
Copyright c© 2013 by Karl Sigman

1 Processor sharing queues

In general, if a service time S is served at constant rate r > 0, then the server spends S/r
units of time to complete the service. For many queueing disciplines, such as FIFO, a server
processes one job at a time. (And we usually keep r = 1 in our model for simplicity.) In some
applications, however, this is neither possible nor desirable; it may make more sense to allow
more than one job in service at the same time so that the server shares its resources among the
jobs. Processor sharing (PS) at a server is a discipline for which all arriving customers enter
service immediately (there is no line to wait in), but the service rate they receive is proportional
to the number of customers in service: If there are n in service then each gets served at rate
1/n. For example, if at a given time (denote this by t = 0) we find only customers 6 and 12
in service (denoted by C6 and C12) and C6 has a remaining service time of 5 and C12 has a
remaining service time of 7, then in the absence of any new arrivals, C6 will complete service
at time 10 since at rate 1/2 that is how long it takes to serve those 5 remaining units. At that
point C12 (also having completed 5 units of its remaining 7) would have a remaining service
time of 2, be in service alone, and so in the absence of any new arrivals would complete service
2 units of time later at time 12.

What complicates matters, however, is that there may be new arrivals when C6 and C12 are
in service causing the number in system to increase, thus slowing things down even more and so
on. A typical customer, during their sojourn, shares the server with a randomly changing over
time number of others, and thus their sojourn time is complicated to predict in advance. But
small service times will get out quickly, which is one advantage of using PS. Under FIFO, for
example, a small service time might have to wait behind very large ones, causing a huge delay
for this small job and also keeping the queue level high. Web servers are a good example where
PS makes sense; there tends to be great variability in service times (amount of time needed to
service a web link request(s)), some jobs are small, some large. Moreover, the architecture of
web servers makes it natural to share its processor, unlike a post office clerk (say), or a ATM
machine which naturally work on jobs one-at-a-time.

1.1 GI/GI/1 PS

We will consider a GI/GI/1 PS single-server queue with iid service times S distributed as
G(x) = P (S ≤ x), and iid interarrival times I distributed as A(x) = P (I ≤ x), x ≥ 0. To avoid
having to deal with synchronization problems in our analysis (e.g., two customers departing at
the same time, or an arrival and departure occurring at the same time) we will always assume
that the distribution A has the property that P (I > 0) = 1 (equivalently A(0) = 0) and that
either A or G has a density. For our first simulation, suppose that for some T > 0, we only
wish to generate a copy of

X =
1
T

∫ T

0
L(s)ds,

the average number in system over the first T time units, where L(t) denotes the number of
customers in the system at time t.

1



The simulation logic

T : Time at which the simulation is to stop.
t : time.
tA : time of the next arrival.
tS : time of the next service completion.
L : the number of customers in the system (service) at time t.
A : area up to time t,

∫ t
0 L(s)ds.

R(1), . . . , R(L): data list of the remaining service times of the L customers in service at time
t in ascending order. R(1) is thus the minimum value, and in the absence of new arrivals this
service would be the next to be completed and would complete after R(1)× L units of time.

1. Arrival is next event (tA < tS):

If tA ≥ T , then reset A = A+L× (T − t), give the output X = A/T and stop. Otherwise:

If L = 0, then reset L = 1, generate S ∼ G and set R(1) = S, t = tA, tS = t + S.
Generate I ∼ A, set tA = t+ I.

If L > 0, then set w = (tA − t)/L (this is the amount of work processed on each of the L
jobs), and reset R(i) = R(i)− w, i = 1, . . . , L, A = A+ L× (tA − t);
reset L = L+ 1, t = tA, generate I ∼ A, set tA = t+ I. Generate S ∼ G, set R(L) = S.
Reorder the list of R(i) values in ascending order 1 ≤ i ≤ L. Reset tS = t+ (R(1)× L).

2. Service completion is next event (tS < tA):

If tS ≥ T , then reset A = A+L× (T − t), give the output X = A/T and stop. Otherwise:

Reset A = A+ L× (tS − t), L=L-1;
If L = 0, then reset t = tS , tS =∞, whereas
if L > 0, then shift the data list down by one: R(1) = R(2), . . . , R(L) = R(L + 1). Set
w = (tS − t)/(L+ 1), reset R(i) = R(i)− w, i = 1, . . . , L, t = tS , tS = t+ (R(1)× L).

