
COMS 4721: Machine Learning for Data Science

Lecture 10, 2/21/2017

Prof. John Paisley

Department of Electrical Engineering
& Data Science Institute

Columbia University



FEATURE EXPANSIONS



FEATURE EXPANSIONS

Feature expansions (also called basis expansions) are names given to a
technique we’ve already discussed and made use of.

Problem: A linear model on the original feature space x ∈ Rd doesn’t work.

Solution: Map the features to a higher dimensional space φ(x) ∈ RD, where
D > d, and do linear modeling there.

Examples

I For polynomial regression on R, we let φ(x) = (x, x2, . . . , xp).

I For jump discontinuities, φ(x) = (x, 1{x < a}).



MAPPING EXAMPLE FOR REGRESSION

x

y

(a) Data for linear regression

y

x cos(x)

(b) Same data mapped to higher dimension

High-dimensional maps can transform the data so output is linear in inputs.
Left: Original x ∈ R and response y.

Right: x mapped to R2 using φ(x) = (x, cos x)T .



MAPPING EXAMPLE FOR REGRESSION

Using the mapping φ(x) = (x, cos x)T , learn the linear regression model

y ≈ w0 + φ(x)Tw

≈ w0 + w1x + w2 cos x.

y

x cos(x)
x

y

Left: Learn (w0,w1,w2) to approximate data on the left with a plane.

Right: For each point x, map to φ(x) and predict y. Plot as a function of x.



MAPPING EXAMPLE FOR CLASSIFICATION

x1

x2

(e) Data for binary classification

x1x2

x1
2

x2
2

(f) Same data mapped to higher dimension

High-dimensional maps can transform data so it becomes linearly separable.
Left: Original data in R2.

Right: Data mapped to R3 using φ(x) = (x2
1, x1x2, x2

2)T .



MAPPING EXAMPLE FOR CLASSIFICATION

Using the mapping φ(x) = (x2
1, x1x2, x2

2)T , learn a linear classifier

y = sign(w0 + φ(x)Tw)

= sign(w0 + w1x2
1 + w2x1x2 + w3x2

2).

x1x2

x1
2

x2
2

x1

x2

Left: Learn (w0,w1,w2,w3) to linearly separate classes with hyperplane.

Right: For each point x, map to φ(x) and classify. Color decision regions in R2.



FEATURE EXPANSIONS AND DOT PRODUCTS

What expansion should I use?
This is not obvious. The illustrations required knowledge about the data that
we likely won’t have (especially if it’s in high dimensions).

One approach is to use the “kitchen sink”: If you can think of it, then use it.
Select the useful features with an `1 penalty

w`1 = arg min
w

n∑
i=1

f (yi, φ(xi),w) + λ‖w‖1.

We know that this will find a sparse subset of the dimensions of φ(x) to use.

Often we only need to work with dot products φ(xi)
Tφ(xj) ≡ K(xi, xj). This

is called a kernel and can produce some interesting results.



KERNELS



PERCEPTRON (SOME MOTIVATION)

Perceptron classifier
Let xi ∈ Rd+1 and yi ∈ {−1,+1} for i = 1, . . . , n observations. We saw that
the Perceptron constructs the hyperplane from data,

w =
∑

i∈M yixi, (assume η = 1 and M has no duplicates)

whereM is the sequentially constructed set of misclassified examples.

Predicting new data
We also discussed how we can predict the label y0 for a new observation x0:

y0 = sign(xT
0 w) = sign

(∑
i∈M yixT

0 xi
)

We’ve taken feature expansions for granted, but we can explicitly write it as

y0 = sign(φ(x0)Tw) = sign
(∑

i∈M yiφ(x0)Tφ(xi)
)

We can represent the decision using dot products between data points.



KERNELS

Kernel definition
A kernel K(·, ·) : Rd × Rd → R is a symmetric function defined as follows:

Definition: If for any n points x1, . . . , xn ∈ Rd, the n× n matrix K, where
Kij = K(xi, xj), is positive semidefinite, then K(·, ·) is a “kernel.”

Intuitively, this means K satisfies the properties of a covariance matrix.

