# COMS 4721: Machine Learning for Data Science Lecture 12, 2/28/2017

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

# **DECISION TREES**

## **DECISION TREES**

A *decision tree* maps input  $x \in \mathbb{R}^d$  to output *y* using binary decision rules:

- Each node in the tree has a *splitting rule*.
- Each leaf node is associated with an output value (outputs can repeat).

Each splitting rule is of the form

 $h(x) = \mathbb{1}\{x_j > t\}$ 

for some dimension *j* of *x* and  $t \in \mathbb{R}$ .

Using these transition rules, a path to a *leaf node* gives the prediction.

(One-level tree = *decision stump*)



### **REGRESSION TREES**



Motivation: Partition the space so that data in a region have same prediction

- Left: Difficult to define a "rule".
- Right: Easy to define a recursive splitting rule.

### **REGRESSION TREES**



If we think in terms of trees, we can define a simple rule for partitioning the space. The left and right figures represent the same regression function.

### **REGRESSION TREES**



Adding an output dimension to the figure (right), we can see how regression trees can learn a step function approximation to the data.



- ▶  $x \in \mathbb{R}^2, y \in \{1, 2, 3\}$
- $x_1$  = ratio of sepal length to width
- $x_2 =$ ratio of petal length to width





- ▶  $x \in \mathbb{R}^2, y \in \{1, 2, 3\}$
- $x_1$  = ratio of sepal length to width
- $x_2 =$ ratio of petal length to width





- ▶  $x \in \mathbb{R}^2, y \in \{1, 2, 3\}$
- $x_1$  = ratio of sepal length to width
- $x_2 =$ ratio of petal length to width





- ▶  $x \in \mathbb{R}^2, y \in \{1, 2, 3\}$
- $x_1$  = ratio of sepal length to width
- $x_2 =$ ratio of petal length to width





- ▶  $x \in \mathbb{R}^2, y \in \{1, 2, 3\}$
- $x_1$  = ratio of sepal length to width
- $x_2 =$ ratio of petal length to width





- ▶  $x \in \mathbb{R}^2, y \in \{1, 2, 3\}$
- $x_1$  = ratio of sepal length to width
- $x_2 =$ ratio of petal length to width



### BASIC DECISION TREE LEARNING ALGORITHM



The basic method for learning trees is with a top-down greedy algorithm.

- Start with a single leaf node containing all data
- Loop through the following steps:
  - Pick the leaf to split that reduces uncertainty the most.
  - Figure out the  $\leq$  decision rule on one of the dimensions.
- Stopping rule discussed later.

Label/response of the leaf is majority-vote/average of data assigned to it.

### **GROWING A REGRESSION TREE**

How do we grow a regression tree?

For *M* regions of the space,  $R_1, \ldots, R_M$ , the prediction function is

$$f(x) = \sum_{m=1}^{M} c_m \mathbb{1}\{x \in R_m\}.$$

So for a fixed M, we need  $R_m$  and  $c_m$ .

Goal: Try to minimize  $\sum_{i} (y_i - f(x_i))^2$ .

- 1. Find  $c_m$  given  $R_m$ : Simply the average of all  $y_i$  for which  $x_i \in R_m$ .
- 2. How do we find regions? Consider splitting region R at value s of dim j:
  - Define  $R^{-}(j,s) = \{x_i \in R | x_i(j) \le s\}$  and  $R^{+}(j,s) = \{x_i \in R | x_i(j) > s\}$
  - ► For each dimension *j*, calculate the best splitting point *s* for that dimension.
  - Do this for each region (leaf node). Pick the one that reduces the objective most.



For regression: Squared error is a natural way to define the splitting rule.

**For classification**: Need some measure of how badly a region classifies data and how much it can improve if it's split.

**K-class problem**: For all  $x \in R_m$ , let  $p_k$  be empirical fraction labeled k.



- These are all *maximized* when  $p_k$  is uniform on the K classes in  $R_m$ .
- These are *minimized* when  $p_k = 1$  for some k ( $R_m$  only contains one class)



Search  $R_1$  and  $R_2$  for splitting options.

