COMS 4721: Machine Learning for Data Science Lecture 21, 4/13/2017

Prof. John Paisley
Department of Electrical Engineering
\& Data Science Institute
Columbia University

Hidden Markov Models

Overview

Motivation

We have seen how Markov models can model sequential data.

- We assumed the observation was the sequence of states.
- Instead, each state may define a distribution on observations.

Hidden Markov model
A hidden Markov model treats a sequence of data slightly differently.

- Assume a hidden (i.e., unobserved, latent) sequence of states.
- An observation is drawn from the distribution associated with its state.

Markov model

Markov to Hidden Markov models

Markov models

Imagine we have three possible states in \mathbb{R}^{2}. The data is a sequence of these positions.

Since there are only three unique positions, we can give an index in place of coordinates.

For example, the sequence $(1,2,1,3,2, \ldots)$ would map to a sequence of $2-\mathrm{D}$ vectors.

Using the notation of the figure, A is a 3×3 transition matrix. $A_{i j}$ is the probability of transitioning from state i to state j.

Markov to Hidden Markov models

Hidden Markov models
Now imagine the same three states, but each time the coordinates are randomly permuted.

The state sequence is still a set of indexes, e.g., $(1,2,1,3,2, \ldots)$ of positions in \mathbb{R}^{2}.

However, if μ_{1} is the position of state $\# 1$, then we observe $x_{i}=\mu_{1}+\epsilon_{i}$ if $s_{i}=1$.

Exactly as before, we have a state transition matrix A (in this case 3×3).
However, the observed data is a sequence $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ where each $x \in \mathbb{R}^{2}$ is a random perturbation of the state it's assigned to $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$.

Markov to Hidden Markov models

A continuous hidden Markov model
This HMM is continuous because each $x \in \mathbb{R}^{2}$ in the sequence $\left(x_{1}, \ldots, x_{T}\right)$.
(left) A Markov state transition distribution for an unobserved sequence
(middle) The state-dependent distributions used to generate observations (right) The data sequence. Colors indicate the distribution (state) used.

Hidden Markov Models

Definition

A hidden Markov model (HMM) consists of:

- An $S \times S$ Markov transition matrix A for transitioning between S states.
- An initial state distribution π for selecting the first state.
- A state-dependent emission distribution, $\operatorname{Prob}\left(x_{i} \mid s_{i}=k\right)=p\left(x_{i} \mid \theta_{s_{i}}\right)$.

The model generates a sequence $\left(x_{1}, x_{2}, x_{3} \ldots\right)$ by:

1. Sampling the first state $s_{1} \sim \operatorname{Discrete}(\pi)$ and $x_{1} \sim p\left(x \mid \theta_{s_{1}}\right)$.
2. Sampling the Markov chain of states, $s_{i} \mid\left\{s_{i-1}=k\right\} \sim \operatorname{Discrete}\left(A_{k,:}\right)$, followed by the observation $x_{i} \mid s_{i} \sim p\left(x \mid \theta_{s_{i}}\right)$.

Continuous HMM: $p\left(x \mid \theta_{s}\right)$ is a continuous distribution, often Gaussian.
Discrete HMM: $p\left(x \mid \theta_{s}\right)$ is a discrete distribution, θ_{s} a vector of probabilities.
We focus on discrete case. Let B be a matrix, where $B_{k,:}=\theta_{k}$ (from above).

Example: Dishonest Casino

Problem

Here is an example of a discrete hidden Markov model.

- Consider two dice, one is fair and one is unfair.
- At each roll, we either keep the current dice, or switch to the other one.
- The observation is the sequence of numbers rolled.

The transition matrix is

$$
A=\left[\begin{array}{ll}
0.95 & 0.05 \\
0.10 & 0.90
\end{array}\right]
$$

The emission matrix is

$$
B=\left[\begin{array}{cccccc}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{2}
\end{array}\right]
$$

Let $\pi=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2}\end{array}\right]$.

Some estimation problems

State estimation

- Given: An HMM $\{\pi, A, B\}$ and observation sequence $\left(x_{1}, \ldots, x_{T}\right)$
- Estimate: State probability for x_{i} using "forward-backward algorithm,"

$$
p\left(s_{i}=k \mid x_{1}, \ldots, x_{T}, \pi, A, B\right)
$$

State sequence

- Given: An HMM $\{\pi, A, B\}$ and observation sequence $\left(x_{1}, \ldots, x_{T}\right)$
- Estimate: Most probable state sequence using the "Viterbi algorithm,"

$$
s_{1}, \ldots, s_{T}=\arg \max _{s} p\left(s_{1}, \ldots, s_{T} \mid x_{1}, \ldots, x_{T}, \pi, A, B\right)
$$

Learn an HMM

- Given: An observation sequence $\left(x_{1}, \ldots, x_{T}\right)$
- Estimate: HMM parameters π, A, B using maximum likelihood

$$
\pi_{\mathrm{ML}}, A_{\mathrm{ML}}, B_{\mathrm{ML}}=\arg \max _{\pi, A, B} p\left(x_{1}, \ldots, x_{T} \mid \pi, A, B\right)
$$

EXAMPLES

Before we look at the details, here are examples for the dishonest casino.

