Vf(2) + Fw— )" (V¥ (2) (w—2)

The notation Vf(z) is short for V,,f(w)|., and similarly for the matrix of
second derivatives. We just need to pick z.

The Laplace approximation defines z = wy,p.



LAPLACE APPROXIMATION (SOLVING)

Recall f(w) = Inp(y, w|x) and z = wy,p. From Bayes rule and the Laplace
approximation we now have

efw)
pwlx,y) = W
o [@+wv=2)" V() +3 (w=2)" (V*/(2)) (w—2)

[e F@+Ww=2)TVf ()43 (w=2)T (V¥ () (w=2) gy,

Q

This can be simplified in two ways,

1. The term e/ (") in the numerator and denominator can be viewed as a
multiplicative constant since it doesn’t vary in w. They therefore cancel.

2. By definition of how we find wy,, the vector V,, In p(y, w|x)[wys = 0.



LAPLACE APPROXIMATION (SOLVING)

We’re therefore left with the approximation

e~ % (w—wMAp)T(—V2 In p(y,wmap \x))(w—wMAp)

p(W|an) ~ fe*%(W*WMAP)T(7v2 Inp(y wmar [) (W—war) gy

The solution comes by observing that this is a multivariate normal,

p(wlx, ) ~ Normal(u, ),

where .
= Wysp, 2= (_v2 Inp(y, WMAP‘X))

We can take the second derivative (Hessian) of the log joint likelihood to find

n

V2 Inp(y, wnelx) = =M = > 0i(yi - wase) (1 = (v - Wyaae)) 5]
i=1



BAYESIAN LOGISTIC REGRESSION

Laplace approximation for logistic regression

Given labeled data (x1,y1), ..., (x,,y,) and the model

B ey,-x,Tw
P(yilxi,w) = oi(yi - w),  w~N(0,A7'), oi(yi-w) = 11 omw

. “ A
1. Find: wy, = argmvzvix Zlnai()’i W) — EWTW
i=1
2. Set: =X = -\ — Zai(yi : WMAP) (1 - Ui(yi : WMAP))xixiT

i=1

3. Approximate: p(w|x,y) = N (Wyap, 2).



