COMS 4721: Machine Learning for Data Science

 Lecture 15, 3/23/2017Prof. John Paisley
Department of Electrical Engineering
\& Data Science Institute
Columbia University

MAXIMUM LIKELIHOOD

Approaches to data modeling

Our approaches to modeling data thus far have been either probabilistic or non-probabilistic in motivation.

- Probabilistic models: Probability distributions defined on data, e.g.,

1. Bayes classifiers
2. Logistic regression
3. Least squares and ridge regression (using ML and MAP interpretation)
4. Bayesian linear regression

- Non-probabilistic models: No probability distributions involved, e.g.,

1. Perceptron
2. Support vector machine
3. Decision trees
4. K-means

In every case, we have some objective function we are trying to optimize (greedily vs non-greedily, locally vs globally).

MAXIMUM LIKELIHOOD

As we've seen, one probabilistic objective function is maximum likelihood.
Setup: In the most basic scenario, we start with

1. some set of model parameters θ
2. a set of data $\left\{x_{1}, \ldots, x_{n}\right\}$
3. a probability distribution $p(x \mid \theta)$
4. an i.i.d. assumption, $x_{i} \stackrel{i i d}{\sim} p(x \mid \theta)$

Maximum likelihood seeks the θ that maximizes the likelihood

$$
\theta_{\mathrm{ML}}=\arg \max _{\theta} p\left(x_{1}, \ldots, x_{n} \mid \theta\right) \stackrel{(a)}{=} \arg \max _{\theta} \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) \stackrel{(b)}{=} \arg \max _{\theta} \sum_{i=1}^{n} \ln p\left(x_{i} \mid \theta\right)
$$

(a) follows from i.i.d. assumption.
(b) follows since $f(y)>f(x) \Rightarrow \ln f(y)>\ln f(x)$.

MAXIMUM LIKELIHOOD

We've discussed maximum likelihood for a few models, e.g., least squares linear regression and the Bayes classifier.

Both of these models were "nice" because we could find their respective $\theta_{\text {mL }}$ analytically by writing an equation and plugging in data to solve.

Gaussian with unknown mean and covariance In the first lecture, we saw if $x_{i} \stackrel{i i d}{\sim} N(\mu, \Sigma)$, where $\theta=\{\mu, \Sigma\}$, then

$$
\nabla_{\theta} \ln \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)=0
$$

gives the following maximum likelihood values for μ and Σ :

$$
\mu_{\mathrm{ML}}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \Sigma_{\mathrm{ML}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{\mathrm{ML}}\right)\left(x_{i}-\mu_{\mathrm{ML}}\right)^{T}
$$

COORDINATE ASCENT AND MAXIMUM LIKELIHOOD

In more complicated models, we might split the parameters into groups θ_{1}, θ_{2} and try to maximize the likelihood over both of these,

$$
\theta_{1, \mathrm{NL}}, \theta_{2, \mathrm{ML}}=\arg \max _{\theta_{1}, \theta_{2}} \sum_{i=1}^{n} \ln p\left(x_{i} \mid \theta_{1}, \theta_{2}\right),
$$

Although we can solve one given the other, we can't solve it simultaneously.

Coordinate ascent (probabilistic version)
We saw how K-means presented a similar situation, and that we could optimize using coordinate ascent. This technique is generalizable.

Algorithm: For iteration $t=1,2, \ldots$,

1. Optimize $\theta_{1}^{(t)}=\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} \mid \theta_{1}, \theta_{2}^{(t-1)}\right)$
2. Optimize $\theta_{2}^{(t)}=\arg \max _{\theta_{2}} \quad \sum_{i=1}^{n} \ln p\left(x_{i} \mid \theta_{1}^{(t)}, \theta_{2}\right)$

COORDINATE ASCENT AND MAXIMUM LIKELIHOOD

There is a third (subtly) different situation, where we really want to find

$$
\theta_{1, \mathrm{ML}}=\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} \mid \theta_{1}\right) .
$$

Except this function is "tricky" to optimize directly. However, we figure out that we can add a second variable θ_{2} such that

$$
\sum_{i=1}^{n} \ln p\left(x_{i}, \theta_{2} \mid \theta_{1}\right)
$$

(Function 2)
is easier to work with. We'll make this clearer later.

- Notice in this second case that θ_{2} is on the left side of the conditioning bar. This implies a prior on θ_{2}, (whatever " θ_{2} " turns out to be).
- We will next discuss a fundamental technique called the EM algorithm for finding $\theta_{1, \text { ML }}$ by using Function 2 instead.