- Not shown is that π, A, B were learned first in order to calculate this.
- Notice that the right plot isn't just a rounding of the left plot.

State estimation result

Gray bars: Loaded dice used
Blue: Probability $p\left(s_{i}=\right.$ loaded $\left.\mid x_{1: T}, \pi, A, B\right)$

State sequence result

Gray bars: Loaded dice used
Blue: Most probable state sequence

Learning the HMM

Learning the HMM: The likelihood

We focus on the discrete HMM. To learn the HMM parameters, maximize

$$
\begin{aligned}
p(x \mid \pi, A, B) & =\sum_{s_{1}=1}^{S} \cdots \sum_{s_{T}=1}^{S} p\left(x, s_{1}, \ldots, s_{T} \mid \pi, A, B\right) \\
& =\sum_{s_{1}=1}^{S} \cdots \sum_{s_{T}=1}^{S} \prod_{i=1}^{T} p\left(x_{i} \mid s_{i}, B\right) p\left(s_{i} \mid s_{i-1}, \pi, A\right)
\end{aligned}
$$

- $p\left(x_{i} \mid s_{i}, B\right)=B_{s_{i}, x_{i}} \leftarrow s_{i}$ indexes the distribution, x_{i} is the observation
- $p\left(s_{i} \mid s_{i-1}, \pi, A\right)=A_{s_{i-1}, s_{i}}\left(\right.$ or $\left.\pi_{s_{1}}\right) \leftarrow$ since s_{1}, \ldots, s_{T} is a Markov chain

Learning the HMM: The log likelihood

- Maximizing $p(x \mid \pi, A, B)$ is hard since the objective has log-sum form

$$
\ln p(x \mid \pi, A, B)=\ln \sum_{s_{1}=1}^{S} \cdots \sum_{s_{T}=1}^{S} \prod_{i=1}^{T} p\left(x_{i} \mid s_{i}, B\right) p\left(s_{i} \mid s_{i-1}, \pi, A\right)
$$

- However, if we had or learned s it would be easy (remove the sums).
- In addition, we can calculate $p(s \mid x, \pi, A, B)$, though it's much more complicated than in previous models.
- Therefore, we can use the EM algorithm! The following is high-level.

Learning the HMM: The log likelihood

E-step: Using $q(s)=p(s \mid x, \pi, A, B)$, calculate

$$
\mathcal{L}(x, \pi, A, B)=\mathbb{E}_{q}[\ln p(x, s \mid \pi, A, B)]
$$

M-Step: Maximize \mathcal{L} with respect to π, A, B.
This part is tricky since we need to take the expectation using $q(s)$ of

$$
\begin{aligned}
\ln p(x, s \mid \pi, A, B)= & \sum_{i=1}^{T} \sum_{k=1}^{S} \underbrace{\mathbb{1}\left(s_{i}=k\right) \ln B_{k, x_{i}}}_{\text {observations }}+\sum_{k=1}^{S} \underbrace{\mathbb{1}\left(s_{1}=k\right) \ln \pi_{k}}_{\text {initial state }} \\
& +\sum_{i=2}^{T} \sum_{j=1}^{S} \sum_{k=1}^{S} \underbrace{\mathbb{1}\left(s_{i-1}=j, s_{i}=k\right) \ln A_{j, k}}_{\text {Markov chain }}
\end{aligned}
$$

The following is an overview to help you better navigate the books/tutorials. ${ }^{1}$

[^0]
Learning the HMM with EM

E-Step

Let's define the following conditional posterior quantities:

$$
\begin{aligned}
\gamma_{i}(k) & =\text { the posterior probability that } s_{i}=k \\
\xi_{i}(j, k) & =\text { the posterior probability that } s_{i-1}=j \text { and } s_{i}=k
\end{aligned}
$$

Therefore, γ_{i} is a vector and ξ_{i} is a matrix, both varying over i.
We can calculate both of these using the "forward-backward" algorithm. (We won't cover it in this class, but Rabiner's tutorial is good.)

Given these values the E-step is:

$$
\mathcal{L}=\sum_{k=1}^{S} \gamma_{1}(k) \ln \pi_{k}+\sum_{i=2}^{T} \sum_{j=1}^{S} \sum_{k=1}^{S} \xi_{i}(j, k) \ln A_{j, k}+\sum_{i=1}^{T} \sum_{k=1}^{S} \gamma_{i}(k) \ln B_{k, x_{i}}
$$

This gives us everything we need to update π, A, B.

