
Copyright c© 2013 by Karl Sigman

1 Simulating Brownian motion (BM) and geometric Brownian
motion (GBM)

For an introduction to how one can construct BM, see the Appendix at the end of
these notes.

A stochastic process B = {B(t) : t ≥ 0} possessing (wp1) continuous sample paths is called
standard Brownian motion (BM) if

1. B(0) = 0.

2. B has both stationary and independent increments.

3. B(t)−B(s) has a normal distribution with mean 0 and variance t− s, 0 ≤ s < t.

2) and 3) together can be summarized by: If t0 = 0 < t1 < t2 < · · · < tk, then the increment
rvs B(ti) − B(ti−1), i ∈ {1, . . . k}, are independent with B(ti) − B(ti−1) ∼ N(0, ti − ti−1)
(normal with mean 0 and variance ti − ti−1). In particular, B(ti) − B(ti−1) is independent of
B(ti−1) = B(ti−1)−B(0).

If we only wish to simulate B(t) at one fixed value t, then we need only generate a unit
normal Z ∼ N(0, 1) and set B(t) =

√
tZ. But typically, we will want to simulate (say) k values

at times t0 = 0 < t1 < t2 < · · · < tk to get the entire vector (with correlated coordinates):

(B(t1), . . . , B(tk)).

We can easily do so by using the fact that B(s + t) = B(s) + (B(s + t)− B(s)), and B(s)
and B(s+ t)−B(s) are independent normals.

If we generate k iid unit normals Z1, Z2, . . . , Zk, then we can construct the independent
increments via B(ti)−B(ti−1) =

√
ti − ti−1Zi, i = 1, . . . , k.

Thus to simulate the values B(t1), . . . , B(tk), we can use the recursion
B(ti+1) = B(ti) + (B(ti+1)−B(ti)) = B(ti) +

√
ti+1 − tiZi+1, i ∈ {0, . . . k − 1}.

This yields:

Simulating Standard BM at times 0 = t0 < t1 < t2 < · · · < tk:

Sequentially generate unit normals Z1, Z2, . . . , Zk, and recursively define

B(t1) =
√
t1Z1

B(t2) = B(t1) +
√
t2 − t1Z2 =

√
t1Z1 +

√
t2 − t1Z2

...

B(tk) =
k∑
i=1

√
ti − ti−1Zi.

In the end, to simulate BM then, we need only generate unit normals, which we already
learned how to do using (for example) the polar method or the acceptance rejection algorithm.
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1.1 BM with drift

X(t) = σB(t) + µt will denote the BM with drift µ ∈ R and variance term σ > 0. It has
continuous sample paths and is defined by

1. X(0) = 0.

2. X has both stationary and independent increments.

3. X(t)−X(s) has a normal distribution with mean µ(t−s) and variance σ2(t−s), 0 ≤ s < t.

X(t) − X(s) thus can be constructed (simulated) by generating a standard normal rv Z
and setting X(t) − X(s) = σ

√
t− sZ + µ(t − s). Again, by the stationary and independent

increments, we can simulate such a BM at times 0 = t0 < t1 < t2 < · · · < tk, by generating k
iid unit normals Z1, Z2, . . . , Zk and using the recursion
X(ti+1) = X(ti) + (X(ti+1)−X(ti)) = X(ti) + σ

√
ti+1 − tiZi+1 + µ(ti+1 − ti).

Simulating BM with drift µ and variance term σ at times 0 = t0 < t1 < t2 < · · · < tk:

Sequentially generate unit normals Z1, Z2, . . . , Zk, and recursively define

X(t1) = σ
√
t1Z1 + µt1

X(t2) = X(t1) + σ
√
t2 − t1Z2 + µ(t2 − t1) = σ

√
t1Z1 + µt1 + σ

√
t2 − t1Z2 + µ(t2 − t1)

...

X(tk) =
k∑
i=1

(σ
√
ti − ti−1Zi + µ(ti − ti−1)).

