COMS 4721: Machine Learning for Data Science
Lecture 10, 2/21/2017

Prof. John Paisley

Department of Electrical Engineering
& Data Science Institute

Columbia University

FEATURE EXPANSIONS

FEATURE EXPANSIONS

Feature expansions (also called basis expansions) are names given to a
technique we’ve already discussed and made use of.

Problem: A linear model on the original feature space x € R? doesn’t work.

Solution: Map the features to a higher dimensional space ¢(x) € R”, where
D > d, and do linear modeling there.

Examples
» For polynomial regression on R, we let ¢(x) = (x,x%,...,x").
» For jump discontinuities, ¢(x) = (x, 1{x < a}).

MAPPING EXAMPLE FOR REGRESSION

(a) Data for linear regression (b) Same data mapped to higher dimension

High-dimensional maps can transform the data so output is linear in inputs.

Left: Original x € R and response y.
Right: x mapped to R? using ¢(x) = (x, cosx)”.

MAPPING EXAMPLE FOR REGRESSION

Using the mapping ¢(x) = (x, cosx), learn the linear regression model

y &~ wo+ox)w
Wo + WX + Wy COS X.

Q

cos(x)

x

Left: Learn (wg, w;, w;) to approximate data on the left with a plane.

Right: For each point x, map to ¢(x) and predict y. Plot as a function of x.

MAPPING EXAMPLE FOR CLASSIFICATION

X2
o
L] e ..
o .
.
e e | ® e B
eel deo _o*
. 0" % ¢ ., .
. o ¢ - .
. et oo
o) .
oo
. $ o
.
-
. . . .e
.
.
L]
R
"-'. N 2. «
% e s ®
.
o L0

(e) Data for binary classification

(f) Same data mapped to higher dimension

High-dimensional maps can transform data so it becomes linearly separable.

Left: Original data in R

Right: Data mapped to R? using ¢(x) = (x}, x1x2, x3)7.

T

MAPPING EXAMPLE FOR CLASSIFICATION
Using the mapping ¢(x) = (x2, x1x2, x3)7, learn a linear classifier

y = signwo -+ 6(0Tw)
= sign(wo + wlx% + waxixp + W3x§).

X2

e .-.. ‘.
. v ."VS. .
o0 . o "..' I .
M '} ° 2 ‘: . 2

Left: Learn (wo, w1, wo, ws) to linearly separate classes with hyperplane.

Right: For each point x, map to ¢(x) and classify. Color decision regions in R2.

FEATURE EXPANSIONS AND DOT PRODUCTS

What expansion should I use?

This is not obvious. The illustrations required knowledge about the data that
we likely won’t have (especially if it’s in high dimensions).

One approach is to use the “kitchen sink™: If you can think of it, then use it.
Select the useful features with an ¢; penalty

we, = argmin Y f(yi, ¢(x),w) + Awlr.
i=1

We know that this will find a sparse subset of the dimensions of ¢(x) to use.

Often we only need to work with dot products ¢(x;)” ¢(x;) = K(x;, x;). This
is called a kernel and can produce some interesting results.

KERNELS

PERCEPTRON (SOME MOTIVATION)

Perceptron classifier

Letx; € R andy; € {—1,+1} fori = 1,...,n observations. We saw that
the Perceptron constructs the hyperplane from data,

w = Zie/\/l YiXi, (assume 1) = 1 and M has no duplicates)
where M is the sequentially constructed set of misclassified examples.

Predicting new data
We also discussed how we can predict the label y, for a new observation x:

yo = sign(xfw) = sign (3", v yixgxi)
We’ve taken feature expansions for granted, but we can explicitly write it as
Yo = sign(¢(xo)"w) = sign (3¢ nq ¥ (x0)" B(x:))

We can represent the decision using dot products between data points.

