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MAXIMUM LIKELIHOOD



APPROACHES TO DATA MODELING

Our approaches to modeling data thus far have been either probabilistic or
non-probabilistic in motivation.

I Probabilistic models: Probability distributions defined on data, e.g.,
1. Bayes classifiers
2. Logistic regression
3. Least squares and ridge regression (using ML and MAP interpretation)
4. Bayesian linear regression

I Non-probabilistic models: No probability distributions involved, e.g.,
1. Perceptron
2. Support vector machine
3. Decision trees
4. K-means

In every case, we have some objective function we are trying to optimize
(greedily vs non-greedily, locally vs globally).



MAXIMUM LIKELIHOOD

As we’ve seen, one probabilistic objective function is maximum likelihood.

Setup: In the most basic scenario, we start with

1. some set of model parameters θ
2. a set of data {x1, . . . , xn}
3. a probability distribution p(x|θ)

4. an i.i.d. assumption, xi
iid∼ p(x|θ)

Maximum likelihood seeks the θ that maximizes the likelihood

θML = arg max
θ

p(x1, . . . , xn|θ)
(a)
= arg max

θ

n∏
i=1

p(xi|θ)
(b)
= arg max

θ

n∑
i=1

ln p(xi|θ)

(a) follows from i.i.d. assumption.
(b) follows since f (y) > f (x) ⇒ ln f (y) > ln f (x).



MAXIMUM LIKELIHOOD

We’ve discussed maximum likelihood for a few models, e.g., least squares
linear regression and the Bayes classifier.

Both of these models were “nice” because we could find their respective θML

analytically by writing an equation and plugging in data to solve.

Gaussian with unknown mean and covariance
In the first lecture, we saw if xi

iid∼ N(µ,Σ), where θ = {µ,Σ}, then

∇θ ln
n∏

i=1

p(xi|θ) = 0

gives the following maximum likelihood values for µ and Σ:

µML =
1
n

n∑
i=1

xi, ΣML =
1
n

n∑
i=1

(xi − µML)(xi − µML)
T



COORDINATE ASCENT AND MAXIMUM LIKELIHOOD

In more complicated models, we might split the parameters into groups
θ1, θ2 and try to maximize the likelihood over both of these,

θ1,ML, θ2,ML = arg max
θ1,θ2

n∑
i=1

ln p(xi|θ1, θ2),

Although we can solve one given the other, we can’t solve it simultaneously.

Coordinate ascent (probabilistic version)
We saw how K-means presented a similar situation, and that we could
optimize using coordinate ascent. This technique is generalizable.

Algorithm: For iteration t = 1, 2, . . . ,

1. Optimize θ(t)
1 = arg maxθ1

∑n
i=1 ln p(xi|θ1, θ

(t−1)
2 )

2. Optimize θ(t)
2 = arg maxθ2

∑n
i=1 ln p(xi|θ(t)

1 , θ2)



COORDINATE ASCENT AND MAXIMUM LIKELIHOOD

There is a third (subtly) different situation, where we really want to find

θ1,ML = arg max
θ1

n∑
i=1

ln p(xi|θ1).

Except this function is “tricky” to optimize directly. However, we figure out
that we can add a second variable θ2 such that

n∑
i=1

ln p(xi, θ2|θ1) (Function 2)

is easier to work with. We’ll make this clearer later.

I Notice in this second case that θ2 is on the left side of the conditioning
bar. This implies a prior on θ2, (whatever “θ2” turns out to be).

I We will next discuss a fundamental technique called the EM algorithm
for finding θ1,ML by using Function 2 instead.



EXPECTATION-MAXIMIZATION

ALGORITHM



A MOTIVATING EXAMPLE

Let xi ∈ Rd, be a vector with missing data. Split this vector into two parts:
1. xo

i – observed portion (the sub-vector of xi that is measured)
2. xm

i – missing portion (the sub-vector of xi that is still unknown)
3. The missing dimensions can be different for different xi.

We assume that xi
iid∼ N(µ,Σ), and want to solve

µML,ΣML = arg max
µ,Σ

n∑
i=1

ln p(xo
i |µ,Σ).

This is tricky. However, if we knew xm
i (and therefore xi), then

µML,ΣML = arg max
µ,Σ

n∑
i=1

ln p(xo
i , x

m
i |µ,Σ)︸ ︷︷ ︸

= p(xi|µ,Σ)

is very easy to optimize (we just did it on a previous slide).



CONNECTING TO A MORE GENERAL SETUP

We will discuss a method for optimizing
∑n

i=1 ln p(xo
i |µ,Σ) and imputing its

missing values {xm
1 , . . . , x

m
n }. This is a very general technique.

General setup
Imagine we have two parameter sets θ1, θ2, where

p(x|θ1) =

∫
p(x, θ2|θ1) dθ2 (marginal distribution)

Example: For the previous example we can show that

p(xo
i |µ,Σ) =

∫
p(xo

i , x
m
i |µ,Σ) dxm

i = N(µo
i ,Σ

o
i ),

where µo
i and Σo

i are the sub-vector/sub-matrix of µ and Σ defined by xo
i .



