Copyright (C) 2010 by Karl Sigman

1 Introduction to reducing variance in Monte Carlo simulations

1.1 Review of confidence intervals for estimating a mean

In statistics, we estimate an unknown mean $\mu=E(X)$ of a distribution by collecting n iid samples from the distribution, X_{1}, \ldots, X_{n} and using the sample mean

$$
\begin{equation*}
\bar{X}(n)=\frac{1}{n} \sum_{j=1}^{n} X_{j} . \tag{1}
\end{equation*}
$$

This is justified by the strong law of large numbers (SLLN), which asserts that this estimate converges with probability one (wp1) to the desired $\mu=E(X)$, as $n \rightarrow \infty$. But the SLLN does not tell us how good the approximation is; we consider this next.

Letting $\sigma^{2}=\operatorname{Var}(X)$ denote the variance of the distribution, we conclude that

$$
\begin{equation*}
\operatorname{Var}(\bar{X}(n))=\frac{\sigma^{2}}{n} . \tag{2}
\end{equation*}
$$

The central limit theorem asserts that as $n \rightarrow \infty$, the distribution of
$Z_{n} \stackrel{\text { def }}{=} \frac{\sqrt{n}}{\sigma}(\bar{X}(n)-\mu)$ tends to $N(0,1)$, the unit normal distribution. Letting Z denote a $N(0,1)$ rv, we conclude that for n sufficiently large,
$Z_{n} \approx Z$ in distribution. From here we obtain for any $z \geq 0$,

$$
P\left(|\bar{X}(n)-\mu|>z \frac{\sigma}{\sqrt{n}}\right) \approx P(|Z|>z)=2 P(Z>z) .
$$

(We can obtain any value of $P(Z>z)$ by referring to tables, etc.)
For any $\alpha>0$ no matter how small (such as $\alpha=0.05$), letting $z_{\alpha / 2}$ be such that $P(Z>$ $\left.z_{\alpha / 2}\right)=\alpha / 2$, we thus have

$$
P\left(|\bar{X}(n)-\mu|>z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) \approx \alpha,
$$

which implies that the unknown mean μ lies within the interval $\bar{X}(n) \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$ with (approximately) probability $1-\alpha$.

This allows us to construct confidence intervals for our estimate:
we say that the interval $\bar{X}(n) \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$ is a $100(1-\alpha) \%$ confidence interval for the mean μ.

Typically, we would use (say) $\alpha=0.05$ in which case $z_{\alpha / 2}=z_{0.025}=1.96$, and we thus obtain a 95% confidence interval $\bar{X}(n) \pm(1.96) \frac{\sigma}{\sqrt{n}}$.

The length of the confidence interval is $2(1.96) \frac{\sigma}{\sqrt{n}}$ which of course tends to 0 as the sample size n gets larger.

In practice we would not actually know the value of σ^{2}; it would be unknown (just as μ is). But this is not really a problem: we instead use an estimate for it, the sample variance $s^{2}(n)$ defined by

$$
s^{2}(n)=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{j}-\bar{X}_{n}\right)^{2} .
$$

It can be shown that $s^{2}(n) \rightarrow \sigma^{2}$, with probability 1 , as $n \rightarrow \infty$ and that $E\left(s^{2}(n)\right)=\sigma^{2}, n \geq 2$.
So, in practice we would use $s(n)$ is place of σ when constructing our confidence intervals. For example, a 95% confidence interval is given by $\bar{X}(n) \pm(1.96) \frac{s(n)}{\sqrt{n}}$.

The following recursions can be derived; they are useful when implementing a simulation requiring a confidence interval:

$$
\begin{gathered}
\bar{X}(n+1)=\bar{X}(n)+\frac{X_{n+1}-\bar{X}(n)}{n+1}, \\
S(n+1)^{2}=\left(1-\frac{1}{n}\right) S(n)^{2}+(n+1)(\bar{X}(n+1)-\bar{X}(n))^{2} .
\end{gathered}
$$

1.2 Application to Monte Carlo simulation

In Monte Carlo simulation, instead of "collecting" the iid data X_{1}, \ldots, X_{n}, we simulate it. Moreover, we can choose n as large as we want; $n=10,000$ for example, so the central limit theorem justification for constructing confidence intervals can safely be used (e.g., in statistics "out in the field" applications, one might only have $n=25$ or $n=50$ samples!). Thus we can immediately obtain confidence intervals for Monte Carlo estimates.