Mercer’s theorem
If the function K(·, ·) satisfies the above properties, then there exists a
mapping φ : Rd → RD (D can equal∞) such that

K(xi, xj) = φ(xi)
Tφ(xj).

If we first define φ(·) and then K, this is obvious. However, sometimes we
first define K(·, ·) and avoid ever using φ(·).



GAUSSIAN KERNEL (RADIAL BASIS FUNCTION)

The most popular kernel is the Gaussian kernel, also called the radial basis
function (RBF),

K(x, x′) = a exp
{
−1

b
‖x− x′‖2

}
.

I This is a good, general-purpose kernel that usually works well.

I It takes into account proximity in Rd. Things close together in space
have larger value (as defined by kernel width b).

In this case, the the mapping φ(x) that produces the RBF kernel is infinite
dimensional (it’s a continuous function instead of a vector). Therefore

K(x, x′) =

∫
φt(x)φt(x′) dt.

I φt(x) can be thought of as a function of t with parameter x that also has
a Gaussian form.



KERNELS

Another kernel

Map : φ(x) = (1,
√

2x1, . . . ,
√

2xd, x2
1, . . . , x

2
d, . . . ,

√
2xixj, . . . )

Kernel : φ(x)Tφ(x′) = K(x, x′) = (1 + xTx′)2

In fact, we can show K(x, x′) = (1 + xTx′)b, for b > 0 is a kernel as well.

Kernel arithmetic
Certain functions of kernels can produce new kernels.

Let K1 and K2 be any two kernels, then constructing K in the following ways
produces a new kernel (among many other ways):

K(x, x′) = K1(x, x′)K2(x, x′)

K(x, x′) = K1(x, x′) + K2(x, x′)

K(x, x′) = exp{K1(x, x′)}



KERNELIZED PERCEPTRON

Returning to the Perceptron
We write the feature-expanded decision as

y0 = sign
(∑

i∈M yiφ(x0)Tφ(xi)
)

= sign
(∑

i∈M yiK(x0, xi)
)

We can pick the kernel we want to use. Let’s pick the RBF (set a = 1). Then

y0 = sign
(∑

i∈M yi e−
1
b‖x0−xi‖2

)
Notice that we never actually need to calculate φ(x).

What is this doing?
I Notice 0 < K(x0, xi) ≤ 1, with bigger values when x0 is closer to xi.
I This is like a “soft voting” among the data picked by Perceptron.



KERNELIZED PERCEPTRON

Learning the kernelized Perceptron
Recall: Given a current vector w(t) =

∑
i∈Mt

yixi, we update it as follows,

1. Find a new x′ such that y′ 6= sign(x′Tw(t))

2. Add the index of x′ toM and set w(t+1) =
∑

i∈Mt+1
yixi

Again we only need dot products, meaning these steps are equivalent to

1. Find a new x′ such that y′ 6= sign(
∑

i∈Mt
yiK(x′, xi))

2. Add the index of x′ toM but don’t bother calculating w(t+1)

The trick is to realize that we never need to work with φ(x).
I We don’t need φ(x) to do Step 1 above.
I We don’t need φ(x) to classify new data (previous slide).
I We only ever need to calculate K(x, x′) between two points.



KERNEL k-NN

An extension
We can generalize kernelized Perceptron to soft k-NN with a simple change.
Instead of summing over misclassified dataM, sum over all the data:

y0 = sign
(∑n

i=1 yi e−
1
b‖x0−xi‖2

)
.

Next, notice the decision doesn’t change if we divide by a positive constant.

Let : Z =
∑n

j=1 e−
1
b‖x0−xj‖2

Construct : Vector p(x0), where pi(x0) = 1
Z e−

1
b‖x0−xi‖2

Declare : y0 = sign
(∑n

i=1 yipi(x0)
)

I We let all data vote for the label based on a “confidence score” p(x0).
I Set b so that most pi(x0) ≈ 0 to only focus on neighborhood around x0.



KERNEL REGRESSION

Nadaraya-Watson model
The developments are almost limitless.

Here’s a regression example almost identical to the kernelized k-NN:

Before: y ∈ {−1,+1}
Now: y ∈ R

Using the RBF kernel, for a new (x0, y0) predict

y0 =

n∑
i=1

yi
K(x0, xi)∑n
j=1 K(x0, xj)

.