EXPECTATION-MAXIMIZATION Algorithm

A motivating example

Let $x_{i} \in \mathbb{R}^{d}$, be a vector with missing data. Split this vector into two parts:

1. x_{i}^{o} - observed portion (the sub-vector of x_{i} that is measured)
2. x_{i}^{m} - missing portion (the sub-vector of x_{i} that is still unknown)
3. The missing dimensions can be different for different x_{i}.

We assume that $x_{i} \stackrel{i i d}{\sim} N(\mu, \Sigma)$, and want to solve

$$
\mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}}=\arg \max _{\mu, \Sigma} \sum_{i=1}^{n} \ln p\left(x_{i}^{o} \mid \mu, \Sigma\right)
$$

This is tricky. However, if we knew x_{i}^{m} (and therefore x_{i}), then

$$
\mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}}=\arg \max _{\mu, \Sigma} \sum_{i=1}^{n} \ln \underbrace{p\left(x_{i}^{o}, x_{i}^{m} \mid \mu, \Sigma\right)}_{=p\left(x_{i} \mid \mu, \Sigma\right)}
$$

is very easy to optimize (we just did it on a previous slide).

Connecting to a more general setup

We will discuss a method for optimizing $\sum_{i=1}^{n} \ln p\left(x_{i}^{o} \mid \mu, \Sigma\right)$ and imputing its missing values $\left\{x_{1}^{m}, \ldots, x_{n}^{m}\right\}$. This is a very general technique.

General setup

Imagine we have two parameter sets θ_{1}, θ_{2}, where

$$
p\left(x \mid \theta_{1}\right)=\int p\left(x, \theta_{2} \mid \theta_{1}\right) d \theta_{2} \quad \text { (marginal distribution) }
$$

Example: For the previous example we can show that

$$
p\left(x_{i}^{o} \mid \mu, \Sigma\right)=\int p\left(x_{i}^{o}, x_{i}^{m} \mid \mu, \Sigma\right) d x_{i}^{m}=N\left(\mu_{i}^{o}, \Sigma_{i}^{o}\right)
$$

where μ_{i}^{o} and Σ_{i}^{o} are the sub-vector/sub-matrix of μ and Σ defined by x_{i}^{o}.

The EM objective function

We need to define a general objective function that gives us what we want:

1. It lets us optimize the marginal $p\left(x \mid \theta_{1}\right)$ over θ_{1},
2. It uses $p\left(x, \theta_{2} \mid \theta_{1}\right)$ in doing so purely for computational convenience.

The EM objective function

Before picking it apart, we claim that this objective function is

$$
\ln p\left(x \mid \theta_{1}\right)=\int q\left(\theta_{2}\right) \ln \frac{p\left(x, \theta_{2} \mid \theta_{1}\right)}{q\left(\theta_{2}\right)} d \theta_{2}+\int q\left(\theta_{2}\right) \ln \frac{q\left(\theta_{2}\right)}{p\left(\theta_{2} \mid x, \theta_{1}\right)} d \theta_{2}
$$

Some immediate comments:

- $q\left(\theta_{2}\right)$ is any probability distribution (assumed continuous for now)
- We assume we know $p\left(\theta_{2} \mid x, \theta_{1}\right)$. That is, given the data x and fixed values for θ_{1}, we can solve the conditional posterior distribution of θ_{2}.

Deriving the EM objective function

Let's show that this equality is actually true

$$
\begin{aligned}
\ln p\left(x \mid \theta_{1}\right) & =\int q\left(\theta_{2}\right) \ln \frac{p\left(x, \theta_{2} \mid \theta_{1}\right)}{q\left(\theta_{2}\right)} d \theta_{2}+\int q\left(\theta_{2}\right) \ln \frac{q\left(\theta_{2}\right)}{p\left(\theta_{2} \mid x, \theta_{1}\right)} d \theta_{2} \\
& =\int q\left(\theta_{2}\right) \ln \frac{p\left(x, \theta_{2} \mid \theta_{1}\right) q\left(\theta_{2}\right)}{p\left(\theta_{2} \mid x, \theta_{1}\right) q\left(\theta_{2}\right)} d \theta_{2}
\end{aligned}
$$

Remember some rules of probability:

$$
p(a, b \mid c)=p(a \mid b, c) p(b \mid c) \quad \Rightarrow \quad p(b \mid c)=\frac{p(a, b \mid c)}{p(a \mid b, c)}
$$

