COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

Prof. John Paisley
Department of Electrical Engineering
\& Data Science Institute
Columbia University

FEATURE EXPANSIONS

Feature expansions

Feature expansions (also called basis expansions) are names given to a technique we've already discussed and made use of.

Problem: A linear model on the original feature space $x \in \mathbb{R}^{d}$ doesn't work.
Solution: Map the features to a higher dimensional space $\phi(x) \in \mathbb{R}^{D}$, where $D>d$, and do linear modeling there.

Examples

- For polynomial regression on \mathbb{R}, we let $\phi(x)=\left(x, x^{2}, \ldots, x^{p}\right)$.
- For jump discontinuities, $\phi(x)=(x, \mathbb{1}\{x<a\})$.

MAPPING EXAMPLE FOR REGRESSION

(a) Data for linear regression

(b) Same data mapped to higher dimension

High-dimensional maps can transform the data so output is linear in inputs. Left: Original $x \in \mathbb{R}$ and response y.
Right: x mapped to \mathbb{R}^{2} using $\phi(x)=(x, \cos x)^{T}$.

MAPPING EXAMPLE FOR REGRESSION

Using the mapping $\phi(x)=(x, \cos x)^{T}$, learn the linear regression model

$$
\begin{aligned}
y & \approx w_{0}+\phi(x)^{T} w \\
& \approx w_{0}+w_{1} x+w_{2} \cos x
\end{aligned}
$$

Left: Learn (w_{0}, w_{1}, w_{2}) to approximate data on the left with a plane.
Right: For each point x, map to $\phi(x)$ and predict y. Plot as a function of x.

MAPPING EXAMPLE FOR CLASSIFICATION

(e) Data for binary classification

(f) Same data mapped to higher dimension

High-dimensional maps can transform data so it becomes linearly separable. Left: Original data in \mathbb{R}^{2}.
Right: Data mapped to \mathbb{R}^{3} using $\phi(x)=\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)^{T}$.

MAPPING EXAMPLE FOR CLASSIFICATION

Using the mapping $\phi(x)=\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)^{T}$, learn a linear classifier

$$
\begin{aligned}
y & =\operatorname{sign}\left(w_{0}+\phi(x)^{T} w\right) \\
& =\operatorname{sign}\left(w_{0}+w_{1} x_{1}^{2}+w_{2} x_{1} x_{2}+w_{3} x_{2}^{2}\right)
\end{aligned}
$$

Left: Learn $\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$ to linearly separate classes with hyperplane.
Right: For each point x, map to $\phi(x)$ and classify. Color decision regions in \mathbb{R}^{2}.

FEATURE EXPANSIONS AND DOT PRODUCTS

What expansion should I use?

This is not obvious. The illustrations required knowledge about the data that we likely won't have (especially if it's in high dimensions).

One approach is to use the "kitchen sink": If you can think of it, then use it. Select the useful features with an ℓ_{1} penalty

$$
w_{\ell_{1}}=\arg \min _{w} \sum_{i=1}^{n} f\left(y_{i}, \phi\left(x_{i}\right), w\right)+\lambda\|w\|_{1} .
$$

We know that this will find a sparse subset of the dimensions of $\phi(x)$ to use.
Often we only need to work with dot products $\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right) \equiv K\left(x_{i}, x_{j}\right)$. This is called a kernel and can produce some interesting results.

KERNELS

PERCEPTRON (SOME MOTIVATION)

Perceptron classifier

Let $x_{i} \in \mathbb{R}^{d+1}$ and $y_{i} \in\{-1,+1\}$ for $i=1, \ldots, n$ observations. We saw that the Perceptron constructs the hyperplane from data,

$$
w=\sum_{i \in \mathcal{M}} y_{i} x_{i}, \quad \text { (assume } \eta=1 \text { and } \mathcal{M} \text { has no duplicates) }
$$

where \mathcal{M} is the sequentially constructed set of misclassified examples.
Predicting new data
We also discussed how we can predict the label y_{0} for a new observation x_{0} :

$$
y_{0}=\operatorname{sign}\left(x_{0}^{T} w\right)=\operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_{i} x_{0}^{T} x_{i}\right)
$$

We've taken feature expansions for granted, but we can explicitly write it as

$$
y_{0}=\operatorname{sign}\left(\phi\left(x_{0}\right)^{T} w\right)=\operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_{i} \phi\left(x_{0}\right)^{T} \phi\left(x_{i}\right)\right)
$$

We can represent the decision using dot products between data points.