But simulation also allows us to be clever: We can purposely try to induce negative correlation among the variables X_{1}, \ldots, X_{n}, or generate copies that while having the same mean, have a smaller variance, so that the variance of the estimator in (1) becomes smaller than $\frac{\sigma^{2}}{n}$ resulting in a smaller confidence interval. The idea is to try to get even better estimates by reducing the uncertainty in our estimate. In the next sections, we explore ways of doing this.

1.3 Antithetic variates method

Let X_{i} denote our copies of X. Let $n=2 m$, for some $m \geq 1$, that is, n is even. Note that

$$
\begin{equation*}
\bar{X}(n)=\frac{1}{2 m} \sum_{j=1}^{2 m} X_{j}=\frac{1}{m} \sum_{j=1}^{m} Y_{j}=\bar{Y}(m), \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
Y_{1} & =\frac{X_{1}+X_{2}}{2} \\
Y_{2} & =\frac{X_{3}+X_{4}}{2} \\
& \vdots \\
Y_{m} & =\frac{X_{n-1}+X_{n}}{2},
\end{aligned}
$$

and $E\left(Y_{i}\right)=E(X)=\mu$. This means that for purpose of estimating $\mu=E(X)$, we can view each Y_{i} as the end "copy" that we wish to simulate from (instead of the X_{i}). We let $Y=\frac{X_{1}+X_{2}}{2}$ denote a generic Y_{i}. The problem of estimation can be re-cast as "we are trying to estimate $\mu=E(Y)$ ".

Computing variances,

$$
\begin{align*}
\operatorname{Var}(Y) & =(1 / 4)\left(\sigma^{2}+\sigma^{2}+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)\right) \tag{4}\\
& =(1 / 2)\left(\sigma^{2}+\operatorname{Cov}\left(X_{1}, X_{2}\right)\right), \text { hence } \tag{5}\\
\operatorname{Var}(\bar{Y}(m)) & =\frac{1}{n}\left(\sigma^{2}+\operatorname{Cov}\left(X_{1}, X_{2}\right)\right) \tag{6}\\
& \left.=\sigma^{2} / n+\operatorname{Cov}\left(X_{1}, X_{2}\right)\right) / n \tag{7}\\
& \left.=\operatorname{Var}(\bar{X}(n))+\operatorname{Cov}\left(X_{1}, X_{2}\right)\right) / n . \tag{8}
\end{align*}
$$

In the case when the X_{i} are iid, $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$ and thus $\operatorname{Var}(\bar{Y}(m))=\frac{\sigma^{2}}{n}=\operatorname{Var}(\bar{X}(n))$, and we get back to where we started in (2).

But if $\operatorname{Cov}\left(X_{1}, X_{2}\right)<0$, then $\operatorname{Var}(\bar{Y}(m))<\frac{\sigma^{2}}{n}$; variance is reduced. So it is in our interest to somehow create some negative correlation within each pair $\left(X_{1}, X_{2}\right),\left(X_{3}, X_{4}\right), \ldots$, but keep the pairs iid so that the Y_{i} are iid (and thus the CLT still applies); for then $\operatorname{Var}(\bar{Y}(m))$ will be lowered from what it would be if we simply used iid copies of the X_{i}.