KERNELS

Kernel definition
Akernel K(+,-) : R? x RY — R is a symmetric function defined as follows:

Definition: If for any n points xi,...,x, € R4, the n x n matrix K, where
K;j = K(x;,xj), is positive semidefinite, then K-, -) is a “kernel.”

Intuitively, this means K satisfies the properties of a covariance matrix.

Mercer’s theorem

If the function K-, -) satisfies the above properties, then there exists a
mapping ¢ : RY — RP (D can equal oo) such that

K(xi, %) = o(x) o (7).

If we first define ¢(-) and then K, this is obvious. However, sometimes we
first define K(+, -) and avoid ever using ¢(-).

GAUSSIAN KERNEL (RADIAL BASIS FUNCTION)

The most popular kernel is the Gaussian kernel, also called the radial basis
function (RBF),

1
K(x,x") :aexp{—b||x—x’|2}.

» This is a good, general-purpose kernel that usually works well.
» It takes into account proximity in R?. Things close together in space
have larger value (as defined by kernel width b).

In this case, the the mapping ¢(x) that produces the RBF kernel is infinite
dimensional (it’s a continuous function instead of a vector). Therefore

K(x,x') = / 61(x) () dl.

> ¢,(x) can be thought of as a function of # with parameter x that also has
a Gaussian form.

KERNELS

Another kernel
Map : ¢(x) = (1,v2x,.. .7\@xd,x%, e X5, .,\f2x1xj, o)
Kernel : ¢(x)To(x') = K(x,x') = (1 + xTx')?

In fact, we can show K (x,x’) = (1 4+ x7x")?, for b > 0 is a kernel as well.

Kernel arithmetic
Certain functions of kernels can produce new kernels.

Let K| and K, be any two kernels, then constructing K in the following ways
produces a new kernel (among many other ways):

K(x,x') = Ki(x,xX)Ky(x,x")
Ki(x,x') + Ky (x,x")
exp{Ki(x,x")}

N =
—~
= =

Il

KERNELIZED PERCEPTRON

Returning to the Perceptron

We write the feature-expanded decision as
Yo = sign(Ycpyid(x0) o(x))
= sign (3;cpq ViK (%0, %7))
We can pick the kernel we want to use. Let’s pick the RBF (set @ = 1). Then
i = llxo—ax1?
Yo = sign (Zie/vl yiewlom)
Notice that we never actually need to calculate ¢(x).

What is this doing?
» Notice 0 < K(xo,x;) < 1, with bigger values when xj is closer to x;.

» This is like a “soft voting” among the data picked by Perceptron.

KERNELIZED PERCEPTRON

Learning the kernelized Perceptron
Recall: Given a current vector w(") = Y ic M, Yixi» we update it as follows,
1. Find a new x’ such that y’ # sign(x’7w(®))

2. Add the index of x’ to M and set wit) =37 yix;

Again we only need dot products, meaning these steps are equivalent to
1. Find a new x’ such that y’ # sign(_,c v, »:iK(x', xi))

2. Add the index of x’ to M but don’t bother calculating w('+")

The trick is to realize that we never need to work with ¢(x).
» We don’t need ¢(x) to do Step 1 above.
» We don’t need ¢(x) to classify new data (previous slide).

» We only ever need to calculate K(x,x") between two points.

KERNEL k-NN

An extension

We can generalize kernelized Perceptron to soft k-NN with a simple change.
Instead of summing over misclassified data M, sum over all the data:

. 1 g—xi |12
o= sign (1 o)
Next, notice the decision doesn’t change if we divide by a positive constant.
Let: Z= ZJ’,’ZI e lo—xl?

Construct : Vector p(xo), where p;(xo) = £ e slo—xl’
Declare : yo = sign(X1, ypi(xo))

> We let all data vote for the label based on a “confidence score” p(xp).

> Set b so that most p;(xp) = 0 to only focus on neighborhood around x.

KERNEL REGRESSION

Nadaraya-Watson model

The developments are almost limitless.

