
Copyright c© 2013 by Karl Sigman

1 Simulating Markov chains

Many stochastic processes used for the modeling of systems in engineering are Markovian, and
this makes it relatively easy to simulate from them. Recall, for example, the Binomial Lattice
Model for risky assets (stock), or the FIFO delay sequence for the GI/GI/1 queue; those are
Markov chains.

Here we present a brief introduction to the simulation of Markov chains in general. Our
emphasis is on discrete-state chains both in discrete and continuous time, but some examples
with a general state space will be discussed too.

1.1 Definition of a Markov chain

We shall assume that the state space S of our Markov chain is S = ZZ = {. . . ,−2,−1, 0, 1, 2, . . .},
the integers, or a proper subset of the integers. Typical examples are S = IN = {0, 1, 2 . . .},
the non-negative integers, or S = {0, 1, 2 . . . , a}, or S = {−b, . . . , 0, 1, 2 . . . , a} for some integers
a, b > 0, in which case the state space is finite.

Definition 1.1 A stochastic process {Xn : n ≥ 0} is called a Markov chain if for all times
n ≥ 0 and all states i0, . . . , i, j ∈ S,

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i)(1)
= Pij .

Pij denotes the probability that the chain, whenever in state i, moves next (one unit of time
later) into state j, and is referred to as a one-step transition probability. The square matrix
P = (Pij), i, j ∈ S, is called the one-step transition matrix, and since when leaving state i the
chain must move to one of the states j ∈ S, each row sums to one (e.g., forms a probability
distribution): For each i ∑

j∈S
Pij = 1.

We are assuming that the transition probabilities do not depend on the time n, and so, in
particular, using n = 0 in (1) yields

Pij = P (X1 = j|X0 = i).

(Formally we are considering only time homogenous MC’s meaning that their transition prob-
abilities are time-homogenous (time stationary).)

The defining property (1) can be described in words as the future is independent of the past
given the present state. Letting n be the present time, the future after time n is {Xn+1, Xn+2, . . .},
the present state is Xn, and the past is {X0, . . . , Xn−1}. If the value Xn = i is known, then the
future evolution of the chain only depends (at most) on i, in that it is stochastically independent
of the past values Xn−1, . . . , X0.

Markov Property:

Conditional on the rv Xn, the future sequence of rvs {Xn+1, Xn+2, . . .} is indepen-
dent of the past sequence of rvs {X0, . . . , Xn−1}.

1

The defining Markov property above does not require that the state space be discrete, and
in general such a process possessing the Markov property is called a Markov chain or Markov
process.

Remark 1.1 A Markov chain with non-stationary transition probabilities is allowed to have
a different transition matrix Pn, for each time n. This means that given the present state Xn

and the present time n, the future only depends (at most) on (n,Xn) and is independent of the
past.

Simulation of a two-state Markov chain

The general method of Markov chain simulation is easily learned by first looking at the simplest
case, that of a two-state chain. So consider a Markov chain {Xn : n ≥ 0} with only two states,
S = {0, 1}, and transition matrix

P =
(

0.30 0.70
0.50 0.50

)
.

Suppose that X0 = 0, and we wish to simulate X1. We only need to generate a rv X distributed
as the first row of P, P (X = 0) = P0,0 = 0.30, P (X = 1) = P0,1 = 0.70, and set X1 = X. To
generate such an X we use the discrete inverse transform method: Generate U . Set X = 0, if
U ≤ 0.30; set X = 1, if U > 0.30. Now that we have X1, we can simulate X2 as follows: If
X1 = 0, then independently generate X just as before, P (X = 0) = 0.30, P (X = 1) = 0.70,
and set X2 = X; otherwise if X = 1, independently generate X according to the second row of
P, P (X = 0) = P1,0 = 0.50, P (X = 1) = P1,1 = 0.50, and set X2 = X. In general, once we
have simulated Xn, we simulate Xn+1 as follows: If Xn = i, then (independently), generate X
as P (X = 0) = Pi,0, P (X = 1) = Pi,1 via set X = 0, if U ≤ Pi,0; set X = 1, if U > Pi,0 and set
Xn+1 = X.

