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1 Estimating sensitivities

When estimating the Greeks, such as the ∆, the general problem involves a random variable
Y = Y (α) (such as a discounted payoff) that depends on a parameter α of interest (such as initial
price S0, or volitility σ, etc.). In addition to estimating the expected value K(α) def= E(Y (α))
(this might be, for example, the price of an option), we wish to estimate the sensitivity of E(Y )
with respect to α, that is, the derivative of E(Y ) with respect to α,

K ′(α) =
dE(Y )
dα

= lim
h→0

K(α+ h)−K(α)
h

.

1.1 Sample-path approach

If the mapping α → Y (α) is “nice” enough, we can interchange the order of taking expected
value and derivative,

dE(Y )
dα

= E
[dY
dα

]
. (1)

Under this scenario, K ′(α) itself is an expected value so we can estimate it by standard
Monte Carlo: Simulate n iid copies of dY

dα and take the empirical average.
To dispense with the notion that such an interchange as in (1) is always possible (no, it is

not!) one merely need consider the ∆ of a digital option with payoff Y = Y (S0) = e−rT I{S(T ) >
K}, where S(T ) = S0e

X(T ) = S0e
σB(T )+(r−σ2/2)t. (The risk-neutral probability is being used

for pricing purposes.) In this case, dY
dS0

= 0 since the indicator is a piecewise constant function

of S0, thus E
[
dY
dS0

]
= 0. But E(Y ) = e−rTP (S(T ) > K) is a nice smooth function of S0 > 0,

with a non-zero derivative. (Yes, the sample paths of Y are not differentiable (nor continuous
even) at the value of S0 for which S(T ) = K, but P (S(T ) = K) = 0, so this point can be
ignored.)

On the other hand, a European call option, with payoff Y = e−rT (S(T ) − K)+ satisfies
dY
dS0

= e−rT eX(T )I{S(T ) > K} which can be re-written as dY
dS0

= e−rT S(T )
S0

I{S(T ) > K}, and
indeed it can be proved that (1) holds.

The basic condition needed to ensure that the interchange is legitimate is uniform integra-
bility of the rvs {h−1(Y (α + h) − Y (α))} as h ↓ 0. We present a sufficient condition for this
next.

Proposition 1.1 Suppose that Y (α) is

1. wp1, differentiable at the point α0, and satisfies

2. there exists an interval I = (α0 − ε, α0 + ε), (some ε > 0), and a non-negative rv B with
E(B) <∞ such that wp1

|Y (α1)− Y (α2)| ≤ |α1 − α2|B, α1, α2 ∈ I.

Then (1) holds.
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Proof : For sufficiently small h, |Y (α0 + h)− Y (α0)| ≤ hB, wp1, thus

|Y (α0 + h)− Y (α0)|
h

≤ B, wp1,

and the result follows by the dominated convergence theorem (letting h→ 0).
For the European call option, we have Y (S0 + h) − Y (S0) ≤ e−rTheX(T ), so the above

proposition applies with B = e−rT eX(T ). For the digital call option, Y (S0) is not differentiable
at the point S0 where S0e

X(T ) = K; it is not even continuous there.
A general rule is that if the mapping α → Y (α) wp1 is continuous at all points, and

differentiable except at most a finite number of points, then the interchange will be valid.
Even if one can justify the interchange (1), it may not be possible to explicitly compute the

derivative dY
dα , thus rendering the sample-path approach impractical. So clearly other methods

are needed for estimating K(α).

1.2 Score function approach

In our next approach, we expand the expected value in E(Y ) as an integral, and then bring the
derivative inside. To illustrate the basics of this method, let us first consider computing the
∆ of an option with a termination date T , such as a European call with payoff (S(T ) −K)+,
where S(t) = S0e

X(t), t ≥ 0 is GBM, with X(t) = σB(t) + (r − σ2/2)t a risk-neutral version
of BM (for pricing purposes). The discounted payoff is Y = e−rT (S(T )−K)+, and the price is
given by

E(Y ) = e−rTE((S(T )−K)+) =
∫ ∞
0

(x−K)+f(x)dx, (2)

where f(x) = fS0(x) is the density function of the lognormal rv S(T ) (which depends on S0).
Noting that the cdf F (x) = P (S(T ) ≤ x) = P (Z ≤ l(x)), where Z is a unit normal and

l(x) =
ln (x/S0)− (r − σ2/2)T

σ
√
T

,

we can differentiate F (x) wrt x to obtain the density in closed form

f(x) =
1

xσ
√
T
θ(l(x)),

where θ is the unit normal density,

θ(x) =
1√
2π
e−x

2/2, x ∈ R.