Kernels

Kernel definition
A kernel $K(\cdot, \cdot): \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a symmetric function defined as follows:
Definition: If for any n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, the $n \times n$ matrix K, where $K_{i j}=K\left(x_{i}, x_{j}\right)$, is positive semidefinite, then $K(\cdot, \cdot)$ is a "kernel."

Intuitively, this means K satisfies the properties of a covariance matrix.

Mercer's theorem

If the function $K(\cdot, \cdot)$ satisfies the above properties, then there exists a mapping $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}(D$ can equal $\infty)$ such that

$$
K\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right) .
$$

If we first define $\phi(\cdot)$ and then K, this is obvious. However, sometimes we first define $K(\cdot, \cdot)$ and avoid ever using $\phi(\cdot)$.

GAUSSIAN KERNEL (RADIAL BASIS FUNCTION)

The most popular kernel is the Gaussian kernel, also called the radial basis function (RBF),

$$
K\left(x, x^{\prime}\right)=a \exp \left\{-\frac{1}{b}\left\|x-x^{\prime}\right\|^{2}\right\}
$$

- This is a good, general-purpose kernel that usually works well.
- It takes into account proximity in \mathbb{R}^{d}. Things close together in space have larger value (as defined by kernel width b).

In this case, the the mapping $\phi(x)$ that produces the RBF kernel is infinite dimensional (it's a continuous function instead of a vector). Therefore

$$
K\left(x, x^{\prime}\right)=\int \phi_{t}(x) \phi_{t}\left(x^{\prime}\right) d t .
$$

- $\phi_{t}(x)$ can be thought of as a function of t with parameter x that also has a Gaussian form.

Kernels

Another kernel

$$
\text { Map : } \phi(x)=\left(1, \sqrt{2} x_{1}, \ldots, \sqrt{2} x_{d}, x_{1}^{2}, \ldots, x_{d}^{2}, \ldots, \sqrt{2} x_{i} x_{j}, \ldots\right)
$$

Kernel : $\phi(x)^{T} \phi\left(x^{\prime}\right)=K\left(x, x^{\prime}\right)=\left(1+x^{T} x^{\prime}\right)^{2}$
In fact, we can show $K\left(x, x^{\prime}\right)=\left(1+x^{T} x^{\prime}\right)^{b}$, for $b>0$ is a kernel as well.

Kernel arithmetic

Certain functions of kernels can produce new kernels.
Let K_{1} and K_{2} be any two kernels, then constructing K in the following ways produces a new kernel (among many other ways):

$$
\begin{aligned}
K\left(x, x^{\prime}\right) & =K_{1}\left(x, x^{\prime}\right) K_{2}\left(x, x^{\prime}\right) \\
K\left(x, x^{\prime}\right) & =K_{1}\left(x, x^{\prime}\right)+K_{2}\left(x, x^{\prime}\right) \\
K\left(x, x^{\prime}\right) & =\exp \left\{K_{1}\left(x, x^{\prime}\right)\right\}
\end{aligned}
$$

Kernelized Perceptron

Returning to the Perceptron
We write the feature-expanded decision as

$$
\begin{aligned}
y_{0} & =\operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_{i} \phi\left(x_{0}\right)^{T} \phi\left(x_{i}\right)\right) \\
& =\operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_{i} K\left(x_{0}, x_{i}\right)\right)
\end{aligned}
$$

We can pick the kernel we want to use. Let's pick the RBF (set $a=1$). Then

$$
y_{0}=\operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_{i} \mathrm{e}^{-\frac{1}{b}\left\|x_{0}-x_{i}\right\|^{2}}\right)
$$

Notice that we never actually need to calculate $\phi(x)$.
What is this doing?

- Notice $0<K\left(x_{0}, x_{i}\right) \leq 1$, with bigger values when x_{0} is closer to x_{i}.
- This is like a "soft voting" among the data picked by Perceptron.