In the end we see that to sequentially simulate the first n steps, X1, . . . , Xn, we only need
n iid uniforms U1, . . . Un.

General algorithm

For a Markov chain with transition matrix P = (Pij), i, j ∈ S, let Yi denote a rv distributed
as the ith row of the matrix, that is,

(2) P (Yi = j) = Pi,j , j ∈ S.

Let us assume we use inversion to generate such a Yi. For example, if S = {0, 1, 2, . . .}, then
we generate Yi via generating a U and setting

1. Yi = 0, if U ≤ Pi,0;

2. Yi = j, if
j−1∑
k=0

Pi,k < U ≤
j∑

k=0

Pi,k, j ≥ 1.

In the following algorithm, whenever we say “generate a Yi”, we mean doing so using this
inverse transform method using an independent uniform.

2

Algorithm for simulating a Markov chain up to the first N steps:

1. Choose an initial value, X0 = i. Set n = 1

2. Generate Yi, and set X1 = Yi.

3. If n < N , then set i = Xn, generate Yi, set n = n+ 1 and set Xn = Yi; otherwise output
(X1, . . . , XN) and stop.

4. Go back to 3.

Examples of Markov chains

1. Random walk: Let {∆n : n ≥ 1} denote any iid sequence (called the increments), and
define

(3) Xn
def= ∆1 + · · ·+ ∆n, X0 = 0.

The Markov property follows since Xn+1 = Xn + ∆n+1, n ≥ 0 which asserts that the
future, given the present state, only depends on the present state Xn and an independent
(of the past) r.v. ∆n+1. Such a chain is easily simulated by sequentially generating the
increments and using the recursion Xn+1 = Xn + ∆n+1.
When P (∆ = 1) = p, P (∆ = −1) = 1−p, then the random walk is called a simple random
walk. When p = 1/2 the process is called the simple symetric random walk. Since the
chain can only go up or down by 1 at each step, we see that Pi,i+1 = p, Pi,i−1 = 1− p and
all other transition probabilities are zero.
More generally, if the increment distribution is discrete with probability mass function
P (∆ = j) = q(j), j ∈ ZZ, then Pi,j = P (∆ = j − i) = q(j − i).
Requiring that X0 = 0 is not necessary, we can start with any deterministic state X0 = i
in which case the process is called a random walk started from state i, and is constructed
via Xn = i+ ∆1 + · · ·+ ∆n, n ≥ 1.
Random walks are fundamental building blocks for many stochastic processes and they
even lead to the construction of Brownian motion, as a limit as the step size gets smaller
and smaller in time while the number of steps gets larger and larger.

2. State-dependent random walk:
Instead of iid increments, suppose that whenever Rn = i ∈ ZZ, then the increment distribu-
tion is a discrete distribution on the integers, that depends on the state i, with probability
mass function qi(j), j ∈ ZZ. This means that if Rn = i, then Rn+1 = i+j with probability
qi(j) and so Pi,j = P (Rn+1 = j | Rn = i) = qi(j − i).

3. Reflected random walk: In this case, the random walk is not allowed to become negative:

(4) Xn+1 = (Xn + ∆n)+, n ≥ 0,

where x+ = max{0, x} denotes the positive part of x. We assume that the ∆n are iid with
distribution F (x) = P (∆ ≤ x), x ∈ R. If F is a discrete distribution with probability
mass function q(i) = P (∆ = i), i ∈ ZZ, then we can compute the transition probabilities
as follows: the state space is S = IN = {0, 1, 2 . . .}, and Pi,j = P (X1 = j | X0 = i) =
P ((i+ ∆)+ = j)).

3

When j > 0 the transitions are the same as for a regular (non-reflected) random walk:
Pi,j = P ((i+ ∆)+ = j))
= P (i+ ∆ = j)
= P (∆ = j − i) = q(j − i).
Otherwise, j = 0: Pi,0 = P ((i+ ∆)+ = 0))
= P (i+ ∆ ≤ 0)
= P (∆ ≤ −i) =

∑
k≤−i q(k) = F (−i).