1.2 Geometric BM

Geometric Brownian motion (GBM) is given by

S(t) = S(0)eX(t), t ≥ 0,

where X(t) = σB(t) + µt, t ≥ 0, is a BM. eX(t) has a lognormal distribution for each fixed
t > 0. In general if Y = eX is lognormal with X ∼ N(µ, σ2), then we can easily simulate Y via
setting Y = eσZ+µ, with Z ∼ N(0, 1).

Moreover, for any 0 ≤ s < t it holds that

S(t) = S(0)
S(s)
S(0)

× S(t)
S(s)

= S(0)eX(s) × eX(t)−X(s),

and since the increment X(s) is independent of the increment X(t) −X(s), we conclude that
the consecutive ratios S(s)

S(0) and S(t)
S(s) are independent lognormals. We can thus simulate the pair

(S(s), S(t)) by generating two iid N(0, 1) rvs, Z1, Z2 and setting S(s) = S(0)eσ
√
sZ1+µs, S(t) =

S(s)eσ
√
t−sZ2+µ(t−s) = S(0)eσ

√
sZ1+µs × eσ

√
t−sZ2+µ(t−s).

More generally, for 0 = t0 < t1 < t2 < · · · < tk, define Yi = S(ti)/S(ti−1), i ∈ {1, 2, . . . , k}.
Then we can write
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S(t1) = S(0)Y1

S(t2) = S(t1)Y2 = S0Y1 × Y2

...
S(tk) = S(tk−1)Yk = S0Y1 × Y2 × · · · × Yk.

The Yi are independent lognormal rvs and can be constructed by generating k iid N(0, 1) rvs,
Z1, Z2, . . . Zk and setting

Yi = eσ
√
ti−ti−1Zi+µ(ti−ti−1), i ∈ {1, 2, . . . , k}. (1)

Simulating paths of GBM is thus an easy consequence of our algorithm for simulating BM
since for 0 = t0 < t1 < t2 < · · · < tk, the following recursion holds

S(ti+1) = S(ti)eX(ti+1)−X(ti), i ∈ {0, 1, . . . , k − 1}.

Simulating Geometric BM (with drift µ and variance term σ) at times 0 = t0 < t1 < t2 < · · · <
tk:

Sequentially generate unit normals Z1, Z2, . . . , Zk, and set the Yi as in (1). Then recursively
define

S(t1) = S(0)Y1

S(t2) = S(t1)Y2 = S0Y1 × Y2

...
S(tk) = S(tk−1)Yk = S0Y1 × Y2 × · · · × Yk.

1.3 Applications in Financial Engineering

Here we let S(0) = S0 denote the price per share of a risky asset (stock) initially, and S(t) =
S0e

X(t) as the price at time t. The classic European call option with expiration date T and strike
price K has payoff at time T of CT = (S(T )−K)+. The famous Black-Scholes-Merton option
pricing theory/formula makes this option’s price known explicitly, but other options(derivatives
of the stock) are typically impossible to compute exactly; Monte Carlo simulation is thus
commonly used to do estimate the prices.

Asian call option

A variation on a European call option (that is cheaper) is to average the price of the stock over
the time interval [0, T ] and use that instead of S(T ) yielding payoff( 1

T

∫ T

0
S(t)dt−K

)+
.

In practice one can’t compute (or simulate exactly) such an average as 1
T

∫ T
0 S(t)dt to offer such

an option, and instead one samples the price at a sequence of times such as the beginning of
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each day. So let’s assume that time is in days, that T is an integer and thus we will consider
the payoff

CT =
( 1
T

T∑
n=1

S(n)−K
)+
, (2)

and our objective is to estimate the expected payoff, E(CT ). We thus need to simulate iid
copies of CT and then average.

Using the Yi rvs from the previous Section, they are now iid since ti − ti−1 = 1, and thus
each X(ti)−X(ti−1) has a N(µ, σ2) distribution.

Using the recursion

S(n+ 1) = S(n)eX(n+1)−X(n), n ∈ {0, . . . T − 1},

we conclude that we can represent the stock prices by introducing T iid unit normals Z1, . . . , ZT ,
and rewriting

S(n+ 1) = S(n)eσZn+1+µ.

