COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

FEATURE EXPANSIONS

Feature expansions (also called **basis expansions**) are names given to a technique we've already discussed and made use of.

Problem: A linear model on the original feature space $x \in \mathbb{R}^d$ doesn't work.

Solution: Map the features to a higher dimensional space $\phi(x) \in \mathbb{R}^{D}$, where D > d, and do linear modeling there.

Examples

- ► For polynomial regression on \mathbb{R} , we let $\phi(x) = (x, x^2, \dots, x^p)$.
- For jump discontinuities, $\phi(x) = (x, \mathbb{1}\{x < a\})$.

MAPPING EXAMPLE FOR REGRESSION

High-dimensional maps can transform the data so output is linear in inputs.

Left: Original $x \in \mathbb{R}$ and response *y*.

Right: x mapped to \mathbb{R}^2 using $\phi(x) = (x, \cos x)^T$.

MAPPING EXAMPLE FOR REGRESSION

Using the mapping $\phi(x) = (x, \cos x)^T$, learn the linear regression model

$$y \approx w_0 + \phi(x)^T w$$

$$\approx w_0 + w_1 x + w_2 \cos x.$$

Left: Learn (w_0, w_1, w_2) to approximate data on the left with a plane. Right: For each point *x*, map to $\phi(x)$ and predict *y*. Plot as a function of *x*.

MAPPING EXAMPLE FOR CLASSIFICATION

(e) Data for binary classification

(f) Same data mapped to higher dimension

High-dimensional maps can transform data so it becomes linearly separable.

Left: Original data in \mathbb{R}^2 .

Right: Data mapped to \mathbb{R}^3 using $\phi(x) = (x_1^2, x_1x_2, x_2^2)^T$.

MAPPING EXAMPLE FOR CLASSIFICATION

Using the mapping $\phi(x) = (x_1^2, x_1x_2, x_2^2)^T$, learn a linear classifier

y = sign
$$(w_0 + \phi(x)^T w)$$

= sign $(w_0 + w_1 x_1^2 + w_2 x_1 x_2 + w_3 x_2^2)$.

Left: Learn (w_0, w_1, w_2, w_3) to linearly separate classes with hyperplane. Right: For each point *x*, map to $\phi(x)$ and classify. Color decision regions in \mathbb{R}^2 .

What expansion should I use?

This is not obvious. The illustrations required knowledge about the data that we likely won't have (especially if it's in high dimensions).

One approach is to use the "kitchen sink": If you can think of it, then use it. Select the useful features with an l_1 penalty

$$w_{\ell_1} = \arg\min_{w} \sum_{i=1}^n f(y_i, \phi(x_i), w) + \lambda ||w||_1.$$

We know that this will find a sparse subset of the dimensions of $\phi(x)$ to use.

Often we only need to work with dot products $\phi(x_i)^T \phi(x_j) \equiv K(x_i, x_j)$. This is called a **kernel** and can produce some interesting results.

KERNELS

Perceptron classifier

Let $x_i \in \mathbb{R}^{d+1}$ and $y_i \in \{-1, +1\}$ for i = 1, ..., n observations. We saw that the Perceptron constructs the hyperplane from data,

$$w = \sum_{i \in \mathcal{M}} y_i x_i$$
, (assume $\eta = 1$ and \mathcal{M} has no duplicates)

where \mathcal{M} is the sequentially constructed set of misclassified examples.

Predicting new data

We also discussed how we can predict the label y_0 for a new observation x_0 :

$$y_0 = \operatorname{sign}(x_0^T w) = \operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_i x_0^T x_i\right)$$

We've taken feature expansions for granted, but we can explicitly write it as

$$y_0 = \operatorname{sign}(\phi(x_0)^T w) = \operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_i \phi(x_0)^T \phi(x_i)\right)$$

We can represent the decision using dot products between data points.

Kernel definition

A kernel $K(\cdot, \cdot) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a symmetric function defined as follows:

Definition: If for any *n* points $x_1, \ldots, x_n \in \mathbb{R}^d$, the $n \times n$ matrix *K*, where $K_{ij} = K(x_i, x_j)$, is *positive semidefinite*, then $K(\cdot, \cdot)$ is a "kernel."

Intuitively, this means K satisfies the properties of a covariance matrix.

Mercer's theorem

If the function $K(\cdot, \cdot)$ satisfies the above properties, then there exists a mapping $\phi : \mathbb{R}^d \to \mathbb{R}^D$ (*D* can equal ∞) such that

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j).$$

If we first define $\phi(\cdot)$ and then *K*, this is obvious. However, sometimes we first define $K(\cdot, \cdot)$ and avoid ever using $\phi(\cdot)$.