A special case of this example is FIFO customer delay {Dn} for a GI/GI/1 queue, in
which case (4) takes the form

Dn+1 = (Dn + Sn − Tn)+, n ≥ 0,

where Sn denotes the service of the nth customer, and Tn = tn+1 − tn denotes the inter-
arrival time between customers n and n+ 1. Dn then denotes the length of time that the
nth customer waits in the line (queue) before entering service. It is assumed that both
{Sn} and {Tn} are iid sequences independent of one another. ∆n = Sn − Tn then forms
an iid sequence.

1.2 Markov chains as recursions

Let f(x, v) be a real-valued function of two variables and let {Vn : n ≥ 0} be an iid sequence of
random variables. We let V denote a typical such random variable.

Then the recursion
Xn+1 = f(Xn, Vn), n ≥ 0,

defines a Markov chain. (We of course must specify X0, making sure it is chosen independent
of the sequence {Vn : n ≥ 0}.)

That this is so is immediate almost by definition: Given Xn = x, Xn+1 = f(x, Vn) only
depends on x and some completely independent (of the past) random variable Vn; hence the
Markov property holds.

Recursions make it very easy to simulate from: choose an initial value, X0, then
sequentially generate a Vn and set Xn+1 = f(Xn, Vn). We only need to be able to
generate the iid Vn.

In the discrete state case, the transition probabilities from a recursively defined MC are
determined via Pij = P (f(i, V) = j).

Proposition 1.1 Every Markov chain can in fact be represented in the form of a recursion

Xn+1 = f(Xn, Vn), n ≥ 0,

for some function f = f(x, v) and an iid sequence {Vn}. In fact {Vn} can be chosen as an iid
sequence of uniforms on (0, 1), {Un}.

In the case when the chain is discrete-valued, with transition matrix P = (Pij) the proof is
a consequence of the inverse transform method and our general algorithm above for simulating
a Markov chain: Letting Fi denote the cdf of the ith row of the transition matrix and F−1

i (y) =
inf{x : F (x) ≥ y} its generalized inverse function, define f(i, u) = F−1

i (u), i ∈ ZZ, u ∈ (0, 1);
we have our desired f . The point is that if we want to generate a rv Yi distributed as the ith
row of P , we can do so by setting Yi = f(i, U) = F−1

i (U).

4

1.2.1 Recursive Examples

Here we illustrate Proposition 1.1 with some examples.

1. Random walk: The random walk with iid increments {∆n : n ≥ 1}, defined in (3) was
already seen to be in recusive form, Xn+1 = Xn + ∆n+1. Letting Vn = ∆n+1, n ≥ 0,
f(x, v) = x+ v is the desired function. Thus Pij = P (i+ ∆ = j) = P (∆ = j − i).
Letting F−1 denote the generalized inverse of F (x) = P (∆ ≤ x), allows us to use uniforms
and obtain the recursion Xn+1 = Xn + F−1(Un); f(x, u) = x+ F−1(u).

2. Binomial lattice model (BLM): Sn = S0Y1 × · · · × Yn, where the Yi are iid distributed as
P (Y = u) = p, P (Y = d) = 1− p, where 0 < d < 1 + r < u, with r the risk-free interest
rate. In recursive form, Sn+1 = SnYn+1, which letting Vn = Yn+1 leads to the recursion,
Sn+1 = SnVn, and f(x, v) = xv.
Here the state space depends on the initial state S0 and is given by the lattice of points,

S = {S0u
kdm : k ≥ 0, m ≥ 0}.

Since Y can be generated via Y = uI{U ≤ p} + dI{U > p}, we can write the recursion
using uniforms with the function f(x, u) = x[uI{u ≤ p}+ dI{u > p}].