To compute the ∆, we differentiate (2) with respect to S0, but we differentiate the integral
expression as opposed to using the expected value expression:

dE(Y )
dS0

= e−rT
d

dS0

∫ ∞
0

(x−K)+ f(x)dx = e−rT
∫ ∞
0

(x−K)+
df(x)
dS0

dx. (3)

The main point is that not only can we can interchange the order of integral and derivative, but
the payoff function (x−K)+ is a constant with respect to S0; only the density f(x) depends on
S0. (Justification for the interchange is easily established since the integrand is non-negative
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and f(x) is a very smooth function of S0.) The integral in (3) is not obviously an expected
value, but we can make it so:

Letting ḟ(x) = df(x)
dS0

, we can express (3) as an expected value by simply dividing by and
then multiplying by the factor f(x) in the integrand

dE(Y )
dS0

= e−rT
∫ ∞
0

(x−K)+
ḟ(x)
f(x)

f(x)dx = e−rTE
[
(S(T )−K)+

ḟ(S(T ))
f(S(T ))

]
. (4)

Thus we can use Monte Carlo simulation: simulate n (large) iid copies of X = (S(T ) −
K)+ ḟ(S(T ))

f(S(T )) , X1, . . . , Xn, and take the empirical average as our estimate:

dE(Y )
dS0

≈ e−rT 1
n

n∑
i=1

Xi.

We have expressed the ∆ as a weighted expected value of the payoff, (S(T )−K)+, in which
the weight ḟ(S(T ))

f(S(T )) is determined by what is called the score function

ḟ(x)
f(x)

.

The form of the final expression of (4) reminds us of the likelihood ratio in importance sampling,
and because of the similarity, this method is sometimes called the likelihood ratio method, even
though we are not “changing measure” here; we are still using f(x).

To use this method in practice, however, we must compute ḟ(x). Because of the exponential
form of θ(x), it is easily seen that ḟ(x) = −f(x)l(x)l̇(x), and l̇(x) = −(S0σ

√
T )−1. Thus

ḟ(x)
f(x)

=
l(x)

S0σ
√
T
,

yielding
ḟ(S(T ))
f(S(T ))

=
l(S(T ))
S0σ
√
T
.

But if we use a unit normal Z to construct S(T ) via S(T ) = S0e
σ
√
TZ+(r−σ2/2)T , then

(check!) l(S(T )) = Z, and we finally arrive at

ḟ(S(T ))
f(S(T ))

=
Z

S0σ
√
T
. (5)

Thus from (4) we arrive at:

dE(Y )
dS0

= e−rTE
[
(S(T )−K)+

Z

S0σ
√
T

]
. (6)
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Algorithm for estimating the ∆, dE(Y )
dS0

of a European call option:

1. Generate n iid unit normals, Z1, . . . , Zn.

2. Define
Yi = S0e

σ
√
TZi+(r−σ2/2)T ,

and
Xi = (Yi −K)+

Zi

S0σ
√
T
, i = 1, 2, . . . , n.

3. Use the estimate
dE(Y )
dS0

≈ e−rT 1
n

n∑
i=1

Xi.

1.2.1 Score method for computing the ∆ of other options:

The expression in (6) extends immediately to any option with a payoff given by a function
h(S(T )) such as the digital option h(S(T )) = I{S(T ) > K}; the ∆ of any such option then has
the form

dE(Y )
dS0

= e−rT
∫ ∞
0

h(x)
ḟ(x)
f(x)

f(x)dx = e−rTE
[
h(S(T ))

Z

S0σ
√
T

]
. (7)

We can also handle some path-dependent options such as an Asian call. We outline this
here. For fixed time points 0 < t1 < t2 < · · · < tk = T , the payoff is given by (S −K)+ where

S =
1
k

k∑
i=1

S(ti).