GAUSSIAN KERNEL (RADIAL BASIS FUNCTION)

The most popular kernel is the Gaussian kernel, also called the radial basis function (RBF),

$$K(x, x') = a \exp\left\{-\frac{1}{b}||x - x'||^2\right\}.$$

- ► This is a good, general-purpose kernel that usually works well.
- ► It takes into account proximity in ℝ^d. Things close together in space have larger value (as defined by kernel width b).

In this case, the the mapping $\phi(x)$ that produces the RBF kernel is *infinite dimensional* (it's a continuous function instead of a vector). Therefore

$$K(x,x') = \int \phi_t(x)\phi_t(x')\,dt.$$

▶ φ_t(x) can be thought of as a function of t with parameter x that also has a Gaussian form.

KERNELS

Another kernel

Map :
$$\phi(x) = (1, \sqrt{2}x_1, \dots, \sqrt{2}x_d, x_1^2, \dots, x_d^2, \dots, \sqrt{2}x_i x_j, \dots)$$

Kernel : $\phi(x)^T \phi(x') = K(x, x') = (1 + x^T x')^2$

In fact, we can show $K(x, x') = (1 + x^T x')^b$, for b > 0 is a kernel as well.

Kernel arithmetic

Certain functions of kernels can produce new kernels.

Let K_1 and K_2 be any two kernels, then constructing K in the following ways produces a new kernel (among many other ways):

KERNELIZED PERCEPTRON

Returning to the Perceptron

We write the feature-expanded decision as

$$y_0 = \operatorname{sign} \left(\sum_{i \in \mathcal{M}} y_i \phi(x_0)^T \phi(x_i) \right)$$
$$= \operatorname{sign} \left(\sum_{i \in \mathcal{M}} y_i K(x_0, x_i) \right)$$

We can pick the kernel we want to use. Let's pick the RBF (set a = 1). Then

$$y_0 = \operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_i e^{-\frac{1}{b} \|x_0 - x_i\|^2}\right)$$

Notice that we never actually need to calculate $\phi(x)$.

What is this doing?

- ▶ Notice $0 < K(x_0, x_i) \le 1$, with bigger values when x_0 is closer to x_i .
- ► This is like a "soft voting" among the data picked by Perceptron.

KERNELIZED PERCEPTRON

Learning the kernelized Perceptron

Recall: Given a current vector $w^{(t)} = \sum_{i \in \mathcal{M}_t} y_i x_i$, we update it as follows,

- 1. Find a new x' such that $y' \neq \operatorname{sign}(x'^T w^{(t)})$
- 2. Add the index of x' to \mathcal{M} and set $w^{(t+1)} = \sum_{i \in \mathcal{M}_{t+1}} y_i x_i$

Again we only need dot products, meaning these steps are equivalent to

- 1. Find a new x' such that $y' \neq \text{sign}(\sum_{i \in \mathcal{M}_t} y_i K(x', x_i))$
- 2. Add the index of x' to \mathcal{M} but don't bother calculating $w^{(t+1)}$

The trick is to realize that we never need to work with $\phi(x)$.

- We don't need $\phi(x)$ to do Step 1 above.
- We don't need $\phi(x)$ to classify new data (previous slide).
- We only ever need to calculate K(x, x') between two points.

An extension

We can generalize kernelized Perceptron to *soft k*-NN with a simple change. Instead of summing over misclassified data \mathcal{M} , sum over *all* the data:

$$y_0 = \operatorname{sign}\left(\sum_{i=1}^n y_i \, \mathrm{e}^{-\frac{1}{b} ||x_0 - x_i||^2}\right).$$

Next, notice the *decision* doesn't change if we divide by a positive constant.

Let :
$$Z = \sum_{j=1}^{n} e^{-\frac{1}{b} ||x_0 - x_j||^2}$$

Construct : Vector $p(x_0)$, where $p_i(x_0) = \frac{1}{Z} e^{-\frac{1}{b} ||x_0 - x_i||^2}$

Declare :
$$y_0 = \operatorname{sign}\left(\sum_{i=1}^n y_i p_i(x_0)\right)$$

- We let all data vote for the label based on a "confidence score" $p(x_0)$.
- Set *b* so that most $p_i(x_0) \approx 0$ to only focus on neighborhood around x_0 .

KERNEL REGRESSION

Nadaraya-Watson model

The developments are almost limitless.

Here's a regression example almost identical to the kernelized k-NN:

Before: $y \in \{-1, +1\}$ Now: $y \in \mathbb{R}$

Using the RBF kernel, for a new (x_0, y_0) predict

$$y_0 = \sum_{i=1}^n y_i \frac{K(x_0, x_i)}{\sum_{j=1}^n K(x_0, x_j)}$$

What is this doing?