We thus can construct a copy of CT .

Up-and-out call option

Another variation on a European call option (that is cheaper) is the introduction of a upper
barrier b > 0 which, in order that the holder receive payoff (S(T ) −K)+ at time T , the stock
price must remain below the barrier at pre-specified times 0 < t1 < t2 < · · · < tk < T . Thus
the payoff is

CT = (S(T )−K)+I{S(t1) < b, . . . , S(tk) < b};
if S(ti) ≥ b at any one of the k check times t1, . . . , tk, then CT = 0.

Using S(ti+1) = S(ti)eX(ti+1)−X(ti), and noting thatX(ti+1)−X(ti) ∼ N(µ(ti+1−ti), σ2(ti+1−
ti)), we can construct sequentially the S(ti) and check if S(ti) ≥ b; if so then we stop and set
CT = 0; otherwise we continue to the next check point. If all k check points are passed with-
out violating the barrier constraint, then we finally construct S(T ) = S(tk)eX(T )−X(tk) with
X(T )−X(tk) ∼ N(µ(T − tk), σ2(T − tk)), and set CT = (S(T )−K)+. This then gives us our
first sample of CT .

We illustrate this below:

Algorithm for generating one copy of CT :

Input k and the k times 0 < t1 < t2 < · · · < tk < T .
Initialize t = t1, S = S0, i = 1.

1. Generate Z. Reset S = Seσ
√
tZ+µt.

2. If S ≥ b and i ≤ k, then set CT = 0 and stop.

3. Otherwise if S < b and i ≤ k, reset i = i+ 1, t = ti − ti−1 and go back to (1).

4. Otherwise if i = k + 1, then reset t = T − tk, generate Z, reset S = Seσ
√
tZ+µt, and set

CT = (S −K)+ and stop.
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1.4 Other Applications in Finance

Monte Carlo simulation can also be used to estimate other quantities of interest in finance that
do not involve derivatives. For example, suppose you invest in two different stocks, S1(t) and
S2(t), buying N1 shares of the first and N2 of the second. At time t = 0 you pay V (0) =
N1S1(0) +N2S2(0) for this portfolio, and at time t it will be worth V (t) = N1S1(t) +N2S2(t).
Although each stock price on its own has a lognormal distribution, the sum of the two does not;
computations involving this sum can be intractable. The stocks are typically correlated too.
Suppose you wish to compute the probability that at time t = T , the value of your investment
has increased by at least 10%. That is, you wish to compute

P (V (T ) ≥ (1.1)V (0)).

This is equivalent to taking expected values of the indicator function

X = I{N1S1(T ) +N2S2(T ) ≥ (1.1)V (0)}.
For illustration, let’s suppose the two stocks are independent in which case by letting Z1

and Z2 denote two generated iid unit normals, we can construct X via

X = I{N1S1(0)eσ1

√
TZ1+µ1T +N2S2(0)eσ2

√
TZ2+µ2T ≥ (1.1)V (0)}.

In general, some correlation exists between the two stocks, and this can be incorporated by
generating the unit normals with a desired correlation:

One can construct correlated unit normals Z1 and Z2 with any desired correlation
coefficient −1 < ρ < 1 by first generating Y1 and Y2 iid unit ones and setting Z1 = Y1

and Z2 = ρY1 +
√

1− ρ2Y2.

Finally, simulating n iid copies X1, X2, . . . , Xn of X yields our estimator

P (V (T ) ≥ (1.1)V (0)) ≈ 1
n

n∑
i=1

Xi.

Note: Taking two independent standard Brownian motions, W1(t), W2(t) we can construct
a correlated two-dimensional Brownian motion via defining

B1(t) = W1(t), B2(t) = ρW1(t) +
√

1− ρ2W2(t).