Letting $a=\theta_{1}, b=x$ and $c=\theta_{1}$, we conclude

$$
\begin{aligned}
\ln p\left(x \mid \theta_{1}\right) & =\int q\left(\theta_{2}\right) \ln p\left(x \mid \theta_{1}\right) d \theta_{2} \\
& =\ln p\left(x \mid \theta_{1}\right)
\end{aligned}
$$

The EM objective function

The EM objective function splits our desired objective into two terms:

$$
\ln p\left(x \mid \theta_{1}\right)=\underbrace{\int q\left(\theta_{2}\right) \ln \frac{p\left(x, \theta_{2} \mid \theta_{1}\right)}{q\left(\theta_{2}\right)} d \theta_{2}}_{\text {A function only of } \theta_{1}, \text { we'll call it } \mathcal{L}}+\underbrace{\int q\left(\theta_{2}\right) \ln \frac{q\left(\theta_{2}\right)}{p\left(\theta_{2} \mid x, \theta_{1}\right)} d \theta_{2}}_{\text {Kullback-Leibler divergence }}
$$

Some more observations about the right hand side:

1. The $\mathbf{K L}$ diverence is always ≥ 0 and only $=0$ when $q=p$.
2. We are assuming that the integral in \mathcal{L} can be calculated, leaving a function only of θ_{1} (for a particular setting of the distribution q).

Bigger picture

Q: What does it mean to iteratively optimize $\ln p\left(x \mid \theta_{1}\right)$ w.r.t. θ_{1} ?
A: One way to think about it is that we want a method for generating:

1. A sequence of values for θ_{1} such that $\ln p\left(x \mid \theta_{1}^{(t)}\right) \geq \ln p\left(x \mid \theta_{1}^{(t-1)}\right)$.
2. We want $\theta_{1}^{(t)}$ to converge to a local maximum of $\ln p\left(x \mid \theta_{1}\right)$.

It doesn't matter how we generate the sequence $\theta_{1}^{(1)}, \theta_{1}^{(2)}, \theta_{1}^{(3)}, \ldots$
We will show how EM generates \#1 and just mention that EM satisfies \#2.

The EM ALGORITHM

The EM objective function

$$
\ln p\left(x \mid \theta_{1}\right)=\underbrace{\int q\left(\theta_{2}\right) \ln \frac{p\left(x, \theta_{2} \mid \theta_{1}\right)}{q\left(\theta_{2}\right)} d \theta_{2}}_{\text {define this to be } \mathcal{L}\left(x, \theta_{1}\right)}+\underbrace{\int q\left(\theta_{2}\right) \ln \frac{q\left(\theta_{2}\right)}{p\left(\theta_{2} \mid x, \theta_{1}\right)} d \theta_{2}}_{\text {Kullback-Leibler divergence }}
$$

Definition: The EM algorithm

Given the value $\theta_{1}^{(t)}$, find the value $\theta_{1}^{(t+1)}$ as follows:
E-step: Set $q_{t}\left(\theta_{2}\right)=p\left(\theta_{2} \mid x, \theta_{1}^{(t)}\right)$ and calculate

$$
\mathcal{L}_{q_{t}}\left(x, \theta_{1}\right)=\int q_{t}\left(\theta_{2}\right) \ln p\left(x, \theta_{2} \mid \theta_{1}\right) d \theta_{2}-\underbrace{\int q_{t}\left(\theta_{2}\right) \ln q_{t}\left(\theta_{2}\right) d \theta_{2}}_{\text {can ignore this term }} .
$$

M-step: Set $\theta_{1}^{(t+1)}=\arg \max _{\theta_{1}} \mathcal{L}_{q_{t}}\left(x, \theta_{1}\right)$.

PROOF OF MONOTONIC IMPROVEMENT

Once we're comfortable with the moving parts, the proof that the sequence $\theta_{1}^{(t)}$ monotonically improves $\ln p\left(x \mid \theta_{1}\right)$ just requires analysis:

$$
\begin{aligned}
\ln p\left(x \mid \theta_{1}^{(t)}\right) & =\mathcal{L}\left(x, \theta_{1}^{(t)}\right)+\underbrace{K L\left(q\left(\theta_{2}\right) \| p\left(\theta_{2} \mid x_{1}, \theta_{1}^{(t)}\right)\right)}_{=0 \text { by setting } q=p} \\
& =\mathcal{L}_{q_{t}}\left(x, \theta_{1}^{(t)}\right) \quad \leftarrow \text { E-step } \\
& \leq \mathcal{L}_{q_{t}}\left(x, \theta_{1}^{(t+1)}\right) \leftarrow \text { M-step } \\
& \leq \mathcal{L}_{q_{t}}\left(x, \theta_{1}^{(t+1)}\right)+\underbrace{K L\left(q_{t}\left(\theta_{2}\right) \| p\left(\theta_{2} \mid x_{1}, \theta_{1}^{(t+1)}\right)\right)}_{>0 \text { because } q \neq p} \\
& =\mathcal{L}\left(x, \theta_{1}^{(t+1)}\right)+K L\left(q\left(\theta_{2}\right) \| p\left(\theta_{2} \mid x_{1}, \theta_{1}^{(t+1)}\right)\right) \\
& =\ln p\left(x \mid \theta_{1}^{(t+1)}\right)
\end{aligned}
$$