- 1.  $R_1$ : y = 1 leaf classifies perfectly
- 2.  $R_2$ : y = 3 leaf has Gini index

$$u(R_2) = 1 - \left(\frac{1}{101}\right)^2 - \left(\frac{50}{101}\right)^2 - \left(\frac{50}{101}\right)^2$$
  
= 0.5098

Gini improvement from split  $R_m$  to  $R_m^- \& R_m^+$ :

$$u(R_m) - \left(p_{R_m^-} \cdot u(R_m^-) + p_{R_m^+} \cdot u(R_m^+)\right)$$

 $p_{R_m^+}$ : Fraction of data in  $R_m$  split into  $R_m^+$ .  $u(R_m^+)$ : New quality measure in region  $R_m^+$ .



Search  $R_1$  and  $R_2$  for splitting options.

- 1.  $R_1$ : y = 1 leaf classifies perfectly
- 2.  $R_2$ : y = 3 leaf has Gini index

$$u(R_2) = 1 - \left(\frac{1}{101}\right)^2 - \left(\frac{50}{101}\right)^2 - \left(\frac{50}{101}\right)^2$$
  
= 0.5098

Check split  $R_2$  with  $\mathbb{1}\{x_1 > t\}$ 





Search  $R_1$  and  $R_2$  for splitting options.

- 1.  $R_1$ : y = 1 leaf classifies perfectly
- 2.  $R_2$ : y = 3 leaf has Gini index

$$u(R_2) = 1 - \left(\frac{1}{101}\right)^2 - \left(\frac{50}{101}\right)^2 - \left(\frac{50}{101}\right)^2$$
  
= 0.5098

Check split  $R_2$  with  $\mathbb{1}\{x_2 > t\}$ 





Search  $R_1$  and  $R_2$  for splitting options.

- 1.  $R_1$ : y = 1 leaf classifies perfectly
- 2.  $R_2$ : y = 3 leaf has Gini index

$$u(R_2) = 1 - \left(\frac{1}{101}\right)^2 - \left(\frac{50}{101}\right)^2 - \left(\frac{50}{101}\right)^2$$
  
= 0.5098

Check split  $R_2$  with  $\mathbb{1}\{x_2 > t\}$ 



### PRUNING A TREE

**Q**: When should we stop growing a tree?

A: Uncertainty reduction is not best way.

**Example**: Any split of  $x_1$  or  $x_2$  at right will show *zero* reduction in uncertainty.

However, we can learn a perfect tree on this data by partitioning in quadrants.

*Pruning* is the method most often used. Grow the tree to a very large size. Then use an algorithm to trim it back.

(We won't cover the algorithm, but mention that it's non-trivial.)



### OVERFITTING



- *Training error* goes to zero as size of tree increases.
- *Testing error* decreases, but then increases because of *overfitting*.

# THE BOOTSTRAP

# THE BOOTSTRAP: A RESAMPLING TECHNIQUE

We briefly present a technique called the *bootstrap*. This statistical technique is used as the basis for learning *ensemble classifiers*.

#### Bootstrap

Bootstrap (i.e., resampling) is a technique for improving estimators.

Resampling = Sampling from the empirical distribution of the data

#### Application to ensemble methods

- ► We will use resampling to generate many "mediocre" classifiers.
- ► We then discuss how "bagging" these classifiers improves performance.
- First, we cover the bootstrap in a simpler context.

## **BOOTSTRAP: BASIC ALGORITHM**

### Input

- A sample of data  $x_1, \ldots, x_n$ .
- An estimation rule  $\hat{S}$  of a statistic *S*. For example,  $\hat{S} = \text{med}(x_{1:n})$  estimates the true median *S* of the unknown distribution on *x*.

