COMS 4721: Machine Learning for Data Science Lecture 22, 4/18/2017

Prof. John Paisley
Department of Electrical Engineering
\& Data Science Institute
Columbia University

MARKOV MODELS

The sequence $\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ has the Markov property, if for all t

$$
p\left(s_{t} \mid s_{t-1}, \ldots, s_{1}\right)=p\left(s_{t} \mid s_{t-1}\right)
$$

Our first encounter with Markov models assumed a finite state space, meaning we can define an indexing such that $s \in\{1, \ldots, S\}$.

This allowed us to represent the transition probabilities in a matrix,

$$
A_{i j} \quad \Leftrightarrow \quad p\left(s_{t}=j \mid s_{t-1}=i\right)
$$

Hidden Markov models

The hidden Markov model modified this by assuming the sequence of states was a latent process (i.e., unobserved).

An observation x_{t} is associated with each s_{t}, where $x_{t} \mid s_{t} \sim p\left(x \mid \theta_{s_{t}}\right)$.
Like a mixture model, this allowed for a few distributions to generate the data. It adds an extra transition rule between distributions.

DISCRETE STATE SPACES

In both cases, the state space was discrete and relatively small in number.

- For the Markov chain, we gave an example where states correspond to positions in \mathbb{R}^{d}.
- A continuous hidden Markov model might
 perturb the latent state of the Markov chain.
- For example, each s_{i} can be modified by continuous-valued noise, $x_{i}=s_{i}+\epsilon_{i}$.
- But $s_{1: T}$ is still a discrete Markov chain.

Discrete vs continuous state spaces

Markov and hidden Markov models both assume a discrete state space.
For Markov models:

- The state could be a data point x_{i} (Markov Chain classifier)
- The state could be an object (object ranking)
- The state could be the destination of a link (internet search engines)

For hidden Markov models we can simplify complex data:

- Sequences of discrete data may come from a few discrete distributions.
- Sequences of continuous data may come from a few distributions.

What if we model the states as continuous too?

Continuous-state Markov model

Continuous Markov models extend the state space to a continuous domain. Instead of $s \in\{1, \ldots, S\}, s$ can take any value in \mathbb{R}^{d}.

Again compare:

- Discrete-state Markov models: The states live in a discrete space.
- Continuous-state Markov models: The states live in a continuous space.

The simplest example is the process

$$
s_{t}=s_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim N(0, a I) .
$$

Each successive state is a perturbed version of the current state.

Linear Gaussian Markov model

The most basic continuous-state version of the hidden Markov model is called a linear Gaussian Markov model (also called the Kalman filter).

- $s_{t} \in \mathbb{R}^{p}$ is a continuous-state latent (unobserved) Markov process
- $x_{t} \in \mathbb{R}^{d}$ is a continuous-valued observation
- The process noise $\epsilon_{t} \sim N(0, Q)$
- The measurement noise $\varepsilon_{t} \sim N(0, V)$

EXAMPLE APPLICATIONS

Difference from HMM: s_{t} and x_{t} are both from continuous distributions.
The linear Gaussian Markov model (and its variants) has many applications.

- Tracking moving objects
- Automatic control systems
- Economics and finance (e.g., stock modeling)
- etc.

Example: Tracking

We get (very) noisy measurements of an object's position in time, $x_{t} \in \mathbb{R}^{2}$.
The time-varying state vector is $s=\left[\operatorname{pos}_{1} \text { vel }_{1} \operatorname{accel}_{1} \operatorname{pos}_{2} \text { vel }_{2} \text { accel }_{2}\right]^{T}$.
Motivated by the underlying physics, we model this as:

$$
\begin{aligned}
& s_{t+1}=\underbrace{\left[\begin{array}{cccccc}
1 & \Delta t & \frac{1}{2}(\Delta t)^{2} & 0 & 0 & 0 \\
0 & 1 & \Delta t & 0 & 0 & 0 \\
0 & 0 & e^{-\alpha \Delta t} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \Delta t & \frac{1}{2}(\Delta t)^{2} \\
0 & 0 & 0 & 0 & 1 & \Delta t \\
0 & 0 & 0 & 0 & 0 & e^{-\alpha \Delta t}
\end{array}\right]}_{\equiv \mathrm{C}} s_{t}+\epsilon_{t} \\
& x_{t+1}=\underbrace{\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]}_{\equiv \mathrm{D}} s_{t+1}+\varepsilon_{t+1}
\end{aligned}
$$

Therefore, s_{t} not only approximates where the target is, but where it's going.

Example: Tracking

The Learning problem

As with the hidden Markov model, we're given the sequence $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$, where each $x \in \mathbb{R}^{d}$. The goal is to learn state sequence $\left(s_{1}, s_{2}, s_{3}, \ldots\right)$.

All distributions are Gaussian,

$$
p\left(s_{t+1}=s \mid s_{t}\right)=N\left(C s_{t}, Q\right), \quad p\left(x_{t}=x \mid s_{t}\right)=N\left(D s_{t}, V\right) .
$$

Notice that with the discrete HMM we wanted to learn π, A and B, where

- π is the initial state distribution
- A is the transition matrix among the discrete set of states
- B contains the state-dependent distributions on discrete-valued data

The situation here is very different.

