COMS 4721: Machine Learning for Data Science Lecture 13, 3/2/2017

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

BOOSTING

Robert E. Schapire and Yoav Freund, *Boosting: Foundations and Algorithms*, MIT Press, 2012. See this textbook for many more details. (I borrow some figures from that book.)

BAGGING CLASSIFIERS

Algorithm: Bagging binary classifiers

Given $(x_1, y_1), \ldots, (x_n, y_n), x \in \mathcal{X}, y \in \{-1, +1\}$

- For $b = 1, \ldots, B$
 - Sample a bootstrap dataset B_b of size n. For each entry in B_b, select (x_i, y_i) with probability ¹/_n. Some (x_i, y_i) will repeat and some won't appear in B_b.
 - Learn a classifier f_b using data in \mathcal{B}_b .
- Define the classification rule to be

$$f_{bag}(x_0) = \operatorname{sign}\left(\sum_{b=1}^B f_b(x_0)\right).$$

- ▶ With bagging, we observe that a *committee* of classifiers votes on a label.
- Each classifier is learned on a *bootstrap sample* from the data set.
- Learning a collection of classifiers is referred to as an *ensemble method*.

BOOSTING

How is it that a committee of blockheads can somehow arrive at highly reasoned decisions, despite the weak judgment of the individual members?

- Schapire & Freund, "Boosting: Foundations and Algorithms"

Boosting is another powerful method for ensemble learning. It is similar to bagging in that a set of classifiers are combined to make a better one.

It works for any classifier, but a "weak" one that is easy to learn is usually chosen. (weak = accuracy a little better than random guessing)

Short history

- 1984 : Leslie Valiant and Michael Kearns ask if "boosting" is possible.
- 1989 : Robert Schapire creates first boosting algorithm.
- 1990 : Yoav Freund creates an optimal boosting algorithm.
- 1995 : Freund and Schapire create AdaBoost (Adaptive Boosting), the major boosting algorithm.

BAGGING VS BOOSTING (OVERVIEW)

THE ADABOOST ALGORITHM (SAMPLING VERSION)

THE ADABOOST ALGORITHM (SAMPLING VERSION)

Algorithm: Boosting a binary classifier

Given $(x_1, y_1), \ldots, (x_n, y_n), x \in \mathcal{X}, y \in \{-1, +1\}$, set $w_1(i) = \frac{1}{n}$ for i = 1 : n

- For t = 1, ..., T
 - 1. Sample a bootstrap dataset \mathcal{B}_t of size *n* according to distribution w_t . Notice we pick (x_i, y_i) with probability $w_t(i)$ and not $\frac{1}{n}$.
 - 2. Learn a classifier f_t using data in \mathcal{B}_t .

3. Set
$$\epsilon_t = \sum_{i=1}^n w_t(i) \mathbb{1}\{y_i \neq f_t(x_i)\}$$
 and $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$.
4. Scale $\hat{w}_{t+1}(i) = w_t(i)e^{-\alpha_t y_i f_t(x_i)}$ and set $w_{t+1}(i) = \frac{\hat{w}_{t+1}(i)}{\sum_j \hat{w}_{t+1}(j)}$.

Set the classification rule to be

$$f_{boost}(x_0) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t f_t(x_0)\right).$$

Comment: Description usually simplified to "learn classifier f_t using distribution w_t ."

Original data

Uniform distribution, *w*₁ Learn *weak classifier*

Here: Use a decision stump

Round 1 classifier

Weighted error: $\epsilon_1 = 0.3$ Weight update: $\alpha_1 = 0.42$

Weighted data

After round 1

Round 2 classifier

Weighted error: $\epsilon_2 = 0.21$ Weight update: $\alpha_2 = 0.65$

Weighted data

After round 2

Round 2 classifier

Weighted error: $\epsilon_3 = 0.14$ Weight update: $\alpha_3 = 0.92$

Example problem

Random guessing 50% error

Decision stump

45.8% error

Full decision tree 24.7% error

Boosted stump 5.8% error

BOOSTING

Point = one dataset. Location = error rate w/ and w/o boosting. The boosted version of the same classifier almost always produces better results.

BOOSTING

(left) Boosting a bad classifier is often better than not boosting a good one. (right) Boosting a good classifier is often better, but can take more time.

