
COMS 4721: Machine Learning for Data Science

Lecture 21, 4/13/2017

Prof. John Paisley

Department of Electrical Engineering
& Data Science Institute

Columbia University

HIDDEN MARKOV MODELS

OVERVIEW

Motivation
We have seen how Markov models can model sequential data.

I We assumed the observation was the sequence of states.
I Instead, each state may define a distribution on observations.

Hidden Markov model
A hidden Markov model treats a sequence of data slightly differently.

I Assume a hidden (i.e., unobserved, latent) sequence of states.
I An observation is drawn from the distribution associated with its state.

s1 s2 s3 s4

Markov model

sn−1 sn sn+1

xn−1 xn xn+1

s1 s2

x1 x2

hidden Markov model

MARKOV TO HIDDEN MARKOV MODELS

Markov models
Imagine we have three possible states in R2.
The data is a sequence of these positions.

Since there are only three unique positions,
we can give an index in place of coordinates.

For example, the sequence (1, 2, 1, 3, 2, . . .)
would map to a sequence of 2-D vectors.

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

Using the notation of the figure, A is a 3× 3 transition matrix. Aij is the
probability of transitioning from state i to state j.

MARKOV TO HIDDEN MARKOV MODELS

Hidden Markov models
Now imagine the same three states, but each
time the coordinates are randomly permuted.

The state sequence is still a set of indexes,
e.g., (1, 2, 1, 3, 2, . . .) of positions in R2.

However, if µ1 is the position of state #1,
then we observe xi = µ1 + εi if si = 1.

k =1

k =2

k =3

0 0.5 1
0

0.5

1

Exactly as before, we have a state transition matrix A (in this case 3× 3).

However, the observed data is a sequence (x1, x2, x3, . . .) where each x ∈ R2

is a random perturbation of the state it’s assigned to {µ1, µ2, µ3}.

MARKOV TO HIDDEN MARKOV MODELS

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

k =1

k =2

k =3

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

A continuous hidden Markov model
This HMM is continuous because each x ∈ R2 in the sequence (x1, . . . , xT).

(left) A Markov state transition distribution for an unobserved sequence

(middle) The state-dependent distributions used to generate observations

(right) The data sequence. Colors indicate the distribution (state) used.

HIDDEN MARKOV MODELS

Definition
A hidden Markov model (HMM) consists of:

I An S× S Markov transition matrix A for transitioning between S states.
I An initial state distribution π for selecting the first state.
I A state-dependent emission distribution, Prob(xi|si = k) = p(xi|θsi).

The model generates a sequence (x1, x2, x3 . . .) by:
1. Sampling the first state s1 ∼ Discrete(π) and x1 ∼ p(x|θs1).
2. Sampling the Markov chain of states, si|{si−1 = k} ∼ Discrete(Ak,:),

followed by the observation xi|si ∼ p(x|θsi).

Continuous HMM: p(x|θs) is a continuous distribution, often Gaussian.

Discrete HMM: p(x|θs) is a discrete distribution, θs a vector of probabilities.

We focus on discrete case. Let B be a matrix, where Bk,: = θk (from above).

EXAMPLE: DISHONEST CASINO

Problem
Here is an example of a discrete hidden Markov model.

I Consider two dice, one is fair and one is unfair.

I At each roll, we either keep the current dice, or switch to the other one.

I The observation is the sequence of numbers rolled.

�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������

���� ����

���

����

The transition matrix is

A =

[
0.95 0.05

0.10 0.90

]
The emission matrix is

B =

[1
6

1
6

1
6

1
6

1
6

1
6

1
10

1
10

1
10

1
10

1
10

1
2

]
Let π = [1

2
1
2].

SOME ESTIMATION PROBLEMS

State estimation
I Given: An HMM {π,A,B} and observation sequence (x1, . . . , xT)

I Estimate: State probability for xi using “forward-backward algorithm,”

p(si = k | x1, . . . , xT , π,A,B).