THE EM OBJECTIVE FUNCTION

We need to define a general objective function that gives us what we want:

1. It lets us optimize the marginal p(x|θ1) over θ1,

2. It uses p(x, θ2|θ1) in doing so purely for computational convenience.

The EM objective function
Before picking it apart, we claim that this objective function is

ln p(x|θ1) =

∫
q(θ2) ln

p(x, θ2|θ1)

q(θ2)
dθ2 +

∫
q(θ2) ln

q(θ2)

p(θ2|x, θ1)
dθ2

Some immediate comments:
I q(θ2) is any probability distribution (assumed continuous for now)
I We assume we know p(θ2|x, θ1). That is, given the data x and fixed

values for θ1, we can solve the conditional posterior distribution of θ2.



DERIVING THE EM OBJECTIVE FUNCTION

Let’s show that this equality is actually true

ln p(x|θ1) =

∫
q(θ2) ln

p(x, θ2|θ1)

q(θ2)
dθ2 +

∫
q(θ2) ln

q(θ2)

p(θ2|x, θ1)
dθ2

=

∫
q(θ2) ln

p(x, θ2|θ1)q(θ2)

p(θ2|x, θ1)q(θ2)
dθ2

Remember some rules of probability:

p(a, b|c) = p(a|b, c)p(b|c) ⇒ p(b|c) =
p(a, b|c)

p(a|b, c)
.

Letting a = θ1, b = x and c = θ1, we conclude

ln p(x|θ1) =

∫
q(θ2) ln p(x|θ1) dθ2

= ln p(x|θ1)



THE EM OBJECTIVE FUNCTION

The EM objective function splits our desired objective into two terms:

ln p(x|θ1) =

∫
q(θ2) ln

p(x, θ2|θ1)

q(θ2)
dθ2︸ ︷︷ ︸

A function only of θ1, we’ll call it L

+

∫
q(θ2) ln

q(θ2)

p(θ2|x, θ1)
dθ2︸ ︷︷ ︸

Kullback-Leibler divergence

Some more observations about the right hand side:

1. The KL diverence is always ≥ 0 and only = 0 when q = p.
2. We are assuming that the integral in L can be calculated, leaving a

function only of θ1 (for a particular setting of the distribution q).



BIGGER PICTURE

Q: What does it mean to iteratively optimize ln p(x|θ1) w.r.t. θ1?

A: One way to think about it is that we want a method for generating:

1. A sequence of values for θ1 such that ln p(x|θ(t)
1 ) ≥ ln p(x|θ(t−1)

1 ).

2. We want θ(t)
1 to converge to a local maximum of ln p(x|θ1).

It doesn’t matter how we generate the sequence θ(1)
1 , θ

(2)
1 , θ

(3)
1 , . . .

We will show how EM generates #1 and just mention that EM satisfies #2.



THE EM ALGORITHM

The EM objective function

ln p(x|θ1) =

∫
q(θ2) ln

p(x, θ2|θ1)

q(θ2)
dθ2︸ ︷︷ ︸

define this to be L(x, θ1)

+

∫
q(θ2) ln

q(θ2)

p(θ2|x, θ1)
dθ2︸ ︷︷ ︸

Kullback-Leibler divergence

Definition: The EM algorithm
Given the value θ(t)

1 , find the value θ(t+1)
1 as follows:

E-step: Set qt(θ2) = p(θ2|x, θ(t)
1 ) and calculate

Lqt (x, θ1) =

∫
qt(θ2) ln p(x, θ2|θ1) dθ2 −

∫
qt(θ2) ln qt(θ2) dθ2︸ ︷︷ ︸

can ignore this term

.

M-step: Set θ(t+1)
1 = arg maxθ1 Lqt (x, θ1).



PROOF OF MONOTONIC IMPROVEMENT

Once we’re comfortable with the moving parts, the proof that the sequence
θ

(t)
1 monotonically improves ln p(x|θ1) just requires analysis:

ln p(x|θ(t)
1 ) = L(x, θ(t)

1 ) + KL
(

q(θ2) ‖ p(θ2|x1, θ
(t)
1 )
)

︸ ︷︷ ︸
= 0 by setting q = p

= Lqt (x, θ(t)
1 ) ← E-step

≤ Lqt (x, θ(t+1)
1 ) ← M-step

≤ Lqt (x, θ(t+1)
1 ) + KL

(
qt(θ2) ‖ p(θ2|x1, θ

(t+1)
1 )

)
︸ ︷︷ ︸

> 0 because q 6=p

= L(x, θ(t+1)
1 ) + KL

(
q(θ2) ‖ p(θ2|x1, θ

(t+1)
1 )

)
= ln p(x|θ(t+1)

1 )



ONE ITERATION OF EM

Start: Current setting of θ1 and q(θ2)

L

KL(q||p)} lnp(X|θ1)

(X|θ1)

Some arbitrary point < 0

For reference:

ln p(x|θ1) = L+ KL

L =

∫
q(θ2) ln

p(x, θ2|θ1)

q(θ2)
dθ2

KL =

∫
q(θ2) ln

q(θ2)

p(θ2|x, θ1)
dθ2



ONE ITERATION OF EM

E-step: Set q(θ2) = p(θ2|x, θ1) and update L.