In this case, the payoff function h is a function of k variables, x = (x1, . . . , xk),

h(x) = h(x1, x2, . . . , xk) =
(1
k

k∑
i=1

xi − K
)+

;

h(S(t1), . . . , S(tk)) = (S −K)+.
We thus obtain our ∆ via

dE(Y )
dS0

= e−rT
∫ ∞
0

h(x)
ḟ(x)
f(x)

f(x)dx, (8)

where f(x) denotes the joint density of (S(t1), . . . , S(tk)).
Letting Z1, . . . , Zk denote iid unit normals we can recursively construct

S(t1) = S0e
σ
√
t1Z1+(r−σ2/2)t1 (9)

S(t2) = S(t1)eσ
√
t2−t1Z2+(r−σ2/2)(t2−t1) (10)

... (11)

S(tk) = S(tk−1)eσ
√
tk−tk−1Zk+(r−σ2/2)(tk−tk−1). (12)

The joint density can thus be written as the product of conditional lognormal densities:

f(x) = f1(x1|S0)f2(x2|x1)× · · · × fk(xk|xk−1);
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f1(x1|S0) is the density of S(t1) and it depends on S0. f2(x2|x1) is the conditional density
of S(t2) given that S(t1) = x1, so it is the density of

x1e
σ
√
t2−t1Z2+(r−σ2/2)(t2−t1),

and so on with fk(xk|xk−1) the conditional density of S(tk) given that S(tk−1) = xk−1; it has
the density of

xk−1e
σ
√
tk−tk−1Zk+(r−σ2/2)(tk−tk−1).

Only f1 depends on S0, not the others, so

ḟ(x)
f(x)

=
ḟ1(x1|S0)f2(x2|x1)× · · · × fk(xk|xk−1)

f(x)
=
ḟ1(x1|S0)
f1(x1|S0)

,

and we conclude (from (5)), that

ḟ(S(t1), . . . , S(tk))
f((S(t1), . . . , S(tk)))

=
Z1

S0σ
√
t1
.

Finally, from (8) this yields the ∆ as

dE(Y )
dS0

= e−rTE
(
(S −K)+

Z1

S0σ
√
t1

)
. (13)

Algorithm for estimating the ∆, dE(Y )
dS0

of an Asian call option:

Begin Loop:

For j = 1, . . . , n:
Generate k iid unit normals Z1, . . . , Zk.
Set Xj = (S −K)+ Z1

S0σ
√
t1

.

End Loop.

Now use the estimate
dE(Y )
dS0

≈ e−rT 1
n

n∑
i=1

Xi.

1.2.2 Score method for computing the V ega of options:

Let ḟ(x) = df(x)
dσ , where f(x) is the density of S(T ). Then similar to computing the ∆, we can

compute the V ega of an option with payoff h(S(T )) via

dE(Y )
dσ

= e−rT
∫ ∞
0

h(x)
ḟ(x)
f(x)

f(x)dx = e−rTE
[
h(S(T ))

ḟ(S(T ))
f(S(T ))

]
. (14)

Once again, the point is that only the density f(x) depends on σ. One can easily check that

ḟ(S(T ))
f(S(T ))

=
Z2 − 1
σ

− Z
√
T ,
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when we use a unit normal Z to construct S(T ).
Using this, one can then show that the score function for estimating the Vega of an Asian

call (payoff = (S −K)+) is given by

ḟ((S(t1), . . . , S(tk)))
f((S(t1), . . . , S(tk)))

=
k∑
i=1

Z2
i − 1
σ

− Zi
√
ti − ti−1,

where we are using the iid normals, Z1, . . . , Zk to construct (S(t1), . . . , S(tk)).

1.3 Forward-difference, and central difference approach

In the following, instead of trying to estimate K ′(α) itself, we are content with estimating an
approximation of it. In the forward-difference approach we choose a small h > 0 and consider
using as our approximation

K ′(α) ≈ h−1(K(α+ h)−K(α)) = E
[
h−1(Y (α+ h)− Y (α))

]
.

In the central-difference approach we choose a small h > 0 and consider using as our
approximation

K ′(α) ≈ (2h)−1(K(α+ h)−K(α− h)) = E
[
(2h)−1(Y (α+ h)− Y (α− h))

]
.

In both cases, the approximation ends up expressed as an expected value so can be estimated
using Monte Carlo simulation: Generate n iid copies of h−1(Y (α+ h)− Y (α)) and average, or
generate n iid copies of (2h)−1(Y (α+ h)− Y (α− h)) and average.

