
Copyright c© 2010 by Karl Sigman

1 Introduction to reducing variance in Monte Carlo simulations

1.1 Review of confidence intervals for estimating a mean

In statistics, we estimate an unknown mean µ = E(X) of a distribution by collecting n iid
samples from the distribution, X1, . . . , Xn and using the sample mean

(1) X(n) =
1
n

n∑
j=1

Xj .

This is justified by the strong law of large numbers (SLLN), which asserts that this estimate
converges with probability one (wp1) to the desired µ = E(X), as n→∞. But the SLLN does
not tell us how good the approximation is; we consider this next.

Letting σ2 = V ar(X) denote the variance of the distribution, we conclude that

(2) V ar(X(n)) =
σ2

n
.

The central limit theorem asserts that as n→∞, the distribution of
Zn

def=
√
n
σ (X(n) − µ) tends to N(0, 1), the unit normal distribution. Letting Z denote a

N(0, 1) rv, we conclude that for n sufficiently large,
Zn ≈ Z in distribution. From here we obtain for any z ≥ 0,

P (|X(n)− µ| > z
σ√
n

) ≈ P (|Z| > z) = 2P (Z > z).

(We can obtain any value of P (Z > z) by referring to tables, etc.)
For any α > 0 no matter how small (such as α = 0.05), letting zα/2 be such that P (Z >

zα/2) = α/2, we thus have

P (|X(n)− µ| > zα/2
σ√
n

) ≈ α,

which implies that the unknown mean µ lies within the interval X(n)± zα/2 σ√
n

with (approxi-
mately) probability 1− α.

This allows us to construct confidence intervals for our estimate:

we say that the interval X(n)± zα/2 σ√
n

is a 100(1−α)% confidence interval for the
mean µ.

Typically, we would use (say) α = 0.05 in which case zα/2 = z0.025 = 1.96, and we thus
obtain a 95% confidence interval X(n)± (1.96) σ√

n
.

The length of the confidence interval is 2(1.96) σ√
n

which of course tends to 0 as the sample
size n gets larger.

In practice we would not actually know the value of σ2; it would be unknown (just as µ is).
But this is not really a problem: we instead use an estimate for it, the sample variance s2(n)
defined by

s2(n) =
1

n− 1

n∑
j=1

(Xj −Xn)2.

1

It can be shown that s2(n)→ σ2, with probability 1, as n→∞ and that E(s2(n)) = σ2, n ≥ 2.
So, in practice we would use s(n) is place of σ when constructing our confidence intervals.

For example, a 95% confidence interval is given by X(n)± (1.96) s(n)√
n

.
The following recursions can be derived; they are useful when implementing a simulation

requiring a confidence interval:

X(n+ 1) = X(n) +
Xn+1 −X(n)

n+ 1
,

S(n+ 1)2 =
(

1− 1
n

)
S(n)2 + (n+ 1)(X(n+ 1)−X(n))2.

1.2 Application to Monte Carlo simulation

In Monte Carlo simulation, instead of “collecting” the iid data X1, . . . , Xn, we simulate it.
Moreover, we can choose n as large as we want; n = 10, 000 for example, so the central limit
theorem justification for constructing confidence intervals can safely be used (e.g., in statistics
“out in the field” applications, one might only have n = 25 or n = 50 samples!). Thus we can
immediately obtain confidence intervals for Monte Carlo estimates.

But simulation also allows us to be clever: We can purposely try to induce negative cor-
relation among the variables X1, . . . , Xn, or generate copies that while having the same mean,
have a smaller variance, so that the variance of the estimator in (1) becomes smaller than σ2

n
resulting in a smaller confidence interval. The idea is to try to get even better estimates by
reducing the uncertainty in our estimate. In the next sections, we explore ways of doing this.

1.3 Antithetic variates method

Let Xi denote our copies of X. Let n = 2m, for some m ≥ 1, that is, n is even. Note that

(3) X(n) =
1

2m

2m∑
j=1

Xj =
1
m

m∑
j=1

Yj = Y (m),

where

Y1 =
X1 +X2

2

Y2 =
X3 +X4

2
...

Ym =
Xn−1 +Xn

2
,

and E(Yi) = E(X) = µ. This means that for purpose of estimating µ = E(X), we can view
each Yi as the end “copy” that we wish to simulate from (instead of the Xi). We let Y = X1+X2

2
denote a generic Yi. The problem of estimation can be re-cast as “we are trying to estimate
µ = E(Y)”.

2

Computing variances,

V ar(Y) = (1/4)(σ2 + σ2 + 2Cov(X1, X2))(4)
= (1/2)(σ2 + Cov(X1, X2)), hence(5)

V ar(Y (m)) =
1
n

(σ2 + Cov(X1, X2))(6)

= σ2/n+ Cov(X1, X2))/n(7)
= V ar(X(n)) + Cov(X1, X2))/n.(8)

In the case when the Xi are iid, Cov(X1, X2) = 0 and thus V ar(Y (m)) = σ2

n = V ar(X(n)),
and we get back to where we started in (2).