Some arbitrary point < 0

lnp(X|θ1)L

KL(q||p) = 0

(X|θ1)

For reference:

ln p(x|θ1) = L+ KL

L =

∫
q(θ2) ln

p(x, θ2|θ1)

q(θ2)
dθ2

KL =

∫
q(θ2) ln

q(θ2)

p(θ2|x, θ1)
dθ2



ONE ITERATION OF EM

M-step: Maximize L wrt θ1. Now q 6= p.

lnp(X|θ1
up)L

KL(q||p)}

Some arbitrary point < 0

(X|θ1
up)

For reference:

ln p(x|θ1) = L+ KL

L =

∫
q(θ2) ln

p(x, θ2|θ1)

q(θ2)
dθ2

KL =

∫
q(θ2) ln

q(θ2)

p(θ2|x, θ1)
dθ2



EM FOR MISSING DATA



THE PROBLEM

We have a data matrix with missing entries. We model the columns as

xi
iid∼ N(µ,Σ).

Our goal could be to
1. Learn µ and Σ using maximum likelihood
2. Fill in the missing values “intelligently” (e.g., using a model)
3. Both

We will see how to achieve both of these goals using the EM algorithm.



EM FOR SINGLE GAUSSIAN MODEL WITH MISSING DATA

The original, generic EM objective is

ln p(x|θ1) =

∫
q(θ2) ln

p(x, θ2|θ1)

q(θ2)
dθ2 +

∫
q(θ2) ln

q(θ2)

p(θ2|x, θ1)
dθ2

The EM objective for this specific problem and notation is

n∑
i=1

ln p(xo
i |µ,Σ) =

n∑
i=1

∫
q(xm

i ) ln
p(xo

i , x
m
i |µ,Σ)

q(xm
i )

dxm
i +

n∑
i=1

∫
q(xm

i ) ln
q(xm

i )

p(xm
i |xo

i , µ,Σ)
dxm

i

We can calculate everything required to do this.



E-STEP (PART ONE)

Set q(xm
i ) = p(xm

i |xo
i , µ,Σ) using current µ, Σ

Let xo
i and xm

i represent the observed and missing dimensions of xi. For
notational convenience, think

xi =

[
xo

i
xm

i

]
∼ N

([
µo

i
µm

i

]
,

[
Σoo

i Σom
i

Σmo
i Σmm

i

])
Then we can show that p(xm

i |xo
i , µ,Σ) = N(µ̂i, Σ̂i), where

µ̂i = µm
i + Σmo

i (Σoo
i )−1(xo

i − µo
i ), Σ̂i = Σmm

i − Σmo
i (Σoo

i )−1Σom
i .

It doesn’t look nice, but these are just functions of sub-vectors of µ and
sub-matrices of Σ using the relevant dimensions defined by xi.



E-STEP (PART TWO)

E-step: Eq(xm
i )

[ln p(xo
i , x

m
i |µ,Σ)]

For each i we will need to calculate the following term,

Eq[(xi − µ)TΣ−1(xi − µ)] = Eq[trace{Σ−1(xi − µ)(xi − µ)T}]

= trace{Σ−1Eq[(xi − µ)(xi − µ)T ]}

The expectation is calculated using q(xm
i ) = p(xm

i |xo
i , µ,Σ). So only the xm

i
portion of xi will be integrated.

To this end, recall q(xm
i ) = N(µ̂i, Σ̂i). We define

1. x̂i : A vector where we replace the missing values in xi with µ̂i.
2. V̂i : A matrix of 0’s, plus sub-matrix Σ̂i in the missing dimensions.



M-STEP

M-step: Maximize
∑n

i=1 Eq[ln p(xo
i , x

m
i |µ,Σ)]

We’ll omit the derivation, but the expectation can now be solved and

µup,Σup = arg max
µ,Σ

n∑
i=1

Eq[ln p(xo
i , x

m
i |µ,Σ)]

can be found. Recalling the ̂ notation,

µup =
1
n

n∑
i=1

x̂i,

Σup =
1
n

n∑
i=1

{(x̂i − µup)(x̂i − µup)T + V̂i}

Then return to the E-step to calculate the new p(xm
i |xo

i , µup,Σup).



IMPLEMENTATION DETAILS

We need to initialize µ and Σ, for example, by setting missing values to zero
and calculating µML and ΣML. (We can also use random initialization.)

The EM objective function is then calculated after each update to µ and Σ
and will look like the figure above. Stop when the change is “small.”

The output is µML, ΣML and q(xm
i ) for all missing entries.