It is important to note that since in practice we will want to estimate K(α) too, not just
K ′(α), the central-difference approach seems on the face of it to offer no advantages over the
finite-difference approach. But actually it does have an advantage as can be seen by comparing
the error involved. Assuming that K(α) has at least two derivatives, a Taylor’s series expansion
yields

K(α+ h) = K(α) +K ′(α)h+K ′′(α)h2/2 + o(h2) (15)
K(α− h) = K(α)−K ′(α)h+K ′′(α)h2/2 + o(h2). (16)

Using the first equation by itself yields

|h−1(K(α+ h)−K(α))−K ′(α)| = |K ′′(α)|h/2 + o(h), (17)

while subtracting the second from the first yields∣∣∣(2h)−1(K(α+ h)−K(α− h))−K ′(α)
∣∣∣ = o(h). (18)

The point is that the central-difference estimator rids us of the K ′′(α)h/2 term, leaving us only
with a o(h) term as error; o(h)/h → 0, as h ↓ 0. In any case, the bias of our estimates (the
error), is under control; choosing h sufficiently small will bring us as close as we wish to our
desired answer K ′(α).

We have said nothing yet about how we would generate a copy of (say) h−1(Y (α+h)−Y (α)).
We could, for example, generate Y (α), and then independently generate Y (α+h). But it might
be possible to generate both Y (α) and Y (α+h) using common random numbers. For example,
consider the digital call payoff Y = e−rT I{S(T ) > K}. Since S(T ) = S0e

X(T ), we can generate
a copy of X(T ) and use it for both S0e

X(T ) and (S0 + h)eX(T ), and hence for Y (S0) and
Y (S0 + h); they become positively correlated. This has the nice effect of reducing the variance
of h−1(Y (α + h) − Y (α)) from what it would be if we generated both independently, but also
saves us from having to do extra simulations. Not all applications allow such a nice “coupling”,
but it is good to take advantage of it if it can be done.
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1.3.1 Variance of the estimates

In general, whereas the bias of our estimate (the error) seems under control (either |K ′′(α)|h/2+
o(h) or just o(h)) thus motivating us to choose a very small h > 0, the variance might not be
cooperative as h gets small. To see this, observe that

V ar(h−1(Y (α+ h)− Y (α))) = h−2[V ar(Y (α+ h)− Y (α))]. (19)

The h−2 term warns us that the variance might blow up as h gets small. For example, if
we were to generate Y (α) and Y (α + h) independently, then (assuming continuity as h → 0)
V ar(Y (α+h)−Y (α))→ 2V ar(Y (α)) and indeed h−2[V ar(Y (α+h)−Y (α))]→∞. If we were
able to use common random numbers, then it can be shown that typically, the improvement
is of the form V ar(Y (α + h) − Y (α)) = O(h) that is, V ar(Y (α + h) − Y (α)) ≤ Ch for some
constant C > 0 as h ↓ 0. But once again the h−2 dominates, and it could still happen that
h−2[V ar(Y (α+ h)− Y (α))]→∞.

Since in the end, we will be considering an estimate of the form

Ỹ ′(α) =
1
n

n∑
i=1

Xi,

where the Xi are iid copies of h−1(Y (α + h) − Y (α)), it would seem prudent to consider the
value of n as well as the choice of h > 0, when carrying out our simulation. We would like to
know

What happens to V ar(Ỹ ′(α)) as n→∞ and h ↓ 0?

Noting that
V ar(Ỹ ′(α)) = n−1h−2(V ar(Y (α+ h)− Y (α))),

let us consider the case when we have (at worst) simulated Y (α) and Y (α+ h) independently,
so that as mentioned above V ar(Y (α+ h)− Y (α))→ 2V ar(Y (α)). Thus we can assume there
is a constant C > 0 such that V ar(Ỹ ′(α)) ≤ Cn−1h−2 as n → ∞ and h ↓ 0. (So we can write
V ar(Ỹ ′(α)) = O(n−1h−2).) We thus see that in order to prevent the variance from blowing up
but instead tending to 0 as n→∞ and h ↓ 0, we need to have nh2 →∞. The point is that we
do not want h to be so very small relative to the sample size n.
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