But if Cov(X1, X2) < 0, then V ar(Y (m)) < σ2

n ; variance is reduced. So it is in our interest
to somehow create some negative correlation within each pair (X1, X2), (X3, X4), . . ., but keep
the pairs iid so that the Yi are iid (and thus the CLT still applies); for then V ar(Y (m)) will be
lowered from what it would be if we simply used iid copies of the Xi.

To motivate how we might create the desired negative correlation, recall that we can generate
an exponentially distributed rv X1 = −(1/λ) ln (U) with U uniformly distributed on (0, 1). Now
instead of using a new independent uniform to generate a second such copy, use 1 − U which
we well know is also uniformly distributed on (0, 1); that is, define X2 = −(1/λ) ln (1− U).
Clearly X1 and X2 are negatively correlated since if U increases, then 1−U decreases and the
function ln(y) is an increasing function of y: X1 increases iff U increases iff 1− U decreases iff
X2 decreases. More generally, for any distribution F (x) = P (X ≤ x) with inverse F−1(y) we
could generate a negatively correlated pair via X1 = F−1(U), X2 = F−1(1− U) since F−1(y)
is a monotone increasing function of y. The random variables U and 1− U have a correlation
coefficient ρ = −1, they are negatively correlated (to the largest extent), thus the monotonicity
preserves the property of negative correlation; ρX1,X2 < 0 (not necessarily −1 though).

In a general Monte Carlo simulation our X is of the form X = h(U1, . . . , Uk), for some
(perhaps very complicated) function h, and some k (perhaps large), that is, we need k iid
Ui to generate each copy of X. For example, if we are considering X = D2 for the FIFO
GI/GI/1 queue, by using the inverse transform method for the service (G−1) and interarrival
times (A−1), then we need k = 4 because we need to generate 2 service times and 2 interarrival
times; assuming D0 = 0 we can write this as D1 = (S0 − T0)+ = (G−1(U1) − A−1(U2))+ and
then D2 = (D1 + S1 − T1)+ or

D2 =
[
(G−1(U1)−A−1(U2))+ +G−1(U3)−A−1(U4)

]+
.

Thus D2 = h(U1, U2, U3, U4) where

h(y1, y2, y3, y4) =
[
(G−1(y1)−A−1(y2))+ +G−1(y3)−A−1(y4)

]+
.

As long as the function h is monotone (either increasing or decreasing) in each variable, then
it can be shown that X1 = h(U1, . . . , Uk) and X1 = h(1−U1, . . . , 1−Uk) are indeed negatively
correlated, and are referred to as antithetic variates.

In general, as long as the function h is monotone (either increasing or decreasing) in each
variable, then it can be shown that X1 = h(U1, . . . , Uk) and X2 = h(1 − U1, . . . , 1 − Uk)
are indeed negatively correlated, and are referred to as antithetic variates. Again, because
the vectors (U1, U2, . . . Uk) and (1 − U1, 1 − U2, . . . 1 − Uk) have the same distribution, so
do X1 and X2; in particular they have the same mean E(X). But because of the induced

3

negative correlation (when h is monotone) the two are themselves negatively correlated copies.
In the above example for D2, this is easily established since each inverse function is monotone;
h(y1, y2, y3, y4) increases in y1 and y3 and decreases in y2 and y4.

As another example, if we are considering

X = C2 = (
1
2

2∑
i=1

Si −K)+,

the payoff at time T = 2 of an Asian call option under the binomial lattice model, Sn =
S0Y1 · · ·Yn, then re-writing

1
2

2∑
i=1

Si = (1/2)S0Y1[1 + Y2],

where the Yi are the iid up-down rvs, we have

h(U1, U2) =
(

(1/2)S0(uI{U1 ≤ p}+ dI{U1 > p})[1 + (uI{U2 ≤ p}+ dI{U2 > p})]−K
)+
.

This function is monotone decreasing in U1 and U2 : as either variable increases, they will
exceed the value p and hence the indicators will tend towards the lower value d as opposed
to the higher value u > d. Because the vectors (U1, U2) and (1 − U1, 1 − U2) are identically
distributed, so are the rvs X1 = h(U1, U2) and X2 = h(1− U1, 1− U2); in particular they have
the same mean E(X). But the monotonicity of h results in negative correlation between them,
Cov(X1, X2) < 0.

We summarize (without proof):

Proposition 1.1 If the function h for generating X = h(U1, . . . , Uk) is monotone in each
variable, then X1 = h(U1, . . . , Uk) and X2 = h(1 − U1, . . . , 1 − Uk) with the Ui iid uniform on
(0, 1) are in fact negatively correlated; Cov(X1, X2) < 0.

