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Borel-Cantelli Lemmas

Suppose that {4, : n > 1} is a sequence of events in a probability space. Then the event
A(i.0.) = {A,, ocurrs for infinitely many n } is given by

A(ZO) = ﬂzozl Uzo:k ATH

Lemma 1 Suppose that {A, : n > 1} is a sequence of events in a probability space. If

> P(A,) < o, (1)

then P(A(i.0.)) = 0; only a finite number of the events occur, wpl.

Proof :
Let I, = I{A,} denote the indicator rv for the event A,,, and let

N = i[n,
n=1

denote the total number of the events to occur. Then P(A(i.0.)) = 0 if and only if
P(N < o0) =1. But if E(N) < 00, then P(N < c0) =1 (as is the case with any rv ),
and by Tonelli’s (Fubini’s) theorem,

E(N)=Y P(A,), (2)

which is assumed finite, thus completing the proof. [ |

In general, the converse is not true. Essentially, this is because there exists rvs N
such that P(N < oo) = 1 but E(N) = oo. (For example choose an N such that
P(N =n) =c¢/n? n>1, and define A, = {N = n}.) But if the events are independent,
then the converse holds:

Lemma 2 Suppose that {A, : n > 1} is a sequence of independent events in a proba-
bility space. If

> P(Ay) = e, (3)

n=1

then P(A(i.0.)) = 1.



Proof : Suppose that (3) holds, and note that if it holds then
> P(A) =00, k> 1. (4)
n=~k

Let A, denote the complement of the set A,.

P(A(i.0.)) = lim P(U2,A,) =1 — lim P(N%,4,).

k—oo k—oo
To complete the proof we will show that
P(N,A,) =0, k> 1.

By independence, and the basic fact that 1 —z < e, x >0,

P(M ) =[] P4 ()
= [[a-Pa) (6)
< ﬁe—”f‘") (7)
= Zik nek P(An) (8)
= e *=0, (9)

where the last equality is from (4).

As an immediate corollary to the two Lemmas, we have a special case of a “0-1" law:

Proposition 0.1 If {A, :n > 1} is a sequence of independent events in a probability
space, then either P(A(i.0.)) =0 (E(N) < 0o case) or P(A(i.0.)) =1 (E(N) = oo case),
where N denotes the total number of A, to occur;
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n=1
where I, = I{A,} denote the indicator rv for the event A,.

0.1 Applications

1. Suppose {X,, : n > 1} are rvs such that P(X,, = 1) = p,, P(X, =0) =1 — p,.
Thus these are Bernoulli rvs in which the success probability depends on n and we
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do not assume independence. Using A,, = {X,, = 1} we deduce from Lemma 1 that

if .
> pn < o0,
n=1

then X, only visits 1 a finite number of times, hence eventually must take on value
0, wpl. Thus there exists a random time N such that X, = 0, n > N and so
lim, .., X, = 0, wpl. To make this happen, we need that p, — 0 fast enough;
we could, for example, choose p, = 1/n? or choose {p,} to be any probability
distribution, such as a geometric distribution, p, = (1 — p)""!p, n > 1 (some
0 < p < 1). (This result remains valid even if the rvs are independent.)

Now assume that the rvs are independent so that by Lemma 2 if

oo
E Pn = 00,
n=1

then X,, = 1 for infinitely many n, wpl. To achieve this, we could, of course
take p, = p for some fixed p, but more interesting would be to take, for example,
pn = 1/n in which case ¢, = 1 — p, = P(X,, = 0) also sums to co since ¢, — 1;
X,, = 0 for infinitely many n, wpl too. Thus in this case X,, continues to visit both
1 and 0 over and over infinitely often.