The Learning problem

No "B" to learn: In the linear Gaussian Markov model, each state is unique and so the distribution on x_{t} is different for each t.

No " A " to learn: In addition, each state transition is to a brand new state, so each s_{t} has its own unique probability distribution.

What we can learn are the two posterior distributions.

1. $p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right):$ A distribution on the current state given the past.
2. $p\left(s_{t} \mid x_{1}, \ldots, x_{T}\right):$ A distribution on each latent state in the sequence

- \#1: Kalman filtering problem. We'll focus on this one today.
- \#2: Kalman smoothing problem. Requires extra step (not discussed).

The Kalman filter

Goal: Learn the sequence of distributions $p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right)$ given a sequence of data $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and the model

$$
s_{t+1}\left|s_{t} \sim N\left(C s_{t}, Q\right), \quad x_{t}\right| s_{t} \sim N\left(D s_{t}, V\right)
$$

This is the (linear) Kalman filtering problem and is often used for tracking.

Setup: We can use Bayes rule to write

$$
p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right) \propto p\left(x_{t} \mid s_{t}\right) p\left(s_{t} \mid x_{1}, \ldots x_{t-1}\right)
$$

and represent the prior as a marginal distribution

$$
p\left(s_{t} \mid x_{1}, \ldots, x_{t-1}\right)=\int p\left(s_{t} \mid s_{t-1}\right) p\left(s_{t-1} \mid x_{1}, \ldots, x_{t-1}\right) d s_{t-1}
$$

The Kalman filter

We've decomposed the problem into parts that we do and don't know (yet)

$$
p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right) \propto \underbrace{p\left(x_{t} \mid s_{t}\right)}_{N\left(D s_{t}, V\right)} \int \underbrace{p\left(s_{t} \mid s_{t-1}\right)}_{N\left(C s_{t-1}, Q\right)} \underbrace{p\left(s_{t-1} \mid x_{1}, \ldots, x_{t-1}\right)}_{?} d s_{t-1}
$$

Observations and considerations:

1. The left is the posterior on s_{t} and the right has the posterior on s_{t-1}.
2. We want the integral to be in closed form and a known distribution.
3. We want the prior and likelihood terms to lead to a known posterior.
4. We want future calculations, e.g. for s_{t+1}, to be easy.

We will see how choosing the Gaussian distribution makes this all work.

The Kalman filter: Step 1

Calculate the marginal for prior distribution
Hypothesize (temporarily) that the unknown distribution is Gaussian,

$$
p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right) \propto \underbrace{p\left(x_{t} \mid s_{t}\right)}_{N\left(D s_{t}, V\right)} \int \underbrace{p\left(s_{t} \mid s_{t-1}\right)}_{N\left(C s_{t-1}, Q\right)} \underbrace{p\left(s_{t-1} \mid x_{1}, \ldots, x_{t-1}\right)}_{N(\mu, \Sigma) \text { by hypothesis }} d s_{t-1}
$$

A property of the Gaussian is that marginals are still Gaussian,

$$
\int N\left(s_{t} \mid C s_{t-1}, Q\right) N\left(s_{t-1} \mid \mu, \Sigma\right) d s_{t-1}=N\left(s_{t} \mid C \mu, Q+C \Sigma C^{T}\right) .
$$

We know C and Q (by design) and μ and Σ (by hypothesis).

The Kalman filter: Step 2

Calculate the posterior

We plug in the marginal distribution for the prior and see that

$$
p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right) \propto N\left(x_{t} \mid D s_{t}, V\right) N\left(s_{t} \mid C \mu, Q+C \Sigma C^{T}\right) .
$$

Though the parameters look complicated, the posterior is just a Gaussian

$$
\begin{aligned}
& p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right)=N\left(s_{t} \mid \mu^{\prime}, \Sigma^{\prime}\right) \\
\Sigma^{\prime}= & {\left[\left(Q+C \Sigma C^{T}\right)^{-1}+D^{T} V^{-1} D\right]^{-1} } \\
\mu^{\prime}= & \Sigma^{\prime}\left(D^{T} V^{-1} x_{t}+\left(Q+C \Sigma C^{T}\right)^{-1} C \mu\right)
\end{aligned}
$$

We can plug the relevant values into these two equations.

Addressing the Gaussian assumption

By making the assumption of a Gaussian in the prior,

$$
p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right) \propto \underbrace{p\left(x_{t} \mid s_{t}\right)}_{N\left(x_{t} \mid D s_{t}, V\right)} \int \underbrace{p\left(s_{t} \mid s_{t-1}\right)}_{N\left(s_{t} \mid C s_{t-1}, Q\right)} \underbrace{p\left(s_{t-1} \mid x_{1}, \ldots, x_{t-1}\right)}_{N(\mu, \Sigma) \text { by hypothesis }} d s_{t-1}
$$

we found that the posterior is also Gaussian with a new mean and covariance.

