
Copyright c© 2012 by Karl Sigman

1 Insurance Risk Models

1.1 Classic model

Starting with initial reserve x > 0, an insurance risk business earns money at constant rate
c > 0 per unit time (from interest (say)). Meanwhile, according to a point process with times
{tn : n ≥ 1}, 0 < t1 < t2 < · · ·, and counting process {N(t)}, claims against the business occur
in the amounts Bn > 0 causing the reserve to jump downward by such amounts. If at any such
jump, the reserve falls ≤ 0, then the business is said to be ruined. To model this in discrete
time (since after all, ruin can only occur at a claim time), we first define the unrestricted reserve
process by

Xn(x) = x+ ctn −
n∑
j=1

Bj , n ≥ 1, X0(x) = x. (1)

Xn(x) denotes the reserve level right after the nth claim has come in, and it is allowed to fall
≤ 0 and continue.

Xn(x) denotes the reserve level right after the nth claim has come in, and it is allowed to
fall ≤ 0 and continue.

In continuous time units, the time of ruin is defined by τ(x) def= min{tn : Xn(x) ≤ 0}, where
by convention τ(x) def= ∞ if ruin never occurs, that is, if Xn(x) > 0, n ≥ 0. Of major interest
is to compute P (τ(x) < ∞), the probability that ruin will ever occur, or P (τ(x) ≤ T), the
probability that ruin will occur by time T .

One can also define ruin in discrete-time units τ (d)(x) def= min{n : Xn(x) ≤ 0}, representing
the index of the claim (if any) that caused ruin, and then if ruin does occur, the magnitude of
ruin, M = |Xτ (d)(x)(x)| might be of interest; it is the amount of money that the company is
ruined by.

We define the risk process itself (in discrete time) as

Rn(x) =
{
Xn(x), if τ(x) > n;
0, if τ(x) ≤ n.

It is simply the X process until ruin at which time it remains at value 0 forever after.
Letting An = tn− tn−1, n ≥ 1 denote interaarrival times, (1) can be re-written as a random

walk, with increments cAj −Bj via

Xn(x) = x+
n∑
j=1

(cAj −Bj), n ≥ 1, X0(x) = x. (2)

Duality between risk models and queueing models

When the point process forms a renewal process, and independently the claim sizes are iid, then
this model shares an elegant duality with a FIFO GI/GI/1 queue: using Tn = cAn+1 as customer
interrarrival times, and the Bn as service times, it holds that P (τ(x) ≤ T) = P (DT (0) ≥ x),
where Dn(0) denotes the nth customer’s delay (using the delay recursion Dn+1 = (Dn + Bn −
Tn)+) if initially D0 = 0. More generally, P (Rn(x) ≤ y) = P (Dn(y) ≥ x), where Dn(y)
denotes the nth customer’s delay using the delay recursion if initially D0 = y. For example,
consider n = 1. Then R1(x) ≤ y is equivalent to x+ cT1 − B1 ≤ y which can be re-written as

1

y +B1 − cT1 ≥ x. On the other hand, the event {D1(y) ≥ x} has the same distribution as the
event {(y +B1 − cT1)+ ≥ x} which is equivalent to the event {y +B1 − cT1 ≥ x}; we conclude
that indeed P (R1(x) ≤ y) = P (D1(y) ≥ x).

1.2 Simple simulation of the classic model risk process

In the following we show how to simulate for computing P (τ(x) ≤ T) , when the arrivals are
Poisson at rate λ, and the claim sizes are iid with general distribution G. It is assumed that
one already has an efficient algorithm for generating B ∼ G. The code can easily be modified
to accommodate a general interarrival time distribution, or a non-stationary Poisson process of
arrivals.

The following algorithm generates one copy of the indicator I{τ(x) ≤ T}.

t : simulated time,
R = R(x) : the reserve level at that time given it started initially at x,
τ = τ(x) : the (continuous) time of ruin,
I : the indicator for the event {ruin by time T} = {τ(x) ≤ T}, and
M : the magnitude of ruin given that it occurred.

1. t = 0, R = x, τ =∞, I = 0, M = 0.

2. Generate U

3. t = t+ (−(1/λ) ln(U)). If t > T stop. R = R+ c(−(1/λ) ln (U))

4. Generate B ∼ G. Set R = R − B. If R ≤ 0, then set I = 1, set τ = t, set M = |R| and
stop.

5. Go to 2.

To estimate P (τ(x) ≤ T), one would need to run this algorithm n (large) times to obtain
iid copies I1, . . . , In and use the estimate

P (τ(x) ≤ T) ≈ 1
n

n∑
j=1

Ij .