3. Max and Min of iid sequences: For {Yn : n ≥ 0} any iid sequence, bothMn = max{Y0, . . . , Yn}
and mn = min{Y0, . . . , Yn} are Markov chains: Vn = Yn+1 and f(x, v) = max(x, v),
f(x, v) = min(x, v) respectively yields the desired recursive representation.

We now compute the transition probabilities for Mn above. Suppose that j > i. Then Pij =
P (Mn+1 = j|Mn = i) = P (max(i, Yn+1) = j) = P (Y = j), (where Y denotes a typical Yn).
Note that if j < i, then P (Mn+1 = j|Mn = i) = 0 since the maximum can never decrease in
value.

Finally, if j = i, then P (Mn+1 = i|Mn = i) = P (Y ≤ i); the maximum remains constant at
its current value i if the next Y value is less than or equal to i. A similar analysis yields the
transition probabilities for mn.

1.3 Markov chains in continuous time

Consider a discrete-time discrete space Markov chain, but suppose now that whenever it enters
state i ∈ S, independent of the past, the length of time spent in state i is a continuous,
strictly positive random variable Hi called the holding time in state i, which we assume has
an exponential distribution at rate ai. When the holding time ends, the process then makes a
transition into state j according to transition probability Pij , independent of the past, and so
on. Pii > 0 is allowed, meaning that a transition back into state i from state i can ocurr. Each
time this happens though, a new Hi, independent of the past, determines the new length of
time spent in state i. Letting X(t) denote the state at time t, we end up with a continuous-time
stochastic process {X(t) : t ≥ 0} with state space S that has piecewise constant sample paths.
It is easily deduced (because of the memoryless property of the exponential distribution) that
this process satisfies the Markov property, the future, {X(s+t) : t ≥ 0}, given the present state,
X(s), is independent of the past, {X(u) : 0 ≤ u < s}.

The formal definition is given by

Definition 1.2 A stochastic process {X(t) : t ≥ 0} is called a continuous-time Markov chain
(CTMC) if for all t ≥ 0, s ≥ 0, i ∈ S, j ∈ S,

P (X(s+ t) = j|X(s) = i, {X(u) : 0 ≤ u < s}) = P (X(s+ t) = j|X(s) = i) = Pij(t).

5

Pij(t) represents the probability that the chain will be in state j, t time units from now,
given it is in state i now.

Letting Xn denote the state right after the nth transition, yields the underlying discrete-
time Markov chain, called the embedded Markov chain; it moves according to a transition matrix
P = (Pij).

Thus a CTMC can simply be described by a transition matrix P = (Pij), describing how the
chain changes state step-by-step at transition epochs, together with a set of rates {ai : i ∈ S},
the holding time rates. Each time state i is visited, the chain spends, on average, E(Hi) = 1/ai

units of time there before moving on.
One of the simplest cases of a CTMC that we aleady have learned to simulate from is a

Poisson counting process at rate λ, a non-negative process, in which case ai = λ, i ≥ 0 and
Pi,i+1 = 1, i ≥ 0.

In any case, we already know how to simulate a MC {Xn : n ≥ 0}, and we already know
how to generate exponential rvs. Putting this together yields (recall the definition of Yi in (2)):

Algorithm for simulating a continuous-time Markov chain up to time t = T :

1. Choose an initial value, X0 = i. Set n = 0 and t = t0 = 0.

2. Generate Hi ∼ exp(ai), set t = t1 = Hi.

3. If t < T , then set i = Xn, generate Yi, then set n = n + 1, i = Yi, Xn = i, and generate
Hi ∼ exp(ai) and set t = t+Hi, tn = t; otherwise set N = n and output (t1, . . . , tN) and
(X1, . . . , XN) and stop.

4. Go back to 3.

Letting N(t) = max{n : tn ≤ T} denote the number of transitions during (0, T], note that the
above algorithm generates all the values of Xn, 0 ≤ n ≤ N(T), and the corresponding times
t1, . . . , tN(T) at which the chain makes the transitions. Thus one could even graph the entire
trajectory {X(t) : 0 ≤ t ≤ T}.

