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DECISION TREES



DECISION TREES

A decision tree maps input x ∈ Rd to output y using binary decision rules:

I Each node in the tree has a splitting rule.
I Each leaf node is associated with an output value (outputs can repeat).

Each splitting rule is of the form

h(x) = 1{xj > t}

for some dimension j of x and t ∈ R.

Using these transition rules, a path
to a leaf node gives the prediction.

(One-level tree = decision stump)

x1 > 1.7

x2 > 2.8ŷ = 1

ŷ = 2 ŷ = 3



REGRESSION TREES

Motivation: Partition the space so that data in a region have same prediction
Left: Difficult to define a “rule”.

Right: Easy to define a recursive splitting rule.



REGRESSION TREES

−→

If we think in terms of trees, we can define a simple rule for partitioning the
space. The left and right figures represent the same regression function.



REGRESSION TREES

−→

Adding an output dimension to the figure (right), we can see how regression
trees can learn a step function approximation to the data.



CLASSIFICATION TREES (EXAMPLE)
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Classifying irises using sepal and petal
measurements:

I x ∈ R2, y ∈ {1, 2, 3}
I x1 = ratio of sepal length to width
I x2 = ratio of petal length to width
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BASIC DECISION TREE LEARNING ALGORITHM

ŷ = 2

−→

x1 > 1.7

ŷ = 1 ŷ = 3 −→

x1 > 1.7

x2 > 2.8ŷ = 1

ŷ = 2 ŷ = 3

The basic method for learning trees is with a top-down greedy algorithm.

I Start with a single leaf node containing all data

I Loop through the following steps:

I Pick the leaf to split that reduces uncertainty the most.
I Figure out the ≶ decision rule on one of the dimensions.

I Stopping rule discussed later.

Label/response of the leaf is majority-vote/average of data assigned to it.



GROWING A REGRESSION TREE

How do we grow a regression tree?

I For M regions of the space, R1, . . . ,RM ,
the prediction function is

f (x) =
M∑

m=1

cm1{x ∈ Rm}.

So for a fixed M, we need Rm and cm.

Goal: Try to minimize
∑

i(yi − f (xi))
2.

1. Find cm given Rm: Simply the average of all yi for which xi ∈ Rm.

2. How do we find regions? Consider splitting region R at value s of dim j:

I Define R−(j, s) = {xi ∈ R|xi(j) ≤ s} and R+(j, s) = {xi ∈ R|xi(j) > s}
I For each dimension j, calculate the best splitting point s for that dimension.
I Do this for each region (leaf node). Pick the one that reduces the objective most.



GROWING A CLASSIFICATION TREE

For regression: Squared error is a natural way to define the splitting rule.

For classification: Need some measure of how badly a region classifies data
and how much it can improve if it’s split.

K-class problem: For all x ∈ Rm, let pk be empirical fraction labeled k.

Measures of quality of Rm include

1. Classification error: 1−maxk pk

2. Gini index: 1−
∑

k p2
k

3. Entropy: −
∑

k pk ln pk

I These are all maximized when pk is uniform on the K classes in Rm.

I These are minimized when pk = 1 for some k (Rm only contains one class)



GROWING A CLASSIFICATION TREE
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x1 > 1.7

ŷ = 1 ŷ = 3

Search R1 and R2 for splitting options.

1. R1: y = 1 leaf classifies perfectly

2. R2: y = 3 leaf has Gini index

u(R2) = 1−
(

1
101

)2

−
(

50
101

)2

−
(

50
101

)2

= 0.5098

Gini improvement from split Rm to R−
m & R+

m :

u(Rm)−
(

pR−
m
· u(R−

m ) + pR+
m
· u(R+

m )
)

pR+
m

: Fraction of data in Rm split into R+
m .

u(R+
m ) : New quality measure in region R+

m .



GROWING A CLASSIFICATION TREE
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ŷ = 1 ŷ = 3
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GROWING A CLASSIFICATION TREE
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GROWING A CLASSIFICATION TREE
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PRUNING A TREE

Q: When should we stop growing a tree?

A: Uncertainty reduction is not best way.

Example: Any split of x1 or x2 at right
will show zero reduction in uncertainty.

However, we can learn a perfect tree on
this data by partitioning in quadrants. x1

x2

Pruning is the method most often used. Grow the tree to a very large size.
Then use an algorithm to trim it back.

(We won’t cover the algorithm, but mention that it’s non-trivial.)



OVERFITTING

number of nodes in tree

error

training error

true error

I Training error goes to zero as size of tree increases.
I Testing error decreases, but then increases because of overfitting.



