COMS 4721: Machine Learning for Data Science
Lecture 21, 4/13/2017

Prof. John Paisley

Department of Electrical Engineering
& Data Science Institute

Columbia University



HIDDEN MARKOV MODELS



OVERVIEW

Motivation
We have seen how Markov models can model sequential data.
» We assumed the observation was the sequence of states.

» Instead, each state may define a distribution on observations.

Hidden Markov model
A hidden Markov model treats a sequence of data slightly differently.
» Assume a hidden (i.e., unobserved, latent) sequence of states.
» An observation is drawn from the distribution associated with its state.
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MARKOV TO HIDDEN MARKOV MODELS

Markov models
Imagine we have three possible states in R.

/}?

Az
The data is a sequence of these positions. m
Since there are only three unique positions, As2| | A2s k= D:)AH
we can give an index in place of coordinates. k= y
31
Az

For example, the sequence (1,2,1,3,2,...) O

would map to a sequence of 2-D vectors. As

Using the notation of the figure, A is a 3 x 3 transition matrix. Aj; is the
probability of transitioning from state i to state j.



MARKOV TO HIDDEN MARKOV MODELS

Hidden Markov models i

Now imagine the same three states, but each k=2
time the coordinates are randomly permuted.
The state sequence is still a set of indexes, o
e.g., (1,2,1,3,2,...) of positions in R2.

%

However, if p; is the position of state #1,

then we observe x; = ) + ¢; if s; = 1. 0 0s

Exactly as before, we have a state transition matrix A (in this case 3 x 3).

However, the observed data is a sequence (x;, X2, X3, ... ) where each x € R?
is a random perturbation of the state it’s assigned to {1, 2, 13}



MARKOV TO HIDDEN MARKOV MODELS
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A continuous hidden Markov model
This HMM is continuous because each x € R? in the sequence (x, ... ,x7).

(left) A Markov state transition distribution for an unobserved sequence
(middle) The state-dependent distributions used to generate observations

(right) The data sequence. Colors indicate the distribution (state) used.



HIDDEN MARKOV MODELS

Definition

A hidden Markov model (HMM) consists of:
» An S x S Markov transition matrix A for transitioning between § states.
» An initial state distribution 7 for selecting the first state.

» A state-dependent emission distribution, Prob(x;|s; = k) = p(x;]6s,).

The model generates a sequence (xy,x;,x3...) by:
1. Sampling the first state s; ~ Discrete(n) and x; ~ p(x|6;,).

2. Sampling the Markov chain of states, s;|{s;—1 = k} ~ Discrete(Ay,.),
followed by the observation x;|s; ~ p(x|6,).

Continuous HMM: p(x|6;) is a continuous distribution, often Gaussian.

Discrete HMM: p(x|6;) is a discrete distribution, 6, a vector of probabilities.

We focus on discrete case. Let B be a matrix, where By . = 0 (from above).



EXAMPLE: DISHONEST CASINO

Problem

Here is an example of a discrete hidden Markov model.

>

>

Consider two dice, one is fair and one is unfair.

At each roll, we either keep the current dice, or switch to the other one.

The observation is the sequence of numbers rolled.
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The transition matrix is
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SOME ESTIMATION PROBLEMS

State estimation
» Given: An HMM {r, A, B} and observation sequence (xp,. .., Xr)
» Estimate: State probability for x; using “forward-backward algorithm,”
p(si=k|x1,...,xr, 7, A, B).
State sequence

» Given: An HMM {r, A, B} and observation sequence (xp,...,Xr)

» Estimate: Most probable state sequence using the “Viterbi algorithm,”

S1y+- 5 ST = argmax p(st,...,s7|x1,...,xr,m, A, B).
Learn an HMM
» Given: An observation sequence (xi,...,xr)

» Estimate: HMM parameters 7, A, B using maximum likelihood

T, Ay, By = arg m/?)é p(xi,...,xr |7 A,B)

Tr) k)



EXAMPLES

Before we look at the details, here are examples for the dishonest casino.

» Not shown is that 7, A, B were learned first in order to calculate this.

» Notice that the right plot isn’t just a rounding of the left plot.

filtered

plloaded)
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roll number

State estimation result

Gray bars: Loaded dice used
Blue: Probability p(s; = loaded|x;.7, 7, A, B)

fair, 1=loaded)

MAP state (0

Viterbi

I
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roll number

State sequence result

Gray bars: Loaded dice used

Blue: Most probable state sequence



LLEARNING THE HMM



LEARNING THE HMM: THE LIKELIHOOD

We focus on the discrete HMM. To learn the HMM parameters, maximize

p('x|7T7AaB) p(x,sl,...,sr|7r,A,B)
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> p(x;|si, B) = By, x, < s; indexes the distribution, x; is the observation

> p(si|si1,mA) = Ay, 5, (Or Ty, ) < since sy, ..., s is a Markov chain



LEARNING THE HMM: THE LOG LIKELIHOOD

v

Maximizing p(x|m, A, B) is hard since the objective has log-sum form

s s
Inp(x|m,A,B) = In Z Z H p(x;|si,B) p(s;|si—1,m,A)

s1=1 sr=1 i=l1

~

v

However, if we had or learned s it would be easy (remove the sums).

v

In addition, we can calculate p(s | x, 7,A, B), though it’s much more
complicated than in previous models.

v

Therefore, we can use the EM algorithm! The following is high-level.