BOOSTING AND FEATURE MAPS

- Q: What makes boosting work so well?
- A: This is a well-studied question. We will present one analysis later, but we can also give intuition by tying it in with what we've already learned.

The classification for a new x_0 from boosting is

$$f_{boost}(x_0) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t f_t(x_0)\right).$$

Define $\phi(x) = [f_1(x), \dots, f_T(x)]^\top$, where each $f_t(x) \in \{-1, +1\}$.

- We can think of $\phi(x)$ as a high dimensional feature map of *x*.
- The vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_T]^\top$ corresponds to a hyperplane.
- So the classifier can be written $f_{boost}(x_0) = \operatorname{sign}(\phi(x_0)^{\top} \alpha)$.
- Boosting learns the feature mapping and hyperplane simultaneously.

APPLICATION: FACE DETECTION

FACE DETECTION (VIOLA & JONES, 2001)

Problem: Locate the faces in an image or video.

Processing: Divide image into patches of different scales, e.g., 24×24 , 48×48 , etc. Extract *features* from each patch.

Classify each patch as face or no face using a *boosted decision stump*. This can be done in real-time, for example by your digital camera (at 15 fps).

- One patch from a larger image. Mask it with many "feature extractors."
- ► Each pattern gives one number, which is the sum of all pixels in black region minus sum of pixels in white region (total of 45,000+ features).

FACE DETECTION (EXAMPLE RESULTS)

ANALYSIS OF BOOSTING

Training error theorem

We can use *analysis* to make a statement about the accuracy of boosting *on the training data*.

Theorem: Under the AdaBoost framework, if ϵ_t is the weighted error of classifier f_t , then for the classifier $f_{boost}(x_0) = \text{sign}(\sum_{t=1}^T \alpha_t f_t(x_0))$,

training error
$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{y_i \neq f_{boost}(x_i)\} \le \exp\left(-2\sum_{t=1}^{T} (\frac{1}{2} - \epsilon_t)^2\right).$$

Even if each ϵ_t is only a little better than random guessing, the sum over *T* classifiers can lead to a large negative value in the exponent when *T* is large.

For example, if we set:

 $\epsilon_t = 0.45, T = 1000 \rightarrow \text{training error} \leq 0.0067.$

PROOF OF THEOREM

Setup

We break the proof into three steps. It is an application of the fact that

if
$$a < b$$
 and $b < c$ then $a < c$
Step 2 Step 3 conclusion

- ▶ Step 1 calculates the value of *b*.
- Steps 2 and 3 prove the two inequalities.

Also recall the following step from AdaBoost:

► Update
$$\hat{w}_{t+1}(i) = w_t(i)e^{-\alpha_t y_t f_t(x_t)}$$
.
► Normalize $w_{t+1}(i) = \frac{\hat{w}_{t+1}(i)}{\sum_j \hat{w}_{t+1}(j)}$ → Define $Z_t = \sum_j \hat{w}_{t+1}(j)$.

Proof of theorem $(a \le b \le c)$

Step 1

We first want to expand the equation of the weights to show that

$$w_{T+1}(i) = \frac{1}{n} \frac{e^{-y_i \sum_{t=1}^T \alpha_t f_t(x_i)}}{\prod_{t=1}^T Z_t} := \frac{1}{n} \frac{e^{-y_i h_T(x_i)}}{\prod_{t=1}^T Z_t} \to h_T(x) := \sum_{t=1}^T \alpha_t f_t(x_i)$$

Derivation of Step 1:

Notice the update rule: $w_{t+1}(i) = \frac{1}{Z_t} w_t(i) e^{-\alpha_t y_i f_t(x_i)}$

Do the same expansion for $w_t(i)$ and continue until reaching $w_1(i) = \frac{1}{n}$,

$$w_{T+1}(i) = w_1(i) \frac{e^{-\alpha_1 y_i f_1(x_i)}}{Z_1} \times \cdots \times \frac{e^{-\alpha_T y_i f_T(x_i)}}{Z_T}$$

The product $\prod_{t=1}^{T} Z_t$ *is "b" above.* We use this form of $w_{T+1}(i)$ in Step 2.