1.4 Semi-Markov processes

It is easily deduced that if the holding times Hi do not have an exponential distribution, then
the resulting process {X(t) : t ≥ 0} will not in general possess the Markov property; it will
not be a CTMC. Instead it is called a semi-Markov process: It makes transitions according to
a discrete-time MC, but upon entering state i, it remains there, independent of the past, for
an amount of time Hi with a general distribution Fi. Simulating such a process is as easy as
simulating a CTMC, as long as we can easily generate from each Fi. Here is the algorithm:

Algorithm for simulating a semi-Markov process up to time t = T :

1. Choose an initial value, X0 = i. Set n = 0 and t = t0 = 0.

2. Generate Hi ∼ Fi, set t = t1 = Hi.

3. If t < T , then set i = Xn, generate Yi, then set n = n + 1, i = Yi, Xn = i, and generate
Hi ∼ Fi and set t = t + Hi, tn = t; otherwise set N = n and output (t1, . . . , tN) and
(X1, . . . , XN) and stop.

4. Go back to 3.

6

1.5 Other Markov processes

The defining Markov property the future, {X(s + t) : t ≥ 0}, given the present state, X(s),
is independent of the past, {X(u) : 0 ≤ u < s}, holds for Brownian motion (BM) because of
the stationary and independent increments: X(s + t) = X(s) + (X(t) − X(s)) and X(s) is
independent of (X(t) − X(s)) with a N(µ(t − s), σ2(t − s)) distribution. This is why it is so
easy to sequentially simulate BM at a sequence of points 0 < t1 < t2 < · · · < tk. BM is an
example of what is called a continuous-time Markov process (CTMP).

If {Xn : n ≥ 0} (or {X(t) : t ≥ 0}) is a Markov process then the process defined by
Yn = f(Xn) (or Y (t) = f(X(t))) is also a Markov process if the function f : S → R is a
bijection onto its image, that is, if it is invertible. The point is that Xn = i if and only if
f(Xn) = f(i). For example f(x) = ex is a such a function, f−1(y) = e−y. This is another way
to see that geometric BM is a Markov process too: S(t) = S0e

X(t) where {X(t) : t ≥ 0} is BM.
We previously knew it was Markovian since it satisfies the nice recursion: for any 0 ≤ s < t,
S(t) = S(s)eX(t)−X(s) = S0e

X(s) × eX(t)−X(s). This is why it is so easy to sequentially simulate
GBM at a sequence of points 0 < t1 < t2 < · · · < tk. In short, the recursive nature of Markov
processes lends itself nicely to the simulation of such processes.

Finally, a Markov process need not be one-dimensional. For example, random walks can be
defined in Rm, as can BM. Once again their recursive properties make simulations from them
easy.

1.6 Markov chain Monte Carlo simulation

Because Markov chains are relatively easy to simulate from, they can be used in very clever
ways to sample from an a priori unknown (and very complicated) distribution. The general
idea: Suppose we wish to generate a sample from a probability mass function q(i), i ∈ S.
Further suppose that we do not have an explicit formula for the q(i), we might for example
know the values ai = cq(i) where c is the normalizing constant c =

∑
i∈S ai, but computing

c is not possible a priori. Now suppose we could define a positive recurrent irreducible and
aperiodic Markov chain, {Xn : n ≥ 0} with transition matrix P such that q is the stationary
(limiting as n→∞) distribution, that is, it is the unique probability solution to π = πP, and
satisfies πi = limn→∞ P (Xn = i), i ∈ S. Then we could simulate the chain out to (a very large)
time n and use Xn as being (approximately) distributed as q: For n large, q(i) ≈ P (Xn = i).
Such methods are particularly useful when the probability mass function q is multi-dimensional,
with a complicated joint distribution structure. “Monte Carlo” simulation would arise in this
context if we needed to generate iid copies from the desired distribution q; we would simulate
the chain, out to time n, over and over again, to obtain the copies.

We will go into this method in more detail at a future time.

7