We're taking a locally weighted average of all y_i for which x_i is close to x_0 (as decided by the kernel width). *Gaussian processes* are another option...

KERNELIZED BAYESIAN LINEAR REGRESSION

Regression setup: For *n* observations, with response vector $y \in \mathbb{R}^n$ and their feature matrix *X*, we define the likelihood and prior

$$y \sim N(Xw, \sigma^2 I), \quad w \sim N(0, \lambda^{-1}I).$$

Marginalizing: What if we integrate out w? We can solve this,

$$p(y|X) = \int p(y|X, w)p(w)dw = N(0, \sigma^2 I + \lambda^{-1} X X^T).$$

Kernelization: Notice that $(XX^T)_{ij} = x_i^T x_j$. Replace each *x* with $\phi(x)$ after which we can say $[\phi(X)\phi(X)^T]_{ij} = K(x_i, x_j)$. We can define *K* directly, so

$$p(y|X) = \int p(y|X, w)p(w)dw = N(0, \sigma^2 I + \lambda^{-1}K).$$

This is called a *Gaussian process*. We never use w or $\phi(x)$, but just $K(x_i, x_j)$.

Definition

- Let $f(x) \in \mathbb{R}$ and $x \in \mathbb{R}^d$.
- Define the *kernel* K(x, x') between two points x and x'.
- Then f(x) is a *Gaussian process* and y(x) the noise-added process if for *n* observed pairs $(x_1, y_1), \ldots, (x_n, y_n)$, where $x \in \mathcal{X}$ and $y \in \mathbb{R}$,

$$y \left| f \sim N(f, \sigma^2 I), \quad f \sim N(0, K) \quad \Longleftrightarrow \quad y \sim N(0, \sigma^2 I + K) \right.$$

where $y = (y_1, \ldots, y_n)^T$ and K is $n \times n$ with $K_{ij} = K(x_i, x_j)$.

Comments:

- We assume $\lambda = 1$ to reduce notation.
- ▶ Typical breakdown: f(x) is the GP and y(x) equals f(x) plus i.i.d. noise.
- The kernel is what keeps this from being "just a Gaussian."

Above: A Gaussian process f(x) generated using

$$K(x_i, x_j) = \exp\left\{-\frac{\|x_i - x_j\|^2}{b}\right\}.$$

Right: The covariance of f(x) defined by *K*.

Top: Unobserved underlying function, **Bottom:** Noisy observed data sampled from this function

Bayesian linear regression

Imagine we have *n* observation pairs $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ and want to predict y_0 given x_0 . Integrating out *w* and setting $\lambda = 1$, the joint distribution is

$$\begin{bmatrix} y_0 \\ y \end{bmatrix} \sim \text{Normal} \left(\mathbf{0} \,, \, \sigma^2 I + \begin{bmatrix} x_0^T x_0 & (Xx_0)^T \\ Xx_0 & XX^T \end{bmatrix} \right)$$

We want to predict y_0 given \mathcal{D} and x_0 . Calculations can show that

$$y_0 | \mathcal{D}, x_0 \sim \text{Normal}(\mu_0, \sigma_0^2)$$

$$\mu_0 = (Xx_0)^T (\sigma^2 I + XX^T)^{-1} y$$

$$\sigma_0^2 = \sigma^2 + x_0^T x_0 - (Xx_0)^T (\sigma^2 I + XX^T)^{-1} (Xx_0)$$

The since the infinite Gaussian process is only evaluated at a finite set of points, we can use this fact.

Predictive distribution of y(x)

Given measured data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$, the distribution of y(x) can be calculated at any *new x* to make predictions.

Let $K(x, D_n) = [K(x, x_1), \dots, K(x, x_n)]$ and K_n be the $n \times n$ kernel matrix restricted points in D_n . Then we can show

$$\begin{aligned} y(x)|\mathcal{D}_n &\sim N\left(\mu(x), \Sigma(x)\right), \\ \mu(x) &= K(x, \mathcal{D}_n)(\sigma^2 I + K_n)^{-1}y, \\ \Sigma(x) &= \sigma^2 + K(x, x) - K(x, \mathcal{D}_n)(\sigma^2 I + K_n)^{-1}K(x, \mathcal{D}_n)^T \end{aligned}$$

For the posterior of f(x) instead of y(x), just remove σ^2 .

GAUSSIAN PROCESSES POSTERIOR

What does the posterior distribution of f(x) look like?

- We have data marked by an \times .
- These values pin down the function f(x) nearby
- We get a mean and variance for every possible *x* from a previous slide.
- The distribution on y(x) adds variance σ^2 (*very* small above) point-wise.