State sequence

I Given: An HMM {π,A,B} and observation sequence (x1, . . . , xT)

I Estimate: Most probable state sequence using the “Viterbi algorithm,”

s1, . . . , sT = arg max
s

p(s1, . . . , sT | x1, . . . , xT , π,A,B).

Learn an HMM
I Given: An observation sequence (x1, . . . , xT)

I Estimate: HMM parameters π,A,B using maximum likelihood

πML,AML,BML = arg max
π,A,B

p(x1, . . . , xT |π,A,B)

EXAMPLES

Before we look at the details, here are examples for the dishonest casino.
I Not shown is that π,A,B were learned first in order to calculate this.
I Notice that the right plot isn’t just a rounding of the left plot.

0 50 100 150 200 250 300
0

0.5

1

roll number

p
(l
o
a
d
e
d
)

filtered

State estimation result

Gray bars: Loaded dice used

Blue: Probability p(si = loaded|x1:T , π, A, B)

0 50 100 150 200 250 300
0

0.5

1

roll number

M
A

P
 s

ta
te

 (
0
=

fa
ir
,1

=
lo

a
d
e
d
)

Viterbi

State sequence result

Gray bars: Loaded dice used

Blue: Most probable state sequence

LEARNING THE HMM

LEARNING THE HMM: THE LIKELIHOOD

We focus on the discrete HMM. To learn the HMM parameters, maximize

p(x|π,A,B) =

S∑
s1=1

· · ·
S∑

sT=1

p(x, s1, . . . , sT |π,A,B)

=

S∑
s1=1

· · ·
S∑

sT=1

T∏
i=1

p(xi | si,B) p(si | si−1, π,A)

I p(xi | si,B) = Bsi,xi ← si indexes the distribution, xi is the observation

I p(si | si−1, π,A) = Asi−1,si (or πs1)← since s1, . . . , sT is a Markov chain

LEARNING THE HMM: THE LOG LIKELIHOOD

I Maximizing p(x|π,A,B) is hard since the objective has log-sum form

ln p(x|π,A,B) = ln
S∑

s1=1

· · ·
S∑

sT=1

T∏
i=1

p(xi | si,B) p(si | si−1, π,A)

I However, if we had or learned s it would be easy (remove the sums).

I In addition, we can calculate p(s | x, π,A,B), though it’s much more
complicated than in previous models.

I Therefore, we can use the EM algorithm! The following is high-level.

LEARNING THE HMM: THE LOG LIKELIHOOD

E-step: Using q(s) = p(s | x, π,A,B), calculate

L(x, π,A,B) = Eq [ln p(x, s |π,A,B)] .

M-Step: Maximize L with respect to π,A,B.

This part is tricky since we need to take the expectation using q(s) of

ln p(x, s |π,A,B) =

T∑
i=1

S∑
k=1

1(si = k) ln Bk,xi︸ ︷︷ ︸
observations

+

S∑
k=1

1(s1 = k) lnπk︸ ︷︷ ︸
initial state

+

T∑
i=2

S∑
j=1

S∑
k=1

1(si−1 = j, si = k) ln Aj,k︸ ︷︷ ︸
Markov chain

The following is an overview to help you better navigate the books/tutorials.1

1See the classic tutorial: Rabiner, L.R. (1989). “A tutorial on hidden Markov models and
selected applications in speech recognition.” Proceedings of the IEEE 77(2), 257–285.

LEARNING THE HMM WITH EM

E-Step
Let’s define the following conditional posterior quantities:

γi(k) = the posterior probability that si = k

ξi(j, k) = the posterior probability that si−1 = j and si = k

Therefore, γi is a vector and ξi is a matrix, both varying over i.

We can calculate both of these using the “forward-backward” algorithm.
(We won’t cover it in this class, but Rabiner’s tutorial is good.)

Given these values the E-step is:

L =

S∑
k=1

γ1(k) lnπk +

T∑
i=2

S∑
j=1

S∑
k=1

ξi(j, k) ln Aj,k +

T∑
i=1

S∑
k=1

γi(k) ln Bk,xi

This gives us everything we need to update π,A,B.

