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MAXIMUM LIKELIHOOD



APPROACHES TO DATA MODELING

Our approaches to modeling data thus far have been either probabilistic or
non-probabilistic in motivation.

» Probabilistic models: Probability distributions defined on data, e.g.,
1. Bayes classifiers
2. Logistic regression
3. Least squares and ridge regression (using ML and MAP interpretation)
4. Bayesian linear regression

» Non-probabilistic models: No probability distributions involved, e.g.,

1. Perceptron

2. Support vector machine
3. Decision trees

4. K-means

In every case, we have some objective function we are trying to optimize
(greedily vs non-greedily, locally vs globally).



MAXIMUM LIKELIHOOD

As we’ve seen, one probabilistic objective function is maximum likelihood.

Setup: In the most basic scenario, we start with

1. some set of model parameters 6
2. asetofdata {xy,...,x,}

3. a probability distribution p(x|6)
4

. an i.i.d. assumption, x; %p(x|0)

Maximum likelihood seeks the 6 that maximizes the likelihood

@ - ® -
Oy, = arg max p(xi,...,x,]0) = arg max Hp(x,-|0) = arg mgzilenp(x,-W)

i=1 i=1

(a) follows from i.i.d. assumption.
(b) follows since f(y) > f(x) = Inf(y) > Inf(x).



MAXIMUM LIKELIHOOD

We’ve discussed maximum likelihood for a few models, e.g., least squares
linear regression and the Bayes classifier.

Both of these models were “nice” because we could find their respective 0y,
analytically by writing an equation and plugging in data to solve.

Gaussian with unknown mean and covariance
. iid
In the first lecture, we saw if x; ~ N(u, X), where 6 = {1, ©}, then

Vo 1HHP(Xi|9) =0

i=1
gives the following maximum likelihood values for ¢ and X:

n

1 & 1
Hve = ; ;xh Y = — Z(xi - IU’ML)(-xi - ,UML)T

n-
i=1



COORDINATE ASCENT AND MAXIMUM LIKELIHOOD

In more complicated models, we might split the parameters into groups
01,60, and try to maximize the likelihood over both of these,

n
Oy, O = arg max Zl: Inp(x;|6;,0,),
i—
Although we can solve one given the other, we can’t solve it simultaneously.

Coordinate ascent (probabilistic version)

We saw how K-means presented a similar situation, and that we could
optimize using coordinate ascent. This technique is generalizable.

Algorithm: For iterationr = 1,2, ...,
1. Optimize GY) =argmaxg, >, lnp(xi|91,9§til))
2. Optimize 65" = argmaxs, Y7, Inp(x[6{”.6,)



COORDINATE ASCENT AND MAXIMUM LIKELIHOOD

There is a third (subtly) different situation, where we really want to find

010 = argn}fllx Zl:lnp(xiwl).

Except this function is “tricky” to optimize directly. However, we figure out
that we can add a second variable 8, such that

Z Inp(x;, 62|61) (Function 2)

i=1

is easier to work with. We’ll make this clearer later.

» Notice in this second case that 6, is on the left side of the conditioning
bar. This implies a prior on #,, (whatever “6,” turns out to be).

» We will next discuss a fundamental technique called the EM algorithm
for finding 6 \,. by using Function 2 instead.



EXPECTATION-MAXIMIZATION
ALGORITHM



A MOTIVATING EXAMPLE

Let x; € RY, be a vector with missing data. Split this vector into two parts:
1. x{ — observed portion (the sub-vector of x; that is measured)
2. x" — missing portion (the sub-vector of x; that is still unknown)

3. The missing dimensions can be different for different x;.

We assume that x; "¢ N (w4, 23), and want to solve
n
Fis 2, = AT IE?EX Z;lnp(xﬂ% ).
i=

This is tricky. However, if we knew x}" (and therefore x;), then

m

s Toa, = arg max Z;IHP(X?,& |1, 3)
= = p(xil, D)

is very easy to optimize (we just did it on a previous slide).