LEARNING THE HMM: THE LOG LIKELIHOOD

E-step: Using ¢(s) = p(s|x, 7, A, B), calculate
L(x,m,A,B) =E,[Inp(x,s|m,A,B)].
M-Step: Maximize £ with respect to 7, A, B.

This part is tricky since we need to take the expectation using g(s) of

T S N
Inp(x,s|m,A,B) = ZZH =k 111ka+2]1 (s1 = k) Inmy
i=1 k=1 k=1
observations initial state
T N N
+ Z Z Z ]l(S,'_l :j, Si = k) lIlAjﬁk

i=2 j=1 k=1
! J Markov chain

The following is an overview to help you better navigate the books/tutorials.'

ISee the classic tutorial: Rabiner, L.R. (1989). “A tutorial on hidden Markov models and
selected applications in speech recognition.” Proceedings of the IEEE 77(2), 257-285.



LEARNING THE HMM wiTH EM

E-Step
Let’s define the following conditional posterior quantities:
~i(k) = the posterior probability that s; = k
&(j,k) = the posterior probability thats;_; = jand s; = k

Therefore, ~; is a vector and &; is a matrix, both varying over i.

We can calculate both of these using the “forward-backward” algorithm.
(We won’t cover it in this class, but Rabiner’s tutorial is good.)

Given these values the E-step is:

s T s S T s
L= Z k) Inmy + Z Z ZE,-(/’, k)InA;, + Z Z%’(k) In By,
=1

i=2 j=1 k=1 i=1 k=1

This gives us everything we need to update 7, A, B.



LEARNING THE HMM wiTH EM

M-Step
The updates for the HMM parameters are:

7 (k) Sia&0k) k)i =}

== Ak = =7 5 T B T
' Zj () ¢ iz 21 &G 1) > iz (k)

The updates can be understood as follows:

> Aj is the expected fraction of transitions j — k when we start at j
» Numerator: Expected count of transitions j — k
» Denominator: Expected total number of transitions from j
> By, is the expected fraction of data coming from state k and equal to v
» Numerator: Expected number of observations = v from state k
» Denominator: Expected total number of observations from state k

» 7 has interpretation similar to A



LEARNING THE HMM wiTH EM

M-Step: N sequences

Usually we’ll have multiple sequences that are modeled by an HMM. In this
case, the updates for the HMM parameters with N sequences are:

_ Zﬁ:ﬂ?(k) A= ZfZIZiTsz,’»’(i»k)
DONED DIEIT) B DAND DI DI (N )

Zn 1 Zz 17 ( )]l{xi = V}
Zn 1 Zi:l 7 (k)

Bkv—

The modifications are:
» Each sequence can be of different length, T,
» Each sequence has its own set of v and £ values
» Using this we sum over the sequences, with the interpretation the same.



APPLICATION: SPEECH
RECOGNITION



APPLICATION: SPEECH RECOGNITION

Problem

Given speech in the form of an audio signal, determine the words spoken.

Method

» Words are broken down into small sound units (called phonemes). The
states in the HMM are intended to represent phonemes.

» The incoming sound signal is transformed into a sequence of vectors
(feature extraction). Each vector x; is indexed by a time step i.

» The sequence x.7 of feature vectors is the data used to learn the HMM.



PHONEME MODELS

Phoneme

A phoneme is defined as the smallest unit of sound in a language that
distinguishes between distinct meanings. English uses about 50 phonemes.

Example

Zero
One
Two
Three
Four
Five

ZIHR OW
W AHN
T UW
THRIY
FOWR
FAYV

Six
Seven
Eight
Nine

Oh

SIHK S
SEHV AXN
EYT
NAY N
ow




PREPROCESSING SPEECH
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Feature extraction
» A speech signal is measured as amplitude over time.
» The signal is typically transformed into features by breaking down
frequency content of the signal in a sliding time-window.

» (above) Each column is the frequency content of about 50 milliseconds
(10,000+ dimensional). This can be further reduced to, e.g., 40 dims.



DATA QUANTIZATION

training set
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new signal
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quantized sequence

(22644455 ...)

We could work directly with the extracted features and learn a Gaussian
distribution for each state, i.e., a continuous HMM.

To transition to a discrete HMM, we can perform vector quantization using a

codebook learned by K-means.



A SPEECH RECOGNITION MODEL

These models and problems can become more complex. For now, imagine a
simple automated phone conversation using a question/answer format.

9 < 29

Training data: Quantized feature sequences of words, e.g., “yes,” “no
Learn: An HMM for each word using all training sequences of that word
Predict: Let w index the word. Predict the word of a new sequence using

Whew = aIg II'IME}X p(xnew | 7TW7AW7 Bw)p(w)

requires forward-backward

Notice that this is a Bayes classifier!

» We’re learning a class-conditional discrete HMM.
» We could try something else, e.g., a GMM instead of an HMM.

» If the GMM predicts better, then use it instead. (But we anticipate that
it won’t since the HMM models sequential information.)