To motivate how we might create the desired negative correlation, recall that we can generate an exponentially distributed rv $X_{1}=-(1 / \lambda) \ln (U)$ with U uniformly distributed on $(0,1)$. Now instead of using a new independent uniform to generate a second such copy, use $1-U$ which we well know is also uniformly distributed on $(0,1)$; that is, define $X_{2}=-(1 / \lambda) \ln (1-U)$. Clearly X_{1} and X_{2} are negatively correlated since if U increases, then $1-U$ decreases and the function $\ln (y)$ is an increasing function of $y: X_{1}$ increases iff U increases iff $1-U$ decreases iff X_{2} decreases. More generally, for any distribution $F(x)=P(X \leq x)$ with inverse $F^{-1}(y)$ we could generate a negatively correlated pair via $X_{1}=F^{-1}(U), X_{2}=F^{-1}(1-U)$ since $F^{-1}(y)$ is a monotone increasing function of y. The random variables U and $1-U$ have a correlation coefficient $\rho=-1$, they are negatively correlated (to the largest extent), thus the monotonicity preserves the property of negative correlation; $\rho_{X_{1}, X_{2}}<0$ (not necessarily -1 though).

In a general Monte Carlo simulation our X is of the form $X=h\left(U_{1}, \ldots, U_{k}\right)$, for some (perhaps very complicated) function h, and some k (perhaps large), that is, we need k iid U_{i} to generate each copy of X. For example, if we are considering $X=D_{2}$ for the FIFO GI/GI/1 queue, by using the inverse transform method for the service $\left(G^{-1}\right)$ and interarrival times $\left(A^{-1}\right)$, then we need $k=4$ because we need to generate 2 service times and 2 interarrival times; assuming $D_{0}=0$ we can write this as $D_{1}=\left(S_{0}-T_{0}\right)^{+}=\left(G^{-1}\left(U_{1}\right)-A^{-1}\left(U_{2}\right)\right)^{+}$and then $D_{2}=\left(D_{1}+S_{1}-T_{1}\right)^{+}$or

$$
D_{2}=\left[\left(G^{-1}\left(U_{1}\right)-A^{-1}\left(U_{2}\right)\right)^{+}+G^{-1}\left(U_{3}\right)-A^{-1}\left(U_{4}\right)\right]^{+} .
$$

Thus $D_{2}=h\left(U_{1}, U_{2}, U_{3}, U_{4}\right)$ where

$$
h\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left[\left(G^{-1}\left(y_{1}\right)-A^{-1}\left(y_{2}\right)\right)^{+}+G^{-1}\left(y_{3}\right)-A^{-1}\left(y_{4}\right)\right]^{+} .
$$

As long as the function h is monotone (either increasing or decreasing) in each variable, then it can be shown that $X_{1}=h\left(U_{1}, \ldots, U_{k}\right)$ and $X_{1}=h\left(1-U_{1}, \ldots, 1-U_{k}\right)$ are indeed negatively correlated, and are referred to as antithetic variates.

In general, as long as the function h is monotone (either increasing or decreasing) in each variable, then it can be shown that $X_{1}=h\left(U_{1}, \ldots, U_{k}\right)$ and $X_{2}=h\left(1-U_{1}, \ldots, 1-U_{k}\right)$ are indeed negatively correlated, and are referred to as antithetic variates. Again, because the vectors $\left(U_{1}, U_{2}, \ldots U_{k}\right)$ and ($1-U_{1}, 1-U_{2}, \ldots 1-U_{k}$) have the same distribution, so do X_{1} and X_{2}; in particular they have the same mean $E(X)$. But because of the induced
negative correlation (when h is monotone) the two are themselves negatively correlated copies. In the above example for D_{2}, this is easily established since each inverse function is monotone; $h\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ increases in y_{1} and y_{3} and decreases in y_{2} and y_{4}.

As another example, if we are considering

$$
X=C_{2}=\left(\frac{1}{2} \sum_{i=1}^{2} S_{i}-K\right)^{+},
$$

the payoff at time $T=2$ of an Asian call option under the binomial lattice model, $S_{n}=$ $S_{0} Y_{1} \cdots Y_{n}$, then re-writing

$$
\frac{1}{2} \sum_{i=1}^{2} S_{i}=(1 / 2) S_{0} Y_{1}\left[1+Y_{2}\right]
$$

where the Y_{i} are the iid up-down rvs, we have

$$
h\left(U_{1}, U_{2}\right)=\left((1 / 2) S_{0}\left(u I\left\{U_{1} \leq p\right\}+d I\left\{U_{1}>p\right\}\right)\left[1+\left(u I\left\{U_{2} \leq p\right\}+d I\left\{U_{2}>p\right\}\right)\right]-K\right)^{+} .
$$