CONNECTING TO A MORE GENERAL SETUP
We will discuss a method for optimizing Y _;_, Inp(x?|x, X) and imputing its
missing values {x}",...,x7}. This is a very general technique.

General setup

Imagine we have two parameter sets 6}, 6,, where
p(x|0)) = /p(x, 6,10) db, (marginal distribution)
Example: For the previous example we can show that
Pl ) = [ Pl D) e = Nt ),

where ;17 and X¢ are the sub-vector/sub-matrix of 1 and X defined by x{.



THE EM OBJECTIVE FUNCTION

We need to define a general objective function that gives us what we want:

1. It lets us optimize the marginal p(x|6;) over 6y,

2. Ttuses p(x, 62|60, ) in doing so purely for computational convenience.

The EM objective function
Before picking it apart, we claim that this objective function is

-~ np()@ 62101) R q(02)
lnp(x\Ql) —/q(92)1 7q(92) do, + /C](Qz)] p7(92|x,91)d92

Some immediate comments:
> ¢(6,) is any probability distribution (assumed continuous for now)

» We assume we know p(6,|x, 8;). That is, given the data x and fixed
values for 6, we can solve the conditional posterior distribution of 6.



DERIVING THE EM OBJECTIVE FUNCTION

Let’s show that this equality is actually true

. ol 6al6)
np(elt) = [ a1 N

_ D 0l01)g(62)
- e i

Remember some rules of probability:

6](92)
do, + / 0,)In —————~—— db
: 4(02) p(6a]x,61) ?

p(a,blc)
plalb,c)’

pla,ble) = plalb,)p(ble) = p(ble) =
Letting a = 61, b = x and ¢ = 6, we conclude
inp(altr) = [ a(6s) np(xi6r) db

In p(x|61)



THE EM OBJECTIVE FUNCTION

The EM objective function splits our desired objective into two terms:

p(x,02|61) / q(62)
Inp(x|0 :/ 0r)In————=db, + ) In ————
p(x[61) q(6>) a0 q(6>) O, 07) 2%
A function only of 0, we’ll call it £ Kullback-Leibler divergence

Some more observations about the right hand side:

1. The KL diverence is always > 0 and only = 0 when g = p.

2. We are assuming that the integral in £ can be calculated, leaving a
function only of ; (for a particular setting of the distribution g).



BIGGER PICTURE

Q: What does it mean to iteratively optimize In p(x|0;) w.r.t. 6,?

A: One way to think about it is that we want a method for generating:
1. A sequence of values for 6 such that 1np(x|9§l)) > 1np(x|6§l_l)).

2. We want 9@ to converge to a local maximum of In p(x|6;).

It doesn’t matter how we generate the sequence 051), 952), 953), .

We will show how EM generates #1 and just mention that EM satisfies #2.



THE EM ALGORITHM

The EM objective function

p(x,02]6,) / q(62)
Inp(x|0 :/ 02) In —————=db) + 02)In —————db
p( | 1) C]( 2) q(92) 2 q( 2) p(92|X,91) 2
define this to be L£(x, 6) Kullback-Leibler divergence

Definition: The EM algorithm

Given the value Gft), find the value 05’“) as follows:

E-step: Set ¢,(6,) = p(6,|x, GY)) and calculate

£ye00) = [ a0 inp(r, 00 dts — [ (62)ing,(63) .

can ignore this term

M-step: Set 6" = argmaxg, £, (x,0).



PROOF OF MONOTONIC IMPROVEMENT

Once we’re comfortable with the moving parts, the proof that the sequence

9?) monotonically improves In p(x|6;) just requires analysis:

Inp(x|6\")

IN

IN

£(,6{") + KL (q(62) | p(6a]1,6,"))

= 0 by setting ¢ = p

Ly, (x, HY)) + E-step
L, (x, HYH)) < M-step

£ (6,007 + KL (9/(62) | p(0:l, 6{))

> 0 because g#p
£05,00*Y) + KL (q(02) | p(02br1, 01))

Inp(x|6i™"")



ONE ITERATION OF EM

Start: Current setting of 8, and ¢(6,)

KL(allp) Inp(X|61)

!