One iteration of EM

Start: Current setting of θ_{1} and $q\left(\theta_{2}\right)$

For reference:

$$
\begin{aligned}
\ln p\left(x \mid \theta_{1}\right) & =\mathcal{L}+K L \\
\mathcal{L} & =\int q\left(\theta_{2}\right) \ln \frac{p\left(x, \theta_{2} \mid \theta_{1}\right)}{q\left(\theta_{2}\right)} d \theta_{2} \\
K L & =\int q\left(\theta_{2}\right) \ln \frac{q\left(\theta_{2}\right)}{p\left(\theta_{2} \mid x, \theta_{1}\right)} d \theta_{2}
\end{aligned}
$$

One iteration of EM

E-step: Set $q\left(\theta_{2}\right)=p\left(\theta_{2} \mid x, \theta_{1}\right)$ and update \mathcal{L}.

For reference:

$$
\begin{aligned}
\ln p\left(x \mid \theta_{1}\right) & =\mathcal{L}+K L \\
\mathcal{L} & =\int q\left(\theta_{2}\right) \ln \frac{p\left(x, \theta_{2} \mid \theta_{1}\right)}{q\left(\theta_{2}\right)} d \theta_{2} \\
K L & =\int q\left(\theta_{2}\right) \ln \frac{q\left(\theta_{2}\right)}{p\left(\theta_{2} \mid x, \theta_{1}\right)} d \theta_{2}
\end{aligned}
$$

One iteration of EM

M-step: Maximize \mathcal{L} wrt θ_{1}. Now $q \neq p$.

For reference:

$$
\begin{aligned}
\ln p\left(x \mid \theta_{1}\right) & =\mathcal{L}+K L \\
\mathcal{L} & =\int q\left(\theta_{2}\right) \ln \frac{p\left(x, \theta_{2} \mid \theta_{1}\right)}{q\left(\theta_{2}\right)} d \theta_{2} \\
K L & =\int q\left(\theta_{2}\right) \ln \frac{q\left(\theta_{2}\right)}{p\left(\theta_{2} \mid x, \theta_{1}\right)} d \theta_{2}
\end{aligned}
$$

EM FOR MISSING DATA

THE PROBLEM

We have a data matrix with missing entries. We model the columns as

$$
x_{i} \stackrel{i i d}{\sim} N(\mu, \Sigma)
$$

Our goal could be to

1. Learn μ and Σ using maximum likelihood
2. Fill in the missing values "intelligently" (e.g., using a model)
3. Both

We will see how to achieve both of these goals using the EM algorithm.

EM FOR SINGLE GAUSSIAN MODEL WITH MISSING DATA

The original, generic EM objective is

$$
\ln p\left(x \mid \theta_{1}\right)=\int q\left(\theta_{2}\right) \ln \frac{p\left(x, \theta_{2} \mid \theta_{1}\right)}{q\left(\theta_{2}\right)} d \theta_{2}+\int q\left(\theta_{2}\right) \ln \frac{q\left(\theta_{2}\right)}{p\left(\theta_{2} \mid x, \theta_{1}\right)} d \theta_{2}
$$

The EM objective for this specific problem and notation is

$$
\begin{aligned}
\sum_{i=1}^{n} \ln p\left(x_{i}^{o} \mid \mu, \Sigma\right)= & \sum_{i=1}^{n} \int q\left(x_{i}^{m}\right) \ln \frac{p\left(x_{i}^{o}, x_{i}^{m} \mid \mu, \Sigma\right)}{q\left(x_{i}^{m}\right)} d x_{i}^{m}+ \\
& \sum_{i=1}^{n} \int q\left(x_{i}^{m}\right) \ln \frac{q\left(x_{i}^{m}\right)}{p\left(x_{i}^{m} \mid x_{i}^{o}, \mu, \Sigma\right)} d x_{i}^{m}
\end{aligned}
$$

We can calculate everything required to do this.