Remark 1.1 In the special case when arrivals are Poisson (at rate λ), the M/G/1 PS model,
it is known that the stationary distribution for number in system has a geometric distribution
and is insensitive to the service time distribution G except through its mean E(S) = 1/µ.
P (L = n) = ρn(1 − ρ), n ≥ 0, where ρ = λ/µ < 1. Thus l = E(L) = ρ/(1 − ρ) and from
l = λw, we obtain w = E(S)/(1 − ρ). We would not then need to simulate this model if we
wanted to estimate steady-state properties of L or mean sojourn time. But whereas the mean
sojourn time is insensitive to G, the distribution of stationary sojourn time is very sensitive
to G (even second moments are). Moreover, when arrivals are not Poisson, no general closed
formulas exist even for l, and simulation becomes an important estimation method.

1.2 Simulating sojourn times

Suppose now that we wish to generate, for a given N , the sojourn times of the first N customers,
W1, . . . ,WN . (We are referring to the first N arriving customers, C1, . . . CN , not the first N
customers to depart.) In this case, we need to keep track of which customers are in service all

2



throughout their sojourn time, unlike our previous simulation where we did not need to know
who the customers in service were. Also, the simulation typically will yield the sojourn times of
more than N customers because the N customers C1 − CN might not depart until after other
customers CN+1, . . . , CN+k (say) depart first.

We need to keep a record of A(j) = the arrival time of Cj and be capable of collecting
D(j) = the departure time of Cj , so that we can compute Wj = D(j) − A(j), j = 1, 2, . . . N .
To this end, we need to accompany R with the list of customer indexes. IN(i) = the index of
R(i): If IN(i) = j, then Cj is the customer in service with remaining service time R(i). It is
very important to realize that typically more than N customers will depart before we are able
to collect D(1)−D(N). For example, suppose N = 1 and C1 arrives with a large service time
S1 = 20. Suppose further that 10 new customers all arrive soon after C1 but have small service
times of length 1. Then customers C2 − C11 will depart before C1. In the absence of any new
arrivals then, we would have collected the sojourn times of the first eleven customers when the
simulation stops.

The simulation logic

N : Specifies that we want the sojourn times of the first N arriving customers.
t : time.
tA : time of the next arrival.
NA : The number of arrivals by time t.
tS : time of the next service completion.
L : the number of customers in the system (service) at time t.

R(1), . . . , R(L): data list of the remaining service times of the L customers in service at time
t in ascending order. R(1) is thus the minimum value, and in the absence of new arrivals this
service would be the next to be completed and would complete after R(1)× L units of time.

IN(1), . . . , IN(L): data list of the index of each of the L customers in service at time t. IN(i)
is the index of the customer with remaining service time R(i), i = 1, . . . , L.

CS: the number of customers from among the first N that have completed service. As soon
as CS = N , the simulation stops.

1. Arrival is next event (tA < tS):

Reset NA = NA + 1. If L = 0, then reset L = 1, generate S ∼ G and set R(1) =
S, IN(1) = NA, A(NA) = tA, t = tA, tS = t+ S. Generate I ∼ A, set tA = t+ I.

If L > 0, then set w = (tA − t)/L (this is the amount of work processed on each of the L
jobs), and reset R(i) = R(i)− w, i = 1, . . . , L;
reset L = L + 1, t = tA, generate I ∼ A, set tA = t + I. Generate S ∼ G, and fit this
new value into the correct position of the R list (shifting the others appropriately) and
record its index as NA. Reset tS = t+ (R(1)× L).

The “fit this new value” above can be carried out as follows: Case 1: S < R(1) in
which case shift R(L) = R(L − 1), . . . , R(2) = R(1) and R(1) = S; IN(L) = IN(L −

3



1), . . . , IN(2) = IN(1) and IN(1) = NA.
Case 2: S > R(L− 1) in which case R(L) = S and IN(L) = NA.
Case 3: R(i − 1) < S < R(i) for a unique 2 ≤ i ≤ L − 1 in which case shift R(L) =
R(L− 1), . . . , R(i+ 1) = R(i) and R(i) = S; IN(L) = IN(L− 1), . . . , IN(i+ 1) = IN(i)
and IN(i) = NA.

2. Service completion is next event (tS < tA):

D(IN(1)) = tS .
If IN(1) ≤ N , then CS = CS + 1.
If CS = N , then give the output W (j) = A(j)−D(j), j = 1, . . . , N and stop. Otherwise:

L = L− 1.
If L = 0, then reset t = tS , tS =∞, whereas
If L > 0, then shift the data lists down by one: R(1) = R(2), . . . , R(L) = R(L + 1) and
IN(1) = IN(2), . . . , IN(L) = IN(L+ 1);
w = (tS − t)/(L+ 1), reset R(i) = R(i)− w, i = 1, . . . , L, t = tS , tS = t+ (R(1)× L).

4


	 Processor sharing queues
	GI/GI/1 PS 
	Simulating sojourn times