(Equivalently E(X1X2) < E(X1)E(X2) = E2(X).)

Algorithm for using antithetic variates to estimate µ = E(X), when X = h(U1, . . . , Uk) is
monotone in the Ui:

The method of simulating our pairs is straightforward:

1. Generate U1, . . . Uk. Construct a first pair: Set X1 = h(U1, . . . , Uk) and
X2 = h(1− U1, . . . , 1− Uk). Define Y1 = [X1 +X2]/2 and note that E(Y1) = E(X) = µ.

2. Now independently generate k new iid uniforms to construct another pair X3, X4 and
so on pair by pair until reaching m (large) desired pairs, and m iid random variables
Yj = [X2j−1 +X2j]/2, 1 ≤ j ≤ m. These Yj have the same mean E(X) = µ, but have a
smaller variance because of (8).

3. Use the estimate

Y (m) =
m∑
j=1

Yj ,

4

where

Y1 =
X1 +X2

2

Y2 =
X3 +X4

2
...

Ym =
X2m−1 +X2m

2
.

To construct our (new and better) confidence interval:

The sample variance for these Yj is given by

s2(m) =
1

m− 1

m∑
j=1

(Yj − Y m)2.

Then the interval Y (m)± zα/2
s(m)√
n

is a 100(1− α)% confidence interval for the mean µ.

Examples

1. Estimating π: As a very simple example, note that we can estimate π by observing that
π = the area of a disk of radius 1 ({(x, y) : x2 + y2 ≤ 1}); π/4 =

∫ 1
0

√
1− x2dx =

E(
√

1− U2). So Monte Carlo can be used to estimate π by generating copies of X =√
1− U2 and averaging. Since h(x) =

√
1− x2 is monotone decreasing in x, we can use

antithetic variates. Thus we would use X1 =
√

1− U2
1 , X2 =

√
1− (1− U1)2 for our

first pair, X3 =
√

1− U2
2 , X4 =

√
1− (1− U2)2 and so on.

2. Customer delay in a FIFO single-server queue: As another example, consider the delay
recursion for a FIFO GI/GI/1 queue:

Dn+1 = (Dn + Sn − Tn)+, n ≥ 0,

where {Tn : n ≥ 0} are iid customer interarrival times distributed as A(x) = P (T ≤
x), x ≥ 0 and independently {Sn : n ≥ 0} are iid customer service times distributed as
G(x) = P (S ≤ x), x ≥ 0. We assume here that both A−1(y) and G−1(y) are explicitly
known so that the inverse transform method can be applied. Then Dn = h(U1, . . . , Un)
can be written as a monotone in each variable function. For example, D1 = h(U1, U2) =
(D0+G−1(U1)−A−1(U2))+, which is monotone increasing in U1 and monotone decreasing
in U2. We can then write

D2 = (D1 +G−1(U3)−A−1(U4))+,

which is thus monotone increasing in both U1 and U3, and monotone decreasing in U2

and U4. This same idea extends to Dn for any n. Thus if we wanted to estimate (say)
E(D10), the expected delay of the 10th customer (when (say) D0 = 0), we could do so
as follows: Generate (U1, . . . U10) and (V1, . . . V10) as iid uniforms over (0, 1). Construct a
copy X1 = D10 via using the following recursion for 0 ≤ n ≤ 9:

Dn+1 = (Dn +G−1(Un+1)−A−1(Vn+1))+.

5

Now repeat the construction using (1−U1, . . . 1−U10) and (1−V1, . . . 1−V10) to get the
second (antithetic) copy X2 = D10:

Dn+1 = (Dn +G−1(1− Un+1)−A−1(1− Vn+1))+.

X1 and X2 are thus negatively correlated copies of D10 as desired.

Remark 1.1 In a real simulation application, computing exactly Cov(X1, X2) when X1 and
X2 are antithetic is never possible in general; after all, we do not even know (in general) either
E(X) or V ar(X). But this is not important since our objective was only to reduce the variance,
and we accomplished that.

1.4 Antithetic normal rvs

In many finance applications, the fundamental rvs needed to construct a desired output copy
X are unit normals, Z1, Z2, (As opposed to uniforms.) For example, when using geometric
Brownian motion for asset pricing, our payoffs typically can be written in the form X =
h(Z1, . . . , Zk). Noting that −Z is also a unit normal if Z is, and that the correlation coefficient
between them is ρ = −1, the following is the Gaussian analogue to Proposition 1.1

Proposition 1.2 If the function h for generating X = h(Z1, . . . , Zk) is monotone in each
variable, then X1 = h(Z1, . . . , Zk) and X2 = h(−Z1, . . . ,−Zk) with the Zi iid N(0, 1) are in
fact negatively correlated; Cov(X1, X2) < 0.

6