Kernelized Perceptron

Learning the kernelized Perceptron

Recall: Given a current vector $w^{(t)}=\sum_{i \in \mathcal{M}_{t}} y_{i} x_{i}$, we update it as follows,

1. Find a new x^{\prime} such that $y^{\prime} \neq \operatorname{sign}\left(x^{\prime T} w^{(t)}\right)$
2. Add the index of x^{\prime} to \mathcal{M} and set $w^{(t+1)}=\sum_{i \in \mathcal{M}_{t+1}} y_{i} x_{i}$

Again we only need dot products, meaning these steps are equivalent to

1. Find a new x^{\prime} such that $y^{\prime} \neq \operatorname{sign}\left(\sum_{i \in \mathcal{M}_{t}} y_{i} K\left(x^{\prime}, x_{i}\right)\right)$
2. Add the index of x^{\prime} to \mathcal{M} but don't bother calculating $w^{(t+1)}$

The trick is to realize that we never need to work with $\phi(x)$.

- We don't need $\phi(x)$ to do Step 1 above.
- We don't need $\phi(x)$ to classify new data (previous slide).
- We only ever need to calculate $K\left(x, x^{\prime}\right)$ between two points.

KERNEL k-NN

An extension

We can generalize kernelized Perceptron to soft k-NN with a simple change. Instead of summing over misclassified data \mathcal{M}, sum over all the data:

$$
y_{0}=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i} \mathrm{e}^{-\frac{1}{b}\left\|x_{0}-x_{i}\right\|^{2}}\right)
$$

Next, notice the decision doesn't change if we divide by a positive constant.

$$
\text { Let : } Z=\sum_{j=1}^{n} \mathrm{e}^{-\frac{1}{b}\left\|x_{0}-x_{j}\right\|^{2}}
$$

Construct: Vector $p\left(x_{0}\right)$, where $p_{i}\left(x_{0}\right)=\frac{1}{Z} \mathrm{e}^{-\frac{1}{b}\left\|x_{0}-x_{i}\right\|^{2}}$

$$
\text { Declare : } y_{0}=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i} p_{i}\left(x_{0}\right)\right)
$$

- We let all data vote for the label based on a "confidence score" $p\left(x_{0}\right)$.
- Set b so that most $p_{i}\left(x_{0}\right) \approx 0$ to only focus on neighborhood around x_{0}.

Kernel regression

Nadaraya-Watson model

The developments are almost limitless.
Here's a regression example almost identical to the kernelized k-NN:

```
Before: }y\in{-1,+1
    Now: y\in\mathbb{R}
```

Using the RBF kernel, for a new $\left(x_{0}, y_{0}\right)$ predict

$$
y_{0}=\sum_{i=1}^{n} y_{i} \frac{K\left(x_{0}, x_{i}\right)}{\sum_{j=1}^{n} K\left(x_{0}, x_{j}\right)} .
$$

What is this doing?

We're taking a locally weighted average of all y_{i} for which x_{i} is close to x_{0} (as decided by the kernel width). Gaussian processes are another option...

Gaussian processes

Kernelized Bayesian linear regression

Regression setup: For n observations, with response vector $y \in \mathbb{R}^{n}$ and their feature matrix X, we define the likelihood and prior

$$
y \sim N\left(X w, \sigma^{2} I\right), \quad w \sim N\left(0, \lambda^{-1} I\right)
$$

Marginalizing: What if we integrate out w ? We can solve this,

$$
p(y \mid X)=\int p(y \mid X, w) p(w) d w=N\left(0, \sigma^{2} I+\lambda^{-1} X X^{T}\right)
$$

Kernelization: Notice that $\left(X X^{T}\right)_{i j}=x_{i}^{T} x_{j}$. Replace each x with $\phi(x)$ after which we can say $\left[\phi(X) \phi(X)^{T}\right]_{i j}=K\left(x_{i}, x_{j}\right)$. We can define K directly, so

$$
p(y \mid X)=\int p(y \mid X, w) p(w) d w=N\left(0, \sigma^{2} I+\lambda^{-1} K\right)
$$

This is called a Gaussian process. We never use w or $\phi(x)$, but just $K\left(x_{i}, x_{j}\right)$.