What is this doing?
We’re taking a locally weighted average of all yi for which xi is close to x0
(as decided by the kernel width). Gaussian processes are another option. . .



GAUSSIAN PROCESSES



KERNELIZED BAYESIAN LINEAR REGRESSION

Regression setup: For n observations, with response vector y ∈ Rn and their
feature matrix X, we define the likelihood and prior

y ∼ N(Xw, σ2I), w ∼ N(0, λ−1I).

Marginalizing: What if we integrate out w? We can solve this,

p(y|X) =

∫
p(y|X,w)p(w)dw = N(0, σ2I + λ−1XXT).

Kernelization: Notice that (XXT)ij = xT
i xj. Replace each x with φ(x) after

which we can say [φ(X)φ(X)T ]ij = K(xi, xj). We can define K directly, so

p(y|X) =

∫
p(y|X,w)p(w)dw = N(0, σ2I + λ−1K).

This is called a Gaussian process. We never use w or φ(x), but just K(xi, xj).



GAUSSIAN PROCESSES

Definition
• Let f (x) ∈ R and x ∈ Rd.
• Define the kernel K(x, x′) between two points x and x′.
• Then f (x) is a Gaussian process and y(x) the noise-added process if for

n observed pairs (x1, y1), . . . , (xn, yn), where x ∈ X and y ∈ R,

y | f ∼ N(f , σ2I), f ∼ N(0,K) ⇐⇒ y ∼ N(0, σ2I + K)

where y = (y1, . . . , yn)T and K is n× n with Kij = K(xi, xj).

Comments:
I We assume λ = 1 to reduce notation.
I Typical breakdown: f (x) is the GP and y(x) equals f (x) plus i.i.d. noise.
I The kernel is what keeps this from being “just a Gaussian.”



GAUSSIAN PROCESSES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

x

f (x)

Above: A Gaussian process f (x) generated using

K(xi, xj) = exp
{
−
‖xi − xj‖2

b

}
.

Right: The covariance of f (x) defined by K.

0

0
1

1



GAUSSIAN PROCESSES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

x

f (x)

Top: Unobserved underlying function,
Bottom: Noisy observed data sampled from this function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

x

y(x)
o

o
o o

o o

o

o

o

o
o

o
o

o o

o oo
o

o o
o
o
o

o



PREDICTIONS WITH GAUSSIAN VECTORS

Bayesian linear regression
Imagine we have n observation pairs D = {(xi, yi)}N

i=1 and want to predict
y0 given x0. Integrating out w and setting λ = 1, the joint distribution is[

y0
y

]
∼ Normal

(
0 , σ2I +

[
xT

0 x0 (Xx0)T

Xx0 XXT

])
We want to predict y0 given D and x0. Calculations can show that

y0|D, x0 ∼ Normal(µ0, σ
2
0)

µ0 = (Xx0)T(σ2I + XXT)−1y

σ2
0 = σ2 + xT

0 x0 − (Xx0)T(σ2I + XXT)−1(Xx0)

The since the infinite Gaussian process is only evaluated at a finite set of
points, we can use this fact.



PREDICTIONS WITH GAUSSIAN PROCESSES

Predictive distribution of y(x)
Given measured data Dn = {(x1, y1), . . . , (xn, yn)}, the distribution of y(x)
can be calculated at any new x to make predictions.

Let K(x,Dn) = [K(x, x1), . . . ,K(x, xn)] and Kn be the n× n kernel matrix
restricted points in Dn. Then we can show

y(x)|Dn ∼ N (µ(x),Σ(x)) ,

µ(x) = K(x,Dn)(σ2I + Kn)−1y,

Σ(x) = σ2 + K(x, x)− K(x,Dn)(σ2I + Kn)−1K(x,Dn)T

For the posterior of f (x) instead of y(x), just remove σ2.



GAUSSIAN PROCESSES POSTERIOR

Mean

Standard Dev

Observed values

Truth

x

f(x)

What does the posterior distribution of f (x) look like?
I We have data marked by an ×.
I These values pin down the function f (x) nearby
I We get a mean and variance for every possible x from a previous slide.
I The distribution on y(x) adds variance σ2 (very small above) point-wise.