To estimate E(M), one would run the simulation as many times as it takes until there are
a total of n (large) ruins, so as to get n iid copies of M ; M1, . . . ,Mn and then use the estimate

E(M) ≈ 1
n

n∑
j=1

Mj .

Estimation of ruin probabilitites (or equivalently P (D > x) for a queue) becomes more
difficult for a large x since then the probability can be quite small, and one would have to do a
very long simulation to detect a ruin. Fortunately, there are a variety of more efficient methods
that have been developed for simulating for estimating the probability of ruin; key words are
“rare event simulation”, “importance sampling”, “change of measure”, and “fast simulation”
methods. It is an active area of research. The methods used depend on the distribution of B;
for example if it is light-tailed or heavy-tailed. The basic idea is to change the distributions
of interarrival and claim size so that ruin occurs more often, simulate that instead, and then
transform the answer back to the original one.

2

1.3 Markovian model

Here we consider another risk model which makes more sense when (say) considering car in-
surance. Policy holders join according to a Poisson process at rate v. Independently each such
holder remains joined for an amount of time that is exponentially distributed with rate µ and
then quits, and then is no longer a policy holder. Independently, each holder sends in claims
according to a Poisson process at rate λ. All claim sizes are iid with distribution G. Also, each
holder pays a premium to the company of $c per unit time.

Some observations: At any given time t, suppose there are N policy holders. Starting from
time t, let X1 denote the time until the next new holder joins, X2 the time until one of the N
holders quits, and X3 the time until the next claim comes in. Then, by the Poisson/exponential
assumptions and the memoryless property of the exponential distribution, these three random
variables are independent and exponentially distributed; X1 ∼ exp(v), X2 ∼ exp(Nµ), X3 ∼
exp(Nλ). X1 is the time until the next event from the Poisson rate v process, that is clear. X2:
There are N holders, each independently with their own “join time” Y1, . . . , YN exponential at
rate µ. Thus X2 = min{Y1, . . . , YN}, which is exponential at rate Nµ because P (X2 > x) =
P (Y1 > x, . . . , YN > x) = P (Y > x)N = e−Nµx. Similarly, X3 ∼ exp(Nλ) since it is the
minimum of N iid exp(λ) rvs. 1 We now proceed to use this fact.

For purposes of a discrete-event simulation, there are 3 “event types” in this model; e1: a
new policy holder joins, e2: an existing policy holder quits, and e3: a claim comes in. The
time until the next event is the minimum m = min{X1, X2, X3}, hence is itself exponentially
distributed with rate r = v+Nµ+Nλ = the sum of the three rates. Thus if the current time is t
and there are N policy holders, then we can schedule the “next event” at time t+(−(1/r) ln (U).
But we must determine what kind of event it is. Noting that each of X1, X2 or X3 will be the
minimum with probabilities p1 = v/r, p2 = Nµ/r, p3 = Nλ/r, we conclude that we simply need
to independently generate a rv C with distribution P (C = 1) = p1, P (C = 2) = p2, P (C =
3) = p3; then if C = i we conclude that the event is of type ei. Generate U . If U ≤ p1 , then
set C = 1. If p1 < U ≤ p1 + p2, then set C = 2. If U > p+p2, then set C = 3.

Here then is the code for simulating this model up to time T .

1. t = 0, R = x, N = n0 > 0, τ =∞, I = 0, M = 0.

2. Generate U . Set r = v +Nλ+Nµ, p1 = v/r, p2 = Nµ/r, p3 = Nλ/r.

3. t = t+ (−(1/r) ln(U)). If t > T stop.

4. R = R+ cN(−(1/r) ln (U)).

5. Generate C (P (C = 1) = p1, P (C = 2) = p2, P (C = 3) = p3.)

6. If C = 1, then N = N + 1. If C = 2, then N = N − 1.

7. If C = 3, then: generate B ∼ G. Set R = R−B. If R ≤ 0, then set I = 1, set τ = t, set
M = |R| and stop.

8. Goto 2.

1In general if Xi ∼ exp(λi) are independent, i = 1, 2, . . . ,m, then m
def
= min{X1, X2, . . . , Xm} is exponential

at rate λ = λ1 + · · ·+ λm, the sum of the individual rates.

3