Here’s a regression example almost identical to the kernelized k-NN:

Before: y € {—1,+1}
Now: y € R

Using the RBF kernel, for a new (xo, yo) predict
x07xt
Yo =
Z Z 1 K (x0,7)°

What is this doing?
We’re taking a locally weighted average of all y; for which x; is close to xg
(as decided by the kernel width). Gaussian processes are another option. . .

(G AUSSIAN PROCESSES

KERNELIZED BAYESIAN LINEAR REGRESSION

Regression setup: For n observations, with response vector y € R" and their
feature matrix X, we define the likelihood and prior

y~NXw,a?I), w~NO,NX'I).
Marginalizing: What if we integrate out w? We can solve this,

p(y|X) = /p(y\X7 w)p(w)dw = N(0, 0T + X71xx7).

Kernelization: Notice that (XX7); = xx;. Replace each x with ¢(x) after
which we can say [¢(X)#(X)7]; = K(x;,x;). We can define K directly, so

pOIX) = / POIX, wWp(w)dw = N(0, 0T + A~'K).

This is called a Gaussian process. We never use w or ¢(x), but just K (x;, x;).

GAUSSIAN PROCESSES

Definition
e Letf(x) € Rand x € RY.
e Define the kernel K(x,x") between two points x and x'.

e Then f(x) is a Gaussian process and y(x) the noise-added process if for
n observed pairs (x1,y1), ..., (Xy,yn), where x € X and y € R,

y|f ~N(f,0’), f~N(©0,K) <= y~N(0,0I+K)
where y = (y1,...,y,)" and K is n x n with K;; = K(x;, x;).

Comments:
» We assume A = 1 to reduce notation.
» Typical breakdown: f(x) is the GP and y(x) equals f(x) plus i.i.d. noise.
» The kernel is what keeps this from being “just a Gaussian.”

GAUSSIAN PROCESSES

Above: A Gaussian process f(x) generated using

|
K(xi,x;) = exp {—xl bx’” } :

Right: The covariance of f(x) defined by K.

GAUSSIAN PROCESSES

Top: Unobserved underlying function,
Bottom: Noisy observed data sampled from this function

T T T T T T T

T

T

PREDICTIONS WITH GAUSSIAN VECTORS

Bayesian linear regression

Imagine we have n observation pairs D = {(x;,y;) }?_, and want to predict
Yo given xp. Integrating out w and setting A = 1, the joint distribution is

T T
Yo | 2 xoXo (Xxo)
[y] Normal (0, ol + [Xvo XXT

We want to predict yy given D and xj. Calculations can show that

Yo|D,xo ~ Normal(,03)
po = (Xxo)T (21 +XxT)"ly
b = o® +xbxo— (Xno)T (o1 + XXT) " (Xxo)

The since the infinite Gaussian process is only evaluated at a finite set of
points, we can use this fact.

PREDICTIONS WITH GAUSSIAN PROCESSES

Predictive distribution of y(x)

Given measured data D, = {(x1,¥1), ..., (xn, Yu) } the distribution of y(x)
can be calculated at any new x to make predictions.

Let K(x,D,) = [K(x,x1),...,K(x,x,)] and K,, be the n x n kernel matrix
restricted points in D,,. Then we can show

YDy~ N(u(x), X(x)),
M(X) = K(x7 Dﬂ)(021+Kn)_1ya
Y(x) = o>+ K(x,x) —K(x,D,) (o +K,)'K(x,D,)"

For the posterior of f(x) instead of y(x), just remove 0.

GAUSSIAN PROCESSES POSTERIOR

Mean

~ ~ 7 Standard Dev
X Observed values

Truth

f(x)

What does the posterior distribution of f(x) look like?
» We have data marked by an x.
» These values pin down the function f(x) nearby
» We get a mean and variance for every possible x from a previous slide.
>

The distribution on y(x) adds variance o (very small above) point-wise.