GAUSSIAN PROCESSES

Definition

- Let $f(x) \in \mathbb{R}$ and $x \in \mathbb{R}^{d}$.
- Define the kernel $K\left(x, x^{\prime}\right)$ between two points x and x^{\prime}.
- Then $f(x)$ is a Gaussian process and $y(x)$ the noise-added process if for n observed pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, where $x \in \mathcal{X}$ and $y \in \mathbb{R}$,

$$
y \mid f \sim N\left(f, \sigma^{2} I\right), \quad f \sim N(0, K) \quad \Longleftrightarrow \quad y \sim N\left(0, \sigma^{2} I+K\right)
$$

where $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ and K is $n \times n$ with $K_{i j}=K\left(x_{i}, x_{j}\right)$.
Comments:

- We assume $\lambda=1$ to reduce notation.
- Typical breakdown: $f(x)$ is the GP and $y(x)$ equals $f(x)$ plus i.i.d. noise.
- The kernel is what keeps this from being "just a Gaussian."

GAUSSIAN PROCESSES

Above: A Gaussian process $f(x)$ generated using

$$
K\left(x_{i}, x_{j}\right)=\exp \left\{-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{b}\right\} .
$$

Right: The covariance of $f(x)$ defined by K.

GAUSSIAN PROCESSES

Top: Unobserved underlying function,
Bottom: Noisy observed data sampled from this function

Predictions with Gaussian vectors

Bayesian linear regression

Imagine we have n observation pairs $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$ and want to predict y_{0} given x_{0}. Integrating out w and setting $\lambda=1$, the joint distribution is

$$
\left[\begin{array}{c}
y_{0} \\
y
\end{array}\right] \sim \operatorname{Normal}\left(\mathbf{0}, \sigma^{2} I+\left[\begin{array}{cc}
x_{0}^{T} x_{0} & \left(X x_{0}\right)^{T} \\
X x_{0} & X X^{T}
\end{array}\right]\right)
$$

We want to predict y_{0} given \mathcal{D} and x_{0}. Calculations can show that

$$
\begin{aligned}
y_{0} \mid \mathcal{D}, x_{0} & \sim \operatorname{Normal}\left(\mu_{0}, \sigma_{0}^{2}\right) \\
\mu_{0} & =\left(X x_{0}\right)^{T}\left(\sigma^{2} I+X X^{T}\right)^{-1} y \\
\sigma_{0}^{2} & =\sigma^{2}+x_{0}^{T} x_{0}-\left(X x_{0}\right)^{T}\left(\sigma^{2} I+X X^{T}\right)^{-1}\left(X x_{0}\right)
\end{aligned}
$$

The since the infinite Gaussian process is only evaluated at a finite set of points, we can use this fact.

Predictions with Gaussian processes

Predictive distribution of $y(x)$

Given measured data $\mathcal{D}_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, the distribution of $y(x)$ can be calculated at any new x to make predictions.

Let $K\left(x, \mathcal{D}_{n}\right)=\left[K\left(x, x_{1}\right), \ldots, K\left(x, x_{n}\right)\right]$ and K_{n} be the $n \times n$ kernel matrix restricted points in \mathcal{D}_{n}. Then we can show

$$
\begin{aligned}
y(x) \mid \mathcal{D}_{n} & \sim N(\mu(x), \Sigma(x)) \\
\mu(x) & =K\left(x, \mathcal{D}_{n}\right)\left(\sigma^{2} I+K_{n}\right)^{-1} y \\
\Sigma(x) & =\sigma^{2}+K(x, x)-K\left(x, \mathcal{D}_{n}\right)\left(\sigma^{2} I+K_{n}\right)^{-1} K\left(x, \mathcal{D}_{n}\right)^{T}
\end{aligned}
$$

For the posterior of $f(x)$ instead of $y(x)$, just remove σ^{2}.

GAUSSIAN PROCESSES POSTERIOR

What does the posterior distribution of $f(x)$ look like?

- We have data marked by an \times.
- These values pin down the function $f(x)$ nearby
- We get a mean and variance for every possible x from a previous slide.
- The distribution on $y(x)$ adds variance σ^{2} (very small above) point-wise.