Proof of theorem $(a \leq b \leq c)$

Step 2

Next show the training error of $f_{boost}^{(T)}$ (boosting after T steps) is $\leq \prod_{t=1}^{T} Z_t$. Currently we know

$$w_{T+1}(i) = \frac{1}{n} \frac{e^{-y_i h_T(x_i)}}{\prod_{t=1}^T Z_t} \Rightarrow w_{T+1}(i) \prod_{t=1}^T Z_t = \frac{1}{n} e^{-y_i h_T(x_i)} \quad \& \quad f_{boost}^{(T)}(x) = \operatorname{sign}(h_T(x))$$

Derivation of Step 2:

Observe that $0 < e^{z_1}$ and $1 < e^{z_2}$ for any $z_1 < 0 < z_2$. Therefore

$$\underbrace{\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{y_{i}\neq f_{boost}^{(T)}(x_{i})\}}_{a} \leq \frac{1}{n}\sum_{i=1}^{n}e^{-y_{i}h_{T}(x_{i})}$$
$$= \sum_{i=1}^{n}w_{T+1}(i)\prod_{t=1}^{T}Z_{t} = \prod_{t=1}^{T}Z_{t}$$

"a" is the training error – the quantity we care about.

Proof of theorem $(a \leq b \leq c)$

Step 3

The final step is to calculate an upper bound on Z_t , and by extension $\prod_{t=1}^{T} Z_t$.

Derivation of Step 3:

This step is slightly more involved. It also shows why $\alpha_t := \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$.

$$Z_t = \sum_{i=1}^n w_t(i) e^{-\alpha_t y_i f_t(x_i)}$$

=
$$\sum_{i: y_i = f_t(x_i)} e^{-\alpha_t} w_t(i) + \sum_{i: y_i \neq f_t(x_i)} e^{\alpha_t} w_t(i)$$

=
$$e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t$$

Remember we <u>defined</u> $\epsilon_t = \sum_{i: y_i \neq f_t(x_i)} w_t(i)$, the probability of error for w_t .

Proof of theorem $(a \leq b \leq c)$

Derivation of Step 3 (continued):

Remember from Step 2 that

training error
$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{y_i \neq f_{boost}(x_i)\} \leq \prod_{t=1}^{T} Z_t$$
.

and we just showed that $Z_t = e^{-\alpha_t}(1 - \epsilon_t) + e^{\alpha_t}\epsilon_t$.

We want the training error to be small, so we pick α_t to *minimize* Z_t . Minimizing, we get the value of α_t used by AdaBoost:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right).$$

Plugging this value back in gives $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$.

Proof of theorem $(a \le b \le c)$

Next, re-write Z_t as

$$Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$$
$$= \sqrt{1-4(\frac{1}{2}-\epsilon_t)^2}$$

Then, use the inequality $1 - x \le e^{-x}$ to conclude that

$$Z_t = \left(1 - 4(\frac{1}{2} - \epsilon_t)^2\right)^{\frac{1}{2}} \le \left(e^{-4(\frac{1}{2} - \epsilon_t)^2}\right)^{\frac{1}{2}} = e^{-2(\frac{1}{2} - \epsilon_t)^2}$$

PROOF OF THEOREM

Concluding the right inequality $(a \le b \le c)$ Because both sides of $Z_t \le e^{-2(\frac{1}{2}-\epsilon_t)^2}$ are positive, we can say that

$$\prod_{t=1}^{T} Z_t \leq \prod_{t=1}^{T} e^{-2(\frac{1}{2}-\epsilon_t)^2} = e^{-2\sum_{t=1}^{T}(\frac{1}{2}-\epsilon_t)^2}.$$

This concludes the " $b \leq c$ " portion of the proof.

Combining everything

training error =
$$\overbrace{\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{y_i \neq f_{boost}(x_i)\}}^{a} \leq \overbrace{\prod_{t=1}^{T}Z_t}^{b} \leq \overbrace{e^{-2\sum_{t=1}^{T}(\frac{1}{2}-\epsilon_t)^2}}^{c}$$

We set out to prove "a < c" and we did so by using "b" as a stepping-stone.

TRAINING VS TESTING ERROR

 ${\bf Q}:$ Driving the training error to zero leads one to ask, does boosting overfit?

A: Sometimes, but very often it doesn't!