Learning the HMM with EM

M-Step

The updates for the HMM parameters are:
$\pi_{k}=\frac{\gamma_{1}(k)}{\sum_{j} \gamma_{1}(j)}, \quad A_{j, k}=\frac{\sum_{i=2}^{T} \xi_{i}(j, k)}{\sum_{i=2}^{T} \sum_{l=1}^{S} \xi_{i}(j, l)}, \quad B_{k, v}=\frac{\sum_{i=1}^{T} \gamma_{i}(k) \mathbb{1}\left\{x_{i}=v\right\}}{\sum_{i=1}^{T} \gamma_{i}(k)}$
The updates can be understood as follows:

- $A_{j, k}$ is the expected fraction of transitions $j \rightarrow k$ when we start at j
- Numerator: Expected count of transitions $j \rightarrow k$
- Denominator: Expected total number of transitions from j
- $B_{k, v}$ is the expected fraction of data coming from state k and equal to v
- Numerator: Expected number of observations $=v$ from state k
- Denominator: Expected total number of observations from state k
- π has interpretation similar to A

Learning the HMM with EM

M-Step: N sequences

Usually we'll have multiple sequences that are modeled by an HMM. In this case, the updates for the HMM parameters with N sequences are:

$$
\begin{gathered}
\pi_{k}=\frac{\sum_{n=1}^{N} \gamma_{1}^{n}(k)}{\sum_{n=1}^{N} \sum_{j} \gamma_{1}^{n}(j)}, \quad A_{j, k}=\frac{\sum_{n=1}^{N} \sum_{i=2}^{T_{n}} \xi_{i}^{n}(j, k)}{\sum_{n=1}^{N} \sum_{i=2}^{T_{n}} \sum_{l=1}^{S} \xi_{i}^{n}(j, l)}, \\
B_{k, v}=\frac{\sum_{n=1}^{N} \sum_{i=1}^{T_{n}} \gamma_{i}^{n}(k) \mathbb{1}\left\{x_{i}=v\right\}}{\sum_{n=1}^{N} \sum_{i=1}^{T_{n}} \gamma_{i}^{n}(k)}
\end{gathered}
$$

The modifications are:

- Each sequence can be of different length, T_{n}
- Each sequence has its own set of γ and ξ values
- Using this we sum over the sequences, with the interpretation the same.

Application: Speech RECOGNITION

Application: Speech Recognition

Problem

Given speech in the form of an audio signal, determine the words spoken.

Method

- Words are broken down into small sound units (called phonemes). The states in the HMM are intended to represent phonemes.
- The incoming sound signal is transformed into a sequence of vectors (feature extraction). Each vector x_{i} is indexed by a time step i.
- The sequence $x_{1: T}$ of feature vectors is the data used to learn the HMM.

Phoneme Models

Phoneme

A phoneme is defined as the smallest unit of sound in a language that distinguishes between distinct meanings. English uses about 50 phonemes.

Example

Zero	Z IH R OW	Six	S IH K S
One	W AH N	Seven	S EH V AX N
Two	T UW	Eight	EY T
Three	TH R IY	Nine	N AY N
Four	F OW R	Oh	OW
Five	F AY V		

Preprocessing Speech

Time

Feature extraction

- A speech signal is measured as amplitude over time.
- The signal is typically transformed into features by breaking down frequency content of the signal in a sliding time-window.
- (above) Each column is the frequency content of about 50 milliseconds ($10,000+$ dimensional). This can be further reduced to, e.g., 40 dims.

DATA QUANTIZATION

We could work directly with the extracted features and learn a Gaussian distribution for each state, i.e., a continuous HMM.

To transition to a discrete HMM, we can perform vector quantization using a codebook learned by K-means.

A SpEECH RECOGNITION MODEL

These models and problems can become more complex. For now, imagine a simple automated phone conversation using a question/answer format.

Training data: Quantized feature sequences of words, e.g., "yes," "no"
Learn: An HMM for each word using all training sequences of that word
Predict: Let w index the word. Predict the word of a new sequence using

$$
w_{\text {new }}=\arg \max _{w} \underbrace{p\left(x_{\text {new }} \mid \pi_{w}, A_{w}, B_{w}\right)}_{\text {requires forward-backward }} p(w)
$$

Notice that this is a Bayes classifier!

- We're learning a class-conditional discrete HMM.
- We could try something else, e.g., a GMM instead of an HMM.
- If the GMM predicts better, then use it instead. (But we anticipate that it won't since the HMM models sequential information.)

[^0]: ${ }^{1}$ See the classic tutorial: Rabiner, L.R. (1989). "A tutorial on hidden Markov models and selected applications in speech recognition." Proceedings of the IEEE 77(2), 257-285.