E-STEP (PART ONE)

Set $q\left(x_{i}^{m}\right)=p\left(x_{i}^{m} \mid x_{i}^{o}, \mu, \Sigma\right)$ using current μ, Σ
Let x_{i}^{o} and x_{i}^{m} represent the observed and missing dimensions of x_{i}. For notational convenience, think

$$
x_{i}=\left[\begin{array}{c}
x_{i}^{o} \\
x_{i}^{m}
\end{array}\right] \sim N\left(\left[\begin{array}{c}
\mu_{i}^{o} \\
\mu_{i}^{m}
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{i}^{o o} & \Sigma_{i}^{o m} \\
\Sigma_{i}^{m o} & \Sigma_{i}^{m m}
\end{array}\right]\right)
$$

Then we can show that $p\left(x_{i}^{m} \mid x_{i}^{o}, \mu, \Sigma\right)=N\left(\widehat{\mu}_{i}, \widehat{\Sigma}_{i}\right)$, where

$$
\widehat{\mu}_{i}=\mu_{i}^{m}+\Sigma_{i}^{m o}\left(\Sigma_{i}^{o o}\right)^{-1}\left(x_{i}^{o}-\mu_{i}^{o}\right), \quad \widehat{\Sigma}_{i}=\Sigma_{i}^{m m}-\Sigma_{i}^{m o}\left(\Sigma_{i}^{o o}\right)^{-1} \Sigma_{i}^{o m} .
$$

It doesn't look nice, but these are just functions of sub-vectors of μ and sub-matrices of Σ using the relevant dimensions defined by x_{i}.

E-STEP (PART TWO)

E-step: $\mathbb{E}_{q\left(x_{i}^{m}\right)}\left[\ln p\left(x_{i}^{o}, x_{i}^{m} \mid \mu, \Sigma\right)\right]$
For each i we will need to calculate the following term,

$$
\begin{aligned}
\mathbb{E}_{q}\left[\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)\right] & =\mathbb{E}_{q}\left[\operatorname{trace}\left\{\Sigma^{-1}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{T}\right\}\right] \\
& =\operatorname{trace}\left\{\Sigma^{-1} \mathbb{E}_{q}\left[\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{T}\right]\right\}
\end{aligned}
$$

The expectation is calculated using $q\left(x_{i}^{m}\right)=p\left(x_{i}^{m} \mid x_{i}^{o}, \mu, \Sigma\right)$. So only the x_{i}^{m} portion of x_{i} will be integrated.

To this end, recall $q\left(x_{i}^{m}\right)=N\left(\widehat{\mu}_{i}, \widehat{\Sigma}_{i}\right)$. We define

1. \widehat{x}_{i} : A vector where we replace the missing values in x_{i} with $\widehat{\mu}_{i}$.
2. \widehat{V}_{i} : A matrix of 0 's, plus sub-matrix $\widehat{\Sigma}_{i}$ in the missing dimensions.

M-STEP

M-step: Maximize $\sum_{i=1}^{n} \mathbb{E}_{q}\left[\ln p\left(x_{i}^{o}, x_{i}^{m} \mid \mu, \Sigma\right)\right]$
We'll omit the derivation, but the expectation can now be solved and

$$
\mu_{\mathrm{up}}, \Sigma_{\mathrm{up}}=\arg \max _{\mu, \Sigma} \sum_{i=1}^{n} \mathbb{E}_{q}\left[\ln p\left(x_{i}^{o}, x_{i}^{m} \mid \mu, \Sigma\right)\right]
$$

can be found. Recalling the ${ }^{\wedge}$ notation,

$$
\begin{aligned}
\mu_{\mathrm{up}} & =\frac{1}{n} \sum_{i=1}^{n} \widehat{x}_{i} \\
\Sigma_{\mathrm{up}} & =\frac{1}{n} \sum_{i=1}^{n}\left\{\left(\widehat{x}_{i}-\mu_{\mathrm{up}}\right)\left(\widehat{x}_{i}-\mu_{\mathrm{up}}\right)^{T}+\widehat{V}_{i}\right\}
\end{aligned}
$$

Then return to the E-step to calculate the new $p\left(x_{i}^{m} \mid x_{i}^{o}, \mu_{\mathrm{up}}, \Sigma_{\mathrm{up}}\right)$.

Implementation details

We need to initialize μ and Σ, for example, by setting missing values to zero and calculating μ_{ML} and Σ_{ML}. (We can also use random initialization.)

The EM objective function is then calculated after each update to μ and Σ and will look like the figure above. Stop when the change is "small."

The output is $\mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}}$ and $q\left(x_{i}^{m}\right)$ for all missing entries.