- We therefore only need to define a Gaussian prior on the first state to keep things moving forward. For example,

$$
p\left(s_{0}\right) \sim N(0, I) .
$$

Once this is done, all future calculations are in closed form.

Kalman filter: One final quantity

Making predictions

We know how to update the sequence of state posterior distributions

$$
p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right)
$$

What about predicting x_{t+1} ?

$$
\begin{aligned}
p\left(x_{t+1} \mid x_{1}, \ldots, x_{t}\right) & =\int p\left(x_{t+1} \mid s_{t+1}\right) p\left(s_{t+1} \mid x_{1}, \ldots, x_{t}\right) d s_{t+1} \\
& =\int \underbrace{p\left(x_{t+1} \mid s_{t+1}\right)}_{N\left(x_{t+1} \mid D s_{t+1}, V\right)} \int \underbrace{p\left(s_{t+1} \mid s_{t}\right)}_{N\left(s_{t+1} \mid C s_{t}, Q\right)} \underbrace{p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right)}_{N\left(s_{t} \mid \mu^{\prime}, \Sigma^{\prime}\right)} d s_{t} d s_{t+1}
\end{aligned}
$$

Again, Gaussians are nice because these operations stay Gaussian.
This is a multivariate Gaussian that looks even more complicated than the previous one (omitted). Simply perform the previous integral twice.

Algorithm: Kalman filtering

The Kalman filtering algorithm can be run in real time.

0 . Set the initial state distribution $p\left(s_{0}\right)=N(0, I)$

1. Prior to observing each new $x_{t} \in \mathbb{R}^{d}$ predict

$$
x_{t} \sim N\left(\mu_{t}^{x}, \Sigma_{t}^{x}\right) \quad \text { (using previously discussed marginalization) }
$$

2. After observing each new $x_{t} \in \mathbb{R}^{d}$ update

$$
p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right)=N\left(\mu_{t}^{s}, \Sigma_{t}^{s}\right) \quad \text { (using equations on previous slide) }
$$

EXAMPLE

Learning state trajectory

Green: True trajectory
Blue: Observed trajectory
Red: State distribution

Intuitions about what this is doing:

- In the prior distribution notice that we add Q to the covariance,

$$
p\left(s_{t} \mid x_{1}, \ldots, x_{t-1}\right)=N\left(s_{t} \mid C \mu, Q+C \Sigma C^{T}\right) .
$$

This allows the state s_{t} to "drift" away from s_{t-1}.

- In the posterior $p\left(s_{t} \mid x_{1}, \ldots, x_{t}\right), x_{t}$ "pulls" the distribution away.

SOME FINAL MODEL COMPARISONS

Gaussian mixture model

- $s_{t} \sim \operatorname{Discrete}(\pi)$
- $x_{t} \mid s_{t} \sim N\left(\mu_{s_{t}}, \Sigma_{s_{t}}\right)$

Continuous hidden Markov model

- $s_{t} \mid s_{t-1} \sim \operatorname{Discrete}\left(A_{s_{t-1}}\right)$
- $x_{t} \mid s_{t} \sim N\left(\mu_{s_{t}}, \Sigma_{s_{t}}\right)$

We saw how the transition from GMM \rightarrow HMM involves using a Markov chain to index the distribution on clusters.

SOME FINAL MODEL COMPARISONS

Probabilistic PCA

- $s_{t} \sim N(0, Q)$
- $x_{t} \mid s_{t} \sim N\left(D s_{t}, V\right)$

Linear Gaussian Markov model

- $s_{t} \mid s_{t-1} \sim N\left(C s_{t-1}, Q\right)$
- $x_{t} \mid s_{t} \sim N\left(D s_{t}, V\right)$

There is a similar relationship between probabilistic PCA and the Kalman filter. (Probabilistic PCA also learns D, while the Kalman filter doesn't).

EXTENSIONS

There are a variety of extensions to this framework. The equations in the corresponding algorithms would all look familiar given our discussion.

Extended Kalman filter: Nonlinear Kalman filters use nonlinear function of the state, $h\left(s_{t}\right)$. The EKF approximates $h\left(s_{t}\right) \approx h(z)+\nabla h(z)\left(s_{t}-z\right)$

$$
s_{t+1}\left|s_{t} \sim N\left(D s_{t}, Q\right), \quad x_{t}\right| s_{t} \sim N\left(h\left(s_{t}\right), V\right) .
$$

Continuous time: Sometimes the time between observations varies. Let Δ_{t} be the time between observation x_{t} and x_{t+1}, then model

$$
s_{t+1}\left|s_{t} \sim N\left(s_{t}, \Delta_{t} Q\right), \quad x_{t}\right| s_{t} \sim N\left(D s_{t}, V\right)
$$

Adding control: In dynamic models, we can add control to the state using a vector u_{t} whose values we choose (e.g., thrusters).

$$
s_{t+1}\left|s_{t} \sim N\left(C s_{t}+G u_{t}, Q\right), \quad x_{t}\right| s_{t} \sim N\left(D s_{t}, V\right) .
$$