THE BOOTSTRAP



THE BOOTSTRAP: A RESAMPLING TECHNIQUE

We briefly present a technique called the bootstrap. This statistical technique
is used as the basis for learning ensemble classifiers.

Bootstrap
Bootstrap (i.e., resampling) is a technique for improving estimators.

Resampling = Sampling from the empirical distribution of the data

Application to ensemble methods

I We will use resampling to generate many “mediocre” classifiers.

I We then discuss how “bagging” these classifiers improves performance.

I First, we cover the bootstrap in a simpler context.



BOOTSTRAP: BASIC ALGORITHM

Input

I A sample of data x1, . . . , xn.
I An estimation rule Ŝ of a statistic S. For example, Ŝ = med(x1:n)

estimates the true median S of the unknown distribution on x.

Bootstrap algorithm

1. Generate bootstrap samples B1, . . . ,BB.
• Create Bb by picking points from {x1, . . . , xn} randomly n times.
• A particular xi can appear in Bb many times (it’s simply duplicated).

2. Evaluate the estimator on each Bb by pretending it’s the data set:

Ŝb := Ŝ(Bb)

3. Estimate the mean and variance of Ŝ:

µB =
1
B

B∑
b=1

Ŝb, σ2
B =

1
B

B∑
b=1

(Ŝb − µB)
2



EXAMPLE: VARIANCE ESTIMATION OF THE MEDIAN

I The median of x1, . . . , xn (for x ∈ R) is found by simply sorting them
and taking the middle one, or the average of the two middle ones.

I How confident can we be in the estimate median(x1, . . . , xn)?
I Find it’s variance.
I But how? Answer: By bootstrapping the data.

1. Generate bootstrap data sets B1, . . . ,BB.

2. Calculate: (notice that Ŝmean is the mean of the median)

Ŝmean =
1
B

B∑
b=1

median(Bb), Ŝvar =
1
B

B∑
b=1

(
median(Bb)− Ŝmean

)2

I The procedure is remarkably simple, but has a lot of theory behind it.



BAGGING AND RANDOM FORESTS



BAGGING

Bagging uses the bootstrap for regression or classification:

Bagging = Bootstrap aggregation

Algorithm
For b = 1, . . . ,B:

1. Draw a bootstrap sample Bb of size n from training data.
2. Train a classifier or regression model fb on Bb.

I For a new point x0, compute:

favg(x0) =
1
B

B∑
b=1

fb(x0)

I For regression, favg(x0) is the prediction.
I For classification, view favg(x0) as an average over B votes. Pick the majority.



EXAMPLE: BAGGING TREES

I Binary classification, x ∈ R5.

I Note the variation among
bootstrapped trees.

I Take-home message:

With bagging, each tree doesn’t
have to be great, just “ok”.

I Bagging often improves results
when the function is non-linear.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 8
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FIGURE 8.9. Bagging trees on simulated dataset.
Th l f l h h i i l El



RANDOM FORESTS

Drawbacks of Bagging

I Bagging works on trees because of the
bias-variance tradeoff (↑ bias, ↓ variance).

I However, the bagged trees are correlated.

I In general, when bootstrap samples are
correlated, the benefit of bagging decreases.

Random Forests
Modification of bagging where trees are designed to reduce correlation.

I A very simple modification.
I Still learn a tree on each bootstrap set, Bb.
I To split a region, only consider random subset of dimensions of x ∈ Rd.



RANDOM FORESTS: ALGORITHM

Training
Input parameter: m — a positive integer with m < d, often m ≈

√
d

For b = 1, . . . ,B:
1. Draw a bootstrap sample Bb of size n from the training data.

2. Train a tree classifier on Bb, where each split is computed as follows:

I Randomly select m dimensions of x ∈ Rd, newly chosen for each b.
I Make the best split restricted to that subset of dimensions.

I Bagging for trees: Bag trees learned using the original algorithm.
I Random forests: Bag trees learned using algorithm on this slide.



RANDOM FORESTS

Example problem

I Random forest classification.

I Forest size: A few hundred trees.

I Notice there is a tendency to align
decision boundary with the axis.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 15

Random Forest Classifier
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Training Error: 0.000
Test Error:       0.238
Bayes Error:    0.210

3−Nearest Neighbors
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Training Error: 0.130
Test Error:       0.242
Bayes Error:    0.210

FIGURE 15.11. Random forests versus 3-NN on the
mixture data. The axis-oriented nature of the individ-
ual trees in a random forest lead to decision regions
with an axis-oriented flavor.