LEARNING THE HMM WITH EM

M-Step
The updates for the HMM parameters are:

πk =
γ1(k)∑

j γ1(j)
, Aj,k =

∑T
i=2 ξi(j, k)∑T

i=2
∑S

l=1 ξi(j, l)
, Bk,v =

∑T
i=1 γi(k)1{xi = v}∑T

i=1 γi(k)

The updates can be understood as follows:

I Aj,k is the expected fraction of transitions j→ k when we start at j
I Numerator: Expected count of transitions j → k
I Denominator: Expected total number of transitions from j

I Bk,v is the expected fraction of data coming from state k and equal to v
I Numerator: Expected number of observations = v from state k
I Denominator: Expected total number of observations from state k

I π has interpretation similar to A

LEARNING THE HMM WITH EM

M-Step: N sequences
Usually we’ll have multiple sequences that are modeled by an HMM. In this
case, the updates for the HMM parameters with N sequences are:

πk =

∑N
n=1γ

n
1(k)∑N

n=1
∑

j γ
n
1(j)

, Aj,k =

∑N
n=1
∑Tn

i=2 ξ
n
i (j, k)∑N

n=1
∑Tn

i=2
∑S

l=1 ξ
n
i (j, l)

,

Bk,v =

∑N
n=1
∑Tn

i=1 γ
n
i (k)1{xi = v}∑N

n=1
∑Tn

i=1 γ
n
i (k)

The modifications are:
I Each sequence can be of different length, Tn

I Each sequence has its own set of γ and ξ values
I Using this we sum over the sequences, with the interpretation the same.

APPLICATION: SPEECH

RECOGNITION

APPLICATION: SPEECH RECOGNITION

Problem
Given speech in the form of an audio signal, determine the words spoken.

Method

I Words are broken down into small sound units (called phonemes). The
states in the HMM are intended to represent phonemes.

I The incoming sound signal is transformed into a sequence of vectors
(feature extraction). Each vector xi is indexed by a time step i.

I The sequence x1:T of feature vectors is the data used to learn the HMM.

PHONEME MODELS

Phoneme
A phoneme is defined as the smallest unit of sound in a language that
distinguishes between distinct meanings. English uses about 50 phonemes.

Example

Zero Z IH R OW Six S IH K S
One W AH N Seven S EH V AX N
Two T UW Eight EY T

Three TH R IY Nine N AY N
Four F OW R Oh OW
Five F AY V

PREPROCESSING SPEECH
A

m
pl

itu
de

Time

Fr
eq

ue
nc

y

Time

Feature extraction
I A speech signal is measured as amplitude over time.
I The signal is typically transformed into features by breaking down

frequency content of the signal in a sliding time-window.
I (above) Each column is the frequency content of about 50 milliseconds

(10,000+ dimensional). This can be further reduced to, e.g., 40 dims.

DATA QUANTIZATION

K-means

CODEBOOK

new signal

(2 2 6 4 4 4 5 5 ...)

quantized sequence

training set

We could work directly with the extracted features and learn a Gaussian
distribution for each state, i.e., a continuous HMM.

To transition to a discrete HMM, we can perform vector quantization using a
codebook learned by K-means.

A SPEECH RECOGNITION MODEL

These models and problems can become more complex. For now, imagine a
simple automated phone conversation using a question/answer format.

Training data: Quantized feature sequences of words, e.g., “yes,” “no”

Learn: An HMM for each word using all training sequences of that word

Predict: Let w index the word. Predict the word of a new sequence using

wnew = arg max
w

p(xnew |πw,Aw,Bw)︸ ︷︷ ︸
requires forward-backward

p(w)

Notice that this is a Bayes classifier!

I We’re learning a class-conditional discrete HMM.
I We could try something else, e.g., a GMM instead of an HMM.
I If the GMM predicts better, then use it instead. (But we anticipate that

it won’t since the HMM models sequential information.)