### Bootstrap algorithm

- 1. Generate bootstrap samples  $\mathcal{B}_1, \ldots, \mathcal{B}_B$ .
  - Create  $\mathcal{B}_b$  by picking points from  $\{x_1, \ldots, x_n\}$  randomly *n* times.
  - A particular  $x_i$  can appear in  $\mathcal{B}_b$  many times (it's simply duplicated).
- 2. Evaluate the estimator on each  $\mathcal{B}_b$  by pretending it's the data set:

$$\hat{S}_b := \hat{S}(\mathcal{B}_b)$$

3. Estimate the mean and variance of  $\hat{S}$ :

$$\mu_B = \frac{1}{B} \sum_{b=1}^{B} \hat{S}_b, \quad \sigma_B^2 = \frac{1}{B} \sum_{b=1}^{B} (\hat{S}_b - \mu_B)^2$$

# EXAMPLE: VARIANCE ESTIMATION OF THE MEDIAN

- ▶ The median of  $x_1, \ldots, x_n$  (for  $x \in \mathbb{R}$ ) is found by simply sorting them and taking the middle one, or the average of the two middle ones.
- How confident can we be in the estimate median $(x_1, \ldots, x_n)$ ?
  - Find it's variance.
  - But how? Answer: By bootstrapping the data.
  - 1. Generate bootstrap data sets  $\mathcal{B}_1, \ldots, \mathcal{B}_B$ .
  - 2. Calculate: (notice that  $\hat{S}_{mean}$  is the mean of the median)

$$\hat{S}_{mean} = \frac{1}{B} \sum_{b=1}^{B} \operatorname{median}(\mathcal{B}_b), \quad \hat{S}_{var} = \frac{1}{B} \sum_{b=1}^{B} \left( \operatorname{median}(\mathcal{B}_b) - \hat{S}_{mean} \right)^2$$

• The procedure is remarkably simple, but has a lot of theory behind it.

# **BAGGING AND RANDOM FORESTS**

### BAGGING

Bagging uses the bootstrap for regression or classification:

#### **Bagging** = **B**ootstrap **agg**regation

### Algorithm

For b = 1, ..., B:

- 1. Draw a bootstrap sample  $\mathcal{B}_b$  of size *n* from training data.
- 2. Train a classifier or regression model  $f_b$  on  $\mathcal{B}_b$ .
- For a new point  $x_0$ , compute:

$$f_{\text{avg}}(x_0) = \frac{1}{B} \sum_{b=1}^{B} f_b(x_0)$$

- For regression,  $f_{avg}(x_0)$  is the prediction.
- ► For classification, view  $f_{avg}(x_0)$  as an average over *B* votes. Pick the majority.

# EXAMPLE: BAGGING TREES

- Binary classification,  $x \in \mathbb{R}^5$ .
- Note the variation among bootstrapped trees.
- Take-home message:

With bagging, each tree doesn't have to be great, just "ok".

 Bagging often improves results when the function is non-linear.



b = 4

x 3 < 0.985









i i





# **RANDOM FORESTS**

### Drawbacks of Bagging

- ► Bagging works on trees because of the bias-variance tradeoff (↑ bias, ↓ variance).
- However, the bagged trees are correlated.
- In general, when bootstrap samples are correlated, the benefit of bagging decreases.



#### Random Forests

Modification of bagging where trees are designed to reduce correlation.

- A very simple modification.
- Still learn a tree on each bootstrap set,  $\mathcal{B}_b$ .
- To split a region, only consider random subset of dimensions of  $x \in \mathbb{R}^d$ .

### Training

Input parameter: m — a positive integer with m < d, often  $m \approx \sqrt{d}$ 

For b = 1, ..., B:

- 1. Draw a bootstrap sample  $\mathcal{B}_b$  of size *n* from the training data.
- 2. Train a tree classifier on  $\mathcal{B}_b$ , where each split is computed as follows:
  - ▶ Randomly select *m* dimensions of  $x \in \mathbb{R}^d$ , newly chosen for each *b*.
  - Make the best split restricted to that subset of dimensions.
- ► Bagging for trees: Bag trees learned using the original algorithm.
- ► Random forests: Bag trees learned using algorithm on this slide.

# **RANDOM FORESTS**

### Example problem

- Random forest classification.
- ► Forest size: A few hundred trees.
- Notice there is a tendency to align decision boundary with the axis.