L(X161)

Some arbitrary point < 0

For reference:

Inp(x|6:)) = L+ KL

_ p(x,62001)

L = /q(ﬁz)ln 4(02) do
_ ()

KL = /q(@z)l p7(92|x7 91) d@z



ONE ITERATION OF EM

E-step: Set ¢(0,) = p(62]x, ;) and update L.

For reference:

KL(qllp) =0
I Inp(x|6:)) = L+ KL
L(X]61) Inp(X|61) _ p(x, 62(61)
1 1 L /q(@z)ln q(6’2) dez
——-q-- _ g0
KL = /q(@z)l p(92|x7 91) d@z

Some arbitrary point < 0



ONE ITERATION OF EM

M-step: Maximize £ wrt 6,. Now g # p.

}KL(qllp)

T I For reference:

oy Inp(xl6) = £
L(X|6YP) Inp(X|0YP) np(x|6:) + KL

p(x,02/61)
q(62)

q(62)
/q(@z)ln p(02|x7 091) d@z

L = / q(@z) In d92

KL

Some arbitrary point < 0



EM FOR MISSING DATA



THE PROBLEM

- “.. ._E:.l..-a -'.
-:r.- o -t

We have a data matrix with missing entries. We model the columns as

iid
i~ N(u, X).
Our goal could be to
1. Learn i and ¥ using maximum likelihood
2. Fill in the missing values “intelligently” (e.g., using a model)
3. Both

We will see how to achieve both of these goals using the EM algorithm.



EM FOR SINGLE GAUSSIAN MODEL WITH MISSING DATA

The original, generic EM objective is

_ plx.02161) (LA
Inp(x|6;) _/q(ﬁz)l 4(62) do, + /9(92)1 (Ol 01) do,

The EM objective for this specific problem and notation is

> Inp(¥|p,E) = Z/ 0 |’; )dx;" +
i=1
(")
Z/ x’"\xmu, )dx?n

We can calculate everything required to do this.



E-STEP (PART ONE)

Set g(x") = p(x!'|x?, u, ) using current g, 3
Let x{ and x" represent the observed and missing dimensions of x;. For
notational convenience, think

TR BT T
=[G (][5 S ])

~

Then we can show that p(x"|x?, 1, 3) = N(fi;, i), where
//I/i — M;n + E;no(g;)o)—l(x? _ M?)7 ii — Zgnm _ z;no(zgm)—lzym-

It doesn’t look nice, but these are just functions of sub-vectors of 1z and
sub-matrices of X using the relevant dimensions defined by x;.



E-STEP (PART TWO)

E-step: E, (e [In p(?, ]2, X))
For each i we will need to calculate the following term,
B[ — "= s — )] = Elrace{S (v — ) — )"}
= trace{X7'E,[(x — p)(xi — p)"]}

The expectation is calculated using g(x") = p(x'|x?, i, 3). So only the x"
portion of x; will be integrated.

~

To this end, recall g(x") = N(fi;, X;). We define

1. X; : A vector where we replace the missing values in x; with f;.
2. ‘7, : A matrix of 0’s, plus sub-matrix ¥3; in the missing dimensions.



M-STEP

M-step: Maximize ) ., E [Inp(x{, x/"|p, X)]

We’ll omit the derivation, but the expectation can now be solved and

m

n
Haps Sup = arg max qu[Inp(XEZx,- 1, %))
=
can be found. Recalling the ™ notation,
1 n
Hup = n Z;fi,
1=

~

NN .
S = G )@~ )+ V)
i=1

Then return to the E-step to calculate the new p(x}*|x?, fiup, Sup)-



IMPLEMENTATION DETAILS
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We need to initialize ¢ and X, for example, by setting missing values to zero
and calculating i, and X, . (We can also use random initialization.)

The EM objective function is then calculated after each update to x and X
and will look like the figure above. Stop when the change is “small.”

The output is iy, Dy, and g(x") for all missing entries.