1.5 APPENDIX: Construction of Brownian motion from the simple sym-
metric random walk

Recall the simple symmetric random walk, R0 = 0,

Rn = ∆1 + · · ·+ ∆n =
n∑
i=1

∆i, n ≥ 1,

where the ∆i are iid with P (∆ = −1) = P (∆ = 1) = 0.5. thus E(∆) = 0 and V ar(∆) =
E(∆2) = 1.

We view time n in minutes, and Rn as the position at time n of a particle, moving on IR,
which every minute takes a step, of size 1, equally likley to be forwards or backwards. Because
E(∆) = 0 and V ar(∆) = 1, it follows that E(Rn) = 0 and V ar(Rn) = n, n ≥ 0.
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Choosing a large integer k > 1, if we instead make the particle take a step every 1/k minutes
and make the step size 1/

√
k, then by time t the particle will have taken a large number, n = tk,

of steps and its position will be

Bk(t) =
1√
k

tk∑
i=1

∆i. (3)

(By convention if tk is not an integer then we replace it by the largest integer less than or
equal to it; denoted by [tk].) This leads to the particle taking many many iid steps, but each
of small magnitude, in any given interval of time. We expect that as k →∞, these small steps
become a continuum and the process {Bk(t) : t ≥ 0} should converge to a process {B(t) : t ≥ 0}
with continuous sample paths. We call this process Brownian motion (BM) after the Scottish
botanist Robert Brown.1 Its properties will be derived next.

Notice that for fixed k, any increment

Bk(t)−Bk(s) =
1√
k

tk∑
i=sk+1

∆i, 0 ≤ s < t,

has a distribution that only depends on the length, t − s, of the time interval (s, t] because it
only depends on the number, k(t − s), of iid ∆i making up its construction. Thus we deduce
that the limiting process (as k → ∞) will possess stationary increments: The distribution of
any increment B(t)−B(s) has a distribution that only depends on the length of the time interval
t− s. In particular, B(t)−B(s) has the same distribution as does B(t− s).

Notice further that given two non-overlapping time intervals, (t1, t2] and (t3, t4], 0 ≤ t1 <
t2 < t3 < t4, the corresponding increments

Bk(t4)−Bk(t3) =
1√
k

t4k∑
i=t3k+1

∆i, (4)

Bk(t2)−Bk(t1) =
1√
k

t2k∑
i=t1k+1

∆i, (5)

are independent because they are constructed from different ∆i. Thus we deduce that the
limiting process (as k →∞) will also possess independent increments: For any non-overlapping
time intervals, (t1, t2] and (t3, t4], the increment rvs I1 = B(t2)−B(t1) and I2 = B(t4)−B(t3)
are independent.

Observing that E(Bk(t)) = 0 and V ar(Bk(t)) = [tk]/k → t, k → ∞, we infer that the
limiting process will satisfy E(B(t)) = 0, V ar(B(t)) = t just like the random walk {Rn} does
in discrete-time n (E(Rn) = 0, V ar(Rn) = n).

Finally, a direct application of the central limit theorem CLT yields

Bk(t) =
√
t
( 1√

kt

tk∑
i=1

∆i

)
=⇒ N(0, t), k →∞, in distribution,

1Brown himself noticed in 1827, while carrying out some experiments, the unusual “motion” of particles within
pollen grains suspended in water, under his microscope. The physical cause of such motion (bombardment of the
particles by water molecules undergoing thermal motion) was not formalized via kinetic theory until Einstein in
1905. The rigorous mathematical construction of a stochastic process as a model for such motion is due to the
mathematician Norbert Weiner; that is why it is sometimes called a Weiner process.
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and we conclude that for each fixed t > 0, B(t) has a normal distribution with mean 0 and
variance t. Similarly, using the stationary and independent increments property, we conclude
that B(t)−B(s) has a normal distribution with mean 0 and variance t− s, and more generally:

the limiting BM process is a process with continuous sample paths that has both
stationary and independent normally distributed (Gaussian) increments: If t0 =
0 < t1 < t2 < · · · < tn, then the rvs. B(ti)−B(ti−1), i ∈ {1, . . . n}, are independent
with B(ti)−B(ti−1) ∼ N(0, ti − ti−1).
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