This function is monotone decreasing in U_{1} and U_{2} : as either variable increases, they will exceed the value p and hence the indicators will tend towards the lower value d as opposed to the higher value $u>d$. Because the vectors $\left(U_{1}, U_{2}\right)$ and ($1-U_{1}, 1-U_{2}$) are identically distributed, so are the rvs $X_{1}=h\left(U_{1}, U_{2}\right)$ and $X_{2}=h\left(1-U_{1}, 1-U_{2}\right)$; in particular they have the same mean $E(X)$. But the monotonicity of h results in negative correlation between them, $\operatorname{Cov}\left(X_{1}, X_{2}\right)<0$.

We summarize (without proof):
Proposition 1.1 If the function h for generating $X=h\left(U_{1}, \ldots, U_{k}\right)$ is monotone in each variable, then $X_{1}=h\left(U_{1}, \ldots, U_{k}\right)$ and $X_{2}=h\left(1-U_{1}, \ldots, 1-U_{k}\right)$ with the U_{i} iid uniform on $(0,1)$ are in fact negatively correlated; $\operatorname{Cov}\left(X_{1}, X_{2}\right)<0$.
(Equivalently $\left.E\left(X_{1} X_{2}\right)<E\left(X_{1}\right) E\left(X_{2}\right)=E^{2}(X).\right)$
Algorithm for using antithetic variates to estimate $\mu=E(X)$, when $X=h\left(U_{1}, \ldots, U_{k}\right)$ is monotone in the U_{i} :

The method of simulating our pairs is straightforward:

1. Generate $U_{1}, \ldots U_{k}$. Construct a first pair: Set $X_{1}=h\left(U_{1}, \ldots, U_{k}\right)$ and $X_{2}=h\left(1-U_{1}, \ldots, 1-U_{k}\right)$. Define $Y_{1}=\left[X_{1}+X_{2}\right] / 2$ and note that $E\left(Y_{1}\right)=E(X)=\mu$.
2. Now independently generate k new iid uniforms to construct another pair X_{3}, X_{4} and so on pair by pair until reaching m (large) desired pairs, and m iid random variables $Y_{j}=\left[X_{2 j-1}+X_{2 j}\right] / 2,1 \leq j \leq m$. These Y_{j} have the same mean $E(X)=\mu$, but have a smaller variance because of (8).
3. Use the estimate

$$
\bar{Y}(m)=\sum_{j=1}^{m} Y_{j}
$$

where

$$
\begin{aligned}
Y_{1} & =\frac{X_{1}+X_{2}}{2} \\
Y_{2} & =\frac{X_{3}+X_{4}}{2} \\
& \vdots \\
Y_{m} & =\frac{X_{2 m-1}+X_{2 m}}{2}
\end{aligned}
$$

To construct our (new and better) confidence interval:
The sample variance for these Y_{j} is given by

$$
s^{2}(m)=\frac{1}{m-1} \sum_{j=1}^{m}\left(Y_{j}-\bar{Y}_{m}\right)^{2}
$$

Then the interval $\bar{Y}(m) \pm z_{\alpha / 2} \frac{s(m)}{\sqrt{n}}$ is a $100(1-\alpha) \%$ confidence interval for the mean μ.

Examples

1. Estimating π : As a very simple example, note that we can estimate π by observing that $\pi=$ the area of a disk of radius $1\left(\left\{(x, y): x^{2}+y^{2} \leq 1\right\}\right) ; \pi / 4=\int_{0}^{1} \sqrt{1-x^{2}} d x=$ $E\left(\sqrt{1-U^{2}}\right)$. So Monte Carlo can be used to estimate π by generating copies of $X=$ $\sqrt{1-U^{2}}$ and averaging. Since $h(x)=\sqrt{1-x^{2}}$ is monotone decreasing in x, we can use antithetic variates. Thus we would use $X_{1}=\sqrt{1-U_{1}^{2}}, X_{2}=\sqrt{1-\left(1-U_{1}\right)^{2}}$ for our first pair, $X_{3}=\sqrt{1-U_{2}^{2}}, X_{4}=\sqrt{1-\left(1-U_{2}\right)^{2}}$ and so on.
2. Customer delay in a FIFO single-server queue: As another example, consider the delay recursion for a FIFO GI/GI/1 queue:

$$
D_{n+1}=\left(D_{n}+S_{n}-T_{n}\right)^{+}, n \geq 0
$$

where $\left\{T_{n}: n \geq 0\right\}$ are iid customer interarrival times distributed as $A(x)=P(T \leq$ $x), x \geq 0$ and independently $\left\{S_{n}: n \geq 0\right\}$ are iid customer service times distributed as $G(x)=P(S \leq x), x \geq 0$. We assume here that both $A^{-1}(y)$ and $G^{-1}(y)$ are explicitly known so that the inverse transform method can be applied. Then $D_{n}=h\left(U_{1}, \ldots, U_{n}\right)$ can be written as a monotone in each variable function. For example, $D_{1}=h\left(U_{1}, U_{2}\right)=$ $\left(D_{0}+G^{-1}\left(U_{1}\right)-A^{-1}\left(U_{2}\right)\right)^{+}$, which is monotone increasing in U_{1} and monotone decreasing in U_{2}. We can then write

$$
D_{2}=\left(D_{1}+G^{-1}\left(U_{3}\right)-A^{-1}\left(U_{4}\right)\right)^{+}
$$

which is thus monotone increasing in both U_{1} and U_{3}, and monotone decreasing in U_{2} and U_{4}. This same idea extends to D_{n} for any n. Thus if we wanted to estimate (say) $E\left(D_{10}\right)$, the expected delay of the $10^{t h}$ customer (when (say) $D_{0}=0$), we could do so as follows: Generate $\left(U_{1}, \ldots U_{10}\right)$ and $\left(V_{1}, \ldots V_{10}\right)$ as iid uniforms over $(0,1)$. Construct a copy $X_{1}=D_{10}$ via using the following recursion for $0 \leq n \leq 9$:

$$
D_{n+1}=\left(D_{n}+G^{-1}\left(U_{n+1}\right)-A^{-1}\left(V_{n+1}\right)\right)^{+}
$$

Now repeat the construction using $\left(1-U_{1}, \ldots 1-U_{10}\right)$ and $\left(1-V_{1}, \ldots 1-V_{10}\right)$ to get the second (antithetic) copy $X_{2}=D_{10}$:

$$
D_{n+1}=\left(D_{n}+G^{-1}\left(1-U_{n+1}\right)-A^{-1}\left(1-V_{n+1}\right)\right)^{+} .
$$

X_{1} and X_{2} are thus negatively correlated copies of D_{10} as desired.
Remark 1.1 In a real simulation application, computing exactly $\operatorname{Cov}\left(X_{1}, X_{2}\right)$ when X_{1} and X_{2} are antithetic is never possible in general; after all, we do not even know (in general) either $E(X)$ or $\operatorname{Var}(X)$. But this is not important since our objective was only to reduce the variance, and we accomplished that.

1.4 Antithetic normal rvs

In many finance applications, the fundamental rvs needed to construct a desired output copy X are unit normals, Z_{1}, Z_{2}, \ldots. (As opposed to uniforms.) For example, when using geometric Brownian motion for asset pricing, our payoffs typically can be written in the form $X=$ $h\left(Z_{1}, \ldots, Z_{k}\right)$. Noting that $-Z$ is also a unit normal if Z is, and that the correlation coefficient between them is $\rho=-1$, the following is the Gaussian analogue to Proposition 1.1

Proposition 1.2 If the function h for generating $X=h\left(Z_{1}, \ldots, Z_{k}\right)$ is monotone in each variable, then $X_{1}=h\left(Z_{1}, \ldots, Z_{k}\right)$ and $X_{2}=h\left(-Z_{1}, \ldots,-Z_{k}\right)$ with the Z_{i} iid $N(0,1)$ are in fact negatively correlated; $\operatorname{Cov}\left(X_{1}, X_{2}\right)<0$.

